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Abstract. The subject of this paper are general properties of direct sum decom-
positions of automata. Using certain properties of the lattice Sub(A) of subau-
tomata of an automaton A and its Boolean part, lattices of direct sum congru-
ences and direct sum decompositions of A are characterized. We show that every
automaton A can be represented as a direct sum of direct sum indecomposable
automata, and that the lattice Sub(A) can be represented as a direct product of
directly indecomposable lattices. Some special types of direct sum decompositions
of automata are also investigated.
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1 Introduction and Preliminaries

Direct sum decompositions of automata were first defined and studied by
Huzino [15] and have been investigated in [1, 9–11, 20, 22, 24] and others. In
this paper we investigate some general properties of direct sum decomposi-
tions of automata, using the methodology developed by the authors in [2,
3, 5] for studying some decompositions of semigroups. We especially study
these decompositions through the properties of lattices of subautomata and
their Boolean parts. In Sec. 2, we describe the Boolean part of the lattice
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Sub(A) of subautomata of an automaton A. We prove that it is a complete
atomic Boolean algebra and give two algorithms for computing the atoms
of F (A). Using these results, in Sec. 3, we characterize the lattices of direct
sum congruences and direct sum decompositions of A and show that the
summands in the greatest direct sum decomposition of A are direct sum
indecomposable.

In Sec. 4, we give a relationship between direct sum decompositions of an
automaton A and direct product decompositions of Sub(A) and prove that
Sub(A) can be represented as a direct product of directly indecomposable
lattices. Some special direct sum decompositions are investigated in Sec. 5.
In Sec. 6, we establish some connections between direct sum congruences,
Rees congruences and principal congruences on an automaton.

All automata considered here will be automata without outputs in the
sense of [9] but similar results can be also obtained for automata with arbi-
trary (not necessarily free) input monoids, Mealy-type automata and unary
algebras.

The considered automata will be treated as unary algebras. So the
notions such as congruence, subautomaton, generating set etc., will have
their usual algebraic meanings. An automaton and its set of states will be
denoted by the same letter. All automata will have the same input alphabet
X and the free monoid over X will be denoted by X∗. Under the action of
an input word u ∈ X∗, the automaton A goes from a state a ∈ A into the
state au.

An automaton A is a direct sum of its subautomata Aα (α ∈ Y ), in
notation A =

∑
α∈Y Aα, if A =

⋃
α∈Y Aα and Aα ∩ Aβ = ∅, for α 6= β.

The equivalence relation on A, whose classes are different Aα, is called a
direct sum equivalence on A, the related partition of A is called a direct
sum decomposition of A, and the automata Aα are called direct summands
of A. As we will see later, any direct sum equivalence on an automaton is
a congruence, and the name direct sum congruence will be also used. An
automaton A is called direct sum indecomposable if the universal equivalence
on A is the unique direct sum equivalence on A.

Throughout the paper, Z denotes the set of all integers and N the set
of all positive integers. For a binary relation ξ on a set T and n ∈ N,
ξn denotes the n-th power of ξ in the semigroup of binary relations on T .
The identity and the universal relation on T are denoted by ∆T and ∇T ,
respectively, or briefly ∆ and ∇. By a quasi-order , we mean a reflexive
and transitive binary relation. The notion poset is used as a synonym for
the notion “partially ordered set”. The two-element Boolean algebra will
be denoted by 2.

For a non-empty set T , P (T ) will denote the lattice of subsets of T .
Let L be a sublattice of P (T ) containing its unity and having the property
that any non-empty intersection of elements of L is also in L. Then for any
a ∈ T there exists the smallest element of L containing a, which will be
called the principal element of L generated by a and usually denoted by
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L(a). The set of all principal elements of L is called the principal part of L.
For a non-empty set T , the lattice of equivalence relations on T is denoted

by Eq (A). Its dual lattice, the lattice of partitions of T , is denoted by
Part (T ). For an automaton A, the lattice of subautomata of A (including the
empty subautomaton) is denoted by Sub(A) and the lattice of congruences
on A is denoted by Con (A). As known, Con (A) and Sub(A) are complete
sublattices of Eq (A) and P (A), respectively.

For undefined notions and notations concerning automata we refer to
[9, 14, 17, 21], and for those concerning lattices and universal algebras, we
refer to [3–5, 13, 23].

2 The Boolean Part of the Lattice of Subautomata

Much information about a distributive lattice L with zero and unity can
be obtained through information concerning its Boolean part (or center)
defined as the set of all elements of L which are complemented in L. In
[2, 3, 5], we studied some decompositions of semigroups using the Boolean
parts of lattices of ideals. Here we apply this methodology to the lattice of
subautomata and direct sum decompositionos of an automaton.

A subset P of an automaton A is called consistent if for each a ∈ A
and u ∈ X∗, au ∈ P implies a ∈ P (this notion was introduced in [8]
for semigroups and in [12], under the name “isolated subset” for universal
algebras). A consistent subautomaton of A is called a filter of A. The
empty subautomaton of A is also a filter of A. A filter of A different than
∅ and A is called a proper filter of A.

Let us observe that a subset P of an automaton A is a consistent subset
of A if and only if its set-theoretical complement in A is a subautomaton of
A. Using this we obtain the following lemma:

Lemma 2.1 The following conditions for a subautomaton B of an au-
tomaton A are equivalent:

(i) B is a filter of A.
(ii) the set-theoretical complement of B in A is a filter of A.
(iii) B is a direct summand of A.

