STOJAN BOGDANOVIĆ and MIROSLAV ĆIRIĆ

U_{n+1} -SEMIGROUPS

In this paper we consider semigroups with the following condition:

$$(\forall x_1)(\forall x_2)...(\forall x_{n+1}) \ x_1x_2...x_{n+1} \in \langle x_1 \rangle \cup \langle x_2 \rangle \cup ... \cup \langle x_{n+1} \rangle. \tag{1}$$

1.

In conection with a study of a lattice of subsemigroups of some semigroup the important place is captured by U-semigroups. A semigroup S is a *U-semigroup* if the union of every two subsemigroups of S is a subsemigroup of S, which is equivalent with $xy \in \langle x \rangle \cup \langle y \rangle$ for all $x, y \in S$. These semigroups have been considered more recently, predominantly in special cases. A more detailed description can be found in: Lectures in semigroups, M. Petrich, Akad. Verlag, Berlin, 1977. E. G. Shutov [18], and independently of him, T. Tamura, N. Kimura and R. Merkel [9], considered semigroups in which every subsemigroup is a left ideal, i.e. semigroups in which $xy \in \langle y \rangle$ for all x, y, E, S. Liapin and A, E, Evseev [10] considered semigroups in which $xy \in \{x, y\} \cup (\langle x \rangle \cap \langle y \rangle)$ for all x, y. A. E. Evseev [8] considered semigroups in which $xy \in \{x, x^2, y, y^2\}$ for all x, y. In this paper we consider U_{n+1} -semigroups, i.e. semigroups in which (1) holds. U_2 -semigroups, in fact, are U-semigroups. In section 2. we study the general properties of U_{n+1} -semigroups. So we describe cyclic U_{n+1} -semigroups, U_{n+1} -groups and regular U_{n+1} -semigroups. By Theorem 2.4. we describe U_{n+1} -semigroups in which Reg(S) (the set of all regular elements of a semigroup S) is an ideal of S. The main result is Theorem 2.3., which characterize U_{-1} -semigroups in a general case. In section 3. we consider some subclasses of the class of U_{n+1} -semigroups and we give constructions of some unipotent U_{n+1} -semigroups. By Theorem 3.6., we describe the *n*-inflation of an ordinal sum of singular bands. Some special cases of U-semigroups have been considered by: B. Trpenovski [16], S. Bogdanović, P. Kržovski, P. Protić and B. Trpenovski [1], J. Pelikán [11], B. Pondělíček

[15], L. Rédei [19], S. Bogdanović and B. Stamenković [6], B. Trpenovski and N. Celakoski [17].

By \mathbb{Z}^+ we denote the set of all positive integers. By $\operatorname{Reg}(S)$ ($\operatorname{Gr}(S)$, $\operatorname{E}(S)$) we denote the set of all regular (completely regular, *idempotent*) elements of a semigroups S. A semigroup S is π -regular if some power of every element from S is regular. A semigroups S is a GV-semigroup if S is π -regular and $\operatorname{Reg}(S) = \operatorname{Gr}(S)$, [3]. An ideal extension S of a semigroup T is a retract extension if there exists a homomorphism φ of S onto T such that $\varphi(t) = t$ for all $t \in T$. In this case we say that φ is a retraction. A semigroup S is an n-inflation of a semigroup T if $S^{n+1} \subseteq T$ and there exists a retraction of S onto T, [5]. For nondefined notions and notations we refer to [3, 7, 13, 14].

2.

In this section a characterization for U_{n+1} -semigroups will be given (Theorem 2.3.).

LEMMA 2.1. Every subsemigroup and every homomorphic image of a U_{n+1} -semigroup is a U_{n+1} -semigroup. \square

A group G is a U_{n+1} -group if G is a U_{n+1} -semigroup.

LEMMA 2.2. G is a U_{n+1} -group if and only if G is a U-group.

Proof. Let G be a U_{n+1} -group with the identity e and let $x \in G$. If n+1=3k then we have $x^{6k+1}=x^3(x^2)^{3k-1}\in\langle x^3\rangle\cup\langle x^2\rangle$; if n+1=3k+1 then $x^{6k+5}=x^5(x^2)^{3k}\in\langle x^5\rangle\cup\langle x^2\rangle$ and if n+1=3k+2 then $x^{6k+5}=x^3(x^2)^{3k+1}\in\langle x^3\rangle\cup\langle x^2\rangle$. Hence, $\langle x\rangle$ is a periodic subsemigroup of G, so $e\in\langle x\rangle$ for all $x\in G$. Let $x,y\in G$, then $xy=xye...e\in\langle x\rangle\cup\langle y\rangle\cup\{e\}=\langle x\rangle\cup\langle y\rangle$. Thus G is a U-group.

