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Abstract. If every finitely generated subalgebra of an algebra A has a property
P , then A is said to have P as a local property. In this paper we study classes L(K)
and M(K), where K is a class of unary algebras, L(K) consists of all algebras
such that every finitely generated subalgebra is in K, and M(K) is the class of all
algebras with every monogenic subalgebra in K. In particular, the cases where
K is a variety, a generalized variety or a pseudovariety, are considered. It is
also shown that the monogenic closure of a variety or a pseudovariety equals the
regularization of the class. Finally, we note that some of our central concepts are
derived from the theory of finite automata and hence many of the results can be
interpreted in that theory.
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1 Introduction

We say that an algebra has a property locally if all of its finitely generated
subalgebras have this property. The idea is formalized by means of an
operator L, introduced in [19], that assigns to each class K of algebras
(of a given type) the class L(K) of all algebras A such that every finitely
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generated subalgebra of A is in K. We study also an operator M that
assigns to K the class M(K) of all algebras A such that K contains every
monogenic subalgebra of A. Especially as we consider unary algebras only,
the operator M has some special properties. The classes L(K) and M(K)
are called the local and the monogenic closure of K, respectively.

Many of the notions discussed in this paper are derived from the the-
ory of finite automata, but we shall consider more generally classes of X-
algebras A = (A,X), where neither the set A of elements nor the set X of
unary operation symbols is assumed to be finite. Only in connection with
pseudovarieties finiteness is required.

In the Preliminaries most of the general notation is fixed, and several
algebraic notions are recalled. In Section 3 the operators L and M are
defined and some of their basic properties are recorded.

In Section 4 we study algebras belonging to the monogenic closure of
the class Conn of so-called connected X-algebras. This class will appear
also later in the general theory.

In Section 5 we note that M applied to varieties of X-algebras is a closure
operator. It is also shown that the monogenic closure of a variety V of X-
algebras equals the least regular variety containing V, the regularization
R(V) of V; a variety of unary algebras is regular if it can be defined by
identities in which the variable is the same on both sides. We show that the
monogenic closure (and hence, the regularization) of a variety V is both the
Mal’cev product and the join of V itself and the variety D of discrete X-
algebras, i.e., X-algebras in which every operation is the identity mapping.
Finally, we show, following PÃlonka [?, ?], how to obtain a set of identities
defining M(V).

In Section 6 the operators L and M are applied to generalized varieties of
X-algebras. In this case the operators are not closure operators, but again
the regularity of a generalized variety G of X-algebras can be expressed in
terms of discrete X-algebras. Moreover, the two classes L(G) and M(G) are
closely related to each other. For example, L(G) = M(G) if G is regular,
and M(G) = L(G) ◦D = L(G ◦D) quite generally.

In Section 7 we consider pseudovarieties of X-algebras and the operators
L and M are modified accordingly so that finite algebras only are included
in the local and monogenic closures. After noting how the regularity of a
pseudovariety can be expressed in terms of finite discrete algebras, we show
that the monogenic closure of a pseudovariety and its regularization are the
same class, and how this class can be constructed in two ways from the
original pseudovariety and the pseudovariety of finite discrete X-algebras.

2 Preliminaries

In what follows, X is always a non-empty alphabet, but not necessarily
finite, X∗ denotes the set of all words over X, the empty word is denoted
by e. With the catenation of words as the operation and e as the unit



On Local Properties of Unary Algebras 3

element, X∗ is the free monoid generated by X. However, we treat X also
as a set of unary operation symbols and words over X are then regarded as
X-terms over a one-element set of variables {ε}, written in reverse Polish
notation: the empty word represents the term ε, and a nonempty word
x1x2 · · ·xn (n ≥ 1) the term εx1x2 · · ·xn. An X-algebra A = (A,X) is
a system where A is a nonempty set and each symbol x ∈ X is realized
as a unary operation xA : A → A. For any a ∈ A and x ∈ X, we write
axA for xA(a). For any word w = x1x2 . . . xn ∈ X∗, wA : A → A is
defined as the composition of the mappings xA1 , xA2 , . . . , xAn , that is to say,
awA = axA1 xA2 · · ·xAn for any a ∈ A. In particular, eA is the identity
mapping 1A of A. If A is known from the context, we write simply aw
instead of awA. The X-algebra A is finite if A is a finite set, and it is trivial
if A has only one element. In what follows, we often assume, without saying
so, that A is the X-algebra (A,X).

The basic algebraic notions are defined as for algebras in general (cf.
[4], for example). Hence an X-algebra B = (B, X) is a subalgebra of the
X-algebra A = (A, X) if B ⊆ A and bxB = bxA for all b ∈ B and x ∈ X.
This means that B is a closed subset of A, i.e., bxA ∈ B for all b ∈ B and
x ∈ X. On the other hand, each nonempty closed subset ofA corresponds to
a unique subalgebra of A. As usual, we call also nonempty closed subsets
subalgebras, and we denote their set by SubA. For any nonempty H ⊆
A, the least subalgebra of A = (A,X) containing H, i.e., the subalgebra
generated by H, is denoted by 〈H〉. It is obvious that 〈H〉 = {aw | a ∈
H, w ∈ X∗}. If H is a one-element set, 〈H〉 is a monogenic subalgebra of A,
and if H is a finite set, then 〈H〉 is a finitely generated subalgebra of A. For
any a1, . . . , an ∈ A, we write just 〈a1, . . . , an〉 instead of 〈{a1, . . . , an}〉.
Obviously, 〈a1, . . . , an〉 = 〈a1〉 ∪ . . . ∪ 〈an〉.