Lemma 2.2 Let B be a filter of an automaton A and C a filter of B.
Then C is a filter of A.

The set of all filters of an automaton A will be denoted by F (A). Now
we are ready to prove the main theorem of this section.

Theorem 2.3 For any automaton A, F (A) is the Boolean part of Sub(A)
and it is a complete atomic Boolean algebra. Furthermore, any complete
atomic Boolean algebra can be represented as the Boolean algebra of filters
of some automaton.
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Proof. By Lemma 2.1, F (A) is the Boolean part of Sub(A). Recall from
[3] that the Boolean part of a complete Brouwerian lattice is its complete
sublattice if and only if it is a complete atomic Boolean algebra. Since
Sub(A) is a complete Brouwerian lattice and F (A) is a complete sublattice
of Sub(A), we have that F (A) is a complete atomic Boolean algebra.

Furthermore, let B be an arbitrary complete atomic Boolean algebra
and Y the set of all its atoms. To any α ∈ Y , we associate a direct sum
indecomposable automaton Aα such that different Aα have disjoint sets of
states. For example, we can assume Aα (α ∈ Y ) are connected or strongly
connected automata. Let A be the direct sum of automata Aα (α ∈ Y ).
Then {Aα |α ∈ Y } is the set of all atoms in F (A) in view of Lemma 2.1. It
is well known that B is isomorphic to the Boolean algebra of all subsets of
Y , and since the set of all atoms of F (A) and Y have the same cardinallity,
B and F (A) are isomorphic. This completes the proof of the theorem.

Our next goal is to characterize the atoms in F (A). For an automaton
A and a ∈ A, let F (a) denote the principal element of F (A) generated by
a. The filter F (a) will be called the principal filter of A generated by a.
Evidently, the atoms in F (A) are exactly the principal filters of A.

Given a subset P of an automaton A. The subautomaton of A generated
by P will be denoted by S(P ). In other words,

S(P ) = {b ∈ A | (∃a ∈ P )(∃u ∈ X∗) b = au} = {au | a ∈ P, u ∈ X∗}.

The subautomaton generated by a single state a ∈ A will be denoted by
S(a). Further, C(P ) will denote the smallest consistent subset of A con-
taining P , called the consistent subset of A generated by P . In other words,

C(P ) = {a ∈ A | (∃u ∈ X∗) au ∈ P}.

Now we are ready to prove the following theorem which gives an algo-
rithm for finding principal filters of an automaton.

Theorem 2.4 Let A be an automaton and a ∈ A. Let a sequence
{Un(a)}n∈N of subsets of A be defined by U1(a) = C

(
S(a)

)
and Un+1(a) =

C
(
S

(
Un(a)

))
for n ∈ N. Then {Un(a)}n∈N is an increasing sequence of sets

and F (a) =
⋃

n∈N Un(a).

Proof. For any n ∈ N, we have Un(a) ⊆ S
(
Un(a)

)
⊆ C

(
S

(
Un(a)

))
=

Un+1(a) and so {Un(a)}n∈N is an increasing sequence. Further, let U =
∪n∈NUn(a). Since each Un(a) is a consistent subsets of A,U is also consistent.
If b ∈ U , u ∈ X∗, then b ∈ Un(a) for some n ∈ N and bu ∈ S

(
Un(a)

)
⊆

C
(
S

(
Un(a)

))
= Un+1(a). So U is a subautomaton of A. Therefore, U is a

filter of A containing a, hence F (a) ⊆ U .
To prove the opposite inclusion, it is enough to prove Un(a) ⊆ F (a) for

any n ∈ N. This will be proved by induction. First, we observe S(a) ⊆ F (a)
since F (a) is a subautomaton of A containing a, and now U1(a) = C

(
S(a)

)
⊆
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F (a), since F (a) is consistent. Suppose Un(a) ⊆ F (a) for some n ∈ N. Then
S

(
Un(a)

)
⊆ F (a) since F (a) is a subautomaton of A containing Un(a) and

Un+1(a) = C
(
S

(
Un(a)

))
⊆ F (a), since F (a) is consistent. Hence, Un(a) ⊆

F (a) for any n ∈ N. This completes the proof of the theorem.

It can be also proved that, for any automaton A, F (A) is the Boolean
part of the lattice of consistent subsets of A.

For finite automata we have the following:

Corollary 2.5 Let A be a finite automaton and

n = min{k ∈ N | (∀a ∈ A)Uk(a) = Uk+1(a)}.

Then n ≤ |A| and F (a) = Un(a) for any a ∈ A.

By the previous theorem, the principal filter F (a) of an automaton A
generated by a state a ∈ A can be computed as a union of the sequence
{Un(a)}n∈N of sets obtained by successive application of the operators P 7→
S(P ) (generating a subautomaton by P ) and P 7→ C(P ) (generating a
consistent subset by P ) starting from a. In the following theorem, we prove
that a permutation of these operators does not change the final result of
this procedure.

Theorem 2.6 Let A be an automaton, a ∈ A, L1(a) = S
(
C(a)

)
and

Ln+1(a) = S
(
C

(
Ln(a)

))
for n ∈ N. Then {Ln(a)}n∈N is an increasing

sequence of sets and F (a) =
⋃

n∈N Ln(a).

Proof. We can prove that {Ln(a)}n∈N is an increasing sequence similarly
as the related part of Theorem 2.4. To simplify the notations, set L(a) =⋃

n∈N Ln(a).
Since a ∈ S(a), it follows that C(a) ⊆ C

(
S(a)

)
= U1(a), hence

L1(a) = S
(
C(a)

)
⊆ S

(
U1(a)

)
⊆ C

(
S

(
U1(a)

))
= U2(a).

