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Abstract. Putcha [8] and Ren, Shum and Guo [9] gave very interesting de-
scriptions of nil-extensions of rectangular groups in terms of subdirect and spined
products. Since subdirect and spined product decompositions can be character-
ized in terms of congruences, we state a natural question: What are the systems of
congruences which determine these decompositions? In the present paper, we give
a complete answer on this question. We define two systems of congruence relations
on a completely Archimedean semigroup and make certain subdirect product de-
compositions of this semigroup. In the case when this semigroup is a nil-extension
of a rectangular group, we give structure descriptions of the corresponding factor
semigroups. By the obtained results, we deduce more constructive proofs of the
theorems of [8, 9].
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1 Introduction

There are various structural characterizations of semigroups that are nil-
extensions of rectangular groups (they were called quasi-rectangular groups
in [9]). For example, they were characterized as π-regular semigroups whose
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idempotents form a rectangular band, as completely Archimedean semi-
groups whose idempotents form a subsemigroup etc. Among the most in-
teresting ones are the characterizations given in terms of subdirect products
by Putcha [8] in 1973 and by Ren, Shum and Guo [9] in 1997.

Putcha proved a theorem that characterizes the mentioned semigroups
in two ways: as subdirect products of a group and a nil-extension of a
rectangular band; and as subdirect products of a group, a nil-extension of
a left zero band and a nil-extension of a right zero band. He proved this
theorem using the famous Birkhoff representation theorem, by which every
algebra can be represented as a subdirect product of subdirectly irreducible
algebras, and the fact that every subdirectly irreducible semigroup in the
class of nil-extensions of rectangular groups is a group, or a nil-extension of
a left zero band, or a nil-extension of a right zero band.

Shum and Ren [11] gave a general method for construction of com-
pletely Archimedean semigroups, generalizing the famous Rees-Sushkevitsch
method for construction of completely simple semigroups. As a particu-
lar case of this construction, Ren, Shum and Guo [9] constructed all nil-
extensions of rectangular groups and proved another theorem that chara-
cterizes nil-extensions of rectangular groups as spined products of a nil-
extension of a left group and a nil-extension of a right group with respect
to a nil-extension of a group.

These results motivate us to consider these subdirect decompositions
again but from another point of view. As is well known, another Birkhoff
theorem [1] applied to semigroups says that a semigroup S is a subdirect
product of semigroups Si (i ∈ I) if and only if there exists a family {%i | i ∈
I} of congruences on S such that ∩i∈I%i = ∆S and S/%i

∼= Si for each i ∈ I.
We will call {%i | i ∈ I} a family of factor congruences. The first problem
that we state is: What are the families of factor congruences which realize
Putcha’s decompositions?

There are also theorems that characterize spined products in terms of
congruences. Spined products, known as pullback products in universal al-
gebra, first appeared in [4]. In the semigroup theory, their intensive inves-
tigation was initiated by Kimura [6] in 1958. The first theorem by which
spined products were characterized in terms of congruences was proved by
Fleischer [3] in 1955. In the case of semigroups, this theorem asserts that a
semigroup S can be represented as a spined product of semigroups P and
Q with respect to their common homomorphic image H if and only if there
exists a pair %, %′ of factor congruences on S such that % and %′ commute,
S/% ∼= P , S/%′ ∼= Q, and S/%%′ ∼= H. For spined products with more than
two factors, a similar theorem was proved by Wenzel [12] in 1968. The
factor congruences that appear in this theorem are congruences satisfying
some conditions which can be viewed as a generalization of the conditions
of the Chinese Remainder Theorem. Naturally, we also state the follow-
ing question: What is the pair of factor congruences which determines the
spined product decomposition given by [9]?
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We give the answers to both of the above stated questions. First, in
terms of products of elements with idempotents, we define two systems
of congruence relations on a completely Archimedean semigroup. Further,
using these systems of congruences we form several systems of factor con-
gruences on the given semigroup, and in the case when this semigroup is
a nil-extension of a rectangular group, we give structure descriptions of
the corresponding factors. By the obtained results we deduce constructive
proofs of the theorems of Putcha and Ren, Shum and Guo.