The converse follows immediately. \square

LEMMA 2.3. [13]. Let G be a group. Then G is a U-group if and only if G is a cyclic group of order p^k or $Z_{p\infty}$ for some prime p. \square

THEOREM 2.1. Let S be a cyclic semigroup, then:

(A) S is a U-semigroup if and only if S is an ideal extension of a cyclic group of prime power order by a 5-nilpotent cyclic semigroup;

(B) S is a U_{3k} -semigroup if and only if S is an ideal extension of a cyclic group of prime power order by a (6k + 1)-nilpotent cyclic semigroup;

(C) \hat{S} is a U_{3k+1} -semigroup if and only if \hat{S} is an ideal extension of a cyclic group of prime power order by a (6k + 5)-nilpotent cyclic semigroup;

(D) S is a U_{3k+2} -semigroup if and only if S is an ideal extension of a cyclic group of prime power order by a (6k + 5)-nilpotent cyclic semigroup.

Proof. (A) See [13] pp. 130.

(B) Let $\langle x \rangle$ be a U_{3k} -semigroup. Then $x^{6k+1} \in \langle x^3 \rangle \cup \langle x^2 \rangle$, so $\langle x \rangle$ is periodic, so by Lemma 2.2. $\langle x \rangle$ is an ideal extension of a cyclic *U*-group

by a (6k + 1)-nilpotent cyclic semigroup. The converse follows by Lemma 2.2.

- (C) If $\langle x \rangle$ is a U_{3k+1} -semigroup, then $x^{6k+5} \in \langle x^5 \rangle \cup \langle x^2 \rangle$, so $\langle x \rangle$ is an ideal extension of a cyclic *U*-group by a cyclic (6k+5)-nilpotent semigroup. The converse follows by Lemma 2.2.
- (D) If $\langle x \rangle$ is a U_{3k+2} -semigroup then $x^{6k+5} \in \langle x^3 \rangle \cup \langle x^2 \rangle$, so $\langle x \rangle$ is an ideal extension of a cyclic *U*-group by a cyclic (6k+5)-nilpotent semigroup. The converse follows by Lemma 2.2. \square

COROLLARY 2.1. A U_{n+1} -semigroup is periodic. \square

COROLLARY 2.2. Let S be a cyclic semigroup with zero. Then S is a U_{3k+1} -semigroup if and only if S is a U_{3k+2} -semigroup, $k \in \mathbb{Z}^+$.

A semigroup S is a Rédei's band if $xy \in \{x, y\}$ for all $x,y \in S$. A semigroup $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is an ordinal sum of semigroups S_{α} , $\alpha \in Y$ if Y is a chain, $S_{\alpha} \cap S_{\beta} = \emptyset$ if $\alpha \neq \beta$ and for any $a \in S_{\alpha}$, $b \in S_{\beta}$, $\alpha < \beta$ implies ab = ba = a (for this concept, the terminology "successively annihilating band" is also used [13]). A singular band is a semigroup which is either a left or a right zero semigroup.

LEMMA 2.4. [19]. S is a Rédei's band if and only if S is an ordinal sum of singular bands. \Box

LEMMA 2.5. Let S be a U_{n+1} -semigroup. Then E(S) is a Rédei's band. \square

In any semigroup S, define a relation K by:

$$a\mathbf{K}b \Leftrightarrow (\exists m, n \in \mathbb{Z}^+) a^m = b^n.$$

It is immediate that **K** is an equivalence relation. The **K**-class containing an element a is denoted by K_a . In particular, if e is an idempotent then $K_e = \{a \in S \mid (\exists n \in Z^+) \ a^n = e\}$. If S is periodic then S is the union of its **K**-classes $K_a e \in E(S)$.

LEMMA 2.6. Let S be a U-semigroup and let $x \in K_e$, $y \in K_f$, $e \neq f$. Then

$$ef = e \Rightarrow xy \in \langle x \rangle$$
 and $ef = f \Rightarrow xy \in \langle y \rangle$. (2.1)

Proof. Assume that ef = e and $xy = y^p$ for some $p \in Z^+$. By assumption we have $x^m = e$, $y^k = f$ for some $m, n \in Z^+$. Consequently $e = x^m y^k = x^{m-1} xyy^{k-1} = x^{m-1} y^{p+k-1} = \dots = y^{mp+k-m}$ so $e \in K_f$, which is a contradiction. A symmetric proof shows that the second implication holds. \square

LEMMA 2.7. S is a completely simple U_{n+1} -semigroup if and only if S is a U-group or a singular band.