Now suppose Ln(a) ⊆ Un+1(a) for some n ∈ N. Then we have C
(
Ln(a)

)
⊆

C
(
Un+1(a)

)
= Un+1(a) since Un+1(a) is a consistent subset of A. So

Ln+1(a) = S
(
C

(
Ln(a)

))
⊆ S

(
Un+1(a)

)
⊆ C

(
S

(
Un+1(a)

))
= Un+2(a).

By induction, we obtain Ln(a) ⊆ Un+1(a) for any n ∈ N. By Theorem 2.4
it follows that L(a) ⊆ F (a).

On the other hand, since S(a) ⊆ S
(
C(a)

)
= L1(a), we obtain

U1(a) = C
(
S(a)

)
⊆ C

(
L1(a)

)
⊆ S

(
C

(
L1(a)

))
= L2(a).

Suppose Un(a) ⊆ Ln+1(a) for some n ∈ N. Then S
(
Un(a)

)
⊆ S

(
Ln+1(a)

)
=

Ln+1(a) since Ln+1(a) is a subautomaton of A, hence

Un+1(a) = C
(
S

(
Un(a)

))
⊆ C

(
Ln+1(a)

)
⊆ S

(
C

(
Ln+1(a)

))
= Ln+2(a).
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By induction, we obtain Un(a) ⊆ Ln+1(a) for any n ∈ N, and by Theorem
2.4 we have F (a) ⊆ L(a). Therefore, F (a) = L(a).

Corollary 2.7 Let A be a finite automaton and

n = min{k ∈ N | (∀a ∈ A) Lk(a) = Lk+1(a)}.

Then n ≤ |A| and F (a) = Ln(a) for any a ∈ A.

3 Direct Sum Decompositions of an Automaton

In this section we return to the direct sum decompositions of automata.
Recall that an equivalence relation θ on an automaton A was called a direct
sum equivalence if every θ-class of A is a subautomaton of A. An automa-
ton A is called an identity automaton if au = a, for all a ∈ A and u ∈ X∗.
In some other origins, such automata have been called discrete automata.
By the following lemma we characterize direct sum equivalences on an
automaton:

Lemma 3.1 The following conditions for an equivalence relation θ on an
automaton A are equivalent:

(i) θ is a direct sum equivalence on A.
(ii) (∀a ∈ A)(∀u ∈ X∗) au θ a.
(iii) θ is a congruence on A and A/θ is an identity automaton.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (i) are obvious.
(ii) ⇒ (iii). If (a, b) ∈ θ and u ∈ X∗, then au θ a θ b θ bu, hence au θ bu.

Therefore, θ is a congruence. Clearly, A/θ is an identity automaton.

In view of the previous lemma, when we deal with automata without
outputs, the name ”direct sum congruence” will be used as a synonym for
”direct sum equivalence”. In the general case, when we deal with Mealy-
type automata, a direct sum equivalence is not necessary a congruence of
a Mealy-type automaton (see [9]).

Using the variety of all identity automata and a result obtained by the
authors in [7], we can prove that direct sum congruences on an automaton
A form a principal dual ideal of Con (A). A direct proof of this assertion
will be given, followed by a construction of the generating element of this
principal dual ideal.

Theorem 3.2 If σ denote the transitive closure of the relation on an
automaton A defined by

a b ⇐⇒ S(a) ∩ S(b) 6= ∅ (a, b ∈ A),

then the set of all direct sum congruences on A is the principal dual ideal
of Eq (A) generated by σ.
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Proof. The relation is obviously reflexive and symmetric, so σ is an
equivalence relation on A. For a ∈ A and u ∈ X∗, by au a, we obtain
au σ a, so by Lemma 3.1, σ is a direct sum congruence on A.

Let [σ) denote the principal dual ideal of Eq (A) generated by σ. If
θ ∈ [σ), then for arbitrary a ∈ A and u ∈ X∗, we have (au, a) ∈ σ ⊆ θ.
By Lemma 3.1, θ is a direct sum congruence on A. Conversely, let θ be an
arbitrary direct sum congruence on A. Assume a, b ∈ A such that a b, i.e.
au = bv, for some u, v ∈ X∗. Then a θ au = bv θ b. Therefore, ⊆ θ. So
σ ⊆ θ, proving that σ is the transitive closure of . This completes the
proof of the theorem.

Theorem 3.3 The smallest direct sum congruence σ on an automaton A
equals the transitive closure of the relation on A defined by:

a b ⇐⇒ C(a) ∩ C(b) 6= ∅ (a, b ∈ A).

Proof. Assume a, b ∈ A such that a b. Then there exists c ∈ C(a)∩C(b),
i.e., a = cu and b = cv for some u, v ∈ X∗ and so a = cu σ c σ cv = b,
which yields a σ b. This means that is contained in σ and so its transitive
closure is also contained in σ. But the transitive closure of is a direct
sum congruence on A since au a for all a ∈ A and u ∈ X∗. By Theorem
3.2, we have that σ equals the transitive closure of .

Corollary 3.4 The smallest direct sum congruence σ on an automaton A
equals the transitive closure of the relation on A defined by = ∩ .

Let | denote the division relation on an automaton A, i.e., the quasi-
order on A defined by:

a | b ⇐⇒ (∃u ∈ X∗) b = au.