2 Preliminaries

Throughout this paper, N denotes the set of all positive integers. For a set
X, ∆X denotes the equality relation on X, and for relations % and %′ on X,
% · %′, or briefly %%′, denotes the product of these relations in the semigroup
of binary relations on X.

Let S be a semigroup. Then L, R, H and D denote the Green’s relations
on S, E(S) denotes the set of all idempotents of S and Reg(S) denotes the
set of all regular elements of S. As is well known, a ∈ Reg(S) means that
there exists x ∈ S such that a = axa and x = xax. Such an element x will
be called an inverse of a, and the set of all inverses of a will be denoted by
V (a). For e ∈ E(S), we denote by Ge the maximal subgroup of S having
e as its identity. Note that the inverse of a regular element of S and the
(group) inverse in Ge of an element a ∈ Ge, are different notions.

A semigroup S is called a nil-semigroup if it has a zero and, for every
a ∈ S, there exists n ∈ N such that an = 0. We say that a semigroup S
is a nil-extension of a semigroup T if it is an ideal extension of T by a nil-
semigroup. A semigroup S is called Archimedean if, for all a, b ∈ S, there
exists n ∈ N such that bn ∈ SaS. S is called π-regular if, for each a ∈ S,
there exists n ∈ N such that an ∈ Reg(S).

Let P and Q be semigroups, and H their common homomorphic image
with respect to homomorphisms ϕ of P onto H and ψ of Q onto H. Then
S = {(p, q) ∈ P × Q | pϕ = qψ} is a subdirect product of P and Q, called
the spined product of P and Q with respect to H, ϕ and ψ.

For undefined notions and notations, we refer to [2, 5].

Let X be a non-empty subset of a semigroup S. Then L(X) = XS1,
R(X) = S1X and J(X) = S1XS1 denote respectively the left, right and
two-sided ideals of S generated by X. X is said to be a duo subset of S if
L(X) = R(X). Evidently, L(X) = R(X) = J(X) for each duo subset X of
S. On the other hand, if K is an ideal of S, then L(K) = R(K) = K, so
every ideal is a duo subset.

Let X be a non-empty subset of a semigroup S. Define relations LX ,
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RX and DX on S by:

(a, b) ∈ LX ⇐⇒ (∀x ∈ X) xa = xb,
(a, b) ∈ RX ⇐⇒ (∀y ∈ X) ay = by,
(a, b) ∈ DX ⇐⇒ (∀x, y ∈ X) xay = xby

It is easy to check that these are equvalence relations on S. Moreover,
LX is a right congruence, RX is a left congruence, and both of them are
contained in DX . It is natural to investigate some conditions on the set X
under which the relations LX , RX and DX are congruence relations on S.

Lemma 2.1. If X is a duo subset of a semigroup S, then LX , RX and
DX are congruence relations on S. Furthermore, GX = GK for each G ∈
{L,R,D} where K = J(X).

Proof. We will only prove the assertions concerning DX . The assertion
concerning LX and RX can be proved similarly.

Assume (a, b) ∈ DX , c ∈ S, and x, y ∈ X. Since X is a duo subset,
we have xc = sz for some z ∈ X and s ∈ S1, hence x(ca)y = (xc)ay =
(sz)ay = s(zay) = s(zby) = (sz)by = (xc)by = x(cb)y. Similarly, we have
x(ac)y = x(bc)y. Therefore, DX is a congruence relation on S.

Since X ⊆ K, it follows that DK ⊆ DX . Conversely, assume (a, b) ∈ DX

and p, q ∈ K. Since K = XS1 = S1X, we see p = sx and q = yt for some
x, y ∈ X and s, t ∈ S1. Now we have paq = (sx)a(yt) = s(xay)t = s(xby)t =
(sx)b(yt) = pbq. Therefore, (a, b) ∈ DK , i.e., DX ⊆ DK , which completes
the proof of the lemma.

Remark. The congruences LS , RS and DS on a semigroup S were investi-
gated by Kopamu [7].

Let X be a duo subset of a semigroup S, K = J(X), and %
K

the Rees
congruence on S determined by K. Then we set

L̂X = LX ∩ %
K
, R̂X = RX ∩ %

K
and D̂X = DX ∩ %

K
.