Proof. Let S be a completely simple U_{n+1} -semigroup. By Lemma 2.5. E(S) is a subsemigroup of S and a Rédei's band, so E(S) is a rectangular Rédei's band. Therefore, by Lemma 2.4. it follows that E(S) is a singular band. If |E(S)| = 1, then it is clear that S is a U-group. Let E(S) be a left zero band and let $|E(S)| \ge 2$. Let $x \in G_e$, $e \in E(S)$. Then there exists $f \in E(S)$ such that $f \ne e$. Now $fx = f...fx \in \langle f \rangle \cup \langle x \rangle$ and for $fx = x^k$ for some $k \in \mathbb{Z}^+$ we obtain that f = fe = e, which is not possible. Thus fx = f so x = ex = efx = ef = e. Therefore, $|G_e| = 1$ for every $e \in E(S)$ so S is a left zero band. The similar proof we have if $|E(S)| \ge 2$ and it is a right zero band.

The converse follows immediately. \square

THEOREM 2.2. The following conditions are equivalent on a semi-group S:

- (i) S is a regular U_{n+1} -semigroup;
- (ii) S is a regular U-semigroup;
- (iii) S is an ordinal sum of U-groups and singular bands.
- **Proof.** (i) \Rightarrow (ii). Let S be a regular U_{n+1} -semigroup. For $a \in S$ there exists $x \in S$ such that a = axa and x = xax. By Lemma 2.5. it follows that axxa = ax or axxa = xa. Let $ax^2a = ax$. Then $a = axa = ax^2a^2 \in aSa^2$. Let $ax^2a = xa$. If n + 1 = 2k, $k \in Z^+$, then $xa = (xa)^k \in \langle x \rangle \cup \langle a \rangle$. If $xa = x^p$ for some $p \in Z^+$, then $x = xax = x^{p+1}$ and $x^2a = x^{p+1} = x$ so $ax = ax^2a = xa$ and $a = axa = ax^2a^2 \in aSa^2$. If $xa = a^p$ for some $p \in Z^+$, then $a = axa = a^{p+1} \in aSa^2$. Let n + 1 = 2k + 1, $k \in Z^+$. Then $xa = (ax)(xa)^k \in \langle ax \rangle \cup \langle a \rangle \cup \langle x \rangle$. The case $xa \in \langle a \rangle \cup \langle x \rangle$ we prove as in the previous. If xa = ax, then $a = axaxa = axxaa = ax^2a^2 \in aSa^2$. Hence S is completely regular. Let $x, y \in S$. Then $x \in G_e$, $y \in G_f$ for some e, $f \in E(S)$ so $xy = xyf = xyf...f \in \langle x \rangle \cup \langle y \rangle \cup \langle f \rangle \subseteq \langle x \rangle \cup \langle y \rangle$. Thus S is a U-semi-group.
- (ii) \Rightarrow (iii). As above it can be prove that S is completely regular, so S is a semilattice Y of completely simple U-semigroups S_{α} , $\alpha \in Y$. By Lemma 2.7. S_{α} , $\alpha \in Y$, is a U-group or a singular band. Let α , $\beta \in Y$, $\alpha \neq \beta$, and let $e \in E(S_{\alpha})$, $f \in E(S_{\beta})$. Then $\alpha < \beta$ if ef = e and $\beta < \alpha$ if ef = f so Y is a chain. Let $x \in S_{\alpha}$, $y \in S_{\beta}$, $\alpha, \beta \in Y$, $\alpha \neq \beta$. Assume that $\alpha < \beta$. Let $x \in G_{e}$, $e \in E(S_{\alpha})$. Then by Lemma 2.6. it follows that ey = e whence xy = xey = xe = x, and similarly yx = x. Thus S is an ordinal sum of semigroups S_{α} , $\alpha \in Y$.
 - (iii) \Rightarrow (i). This follows immediately. \square

LEMMA 2.8. S is a U_{n+1} -semigroup with only one idempotent if and only if S is an ideal extension of a U-group by a U_{n+1} -nil-semigroup.