A word u ∈ X∗ is a directing word of an X-algebra A if au = bu for
all a, b ∈ A, and then du denotes the element au. The set of all directing
words of A is denoted by DW (A) and A is called directable if it has a
directing word. The class of all directable X-algebras is denoted by Dir.
For any given u ∈ X∗, we call A u-directable if u ∈ DW (A). The class of
u-directable X-algebras is denoted by Diru. A trap of an X-algebra A is
an element a0 ∈ A such that a0x = a0 for every x ∈ X. An X-algebra is
reverse n-definite, n ∈ N, if every word of length n takes any element of
A into a trap. Furthermore, if A has a unique trap, then it is n-nilpotent .
The classes of all reverse n-definite and n-nilpotent X-algebras are denoted
by RDefn and Nilpn, respectively. Although not really needed here, the
reader may consult [6], [8] or [11] for the relevant general theory of finite
automata, and [3] or [12] for directable automata and further references to
them.

An equivalence θ of A is a congruence on A = (A,X) if for all a, b ∈ A
and x ∈ X, ax θ bx whenever a θ b. Obviously, the diagonal relation ∆A =
{(a, a) | a ∈ A} and the universal relation ∇A = A × A are congruences
on A. Note that if θ is a congruence on A and a θ b, then aw θ bw for all
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w ∈ X∗. For any congruence θ of A the quotient algebra A/θ = (A/θ, X)
is defined on the set A/θ = {a/θ | a ∈ A}, where a/θ = {b ∈ A | a θ b}, so
that (a/θ)xA/θ = (axA)/θ for all a/θ ∈ A/θ and x ∈ X.

A homomorphism from A to B is a mapping φ : A → B such that
(axA)φ = (aφ)xB for all a ∈ A and x ∈ X, and we write then φ : A → B.
An epimorphism is a surjective homomorphism and an isomorphism is a
bijective homomorphism. If there exists an epimorphism φ : A → B, then
B is a homomorphic image of A, and A and B are said to be isomorphic,
A ∼= B in symbols, if there is an isomorphism φ : A → B.

The Rees congruence %B on an X-algebra A modulo a subalgebra B of
A is defined so that (a, b) ∈ %B if and only if a = b or a, b ∈ B. The
corresponding Rees quotient A/%B is denoted by A/B, and the X-algebra
A is said to be an extension of B by an X-algebra C, if A/B ∼= C.

We identified words over X with terms of the form εw in one variable.
More generally, we define X-terms over any set G of variables as expressions
of the form gw, where g ∈ G and w ∈ X∗, and we denote by GX∗ the
set of all such terms. The letters s and t, possibly with subscripts, will
denote terms without indicating the variable. The term X-algebra T (G) =
(GX∗, X) over G is defined so that (gu)xT (G) = gux for all gu ∈ GX∗

and x ∈ X (see §1.6 of [8]). An identity of type X over G is an expression
gu = hv, where gu, hv ∈ GX∗. An X-algebra A is said to satisfy an identity
gu = hv, and we write A |= gu = hv, if α(g)uA = α(h)vA for all valuations
α : G → A of the variables. An X-algebra A satisfies monogenically an
identity gu = hv, which we express by writing A |=

M
gu = hv, if 〈a〉 |=

gu = hv for every a ∈ A. Since at most two variables appear in any
identity, we fix a two-element set G = {g, h} of variables. The term X-
algebra T ({g, h}) is denoted simply by T , and the set of all identities of
type X over G by Id.

An identity of the form iu = iv, where the same variable i ∈ G appears
on both sides, is called regular , while identities iu = jv, where i and j
are different variables are irregular. For any set Σ of identities, the sets of
regular and irregular members of Σ are denoted by ΣR and ΣN , respectively.
The sets of all identities, all regular identities and all irregular identities
satisfied by all the members of a class K of X-algebras, are denoted by
Id (K), IdR (K) and IdN (K), respectively. For K = {A}, we write simply
Id (A), IdR (A) and IdN (A).

The class [Σ] of all X-algebras satisfying every member of a given set
Σ of identities, is called the variety defined by Σ. It is well-known that
a class of X-algebras is a variety if and only if it is closed under forming
subalgebras, homomorphic images and direct products. A variety of X-
algebras definable by a set of regular identities is regular , but otherwise it
is called irregular . As shown by PÃlonka [15], every variety V is contained
in a least regular variety R(V), the regularization of V, and this is defined
by the set of identities IdR (V).

A binary relation on a set I is a quasi-order on I if it is reflexive and
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transitive, and a quasi-ordered set is a pair (I,¹) consisting of a set I and
a quasi-order ¹ on I. A quasi-order ¹ on I is directed if for all i, j ∈ I
there exists a k ∈ I such that i ¹ k and j ¹ k. A non-empty subset F of a
quasi-ordered set (I,¹) is a filter if for all i, j ∈ I, i ¹ j and i ∈ F imply
j ∈ F . A subset C of a quasi-ordered set (I,¹) is cofinal if for every i ∈ I
there is a j ∈ C such that i ¹ j.

A set Σ of identities presented in the form
{
si = ti

}
i∈I

, where (I,¹)
is a directed quasi-ordered set, is called a directed set of identities. In this
case an X-algebra A is said to ultimately satisfy Σ, in symbols A |=u Σ, if
there exists a k ∈ I such that A |= si = ti for every i º k. The class of all
X-algebras ultimately satisfying Σ is denoted by [Σ]u or [si = ti | i ∈ I]u.
If K is a class of X-algebras such that K = [Σ]u for a directed set of
identities Σ, then K is said to be ultimately defined by Σ. In particular, a
set of identities indexed by the natural numbers with the usual ordering is
a sequence of identities.

A class of X-algebras is a generalized variety if it is closed under sub-
algebras, homomorphic images, finite direct products and arbitrary direct
powers. As proved by Ash [1], a class of X-algebras is a generalized vari-
ety if and only if it is ultimately defined by a directed set of identities, or
equivalently, if it is a directed union of varieties.

A pseudovariety of X-algebras is a class of finite X-algebras closed under
subalgebras, homomorphic images and finite direct products. By the well-
known result of Eilenberg and Schützenberger [7] (see also [6], [14], [11]), for
any finite X, a class K of finite X-algebras is a pseudovariety if and only if
it is ultimately defined by a sequence of identities, whereas Ash [1] proved
that K is a pseudovariety if and only if it is the class of all finite X-algebras
of some generalized variety.