3 The Main Results

In further work, the subject of our interest will be completely Archimedean
semigroups. Recall that a semigroup S is completely Archimedean if it is
Archimedean and has a primitive idempotent, or equivalently, it is a nil-
extension of a completely simple semigroup. In this case, this completely
simple ideal of S is the kernel of S.

If S is a completely Archimedean semigroup with the kernel K and
E = E(S), then L(E) = R(E) = K, i.e., E is a duo subset of S. By Lemma
2.1, we have GE = GK for every G ∈ {L,R,D}. On the other hand, we have
the following.
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Lemma 3.1. Let S be a completely Archimedean semigroup with the kernel
K. Then

(i) D, L, R and H are congruence relations on S;
(ii) D = %

K
and S/D is a nil-semigroup;

(iii) S/L is a nil-extension of a right zero band, S/R is a nil-extension of
a left zero band, and S/H is a nil-extension of a rectangular band.

Proof. The assertions (i) and (ii) were proved by Shevrin [10], and (iii) is
an immediate consequence of (i) and (ii).

By the next result, we prove that the above-considered congruence rela-
tions on a completely Archimedean semigroup form several factor congru-
ence pairs.

Theorem 3.2. Let S be a completely Archimedean semigroup with the
kernel K. Then

LK ∩R = RK ∩ L = DK ∩H = L̂K ∩ R̂K = ∆S .

Proof. Assume (a, b) ∈ LK ∩ R. If a, b /∈ K, then (a, b) ∈ R ⊆ %
K

yields
a = b. Suppose a, b ∈ K. Since a and b are R-related in S, they are also
R-related in K, i.e., a, b ∈ R where R is some R-class of K. But R is
a right group and e is a left identity in R for each e ∈ E(R) by Lemma
VI.3.1.2 in [2]. Now ea = a and eb = b. Since (a, b) ∈ LK , it follows that
ea = eb. Therefore, a = b, which is to be proved. Hence, we have proved
LK ∩R = ∆S . Similarly, we can prove RK ∩ L = ∆S .

Now assume (a, b) ∈ DK ∩ H. As in the previous case, a, b /∈ K yields
a = b. Let a, b ∈ K. Then (a, b) ∈ H implies a, b ∈ Ge for some e ∈ E(S),
hence a = eae and b = ebe. But (a, b) ∈ D yields eae = ebe, so we have
a = b. Therefore, DK ∩H = ∆S .

Let (a, b) ∈ L̂K∩R̂K = D∩LK∩RK . If a, b /∈ K, then (a, b) ∈ D implies
a = b. Now suppose a, b ∈ K. Let L be the L-class of K containing a and
R the R-class of K containing b. Then L is a left group and R is a right
group. By Lemma VI.3.1.2 in [2], for arbitrary e ∈ E(L) and f ∈ E(R), e
is a right identity in L and f is a left identity in R. Therefore, ae = a and
fb = b. On the other hand, (a, b) ∈ LK ∩ RK yields ae = be and fa = fb,
i.e., a = be and fa = b. Now we have a = be = (fb)e = f(be) = fa = b,
which is to be proved. Therefore, L̂K ∩R̂K = ∆S . This completes the proof
of the theorem.

Using the above theorem we immediately obtain the following.

Corollary 3.3. Let S be a completely Archimedean semigroup with the
kernel K. Then S is a subdirect product of the following semigroups:

(1) S/LK and S/R; (4) S/D̂K , S/L and S/R;
(2) S/RK and S/L; (5) S/L̂K and S/R̂K ;
(3) S/DK and S/H; (6) S/D, S/L̂K and S/R̂K .
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Unfortunately, in the general case, when S is a completely Archimedean
semigroup, we have not much information about the structure of the semi-
groups S/GK and S/ĜK , for G ∈ {L,R,D}. However, in the further text,
we will determine the structure of these semigroups in the case when the
idempotents of S form a subsemigroup, i.e., when S is a nil-extension of a
rectangular group.

First, we prove the following lemma.

Lemma 3.4. Let S be a nil-extension of a rectangular group K. Then
eaf = efaef , for all a ∈ S and e, f ∈ E(S).