Proof. Let S be an ideal extension of a U-group G by a U_{n+1} -nil-semigroup Q. Then the mapping $\varphi: S \to G$ defined by $\varphi(x) = xe$, $x \in S$, where e is the identity of G, is a retraction. Let $x_1, x_2, \ldots, x_{n+1} \in S$. If

 $x_1x_2...x_{n+1} \in S - G$ then $x_1, x_2,...,x_{n+1} \in Q - \{0\}$ and $x_1x_2...x_{n+1} \neq 0$ in Q. Hence $x_1x_2...x_{n+1} = x_i^k \neq 0$ in Q, $i \in \{1, 2,..., n+1\}$, $k \in \mathbb{Z}^+$, whence $x_1x_2...x_{n+1} = x_i^k \notin G$ in S. Assume that $x_1x_2...x_{n+1} \in G$. Then $x_1x_2...x_{n+1} = \varphi(x_1x_2...x_{n+1}) = \varphi(x_1) \varphi(x_2) ... \varphi(x_{n+1}) = \varphi(x_i^k)$ for some $i \in \{1, 2,..., n+1\}$, $k \in \mathbb{Z}^+$. Moreover, we have that $x_i^m = e$ for some $m \in \mathbb{Z}^+$ so $\varphi(x_i^k) = x_i^k e = x_i^k x_i^m = x_i^{k+m} \in \langle x_i \rangle$. Therefore S is a U_{n+1} -semigroup.

The converse follows by Corollary 2.1, Theorem VI 3.2.2. [3] and by

Lemma 2.1. □

DEFINITION 2.1. A band Y of semigroups S_{α} , $\alpha \in Y$, is a U_{n+1} -band of semigroups if

 $x_1x_2...x_{n+1} \in \langle x_1 \rangle \cup \langle x_2 \rangle \cup ... \cup \langle x_{n+1} \rangle$

for every $x_1 \in S_{\alpha_1}$, $x_2 \in S_{\alpha_2}$, ..., $x_{n+1} \in S_{\alpha_{n+1}}$ such that there exist $i, j \in \{1, 2, ..., n+1\}$ such that $S_{\alpha_i} \neq S_{\alpha_j}$. One defines analogously U_{n+1} -semilattice and U_{n+1} -chain of semigroups.

THEOREM 2.3. The following conditions on a semigroup S are equivalent:

- (i) S is a U_{n+1} -semigroup;
- (ii) S is a U_{n+1} -chain of retract extension of a U-group or a singular band by a U_{n+1} -nil-semigroup;
- (iii) S is a U_{n+1} -band of ideal extensions of a U-group by a U_{n+1} -nil-semigroup.

Proof. (i) \Rightarrow (ii). Let S be a U_{n+1} -semigroup. By Corollary 2.1. S is periodic, so S is π -regular and $E(S) \neq \emptyset$. By Lemma 2.5. we have that E(S) is a subsemigroup of S so by Proposition X 2.1. [3] it follows that Reg(S) is a subsemigroup of S. By Lemma 2.1. and Theorem 2.2. we have that Reg(S) = Gr(S), so by Theorem X 1.1. [3] S is a semilattice Y of semigroups S_{α} , $\alpha \in Y$, and S_{α} is a nil-extension of a completely simple semigroup T_{α} , $\alpha \in Y$. By Lemma 2.7. T_{α} is a *U*-group or a singular band. Let $\alpha \in Y$ and let T_{α} be a left zero band (the similar proof we have if T_{α} is a right zero band). Then $S_{\alpha} = \bigcup_{e \in T_{\alpha}} K_e$ and by Theorem X 1.1. [3] K_e are H*-classes and K_e are nil-semigroups. Let $x \in K_e$, $y \in K_f$, $e, f \in T_a$, $e \neq f$. Assume that $xy \in K_g$ for some $g \in T$. We have that $xf = xf...f \in \langle x \rangle \cup \langle f \rangle$ and if xf = f then $x^k f = f$ for every $k \in \mathbb{Z}^+$, whence e = ef = f, which is not possible. Thus $xf = x^k$ for some $k \in \mathbb{Z}^+$. Since T_α is an ideal of S_α , then $xf \in T_\alpha$, i.e. xf = e. In a similar way we prove that yg = f, whence g = xyg = f= xf = e so $xy \in K_e = K_{ef}$. Therefore, the mapping $\varphi : S_\alpha \to T_\alpha$ defined by $\varphi(x) = e$ if $x \in K_e$ is a retraction of S_{α} onto T_{α} , so S_{α} is a retract extension of a left zero band T_{α} . If T_{α} is a group, then every ideal extension of T_{α} is a retract extension.

Since E(S) is an ordinal sum of singular bands, then Y is a chain, so S is a U_{n+1} -chain of semigroups S_{α} , $\alpha \in Y$.