Then the relations and on A can also be defined in the following way:

a b ⇐⇒ (∃c ∈ A) a | c & b | c,
a b ⇐⇒ (∃c ∈ A) c | a & c | b.

For the poset of direct sum decompositions, by Theorem 3.2, we obtain
the following.

Theorem 3.5 The set of all direct sum decompositions of an automaton
A is a principal ideal of the partition lattice Part (A).

By the previous theorem, we found that direct sum decompositions of
an automaton A form a complete lattice that is dually isomorphic to the
lattice of direct sum equivalences on A which are characterized by Lemma
3.1. Another characterization of the lattice of direct sum decompositions of
A, through the Boolean algebra F (A), is given by the following theorem.
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Theorem 3.6 The lattice of direct sum decompositions of an automaton
A is isomorphic to the lattice of complete Boolean subalgebras of F (A).

Proof. In order to establish the desired lattice isomorphism, it is enough
to find an order isomorphism between these lattices. Let B be a complete
Boolean subalgebra of F (A). For a ∈ A, let B(a) denote the principal
element of B generated by a. Since B is a complete sublattice of F (A), by
[3, Theorem 10], B is atomic, and the atoms of B are exactly its principal
elements. Set DB = {B(a) | a ∈ A}. It is clear that DB is a direct sum
decomposition of A whose summands are exactly the atoms of B. We will
prove that the mapping B 7→ DB is an order isomorphism of the lattice
of complete Boolean subalgebras of F (A) onto the lattice of direct sum
decompositions of A.

Let B and E be two complete Boolean subalgebras of F (A). If B ⊆ E,
then E(a) ⊆ B(a) for any a ∈ A, hence DB ≤ DE in Part (A). Conversely,
let DB ≤ DE in Part (A). Then for any a ∈ A, there exists b ∈ A such that
E(a) ⊆ B(b), and a ∈ E(a) implies a ∈ B(b). Hence, B(a) ⊆ B(b), hence
B(a) = B(b) since B(b) is an atom in B. Therefore, E(a) ⊆ B(a) for any
a ∈ A, which means that B ⊆ E. Hence, B ⊆ E if and only if DB ⊆ DE .

It remains to prove that the mapping B 7→ DB is onto. Let D =
{Aα |α ∈ Y } be an arbitrary direct sum decomposition of A. By Lemma
2.1, Aα (α ∈ Y ) are filters of A. Set

B =
{

F ∈ F (A)
∣∣∣ (∃Z ⊆ Y ) F =

⋃
α∈Z Aα

}
.

Note that ∅ ∈ B since we can assume Z = ∅. Then B is a complete Boolean
subalgebra of F (A), and so is a complete atomic Boolean algebra whose
atoms are exactly Aα (α ∈ Y ). In other words, for α ∈ Y and a ∈ Aα,
Aα = B(a). Now we have D = DB , which proves that B 7→ DB is onto.
This ends the proof of the theorem.

Remark 3.7 The previous theorem can be also formulated and proved in
terms of direct sum congruences on an automaton A, namely, the lattice of
complete Boolean subalgebras of F (A) is dually isomorphic to the lattice of
direct sum congruences on A and a dual isomorphism between these lattices
can be given by B 7→ σB . Here, for a complete Boolean subalgebra B of
F (A), the relation σB on A is defined by (a, b) ∈ σB ⇔ B(a) = B(b).
Clearly, σB is the direct sum congruence on A which corresponds to the
direct sum decomposition DB of A. Recall that, for a ∈ A, B(a) denotes
the principal element of B generated by a.

The smallest direct sum congruence on A is given by σ = σF (A), i.e.,
(a, b) ∈ σ ⇔ F (a) = F (b).

An automaton A will be called σ-connected if it satisfies one of the
following equivalent conditions: (1) σ = ∇, (2) (∀a, b ∈ A)(∃n ∈ N) a

n
b,

(3) (∀a, b ∈ A)(∃n ∈ N) a n b, (4) (∀a, b ∈ A)(∃n ∈ N) a n b. Here
n

, n

and n denote the nth powers of relations , and , respectively.
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Theorem 3.8 The following conditions on an automaton A are equivalent:
(i) A is a direct sum indecomposable automaton.
(ii) A has no proper filters.
(iii) A is σ-connected.
(iv) F (A) ∼= 2.
(v) Sub(A) is a directly indecomposable lattice.

Proof. The equivalence of statements (i)–(iv) is an immediate consequence
of Lemma 2.1 and Theorems 2.3 and 2.4. We have (iv)⇔(v) because of [3,
Lemma 4].

Theorem 3.9 Any automaton A can be represented as a direct sum of
direct sum indecomposable automata. This is the greatest direct sum de-
composition of A and its summands are the atoms of F (A).

Proof. The existence of the greatest direct sum decomposition of A follows
by the previous two theorems. By Theorem 3.6, this decomposition cor-
responds to the greatest complete Boolean subalgebra of F (A), i.e., to the
whole Boolean algebra F (A), and its summands are exactly the atoms of
F (A).

Let B be an arbitrary summand in the greatest direct sum decomposition
of A. If B is not direct sum indecomposable, by Lemma 2.1, B has a proper
filter C. By Lemma 2.2, C is also a filter of A, which contradicts the fact
that B is an atom of F (A). Therefore, any summand in the greatest direct
sum decomposition of A must be direct sum indecomposable.