Proof. Assume a ∈ S and e, f ∈ E(S). Since ea ∈ K, we see ea ∈ Gg

for some g ∈ E(S), hence eg = g and gf = egf = ef since E(S) is a
rectangular band. Now we have eaf = eagf = eaef . Further, aef ∈ Gh for
some h ∈ E(S), so hef = h and eh = ehef = ef . Therefore, eaf = eaef =
ehaef = efaef , which is to be proved.

The next theorem is one of the most important results of the present
paper. It gives some new characterizations of semigroups which are nil-
extensions of rectangular groups in terms of the congruence relations intro-
duced here.

Theorem 3.5. Let S be a completely Archimedean semigroup with the
kernel K. Then the following conditions are equivalent:

(i) S is a nil-extension of a rectangular group;
(ii) S/DK is a group;
(iii) S/DK is a nil-extension of a group;
(iv) S/LK is a nil-extension of a right group;
(v) S/RK is a nil-extension of a left group;
(vi) S/D̂K is a nil-extension of a group;
(vii) S/L̂K is a nil-extension of a right group;
(viii) S/R̂K is a nil-extension of a left group.

Proof. (i) ⇒ (ii). Let (i) hold, i.e., K is a rectangular group. Assume
a ∈ S and e, f, g ∈ E(S). By Lemma 3.4, we have e(ag)f = ea(gf) =
(egf)a(egf) = efaef = eaf , so (a, ag) ∈ DK . Since ag ∈ K = Reg(S),
each DK-class of S contains a regular element, and hence, S/DK is a regular
semigroup.

On the other hand, for arbitrary e, f, g, h ∈ E(S), we have egf = ef =
ehf , hence (g, h) ∈ DK . Since every DK-class of S, which is an idempotent
in S/DK , contains an idempotent from S, by Corollary IV.3 in [2], we con-
clude that S/DK is a regular semigroup containing exactly one idempotent,
so it is a group, which is to be proved.

(i) ⇒ (iii)–(viii). As is well known, a factor semigroup of a π-regular
semigroup is also π-regular, so S/DK , S/LK and S/RK , S/D̂K , S/L̂K , and
S/R̂K are all π-regular semigroups. By the proof of the first implication,
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S/D̂K has exactly one idempotent, which yields (iii) and (vi). On the other
hand, for arbitrary e, f, g ∈ E(S), we have efg = eg and fge = fe, which
means (fg, g) ∈ L̂K and (fg, f) ∈ R̂K for all f, g ∈ E(S). Therefore,
E(S/L̂K) is a right zero band and E(S/R̂K) is a left zero band. So (iv),
(vii), (v), and (viii) hold.

(ii)⇒ (i). If S/DK is a group, then (g, h) ∈ DK for all g, h ∈ E(S), i.e.,
egf = ehf for all e, f, g, h ∈ E(S). If we set e = g = f , then g = ghg.
Hence, E(S) is a rectangular band, so we have proved (i).

(iii) ⇒ (i) and (vi) ⇒ (i). These implications can be proved similarly as
the previous one.

(iv) ⇒ (i). Since the LK-classes of idempotents of S are idempotents
in S/LK and E(S/LK) is a right zero band, we have (gh, h) ∈ LK for all
g, h ∈ E(S), i.e., egh = eh for all e, g, h ∈ E(S). Letting e = h, we have
h = hgh, so E(S) is a rectangular band, which is to be proved.

Similarly, we can prove (v) ⇒ (i), (vii) ⇒ (i), and (viii) ⇒ (i).

The equivalence of the conditions (ii) and (iii) in Theorem 3.5 motivates
us to state the following problem.

Problem. If S is a nil-extension of a rectangular group K, are S/LK and
S/RK a right group and a left group, respectively?

When a semigroup S is a nil-extension of a rectangular group K, the
relations L̂K , R̂K , and D̂K have another nice property as shown by the
following theorem.

Theorem 3.6. Let S be a nil-extension of a rectangular group K. Then
L̂K · R̂K = R̂K · L̂K = D̂K .

Proof. Since LK ⊆ DK andRK ⊆ DK , we have L̂K ⊆ D̂K and R̂K ⊆ D̂K ,
hence L̂K · R̂K ⊆ D̂K and R̂K · L̂K ⊆ D̂K . Therefore, it remains to prove
D̂K ⊆ L̂K · R̂K and D̂K ⊆ R̂K · L̂K .