(ii) \Rightarrow (i). Let S be a U_{n+1} -chain of semigroups S_{α} , $\alpha \in Y$ and let S_{α} be a retract extension of T_{α} by a U_{n+1} -nil-semigroup, where T_{α} is a U-group or a singular band. Let $\alpha \in Y$ and let T_{α} be a singular band. Let $\varphi: S_{\alpha} \to T_{\alpha}$ be the retraction. Let $x_1, x_2, \ldots, x_{n+1} \in S_{\alpha}$. If $x_1, x_2, \ldots, x_{n+1} \in S_{\alpha} - T_{\alpha}$, then we have that $x_1x_2, \ldots, x_{n+1} \neq 0$ in $Q = S_{\alpha}/T_{\alpha}$ so $x_1x_2, \ldots, x_{n+1} = x_{i_k}^k \neq 0$ in Q, $i \in \{1, 2, \ldots, n+1\}$, $k \in \mathbb{Z}^+$, whence $x_1 x_2, \ldots, x_{n+1} = x_i^k$ in S. Let $x_1 x_2, \ldots, x_{n+1} \in T_{\alpha}$. Then $x_1 x_2, \ldots, x_{n+1} = \varphi(x_1 x_2, \ldots, x_{n+1}) = \varphi(x_1) \varphi(x_2), \ldots \varphi(x_{n+1}) = \varphi(x_i)$, where i = 1 if T_{α} is a left zero band and i = n+1 if T_{α} is a right zero band. Moreover, $x_i^m \in T_{\alpha}$ for some $m \in \mathbb{Z}^+$ so $x_i^m = \varphi(x_i^m) = (\varphi(x_i))^m = \varphi(x_i)$. Therefore $x_1x_2, \ldots, x_{n+1} = \varphi(x_i) = x_i^m$, so S_{α} is a U_{n+1} -semigroup. If T_{α} is a group, then we use Lemma 2.8. Thus S is a U_{n+1} -semigroup.

(ii) \Rightarrow (iii). Let S be a U_{n+1} -chain of semigroups S_{α} , $\alpha \in Y$ and let S_{α} be a retracted extension of a semigroup T_{α} , where T_{α} is a U_2 -group or a singular band. Then S is a U_{n+1} -semigroup, so by Corollary 2.1. it follows that S is periodic, whence

$$S = \bigcup_{e \in E(S)} K_e,$$

and, also,

$$S_{\alpha} = \bigcup_{e \in T_{\alpha}} K_{e}, \qquad \alpha \in Y.$$

By Theorem X 1.1. [3] we have that K_e are H^{\bullet} -classes and K_e are nil-extensions of groups. By Lemma 2.1. we have that for any $e \in E(S)$ K_e is an ideal extension of a U_2 -group by a U_{n+1} -nil-semigroup.

Let $x \in K_e$, $y \in K_f$, $e \neq f$. If $e, f \in E(S_\alpha)$ for some $\alpha \in Y$, then T_α is a singular band, and by the proof of the part (i) \Rightarrow (ii) we have that

$$xy \in K_{\epsilon} = K_{\epsilon f}$$

if T_{α} is a left zero band and

$$xy \in K_f = K_{ef}$$

if T_{α} is a right zero band.

Thus, in this case $xy \in K_{ef}$. Assume that $e \in E(S_{\alpha})$, $f \in E(S_{\beta})$, $\alpha \neq \beta$, let $\alpha\beta = \beta\alpha = \alpha$, then $xy \in S_{\alpha}$. If T_{α} is a group, then $xy \in S_{\alpha} = K_{e} = K_{ef}$. Let T_{α} be a left zero band, and assume that $xy \in K_{g}$ for some $g \in T_{\alpha}$, then $ye \in S_{\alpha}$ and

$$ye = ye...e \in \langle y \rangle \cup \{e\},$$

so ye = e. Now we have that $g = (xy)^k$ for some $k \in \mathbb{Z}^+$ and

$$g = ge = (xy)^k e = e$$

so $xy \in K_e = K_{ef}$. Let T_α be a right zero band and let $xy \in K_g$ for some $g \in T_\alpha$, then $ey \in S_\alpha$ and

$$ey = e...ey \in \{e\} \cup \langle y \rangle,$$

so ey = e. Now we have that $g = (xy)^k$ for some $k \in \mathbb{Z}^+$, so

$$g = eg = e(xy)^k = e$$

whence $xy \in K_e = K_{ef}$. The similar proof we have if $\alpha\beta = \beta\alpha = \beta$. Therefore, S is a band E(S) of semigroups K_e , $e \in E(S)$ (clearly, it is a U_{n+1} -band). (iii) \Rightarrow (i). This follows by Lemma 2.8. \square

A subsemigroup T of a semigroup S is a *retract* of S if there exists a retraction of S onto T.

COROLLARY 2.5. Let S be a U_{n+1} -semigroup. Then Reg(S) is a retract of S.