If K is a class of X-algebras, K denotes the class of all finite members
of K. For varieties V1 and V2, let V1 ∨V2 be the least variety containing
both of them, and if V1 and V2 are pseudovarieties, then the same notation
is used for the least pseudovariety containing both of them.

An X-algebra A is the direct sum of some of its subalgebras Aα, α ∈ Y ,
if A =

⋃
α∈Y Aα and Aα ∩ Aβ = ∅ for all α, β ∈ Y such that α 6= β. The

partition of A into the direct summands Aα is a direct sum decomposition of
A, and the corresponding equivalence relation is a congruence on A called
a direct sum congruence. The greatest direct sum decomposition of A is the
decomposition corresponding to the least direct sum congruence σA on A.
An X-algebra A is direct sum indecomposable if the universal relation ∇A is
the only direct sum congruence on A. More on direct sum decompositions
can be found in [5].

The class of all one-element X-algebras is denoted by O. Direct sums of
trivial X-algebras are discrete X-algebras, and the class of all discrete X-
algebras is denoted by D. In particular, the two-element discrete X-algebra
is denoted by D2.

The Mal’cev product K1 ◦K2 of two classes K1 and K2 of X-algebras
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consists of all X-algebras A which have a congruence % such that A/% ∈ K2

and every %-class which is a subalgebra of A belongs to K1. For example,
K ◦D is the class of all direct sums of X-algebras from K.

3 Local and Monogenic Properties of Algebras

Let K be a class of X-algebras. An X-algebra A is said to belong locally
to K if every finitely generated subalgebra of A belongs to K. The class
of all such X-algebras is denoted by L(K). On the other hand, A belongs
monogenically to K, if all of its monogenic subalgebras are in K. The
class of all X-algebras belonging monogenically to K is denoted by M(K).
We call L(K) and M(K), respectively, the local closure and the monogenic
closure of K.

Let us note some general properties of the operators L and M . All of
them follow directly from the definitions.

Lemma 3.1 Let K, K1, K2 and Ki, i ∈ I, be arbitrary classes of X-
algebras and let O denote either one of the operators L and M . Then
(a) O(K) is closed under subalgebras;
(b) K1 ⊆ K2 ⇒ O(K1) ⊆ O(K2);
(c) O

(⋂
i∈I Ki

)
=

⋂
i∈I O(Ki);

(d) If K is closed under subalgebras, then K ⊆ O(K);
(e) O(K) = O2(K);
(f) If K is closed under homomorphic images, then O(K) is closed under

homomorphic images;
(g) If K is closed under subalgebras and (finite) direct products, then O(K)

is closed under (finite) direct products.

4 Monogenically Connected Algebras

In this section we consider the monogenic closure of a special class of X-
algebras which will play a role also in the general theory.

An X-algebra A is connected if 〈a〉 ∩ 〈b〉 6= ∅ for all a, b ∈ A. Let
Conn denote the class of all connected X-algebras. If every monogenic
subalgebra of A is connected, A is said to be monogenically connected . In
this section we characterize M(Conn) as well as the monogenic closures of
two subclasses of Conn.

A nonempty subset D of an X-algebra A is called a dual subalgebra of A
if for any a ∈ A and x ∈ X, ax ∈ D implies a ∈ D (cf. [5]). For a nonempty
H ⊆ A, 〈H〉d = {a ∈ A | (∃u ∈ X∗) au ∈ H} is the least dual subalgebra of
A containing H.

Theorem 4.1 The following conditions on an X-algebra A are equivalent:
(1) A is monogenically connected;
(2) (∀a ∈ A)(∀p, q ∈ X∗)(∃u, v ∈ X∗) apu = aqv;
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(3) A is a direct sum of connected X-algebras;
(4) 〈B〉d ∈ SubA for every B ∈ SubA.

Proof. The equivalence of (1) and (2) is evident.
(2)⇒(4). Let B ∈ SubA, a ∈ 〈B〉d and q ∈ X∗. Then ap ∈ B for some

p ∈ X∗, and by (2) it follows that apu = aqv for some u, v ∈ X∗. But,
ap ∈ B implies aqv = apu ∈ B, which means that aq ∈ 〈B〉d. Therefore,
〈B〉d is a subalgebra of A.

(4)⇒(3). As shown in [5], A is the direct sum of some direct sum
indecomposable X-algebras Aα, α ∈ Y . Let us consider any α ∈ Y and
a ∈ Aα. According to Theorem 3.6 of [5], Aα is the least subset of A
containing a which is both a subalgebra and a dual subalgebra. Since 〈〈a〉〉d
also is both a subalgebra and a dual subalgebra containing a, we must have
Aα = 〈〈a〉〉d. Now, b ∈ 〈〈a〉〉d for any b ∈ Aα, so bv ∈ 〈a〉, and hence
bv = au for some u, v ∈ X∗. Hence, Aα is connected.

(3)⇒(1). Let A be the direct sum of some connected X-algebras Aα,
α ∈ Y . For any a ∈ A we have that a ∈ Aα for some α ∈ Y , and then
〈a〉 ⊆ Aα. Since Aα is connected and the class of connected X-algebras is
closed under subalgebras, 〈a〉 is also connected. 2

An X-algebra A is said to be trap-connected if it has a trap a0 such that
a0 ∈ 〈a〉 for every a ∈ A, and it is monogenically trap-connected if all of its
monogenic subalgebras are trap-connected.

Theorem 4.2 The following conditions on an X-algebra A are equivalent:
(1) A is monogenically trap-connected;
(2) (∀a ∈ A)(∀p, q ∈ X∗)(∃u, v ∈ X∗)(∀w ∈ X∗) apu = aqvw;
(3) A is a direct sum of trap-connected X-algebras;
(4) A is a subdirect product of a discrete X-algebra and a trap-connected

X-algebra;
(5) A is a subalgebra of the direct product of a discrete X-algebra and a

trap-connected X-algebra.