It may seem that the indecomposability of the summands in the greatest
direct sum decomposition of an automaton A is a natural consequence of
the atomicity of F (A). But this is not true, namely, in the proof of the
indecomposability of these summands, Lemma 2.2 plays a crucial role. The
authors in [3] studied decomposition of semigroups with zero into a so-
called right sum of semigroups, where they used the Boolean part of the
lattice of left ideals of this semigroup, which is also a complete atomic
Boolean algebra. For such decompositions, an example has been given where
the summands in the greatest decomposition may be decomposable in such
a sum (see [3]).

4 Direct Product Decompositions of the Lattice of Subautomata

Other connections between the direct sum decompositions of an automaton
A and the lattice Sub(A) are given by the following theorem:

Theorem 4.1 The lattice Sub(A) of subautomata of an automaton A is
a direct product of lattices Lα (α ∈ Y ) if and only if A is a direct sum of
automata Aα (α ∈ Y ) and Lα

∼= Sub (Aα) for any α ∈ Y .

Proof. Let Sub(A) be a direct product of lattices Lα (α ∈ Y ). For any
α ∈ Y , Lα is a homomorphic image of Sub(A) with respect to the projection
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homomorphism πα of Sub(A) onto Lα, so Lα has a zero 0α and a unity 1α.
Let Aα ∈ Sub(A) be an element satisfying the condition

Aαπβ =
{

1α for β = α,
0α for β 6= α.

By a straightforward verification, we obtain that Lα is isomorphic to the
principal ideal of Sub(A) generated by Aα. On the other hand, the principal
ideal of Sub(A) generated by Aα is isomorphic to Sub (Aα), since any sub-
automaton of Aα is also a subautomaton of A. Therefore, Lα

∼= Sub (Aα)
for any α ∈ Y . We obtain immediately that A is a direct sum of automata
Aα (α ∈ Y ). This completes the proof of the direct part of the theorem.

To prove the converse, assume A is a direct sum of automata Aα (α ∈ Y ).
Let Lα denote the principal ideal of Sub(A) generated by Aα, L =

∏
α∈Y Lα

and πα the projection homomorphism of L onto Lα. Then the mapping
φ : Sub(A) → L defined by (Bφ)πα = B ∩ Aα for B ∈ Sub(A) and α ∈ Y
is an isomorphism, proving that Sub(A) is a complete Brouwerian lattice.
Hence, it is infinitely distributive for meets. Finally, Lα = Sub (Aα), which
ends the proof of the theorem.

By the previous theorem we obtain the following consequence on repre-
sentation of the lattice of subautomata of an automaton:

Corollary 4.2 Let A be an arbitrary automaton. Then the lattice Sub(A)
can be represented as a direct product of directly indecomposable lattices and
Sub(A) ∼=

∏
α∈Y Sub(Aα), where A =

∑
α∈Y Aα is a representation of A

as a direct sum of direct sum indecomposable automata.

Using the dualism between subautomata and consistent subsets of an
automaton, we can obtain similar results concerning direct product decom-
positions of the lattice of consistent subsets of an automaton A.

5 Direct Sums of υn-, λn-, µn- and ιn-connected Automata

Using sequences {Un}n∈N and {Ln}n∈N in Sec. 2, we can define many new
equivalence relations on an automaton as follows. For n ∈ N, define equiv-
alence relations υn and λn on an automaton A by

a υn b ⇐⇒ Un(a) = Un(b),
a λn b ⇐⇒ Ln(a) = Ln(b).

Moreover, for a ∈ A set In(a) = Un(a)∩Ln(a) and Mn(a) = {b ∈ A | a n b}.
Define equivalence relations ιn and µn on A by

a ιn b ⇐⇒ In(a) = In(b),
a µn b ⇐⇒ Mn(a) = Mn(b).
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Clearly, M1(a) = I1(a) and Mn(a) ⊆ In(a) for all a ∈ A and n ∈ N with
n ≥ 2. Some useful properties of the sets Un(a) and the equivalence relations
υn are given by the following lemma.

Lemma 5.1 Let A be an automaton, a ∈ A, and n ∈ N. Then

(i) Un(a) = {b ∈ A | a n
b},

(ii) Un(au) ⊆ Un(a) for any u ∈ X∗,

(iii) υn ⊆
n
.

Proof. (i) This will be proved by induction. First, we have the following
sequence of equivalences:

b ∈ U1(a) ⇐⇒ (∃v ∈ X∗) bv ∈ S(a)
⇐⇒ (∃v ∈ X∗) bv ∈ S(a) ∩ S(b)
⇐⇒ a b.

Suppose (i) holds for some n ∈ N. Let us prove that this also holds for
n + 1. We have

b ∈ Un+1(a) ⇐⇒ (∃v ∈ X∗) bv ∈ S
(
Un(a)

)
⇐⇒ (∃v ∈ X∗)(∃c ∈ Un(a))(∃u ∈ X∗) bv = cu
⇐⇒ (∃c ∈ Un(a)) c b

⇐⇒ (∃c ∈ A) a
n

c b (by the induction hypothesis)
⇐⇒ an+1b.

(ii) This follows by (i) and the fact that bu c implies b c for all b, c ∈ A
and u ∈ X∗.

(iii) If b υn c, then b ∈ Un(b) = Un(c), hence b
n

c by (i). Hence, (iii)
holds.

The assertions of the same form can be also proved for sets Ln(a), Mn(a)
and In(a), i.e., for relations λn, µn and ιn.

Define the equivalence relation γ on A by a γ b ⇔ S(a) = S(b), or
equivalently, a γ b ⇔ C(a) = C(b).