Proof. By Lemma 2.4. and Proposition X 2.1. [3] we have that Reg (S) is a subsemigroup of S. Define a mapping $\varphi: S \to \text{Reg}(S)$ by

$$\varphi(x) = ex \text{ if } x \in K_e, e \in E(S).$$

Let $x \in K_e$, $y \in K_f$, $e, f \in E(S)$. Then by Theorem 2.3. it follows that $xy \in K_{ef}$. If ef = e, then $xy \in K_e$, and by Theorem I 4.3. [3] we have that

$$\varphi(x) \varphi(y) = (ex)(fy) = xefy = xey = exy = \varphi(xy).$$

If ef = f, then $xy \in K_f$, and by Theorem I 4.3. [3] we have

$$\varphi(x) \varphi(y) = (ex)(fy) = xefy = xfy = xyf = fxy = \varphi(xy).$$

Therefore, φ is a retraction. \square

THEOREM 2.4. S is a U_{n+1} -semigroup and Reg(S) is an ideal of S if and only if

$$x_1 x_2 \dots x_{n+1} \in \bigcup_{i=1}^{n+1} \left\{ x_i^k \mid k \ge 2 \right\}$$
 (2.2)

for every $x_1, x_2, ..., x_{n+1} \in S$.

Proof. Let S be a U_{n+1} -semigroup and let $\operatorname{Reg}(S)$ is an ideal of S. By Lemma 2.1. $\operatorname{Reg}(S)$ is a U_{n+1} -semigroup. By Theorem 2.2. we have that $\operatorname{Reg}(S) = \operatorname{Gr}(S)$. For $x_1, x_2, \dots, x_{n+1} \in S$ from $x_1, x_2, \dots, x_{n+1} = x_i$, $1 \le i \le n+1$ it follows that $x_i = (x_1 \dots x_{i-1})^r x_i (x_{i+1} \dots x_{n+1})^r$ for every $r \in \mathbb{Z}^+$. Since there exists $r \in \mathbb{Z}^+$ such that $(x_1 \dots x_{i-1})^r \in E(S)$, then we have that $x_i \in \operatorname{Reg}(S) = \operatorname{Gr}(S)$, whence $x_i = x_i^k$ for some $k \ge 2$ (since S is periodic). So $x_i \in \{x_i^k \mid k \ge 2\}$. Therefore S satisfies (2.2).

Conversely, if (2.2) holds, then for $e \in E(S)$ and $x \in S$ we have that $ex = e...eex \in \{e, (ex)^2, (ex)^3, ...\}$. Thus $ex \in Reg(S)$. In a similar way it can

be prove that $xe \in \text{Reg}(S)$. Therefore $E(S)S \cup SE(S) \subseteq \text{Reg}(S)$. Since E(S) is a subsemigroup of S then we have that Reg(S) is a subsemigroup of S. Now, for any $a \in \text{Reg}(S)$ and $x \in S$ there exists $b \in S$ such that $ax = abax \in E(S)S \subseteq \text{Reg}(S)$. Similarly, $xa \in \text{Reg}(S)$. Hence, Reg(S) is an ideal of S. \square

COROLLARY 2.6. A semigroup S is a retract extension of a regular U-semigroup by a U_{n+1} -nil-semigroup if and only if S satisfies (2.2).

Proof. Let S be a retract extension of a regular U-semigroup T by a U_{n+1} -nil-semigroup Q, with the retraction φ . Then T is completely regular and S is periodic. Let $x \in S$ and let $x^m = e \in E(S) \subseteq T$ for some $m \in \mathbb{Z}^+$. Then $e = x^m = \varphi(x^m) = (\varphi(x))^m$, whence $\varphi(x) \in G_e$ (Theorem I 4.1. [3]). Now we have that $\varphi(x) = e\varphi(x) = \varphi(e)\varphi(x) = \varphi(ex) = ex = x^{m+1}$. Therefore, for every $x \in S$ it is $\varphi(x) \in \langle x \rangle$. Let $x_1, x_2, ..., x_{n+1} \in S$. If $x_1x_2...x_{n+1} \in S - T$, then $x_1x_2...x_{n+1} \neq 0$ in Q, so $x_1, x_2, ..., x_{n+1} \in Q - \{0\} = S - T$ and $x_1x_2...x_{n+1} = x_i^k \neq 0$ in Q, $2 \le i \le n+1$, $k \in \mathbb{Z}^+$, whence $x_1x_2...x_{n+1} = x_n^k$ in S. Let $x_1x_2...x_{n+1} \in T$. Then $x_1x_2...x_{n+1} = \varphi(x_1x_2...x_{n+1}) = \varphi(x_1)\varphi(x_2)...\varphi(x_{n+1}) \in \langle \varphi(x_1) \rangle \cup \langle \varphi(x_2) \rangle \cup ... \cup \langle \varphi(x_{n+1}) \rangle \subseteq \langle x_1 \rangle \cup \langle x_2 \rangle \cup ... \cup \langle x_{n+1} \rangle$. Thus, S is a U_{n+1} -semigroup and, clearly, $\operatorname{Reg}(S) = T$ is an ideal of S, so by Theorem 2.4. it follows that S satisfies (2.2). The converse follows by Theorem 2.4. and by Corollary 2.5. \square

EXAMPLE. The semigroup given by the following table

	x	e	f
x	e	e	x
e	e	e	e
f	x	e	f

is a *U*-semigroup, but $Reg(S) = \{e, f\}$ is not an ideal of S since $xf = x \notin Reg(S)$.