Proof. (1)⇒(2). Assume that A is monogenically trap-connected and con-
sider any a ∈ A and p, q ∈ X∗. Since 〈a〉 is trap-connected, there are words
u, v ∈ X∗ such that apu = aqv = a0, where a0 is the trap of 〈a〉. Obviously,
aqvw = a0 = apu for every w ∈ X∗, and hence (2) holds.

(2)⇒(1). According to Theorem 4.1, A is monogenically connected.
Hence 〈a〉 is connected for any given a ∈ A, and by (2) there exist u, v ∈ X∗

such that au = avw, for every w ∈ X∗. This implies that au is a trap in
〈a〉 as aux = avxx = au for all x ∈ X.

(1)⇒(3). By Theorem 4.1, A is the direct sum of some connected X-
algebras Aα, α ∈ Y . Moreover, every Aα has a trap since any 〈a〉 with
a ∈ Aα has a trap.

(3)⇒(4). Let A be the direct sum of some trap-connected X-algebras
Aα, α ∈ Y . For each α ∈ Y , let aα be the trap of Aα. Then B = {aα |α ∈
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Y } defines a subalgebra B of A such that A/B is trap-connected. If σ is the
congruence on A whose classes are the subalgebras Aα, α ∈ Y , then A/σ is
a discrete X-algebra isomorphic to B. Moreover, A is a subdirect product
of A/B and A/σ since evidently %B ∩ σ = ∆A. Thus, (4) holds.

(4)⇒(5). This implication is trivial.
(5)⇒(1). Let A be a subalgebra of the direct product of a discrete X-

algebra B and a trap-connected X-algebra C. For any (b, c) ∈ A, we may
write 〈(b, c)〉 = {b} × 〈c〉, and hence 〈(b, c)〉 is isomorphic to 〈c〉. On the
other hand, 〈c〉 is trap-connected because C is trap-connected, and therefore
〈(b, c)〉 is trap-connected and (1) holds. 2

We conclude this section by formulating a result by Thierrin [20] in
our terminology. An X-algebra A is strongly connected if 〈a〉 = A for
every a ∈ A, and monogenically strongly connected if all of its monogenic
subalgebras are strongly connected.

Theorem 4.3 The following conditions on an X-algebra A are equivalent:
(1) A is monogenically strongly connected;
(2) (∀a ∈ A)(∀u ∈ X∗)(∃v ∈ X∗) auv = a;
(3) A is a direct sum of strongly connected X-algebras.

Various other characterizations of monogenically strongly connected X-
algebras can be found in [9], [5] and [13].

5 Monogenic Closures of Varieties

In this section we shall consider the effect of the operator M on a variety
of X-algebras. In particular, it is shown that M acts differently on regular
and irregular varieties. Moreover, it is proved that for varieties M coincides
with the regularization operator.

Theorem 5.4 The operators M and L are closure operators on the lattice
of varieties of X-algebras, and L(V) = V ⊆ M(V) for any variety V of
X-algebras.

Proof. That L and M have the three defining properties of a closure operator
follows from statements (b), (d) and (e) of Lemma 3.1. Moreover, if V is
a variety then L(V) and M(V) are varieties such that V ⊆ L(V), M(V)
by statements (a), (f), (g) and (d) of Lemma 3.1. The inclusion L(V) ⊆ V
follows from the obvious fact that any algebra in L(V) satisfies the identities
defining V. 2

Note that M(V) = V does not always hold. For example, M(O) = D.
The following observation is often useful.

Lemma 5.2 An X-algebra A satisfies an irregular identity gu = hv if and
only if u, v ∈ DW (A) and du = dv.
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Proof. If A |= gu = hv, then A satisfies also the identities hu = hv and
gu = gv. Therefore A |= gu = hu and A |= gv = hv. Hence u, v ∈ DW (A),
and as A |= gu = hv means that au = bv for all a, b ∈ A, we also have
du = dv.

Conversely, let u, v ∈ DW (A) and du = dv. Since au = du and bv = dv

for all a, b ∈ A, we may conclude that A |= gu = hv. 2

For any X-algebra A and any u, v ∈ X∗, the relation %Au,v on A is defined
so that

(a, b) ∈ %Au,v ⇔ au = bv.

We shall use the simpler notation %u,v when A is understood from the
context. Moreover, we call a relation ρ(⊆ A× A) positive if (a, ax) ∈ ρ for
all a ∈ A and x ∈ X.

Lemma 5.3 Let A be an X-algebra and let u, v ∈ X∗.
(a) A |= gu = gv if and only if %u,v is a reflexive relation. In that case

%u,v is an equivalence on A.
(b) A |=

M
gu = gv if and only if A |= gu = gv.

(c) A |= gu = hv if and only if %u,v = ∇A.
(d) A |=

M
gu = hv if and only if %u,v is reflexive and positive. In that

case %u,v = σA , where σA is the least direct sum congruence on A.

Proof. The first assertion in (a) is evident, so we prove only the second one.
Let (a, b) ∈ %u,v, i.e., au = bv. Since A |= gu = gv implies au = av

and bu = bv, we get bu = av and (b, a) ∈ %u,v. Hence %u,v is symmetric.
Similarly, if (a, b), (b, c) ∈ %u,v, then au = bv and bu = cv together with
bu = bv, which follows from A |= gu = gv, yield au = cv, i.e., (a, c) ∈ %u,v.
Therefore, %u,v is also transitive and hence an equivalence relation on A.

Assertions (b) and (c) are obvious. It remains to prove (d). If A |=
M

gu = hv, then A |= gu = gv, and by (a) the relation %u,v is reflexive. It is
evidently also positive. By (a) we have that %u,v is an equivalence relation
on A, and by Lemma 3.1 of [5], %u,v is a direct sum congruence on A. But,
by Theorem 3.1 of [5], %u,v ⊆ σA and σA is the least direct sum congruence
on A, so we conclude that %u,v = σA . Conversely, let %u,v be reflexive and
positive. To prove that A |=

M
gu = hv, consider any a ∈ A and b, c ∈ 〈a〉.