The next lemma establishes a hierarchy between the above defined rela-
tions:

Lemma 5.2 On any automaton A, the following hierarchy holds:

γ ⊆ υ1 ⊆ · · · ⊆ υn ⊆ υn+1 ⊆ · · · ⊆ σ,
γ ⊆ λ1 ⊆ · · · ⊆ λn ⊆ λn+1 ⊆ · · · ⊆ σ,
γ ⊆ µ1 ⊆ · · · ⊆ µn ⊆ µn+1 ⊆ · · · ⊆ σ.

Moreover, υn ∩ λn ⊆ ιn for any n ∈ N.
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Proof. Assume n ∈ N and (a, b) ∈ υn. Then Un(a) = Un(b), hence

Un+1(a) = C
(
S

(
Un(a)

))
= C

(
S

(
Un(b)

))
= Un+1(b)

and so (a, b) ∈ υn+1. Therefore, υn ⊆ υn+1 for any n ∈ N. Similarly,
γ ⊆ υ1, and by Lemma 5.1, we have υn ⊆

n ⊆ σ for any n ∈ N. We can
similarly prove the inclusions in the second and third rows. The inclusion
υn ∩ λn ⊆ ιn is obvious.

In Sec. 3, we defined a σ-connected automaton. Here, we introduce the
following more special notions. For n ∈ N, an automaton A will be called an
υn-connected automaton if υn = ∇ on A, or equivalently, a

n
b for all a, b ∈

A, i.e., Un(a) = A for any a ∈ A. Similarly we define λn-connected , ιn-
connected and µn-connected automata. Note that υ1-connected automata
are known as connected automata.

By the proof of Theorem 2.4, any υn-connected automaton is λn+1-
connected and any λn-connected automaton is υn+1-connected. Any µn-
connected automaton is ιn-connected since Mn(a) ⊆ In(a) for all a ∈ A and
n ∈ N. By Lemma 5.1, an automaton A is ιn-connected if and only if it is
both υn-connected and λn-connected.

Example 5.3 Define an automaton A in the following way: The set of states
of A is Z, the input alphabet is X = {x, y}, and the transition function is
defined by

kx =
{

k + 1 if k is even
k if k is odd and ky =

{
k − 1 if k is even
k if k is odd ,

for k ∈ Z, or by the transition graph shown in Fig. 1.
For i, j ∈ Z with i < j, let [i, j] = {m ∈ Z | i ≤ m ≤ j}. Then

S(k) =
{

[k − 1, k + 1] if k is even,
{k} if k is odd,

C(k) =
{
{k} if k is even,
[k − 1, k + 1] if k is odd,

r r r r r r r
r r r r r r
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Fig. 1. Transition graph
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Un(k) =
{

[k − 2n, k + 2n] if k is even,
[k − (2n− 1), k + (2n− 1)] if k is odd,

Ln(k) =
{

[k − (2n− 1), k + (2n− 1)] if k is even,
[k − 2n, k + 2n] if k is odd,

Mn(k) = [k − n, k + n] , In(k) = [k − (2n− 1), k + (2n− 1)] .

Therefore, F (k) = A for any k ∈ Z and so A is a σ-connected automaton.
But there does not exists n ∈ N such that A is υn-connected since Un(k) 6=
Un+1(k) for all n ∈ N and k ∈ Z. Similarly, there is no n ∈ N such that A
is λn-, µn- or ιn-connected. We also have γ = υn = λn = µn = ιn = ∆ for
any n ∈ N and σ = ∇ on A.

Consider the subautomaton B of A with the state set [−5, 5]. The
relations , and on B are given by the following graphs.

q q q qqq q q q q q
−4 −2 0 2 4

−5 −3 −1 1 3 5 q q q qqq q q q q q
−4 −2 0 2 4

−5 −3 −1 1 3 5 q q q qqq q q q q q
−4 −2 0 2 4

−5 −3 −1 1 3 5
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�A
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�

Fig. 2. Graphs of , and

B is υ6-connected, λ5-connected, ι6-connected and µ10-connected.

Now we are ready to prove a theorem which gives several characteriza-
tions of direct sums of υn-connected automata.

Theorem 5.4 Let n ∈ N. Then the following conditions on an automaton
A are equivalent:

(i) A is a direct sum of υn-connected automata.

(ii) (∀a, b ∈ A)(∀u ∈ X∗) a
n

b ⇒ au
n

b.
(iii) υn is a direct sum congruence on A.
(iv) Un(a) is a subautomaton of A, for any a ∈ A.

(v)
n

is a transitive relation.
(vi) Un(a) = Un+1(a), for any a ∈ A.
(vii) Un(a) = aυn, for any a ∈ A.

Proof. (i) ⇒ (ii). Let A be a direct sum of υn-connected automata Aα

(α ∈ Y ) and θ the corresponding direct sum congruence on A. Assume
a, b ∈ A such that a

n
b and u ∈ X∗. By Theorem 3.2, (a, b) ∈ n ⊆ σ ⊆ θ

and so a, b ∈ Aα for some α ∈ Y . Now au, b ∈ Aα, hence au
n

b since Aα is
an υn-connected automaton. Therefore, (ii) holds.