LEMMA 2.9. [13]. If x is a nonzero element of a nil-semigroup S, then $x \notin xS \cup Sx \cup SxS$. \square

LEMMA 2.10. Let S be a U-semigroup. Then S is a nil-semigroup if and only if $S^5 = 0$.

Proof. Let S be a U-nil-semigroup and let $a_i \in S$, i = 1, 2, 3, 4, 5. Let $a = a_1 \ a_2 \ a_3 \ a_4 \ a_5$. Since $a_1 a_2 \in \langle a_1 \rangle \cup \langle a_2 \rangle$, then we may take $a_1 a_2 = a_i^k$, $i \in \{1, 2\}$, $k \ge 2$ (using Lemma 2.9.). Then $a_i^k \ a_3 = a_j^m$, where $m \ge 3$ and $j \in \{i, 3\}$, i.e. $j \in \{1, 2, 3\}$, and $a_j^m a_4 = a_j^n$, where $n \ge 4$ and $s \in \{1, 2, 3, 4\}$.

Finally, $a_s^n a_5 = a_r^p$, where $p \ge 5$ and $r \in \{1, 2, 3, 4, 5\}$. From this and by Theorem 2.1. we obtain that a = 0, i.e. $S^5 = 0$.

The converse follows immediately.

3.

In this section we consider some special U_{n+1} -semigroups. Some construction of these also will be given.

DEFINITION 3.1. S is a $U_{(m_1,\dots,m_{n+1})}^{(k_1,\dots,k_{n+1})}$ -semigroup, $1 \le k_i \le m_i, i = 1$,

 $\begin{array}{l} 2,\dots,n+1,\; n\in \mathbf{Z}^+ \;\; \text{if}\;\; x_1x_2\dots x_{n+1} \;\in \left\{x_1^{k_1},\;\; x_1^{k_1+1},\dots,\, x_1^{m_1},\dots,\, x_{n+1}^{k_{n+1}},\, x_{n+1}^{k_{n+1}+1},\dots,\, x_{n+1}^{m_{n+1}}\right\} \\ \text{for all}\;\; x_1,x_2,\dots,x_{n+1}\in S. \;\; \text{If}\;\; k_i=1 \;\; \text{for all}\;\; i=1,\; 2,\dots,\; n+1, \;\; \text{then we put} \\ U_{(m_1,\dots,m_{n+1})} = U_{(m_1,\dots,m_{n+1})}^{(1,\dots,1)}. \;\; \text{A} \;\; \text{group}\;\; G \;\; \text{is}\;\; \text{a}\;\; U_{(m_1,\dots,m_{n+1})}^{(k_1,\dots,k_{n+1})} \text{-group} \;\; \text{if}\;\; G \;\; \text{is}\;\; \text{a} \\ U_{(m_1,\dots,m_{n+1})}^{(k_1,\dots,k_{n+1})} \;\; \text{-semigroup}. \end{array}$

REMARK. $U_{(1, 1, \dots, 1)}$ -semigroups are described by J. Pelikán [11], and $U_{(1, 1, 1)}$ -semigroups are treated by B. Pondělíček [15]. $U_{(2, 2)}$ -semigroups are studied by A. E. Evseev [8].

LEMMA 3.1. Every subsemigroup and every homomorphic image of a $U_{(m_1,\dots,m_{n+1})}^{(k_1,\dots,k_{n+1})}$ -semigroup is a $U_{(m_1,\dots,m_{n+1})}^{(k_1,\dots,k_{n+1})}$ -semigroup. \square

LEMMA 3.2. Let $n \ge 5$. Then the following conditions are equivalent on a semigroups S:

- (i) S is a U-nil-semigroup;
- (ii) S is a $U_{(n, n)}$ -nil-semigroup;
- (iii) S is a $U_{(5, 5)}$ -nil-semigroup.