Again by Theorem 3.1 of [5] it follows that (b, c) ∈ σA = %u,v, i.e., bu = cv.
Therefore, A |=

M
gu = hv and the proof is complete. 2

Using the previous result we can prove the following theorem character-
izing regular varieties of X-algebras.

Theorem 5.5 The following conditions on a variety V of X-algebras are
equivalent:
(1) V is a regular variety;
(2) M(V) = V;
(3) D ⊆ V;
(4) D2 ∈ V.
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Proof. (1)⇒(2). Let V be a regular variety. By Lemma 5.3 (b), for any
X-algebra A, A |=

M
IdR (V) if and only if A |= IdR (V). Since IdR (V) =

Id (V), we may conclude that M(V) = V.
(2)⇒(3). For every discrete X-algebra D and every variety V we have

that D ∈ M(O) ⊆ M(V), so (2) yields D ∈ V. This proves (3).
The implications (3)⇒(4) and (4)⇒(1) are completely obvious. 2

The previous theorem, Lemma 5.2, and the fact that D is a variety gen-
erated by any of its non-trivial members, yield the following characterization
of irregular varieties of X-algebras.

Corollary 5.1 The following conditions on a variety V of X-algebras are
equivalent:
(1) V is an irregular variety;
(2) D 6⊆ V;
(3) D2 /∈ V;
(4) D ∩V = O;
(5) V ⊆ Dir.

Next we present a connection between the monogenic closure operator
and the regularization of varieties, as well as some other facts.

Theorem 5.6 For any variety V of X-algebras,

M(V) = R(V) = V ◦D = D ∨V.

Proof. The equalities R(V) = V ◦D = V ∨D are due to PÃlonka [?, ?], but
we give a new proof.

If V is a regular variety, then R(V) = V and, by Theorem 5.5, D∨V =
V = M(V). Evidently, V ⊆ V ◦D. On the other hand, a member of V ◦D
satisfies every regular identity holding in V, and so V ◦ D ⊆ V as V is
regular. Hence, V = V ◦D.

Let V now be irregular. Any A ∈ M(V) is by Theorem 3.6 of [5] the
direct sum of some direct sum indecomposable X-algebras Aα, α ∈ Y . For
the corresponding direct sum congruence σ it follows from Lemma 5.3 (d)
that σ = %u,v for each pair (u, v) ∈ X∗ ×X∗ such that gu = hv ∈ IdN (V).
From this it follows that Aα |= IdN (V) for each α ∈ Y . On the other hand,
by Lemma 5.3 (b), Aα |= IdR (V) for every α ∈ Y . Therefore, Aα |= Id (V),
that is to say, Aα ∈ V for each α ∈ Y , and hence A ∈ V ◦D. This shows
that M(V) ⊆ V ◦D.

If A ∈ V ◦ D, then A is the direct sum of some X-algebras Aα ∈ V,
α ∈ Y . Since every monogenic subalgebra of A is a subalgebra of some Aα

and Aα ∈ V, every monogenic subalgebra of A is in V, i.e., A ∈ M(V).
Hence, V ◦D ⊆ M(V).

IfA ∈ M(V), thenA |=
M

Id (V), and thereforeA |= IdR (V) by Lemma
5.3 (b). Hence A ∈ R(V). On the other hand, by the obvious fact that
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D2 ∈ M(V) and Theorem 5.5, M(V) is a regular variety containing V, so
also R(V) ⊆ M(V) holds.

Furthermore, V ⊆ R(V) and D ⊆ R(V) by Theorem 5.5, so D ∨V ⊆
R(V). Conversely, D∨V is a regular variety by Theorem 5.5 and it contains
V, so R(V) ⊆ D ∨V. This completes the proof of the theorem. 2

Now we use an idea by PÃlonka [16] to describe a set of identities defining
the monogenic closure of an irregular variety.

Theorem 5.7 Let V be an irregular variety of X-algebras defined by a set
of identities Σ, and let gu = hv be an arbitrary fixed irregular identity in
Σ. Then M(V) = [Σ′] for Σ′ = ΣR ∪ Γ ∪ Λ, where

Γ = {gu = gv} ∪ {gxu = gv |x ∈ X}
and

Λ = {gu′ = guu′, gu′ = gv′, gv′ = gvv′ | gu′ = hv′ ∈ ΣN \ {gu = hv}}.

Proof. Let A be an arbitrary X-algebra. We have to prove that A |=
M

Σ
if and only if A |= Σ′.

Let A |=
M

Σ. Then A |= ΣR by Lemma 5.3 (b). Clearly, A |= gu = gv
and A |= gxu = gv for each x ∈ X. Consider any identity gu′ = hv′ ∈
ΣN\{gu = hv}. It is obvious thatA |=

M
gu′ = hv′ impliesA |=

M
gu′ = hu′

and A |=
M

gv′ = hv′. But this yields A |= gu′ = guu′ and A |= gv′ = gvv′.
Moreover, A |=

M
gu′ = hv′ implies A |= gu′ = gv′. Therefore, A |= Σ′.

Conversely, if A |= Σ′, then A |= ΣR implies A |=
M

ΣR, and it remains
to prove that A |=

M
ΣN . By A |= gu = gv and Lemma 5.3 (a), %u,v is an

equivalence on A, and the fact that A |= gxu = gv for each x ∈ X, implies
by Lemma 3.1 of [5] that %u,v is a direct sum congruence on A. Now,
by Lemma 5.3 (d) we have that A |=

M
gu = hv. Consider any identity

gu′ = hv′ ∈ ΣN \ {gu = hv} and any a ∈ A, b, c ∈ 〈a〉. As we have proved,
A |=

M
gu = hv, so bu = cv, and by A |= gu′ = guu′, A |= gu′ = gv′ and

A |= gv′ = gvv′ it follows that bu′ = buu′ = cvu′ = cvv′ = cv′. Therefore,
A |=

M
gu′ = hv′, which finally gives A |=

M
Σ. 2

The following corollary expresses in our terminology a result by PÃlonka
[16], proved in a different way also by Graczyńska [10]. Let us first note
that if V is an irregular variety, then by Lemma 5.2 there are words which
are directing words of all members of V; we call such words directing words
of V.