(ii) ⇒ (iii). By (ii) and Lemma 5.1(ii), we have Un(au) = Un(a), i.e.,
au υn a for all a ∈ A and u ∈ X∗, which yields (iii) by Lemma 3.1.
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(iii) ⇒ (i). Let υn be a direct sum congruence on A. By Theorem 3.2 and
Lemma 5.2, υn = σ. Let Aα (α ∈ Y ) be the summands in the direct sum
decomposition of A which corresponds to υn. Assume α ∈ Y and a, b ∈ Aα.
Then a υn b, i.e., Un(a) = Un(b). By Lemma 5.1, a

n
b in A, and hence,

a
n

b in Aα. Therefore, Aα is a υn-connected automaton.
(ii) ⇒ (iv). Assume a ∈ A. If b ∈ Un(a), then a

n
b by Lemma 5.1

and b
n

a since
n

is a symmetric relation. By (ii), bu
n

a, and thus, a
n

bu,
which means bu ∈ Un(a). Therefore, Un(a) is a subautomaton of A.

(iv) ⇒ (v). If (iv) holds, then clearly Un(a) = F (a) for any a ∈ A. By
Lemma 5.1, we have

n
= σ.

(v) ⇒ (vi). This follows by Lemma 5.1.
(vi) ⇒ (vii). If (vi) holds, then Un(a) = F (a) for any a ∈ A and υn = σ,

hence we obtain (vii).
(vii)⇒(ii). By Lemma 5.1,

n
= υn. So

n
is transitive and

n
= σ. Since

σ is a direct sum congruence on A, we obtain (ii).

Theorems of the same form can be also proved for direct sums of λn-,
ιn- and µn-connected automata.

Recall that an automaton A is strongly connected if one of the following
equivalent conditions holds: (1) (∀a ∈ A) S(a) = A, (2) (∀a ∈ A) C(a) = A,
(3) γ = ∇ on A. This notion was introduced by Moore [18]. These automata
are also known under other names such as transitive automata (cf. [10, 16])
and simple automata (cf. [11]). But the name ”strongly connected” is used
most frequently.

Following the terminology of [10], an automaton A will be called locally
transitive if, for all a ∈ A and u ∈ X∗, there exists v ∈ X∗ such that auv = a
(by [11], these automata are called invertible). Note that locally transitive
automata are exactly the automata on which the quasi-order introduced in
Sec. 3 is symmetric (i.e., an equivalence relation).

Direct sums of strongly connected automata have been investigated by
[11, 15] and its complete characterization was given by [10, 24]. Here,
we give another proof of the Thierrin Theorem [24] and some new results
concerning these automata.

Theorem 5.5 The following conditions on an automaton A are equivalent:

(i) A is a direct sum of strongly connected automata.
(ii) γ is a direct sum congruence on A.
(iii) any subautomaton of A is consistent.
(iv) any consistent subset of A is a subautomaton.
(v) S(a) = C(a), for any a ∈ A.
(vi) Sub(A) is a Boolean algebra.
(vii) A is a locally transitive automaton.
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Proof. (i)⇔(ii). This is obvious.
(ii) ⇒ (iii). Let B be an arbitrary subautomaton of A and au ∈ B for

some a ∈ A and u ∈ X∗. By au γ a, it follows that S(au) = S(a). So
S(au) ⊆ B, hence S(a) ⊆ B, and hence a ∈ B.

(iii)⇒(vi). If (iii) holds, then Sub(A)= F (A). By Theorem 2.3, Sub(A)
is a Boolean algebra.

(vi)⇒(ii). If Sub(A) is a Boolean algebra, then Sub(A) = F (A). Hence
F (a) = S(a) for any a ∈ A and γ = σ, which yields (ii).

(ii) ⇒ (iv). This can be proved similarly as (ii) ⇒ (iii).
(iv) ⇒ (ii). If (iv) holds, then F (a) = C(a) for any a ∈ A. So σ = γ,

hence we obtain (ii).
(ii) ⇒ (v). Since (ii)⇔(iii) and (ii)⇔(iv) are already proved, using (iii)

and (iv), we obtain (v).
(v)⇒(ii). If (v) holds, by Theorem 2.4, we have F (a) = S(a) = C(a) for

any a ∈ A. So σ = γ and (ii) holds.
(ii)⇔(vii). The condition (ii) is equivalent to the condition S(au) = S(a)

for all a ∈ A and u ∈ X∗, which is clearly equivalent to the definition of
locally transitive automata.

By Theorems 5.5 and 3.8 we obtain the following.

Corollary 5.6 [21]) An automaton A is strongly connected if and only if
Sub(A) ∼= 2.

6 Direct Sum Congruences Viewed from Rees Congruences and
Principal Congruences

In Remark 3.7, we characterized direct sum congruences on an automaton
A through complete Boolean subalgebras of F (A). In this section these
congruences will be characterized through two important types of congru-
ences on an automaton, i.e., Rees congruences and principal congruences on
an automaton.

Let B be a subautomaton of an automaton A. Then the relation %
B

on
A defined by

(a, b) ∈ %
B
⇐⇒ a, b ∈ B or a = b, (a, b ∈ A),

is a congruence relation on A, called the Rees congruence on A determined
by B. The corresponding factor automaton, denoted by A/B, is called the
Rees factor of A with respect to B. The Rees congruence determined by
the empty subautomaton of A is clearly the equality relation on A.

Before we characterize direct sum congruences on an automaton in terms
of Rees congruences, we prove the following.

Theorem 6.1 Let {Aα |α ∈ Y } be a family of pairwise disjoint sub-
automata of an automaton A.

(i) If Y = {1, 2, . . . , n}, then
⋃n

i=1 %
Ai

= %
A1

%
A2
· · · %

An
.
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(ii) If Y is an arbitrary set, then
∨

α∈Y %
Aα

=
⋃

α∈Y %
Aα

.