Assume (a, b) ∈ D̂K . If a = b, then (a, b) ∈ L̂K · R̂K and (a, b) ∈
R̂K · L̂K , which is to be proved. Otherwise, if a 6= b, then a, b ∈ K, so
a ∈ Ge and b ∈ Gf for some e, f ∈ E(K). From this and by (a, b) ∈ D̂K ,
we have af = eb and fa = be. Let x = fa = be and y = af = eb.
Then for arbitrary g, h ∈ E, we have gx = gfa = gfea = gea = ga and
xh = beh = bfeh = bfh = bf , hence (a, x) ∈ L̂K and (x, b) ∈ R̂K , so
(a, b) ∈ L̂K · R̂K . On the other hand, for arbitrary g, h ∈ E(K), we also
have yg = afg = aefg = aeg = ag and hy = heb = hefb = hfb = hb, hence
(a, y) ∈ R̂K and (y, b) ∈ L̂K , so (a, b) ∈ R̂K · L̂K . This completes the proof
of the theorem.

Finally, we give a new proof of the following decomposition theorem due
to Putcha [8] and Ren, Shum and Guo [9].
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Theorem 3.7. The following conditions on a semigroup S are equivalent:

(i) S is a nil-extension of a rectangular group;
(ii) S is a subdirect product of a group and a nil-extension of a rectangular

band;
(iii) S is a subdirect product of a group, a nil-extension of a left zero band

and a nil-extension of a right zero band;
(iv) S is a spined product of a nil-extension of a left group and a nil-

extension of a right group (with respect to a nil-extension of a group).

Proof. The equivalence of the conditions (i)–(iii) was proved by Putcha
[8], and (i)⇔(iv) was proved by Ren et al. [9]. But our results above give
another proof of these equivalences. Namely, the implication (i) ⇒ (ii) is an
immediate consequence of Theorem 3.5 and Corollary 3.3(3), the implication
(i) ⇒ (iii) is a consequence of Theorem 3.5, Lemma 3.1 and Corollary 3.3(4),
and the implication (i) ⇒ (iv) follows by Theorems 3.5 and 3.6.

On the other hand, the proofs of the reverse implications were omitted
in [8] and [9] as easier parts of the proofs. But these parts of the proofs
are not so evident because the π-regularity and regularity are not preserved
under subdirect products in general. We prove the reverse implications in
order to show the reason for which the π-regularity is preserved in this case.

(ii) ⇒ (i). Let S ⊆ G × T be a subdirect product of a group G and a
semigroup T that is a nil-extension of a rectangular band. Then E(S) ⊆
E(G) × E(T ), and if E(S) is non-empty, it is a rectangular band. There-
fore, it remains to prove the π-regularity of S. Let u ∈ S and u = (a, x)
for some a ∈ G and x ∈ T . Let b denote the inverse of a in G. Then
there exists y ∈ T such that (b, y) ∈ S and there exists n ∈ N such
that xn, yn ∈ Reg(T ) = E(T ), Since E(T ) is a rectangular band, we see
unvnun = (anbnan, xnynxn) = (an, xn) = un where v = (b, y). Therefore,
un ∈ Reg(S), which is to be proved.

Similarly, we can prove the implication (iii) ⇒ (i).
(iv) ⇒ (i). Let S = {(u, v) ∈ P × Q |uϕ = vψ} be a spined product of

semigroups P and Q with respect to a semigroup H and homomorphisms ϕ
of P onto H and ψ of Q onto H, where P is a nil-extension of a left group,
Q is a nil-extension of a right group and H is a nil-extension of a group.
Then E(S) ⊆ E(P ) × E(Q), and if E(S) is non-empty, it is a rectangular
band. Therefore, it remains to prove the π-regularity of S.

Assume a ∈ S. Then a = (u, v) ∈ P ×Q with uϕ = vψ and there exists
n ∈ N such that un and vn are regular. Let x ∈ V (un) and y ∈ V (vn). Then
xϕ is an inverse of (uϕ)n, yψ is an inverse of (vψ)n, and (uϕ)n = (vψ)n.
But a regular element of a nil-extension of a group can have at most one
inverse, so xϕ = yψ. Now we have (x, y) ∈ S and it is an inverse of an.
Thus, S is π-regular.
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