Corollary 5.2 Let V be an irregular variety of X-algebras defined by a set
of identities Σ, and let w be any directing word of V. Then M(V) = [Σ′′]
for Σ′′ = ΣR ∪ Γw ∪ Λw, where

Γw = {gxw = gw |x ∈ X}
and

Λw = {gu = gwu, gu = gv, gv = gwv | gu = hv ∈ ΣN \ {gw = hw}}.
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Example 5.1 It is obvious that Diru = [{gu = hu}] for any u ∈ X∗. Now
the sets of identities defined in Theorem 5.7 are Γ = {gxu = gu |x ∈ X},
omitting the trivial identity gu = gu, and ΣR = Λ = ∅, and so M(Diru) =
[{gxu = gu |x ∈ X}].

It is not hard to see that Nilpn = [{gu = hux |u ∈ Xn,x ∈ X}]
and RDefn = [{gu = gux |u ∈ Xn,x ∈ X}]. According to Theorem
5.5 the variety RDefn is M -closed. For M(Nilpn) Theorem 5.7 gives the
set of identities Γ ∪ Λ, where Γ = {gv = gvy} ∪ {gxv = gvy |x ∈ X}
and Λ = {gu = gvu, gu = gux, gux = gvyux |u ∈ Xn, x ∈ X, (u, x) 6=
(v, y)} for any fixed v ∈ Xn, y ∈ X. Combining identities in Γ we get
easily gv = gxv. Now by replacing g with gx in gu = gvu and using the
obtained identities, we get gxu = gxvu = gvu = gu. So, Γ ∪ Λ implies
{gu = gux, gxu = gu |u ∈ Xn, x ∈ X}. The converse is obvious and hence
M(Nilpn) = [{gux = gu,gu = gxu |u ∈ Xn,x ∈ X}].

6 Generalized Varieties and the Local Closure Operators

Now we shall apply the operators L and M to generalized varieties of X-
algebras. It turns out that they act quite differently on these than on
varieties of X-algebras. In particular, they are not closure operators in this
case. As one may expect, the effects of these operators on a generalized
variety are also different depending on whether the generalized variety is
regular or not.

The following lemma is quite obvious.

Lemma 6.4 If {si = ti}i∈I is a directed set of identities, then

[si = ti | i ∈ I]u = [si = ti | i ∈ F ]u

for each filter F of (I,¹).

First we note an important negative fact about the operators L and M .

Theorem 6.8 The operators L and M are not closure operators on the
lattice of generalized varieties of X-algebras.

Proof. We prove that the classes M(G) and L(G) are not always generalized
varieties even when G is a generalized variety. For this we consider the
generalized variety Dir of directable X-algebras.

For every k ∈ N we introduce the X-algebra Ak = (Ak, X), where
Ak = {a(k)

0 , a
(k)
1 , . . . , a

(k)
k } and the operations are given by a

(k)
0 x = a

(k)
1 ,

a
(k)
1 x = a

(k)
2 , . . . , a

(k)
k−1x = a

(k)
k x = a

(k)
k for every x ∈ X. Obviously

Ak ∈ Nilpk \ Nilpk−1. Let A be the direct sum of the X-algebras Ak,
k ∈ N. Since every monogenic subalgebra of A is isomorphic to some Ak

and each Ak is directable, A ∈ M(Dir). However, we are going to prove
that AN /∈ M(Dir).
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Consider the element a = (a(i)
0 )i∈N ∈ AN and any word u ∈ X∗. If u is

of length n, then in An+1

a
(n+1)
0 u = a(n+1)

n 6= a
(n+1)
n+1 = a

(n+1)
0 xu

for any x ∈ X, and therefore au 6= axu in AN. Hence, DW (〈a〉) = ∅ and
AN /∈ M(Dir). Furthermore, since L(Dir) ⊆ M(Dir) it also follows that
AN /∈ L(Dir). Therefore, the classes M(Dir) and L(Dir) are not closed
under direct powers, and hence they are not generalized varieties. 2

Before continuing the study of the operators L and M , we present some
useful characterizations of regular and irregular generalized varieties. A
generalized variety G of X-algebras is regular if it is ultimately defined by
a directed set of regular identities, otherwise it is irregular .

We call a non-empty subset F of a directed set of identities Σ = {si =
ti | i ∈ I} a filter in Σ if there is a filter F of the directed set (I,¹) such
that F = {si = ti | i ∈ F}.

Theorem 6.9 Let G be a generalized variety of X-algebras. Then the fol-
lowing conditions are equivalent:
(1) G is a regular generalized variety;
(2) G is a directed union of regular varieties;
(3) G contains a regular variety;
(4) D ⊆ G;
(5) D2 ∈ G;
(6) every directed set of identities ultimately defining G contains a regular

filter;
(7) there exists a filter F of the Boolean lattice ℘(IdR) such that for any

X-algebra A,
A ∈ G ⇔ Id(A) ∈ F .

Proof. (1)⇒(2). Assume that G is ultimately defined by a directed set of
regular identities {gui = gvi | i ∈ I}. Then G is the union of the directed
family of the regular varieties Vk = [{gui = gvi | i º k}], k ∈ I.

(2)⇒(3). This implication is trivial.
(3)⇒(4). If V ⊆ G for a regular variety V, then D ⊆ V ⊆ G by

Theorem 5.5.
(4)⇒(5). This is obvious.
(5)⇒(6). Let Σ = {si = ti | i ∈ I} be any directed set of identities

ultimately defining G. Since D2 ∈ G, there is a k ∈ I such that D2 |= si = ti
for every i º k. As D2 satisfies regular identities only, {si = ti | i º k} is a
filter of regular identities in Σ.