Proof. Let (a, b) ∈ %
A1

%
A2
· · · %

An
. Then there exist c0, c1, . . . , cn−1, cn ∈ A

such that c0 = a, cn = b, and (ci−1, ci) ∈ %
Ai

= Ai × Ai ∪ ∆ for each
i ∈ {1, . . . , n}. If ci−1 = ci for each i ∈ {1, . . . , n}, then a = b so (a, b) ∈ %

Ai
,

for any i ∈ {1, . . . , n}. Otherwise, there exists k ∈ {1, . . . , n} such that
ck−1 6= ck. Then ck−1, ck ∈ Ak. Since A1, . . . , An are pairwise disjoint,
we have a = c0 = · · · = ck−1 and ck = · · · = cn = b, hence (a, b) ∈ %

Ak
.

Therefore, we have proved (i).
The assertion (ii) is an immediate consequence of (i).

By the following theorem, we establish a connection between a direct
sum congruence on an automaton A and the Rees congruences on A deter-
mined by the summands in the corresponding direct sum decomposition of
A.

Theorem 6.2 Let A be a direct sum of automata Aα (α ∈ Y ) and θ
the corresponding direct sum congruence on A. Then θ =

∨
α∈Y %

Aα
=⋃

α∈Y %
Aα

.

Proof. By Theorem 6.1, it is sufficient to prove θ = %, where % =
⋃

α∈Y %
Aα

.
Assume (a, b) ∈ θ. Then a, b ∈ Aα for some α ∈ Y , hence (a, b) ∈ %

Aα
.

Therefore, θ ⊆ %. Conversely, assume (a, b) ∈ %. Then (a, b) ∈ %
Aα

for some
α ∈ Y , which means a, b ∈ Aα or a = b. In both cases, we have (a, b) ∈ θ.
Hence, % ⊆ θ. This completes the proof of the theorem.

A state a of an automaton A is called a trap if ax = a for any x ∈ X,
or equivalently, au = a for any u ∈ X∗. If A is an arbitrary automaton and
t /∈ A, then we define an automaton At to be a direct sum of A and the
automaton having only one state t. In other words, the automaton At is
obtained from A by adjoining a trap.

Let {Bα |α ∈ Y } be an arbitrary family of subautomata of A. It is
easy to prove

⋂
α∈Y %

Bα
= %

B
where B =

⋂
α∈Y Bα. Using this property, we

obtain the following.

Theorem 6.3 Let A be a direct sum of automata Aα (α ∈ Y ). Then A
is a subdirect product of automata At

α (α ∈ Y ).

Proof. For any α ∈ Y , let A′
α denote the set-theoretical complement of Aα

in A and A′ = ∅. Then ∩α∈Y A′
α = (∪α∈Y Aα)′ = A′ = ∅, hence we obtain

∩α∈Y %
A′

α

= ∆, where ∆ denotes the equality relation on A. Therefore, A is

a subdirect product of automata A/A′
α and A/A′

α
∼= At

α for any α ∈ Y .

We say that an equivalence relation θ on a set S saturates a subset T
of S if T is the union of some θ-classes of S. The equivalence relation θT ,
having only two equivalence classes (T and its set-theoretical complement
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in S), is the greatest equivalence relation on S which saturates T , called the
principal equivalence on S determined by T .

Let A be an automaton. Following [14], for T ⊆ A and a ∈ A, let
T.a = {u ∈ X∗ | au ∈ T}. Then T.a is a language in X∗, called the quotient
of T with respect to a. Recall that, for a language L ⊆ X∗ and u ∈ X∗, the
right quotient of L with respect to u is defined by L.u = {v ∈ X∗ |uv ∈ L}.
It is easy to verify (T.a).u = T.au for all a ∈ A and u ∈ X∗, hence the
relation PT on A defined by

(a, b) ∈ PT ⇐⇒ T.a = T.b (a, b ∈ A)

is a congruence relation on A. Moreover, this is the greatest congruence on
A which saturates T and is called the principal congruence on A determined
by T .

If F is a filter of an automaton A, then θF is a direct sum congruence
on A. So θF = PF for any filter F of A. Using this, we obtain the next
theorem, by which we characterize direct sum equivalences on an automaton
in terms of principal congruences determined by filters.

Theorem 6.4 Let A be an automaton, B a complete Boolean subalgebra
of F (A), and σB the direct sum congruence on A which corresponds to B
defined as in Remark 3.7. Then σB =

⋂
F∈B PF =

⋂
c∈A PB(c).

Proof. Assume (a, b) ∈ σB and F ∈ B. Then B(a) = B(b) is an atom
in B, hence B(a) ⊆ F or B(a) ⊆ F ′ where F ′ denotes the set-theoretical
complement of F in A. Therefore, a, b ∈ B(a) ⊆ F or a, b ∈ B(a) ⊆
F ′, hence (a, b) ∈ θF = PF . This proves σB ⊆ ∩F∈BPF . The inclusion
∩F∈BPF ⊆ ∩c∈APB(c) is obvious. Finally, assume (a, b) ∈ ∩c∈APB(c). Then
(a, b) ∈ PB(a). Since a ∈ B(a), we have b ∈ B(a), hence B(b) = B(a), which
yields (a, b) ∈ σB . Hence, ∩c∈APB(c) ⊆ σB , which completes the proof of
the theorem.

By the previous theorem we immediately obtain the following.

Corollary 6.5 Let A be the direct sum of automata Aα (α ∈ Y ) and θ
the corresponding direct sum congruence on A. Then θ =

⋂
α∈Y PAα

.
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