(6)⇒(1). This implication is an immediate consequence of Lemma 6.4.
(2)⇒(7). Let G be the directed union of some regular varieties

{
Vα

}
α∈Y

and let
F =

{
Σ ∈ ℘(IdR)

∣∣∣ (∃α ∈ Y ) Id(Vα) ⊆ Σ
}

.
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Then F is a filter of the Boolean lattice ℘(IdR), and for any X-algebra A

Id(A) ∈ F ⇔ (∃α ∈ Y ) Id(Vα) ⊆ Id(A)
⇔ (∃α ∈ Y ) A ∈ Vα

⇔ A ∈ G.

(7)⇒(5). If F is any filter of the Boolean lattice ℘(IdR) for which (7)
holds, then D2 ∈ G as Id(D2) = IdR ∈ F . 2

As a corollary we get the following characterization of irregular varieties
of X-algebras.

Corollary 6.3 Let G be a generalized variety of X-algebras. Then the
following conditions are equivalent:
(1) G is an irregular generalized variety;
(2) G is a directed union of irregular varieties;
(2) every variety contained in G is irregular;
(4) D ∩G = O;
(5) D * G;
(6) D2 /∈ G;
(7) every directed set of identities ultimately defining G has an irregular

cofinal subset.

By using Corollary 5.1 we get also the following conclusion.

Corollary 6.4 The generalized variety Dir of directable X-algebras is the
greatest irregular generalized variety of X-algebras.

In the next theorem the operators L and M are applied separately to
regular and irregular generalized varieties.

Theorem 6.10 Let G be a generalized variety of X-algebras.
(a) If G is irregular, then L(G) = M(G) ∩Conn.
(b) If G is regular, then L(G) = M(G).

Proof. (a) If A ∈ L(G), then 〈a, b〉 ∈ G ⊆ Dir ⊆ Conn for all a, b ∈ A,
and hence A ∈ Conn. This fact and the obvious inclusion L(G) ⊆ M(G)
yield L(G) ⊆ M(G) ∩Conn.

Conversely, assume that A ∈ M(G) ∩Conn. Let B be a finitely gener-
ated subalgebra of A, i.e., B = 〈a1, . . . , an〉 =

⋃n
m=1〈am〉, for some n ∈ N

and a1, . . . , an ∈ B. Let {si = ti}i∈I be a directed set of identities ulti-
mately defining G. Since A ∈ M(G), there exists for each m ∈ [1, n] a
km ∈ I such that 〈am〉 |= si = ti for every i º km. Since I is directed,
there exists a k ∈ I such that k º km for every m ∈ [1, n]. If i º k, then
i º km, so 〈am〉 |= si = ti for every m ∈ [1, n]. Let Σ = {si = ti | i º k}.
If si = ti ∈ ΣR, then clearly B |= si = ti. Let si = ti ∈ ΣN be
an irregular identity of the form gui = hvi, where ui, vi ∈ X∗. Since
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〈am〉 |= gui = hvi, Lemma 5.2 implies that ui, vi ∈ DW (〈am〉) for each
m ∈ [1, n]. Now, let b, c ∈ B be arbitrary elements. Then b = alp
and c = amq for some l,m ∈ [1, n] and p, q ∈ X∗. On the other hand,
A ∈ Conn, so alu = amv for some u, v ∈ X∗. Now ui ∈ DW (〈al〉) and
vi ∈ DW (〈am〉) imply that alpui = aluui and amqvi = amvvi. On the
other hand, alu = amv ∈ 〈al〉 ∩ 〈am〉 and 〈al〉, 〈am〉 |= gui = hvi yield
aluui = amvvi, and therefore

bui = alpui = aluui = amvvi = amqvi = cvi,

and hence B |= gui = hvi. This shows that B ∈ G as B |= si = ti for each
i º k. Finally, this means that A ∈ L(G), and thus the proof of (a) has
been completed.

(b) The proof of this assertion is contained in the proof of (a). 2

Using the relations of the previous theorem, we can prove the following
result valid for both regular and irregular generalized varieties.

Theorem 6.11 Let G be a generalized variety of X-algebras. Then

M(G) = L(G) ◦D = L(G ◦D).

Proof. The relation M(G) ⊆ M(G)◦D obviously holds, and if G is regular
then M(G) ⊆ L(G) ◦ D by Theorem 6.10. If G is irregular, then by
Corollary 6.4, every A ∈ M(G) is monogenically directable, and hence
monogenically connected. By Theorem 4.1, A is the direct sum of some
connected X-algebras Aα, α ∈ Y . Obviously Aα ∈ M(G) for each α ∈ Y .
Therefore Aα ∈ M(G) ∩ Conn = L(G) by Theorem 6.10 and so A ∈
L(G) ◦D. Hence M(G) ⊆ L(G) ◦D for any generalized variety G.

Consider now any A ∈ L(G) ◦ D. Then A is the direct sum of some
X-algebras Aα ∈ L(G), α ∈ Y . Let B be any finitely generated subalgebra
of A. Let Z = {α ∈ Y |B∩Aα 6= ∅}, and for each α ∈ Z, let Bα = B∩Aα.
Then B is the direct sum of the X-algebras Bα, α ∈ Z, where for each
α ∈ Z, Bα is a finitely generated subalgebra of Aα. Now Bα ∈ G for every
α ∈ Z as Aα ∈ L(G). Therefore, B ∈ G ◦D, and hence A ∈ L(G ◦D).

Finally, consider any A∈L(G◦D) and a∈A. Then 〈a〉∈G◦D, and since
every monogenic X-algebra is direct sum indecomposable, this means that
〈a〉∈G. Hence, A∈M(G). This completes the proof of the theorem. 2

Theorem 5.5 states that M(V) = V if and only if V is a regular variety
of X-algebras. To show that the same does not hold for regular generalized
varieties, we consider the regular generalized variety of all reverse definite
X-algebras RDef =

⋃
n∈NRDefn. Let A be the direct sum of some X-

algebras An, n ∈ N, where An is a reverse n-definite X-algebra which is
not reverse n + 1-definite. Then A ∈ M(RDef) \RDef . A necessary and
sufficient condition under which the equality holds for a generalized variety
is presented in the next theorem.
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Theorem 6.12 For any generalized variety G of X-algebras,

M(G) = G ⇔ G ◦D = G.

Proof. Assume M(G) = G and consider any X-algebra A ∈ G ◦D. Then
A is the direct sum of some X-algebras Aα ∈ G, α ∈ Y . For each a ∈ A
there exists an α ∈ Y such that a ∈ Aα, and then 〈a〉 ⊆ Aα. Now Aα ∈ G
implies 〈a〉 ∈ G, and therefore A ∈ M(G) = G. Hence, G ◦D ⊆ G. The
reverse inclusion is obvious.

Conversely, suppose that G◦D = G and let A∈M(G). Then 〈a〉 ∈G
for every a ∈ A. To each a ∈ A we associate an X-algebra Ba isomorphic
to 〈a〉 so that Ba∩Bb =∅ for all a 6= b, a, b ∈A, and let ϕa : Ba →〈a〉 be
an isomorphism. Denote by B the direct sum of the X-algebras Ba, a∈A,
and define the mapping ϕ : B→A so that if c ∈Ba for some a ∈A, then
cϕ=cϕa. It is not hard to check that ϕ is a homomorphism from B onto A.
Furthermore, B∈G because Ba

∼=〈a〉∈G for every a∈A and G◦D=G, and
as a homomorphic image of B also A belongs to G. Therefore, M(G)⊆G,
and the converse inclusion follows from Lemma 3.1. 2

7 Monogenic Closures of Pseudovarieties

When finite X-algebras only are considered, for example in connection with
pseudovarieties, it is natural to use the modified localization operators M
and L defined so that M(K) = M(K) and L(K) = L(K) for any class K of
X-algebras. Obviously, M(K) = M(K) and L(K) = L(K) for any K, but in
what follows, K will itself always be a class of finite X-algebras. Moreover,
it is clear that L(K) = K whenever K is a class of finite X-algebras closed
under subalgebras. Hence the operator L is of lesser interest here.

The following result can be proved similarly as Theorem 5.4.

Theorem 7.13 The operators M and L are closure operators on the lattice
of pseudovarieties of X-algebras, and L(P) = P ⊆ M(P) for any pseudova-
riety P.

Regular and irregular generalized varieties of X-algebras were defined in
the previous section. Similarly, a pseudovariety of X-algebras P is regular
if it is ultimately defined by a sequence of regular identities, otherwise it is
called irregular .

Theorem 7.14 If X is a finite alphabet, then the following conditions are
equivalent for any pseudovariety P of X-algebras:
(1) P is a regular pseudovariety;
(2) D ⊆ P;
(3) D2 ∈ P;
(4) every sequence of identities ultimately defining P contains at most

finitely many irregular identities;
(5) P = G for some regular generalized variety G of X-algebras.
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Proof. The implications (1)⇒(2) and (2)⇒(3) are obvious.
(3)⇒(4). Assume that P = [sn = tn |n ∈ N]u. Then from D2 ∈ P

follows the existence of a k ∈ N such that D2 |= un = vn for all n ≥ k.
This means that {un = vn |n ≥ k} is a set of regular identities, and hence
{un = vn |n ∈ N} contains at most finitely many irregular identities.

(4)⇒(1). Let {sn = tn |n ∈ N} be any sequence of identities ultimately
defining P. By our assumption (4), there is a k ≥ 0 such that the subse-
quence {sn = tn |n ≥ k} consists of regular identities only, and hence P is
regular by Lemma 6.4.

(3)⇒(5). By a result due to Ash [1], we may write P = G, where G is
a generalized variety. On the other hand, D2 ∈ P ⊆ G implies by Theorem
6.9 that any such G is regular.

(5)⇒(3). Since D2 is a finite X-algebra contained in every regular gen-
eralized variety, (5) implies that D2 ∈ P. 2

Corollary 7.5 If X is a finite alphabet, then the following conditions are
equivalent for any pseudovariety P of X-algebras:
(1) P is an irregular pseudovariety;
(2) D ∩P = O;
(3) D * P;
(4) D2 /∈ P;
(5) every sequence ultimately defining P contains infinitely many irregular

identities;
(6) P is the set of all finite X-algebras of some irregular generalized variety

of X-algebras.

In [2] it is shown that any pseudovariety P is contained in a unique
minimal regular pseudovariety R(P). Using this regularization operator we
may formulate for pseudovarieties a result similar to Theorem 5.6.

Theorem 7.15 For any pseudovariety P of X-algebras,

M(P) = R(P) = P ◦D = P ∨D.

Proof. According to Theorem 2 in [1], P = G for some generalized variety
G of X-algebras, and hence by Theorem 6.11 we get

M(P) = M(G) = M(G) = M(G) = L(G) ◦D = L(G) ◦D

= L(G) ◦D = L(P) ◦D = P ◦D.

Assume that R(P) = [gun = gvn |n ∈ N]u and let A ∈ M(P). For
any a ∈ A, 〈a〉 ∈ P ⊆ R(P) implies the existence of an na ∈ N such
that 〈a〉 |= gun = gvn for all n ≥ na. Since A is finite, we may define
m = max{na | a ∈ A}, and then for every a ∈ A, 〈a〉 |= gun = gvn for all
n ≥ m. Hence A ∈ R(P), and therefore M(P) ⊆ R(P).

On the other hand, by Theorem 7.13, M(P) is a pseudovariety, and since
D2 ∈ M(P), it is regular. Hence R(P) ⊆ M(P).
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Furthermore, P ⊆ R(P) and D ⊆ R(P) imply P ∨ D ⊆ R(P). Con-
versely, P ∨D is a regular variety containing P, so R(P) ⊆ P ∨D. This
completes the proof of the theorem. 2
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