Proof. Follows by Lemma 2.10. □

LEMMA 3.3. Let $2 \le n \le 4$. Then S is a $U_{(n, n)}$ -nil-semigroup if and only if S is a U-semigroup, $S^{n+1} = 0$ and

$$(\forall x, y \in S) \quad xy = 0 \Rightarrow x^n = 0 \quad \forall y^n = 0. \tag{3.1}$$

Proof. Let S be a $U_{(n, n)}$ -nil-semigroup and let $x \in S$. Then $x^{n+1} = xx^n \in \{x, x^2, ..., x^n, x^{2n}, ... x^{n^2}\}$ whence $x^{n+1} = 0$. Let n = 2. Let $a_1, a_2, a_3 \in S$ and $a = a_1a_2a_3$. By Lemma 2.9. we have that $a_1a_2 = a_i^2$, $i \in \{1, 2\}$ and $a_i \, a_3 = a_i^2$ or $a_i \, a_3 = a_3^2$. Assume that $a_i \, a_3 = a_i^2$ (the case $a_i \, a_3 = a_3^2$ is similar to the previous). Then $a = a_1a_2a_3 = a_i^2a_3 = a_i \, a_i \, a_3 = a_i \, a_i^2 = 0$. Hence, $S^3 = 0$. Let n = 3. Let a_1, a_2, a_3, a_4 S and $a = a_1 \, a_2 \, a_3 \, a_4$. Then

 $a_1a_2=a_i^k,\ k\geq 2,\ i\in\{1,2\}$ and $a_3\ a_4=a_j^m,\ m\geq 2,\ j\in\{3,4\}.$ Also, $a_i\ a_j=a_i^p,\ p\geq 2$ or $a_i\ a_j=a_j^q,\ q\geq 2.$ Assume that $a_i\ a_j=a_i^p,\ p\geq 2$ (the case $a_ia_j=a_j^q,\ q\geq 2$ is similar to the previous). Then

$$a = a_i^k a_j^m = a_i^{k-1} a_i a_j a_j^{m-1} = a_i^{k-1+p} a_j^{m-1} = \dots = a_i^{mp+k-m} = 0$$

since $mp + k - m = m(p - 1) + k \ge m + k \ge 4$. Thus $S^4 = 0$. If n = 4, then by Lemma 2.10. we have that $S^5 = 0$. Let $x, y \in S$, xy = 0. Then $xy = x^k$ or $xy = y^k$ for some $k \in \mathbb{Z}^+$, $1 \le k \le n$. So $x^k = 0$ or $y^k = 0$ for some $k \in \mathbb{Z}^+$, $1 \le k \le n$, whence $x^n = 0$ or $y^n = 0$. So (3.1) holds.

Conversely, let S be a U-semigroup such that $S^{n+1}=0$ and let (3.1) holds. Then S is a U-nil-semigroup and by Lemma 3.2. $xy \in \{x, ..., x^4, x^5=0=y^5, y, ..., y^4\}$ for all $x, y \in S$. Since $x^{n+1}=0$ for all $x \in S$, we have that $xy \in \{x, ..., x^n, x^{n+1}=0=y^{n+1}, y, ..., y^n\}$ for all $x, y \in S$. Now, if $xy=x^{n+1}=y^{n+1}=0$, then by (3.1) we have that $x^n=0$ or $y^n=0$, so $xy=x^n$ or $xy=y^n$. Therefore, S is a $U_{(n,n)}$ -nil-semigroup. \square

REMARK. If n = 4, then the assertion of Lemma 3.3. holds without the condition $S^{n+1} = 0$.

DEFINITION 3.2. A band Y of semigroups S_{α} , $\alpha \in Y$ is a $U_{(m_1,\dots,m_{n+1})}^{(k_1,\dots,k_{n+1})}$ -band of semigroups if

$$x_1x_2...x_{n+1} \in \{x^{k_1}, x^{k_1+1}, ..., x^{m_1}, ..., x^{k_{n+1}}, x^{k_{n+1}+1}, ..., x^{m_n+1}\}$$

for every $x_1 \in S_{\alpha_1}, \ldots, x_{n+1} \in S_{\alpha_{n+1}}$ and there exist $i, j \in \{1, \ldots, n+1\}$ such that $S_{\alpha_i} \neq S_{\alpha_j}$. One defines analogously $U_{(m_1, \ldots, m_{n+1})}^{(k_1, \ldots, k_{n+1})}$ -chain of semigroups.

THEOREM 3.1. Let $n \ge 5$. Then the following conditions are equivalent on a semigroup S:

- (i) S is a $U_{(n, n)}$ -semigroup;
- (ii) S is a $U_{(n, n)}$ -band of $U_{(n, n)}$ -semigroups with only one idempotent;
- (iii) S is a $U_{(n, n)}$ -chain of $U_{(n, n)}$ -semigroups with only one idempotent or of retract extensions of a singular band by a U-nil-semigroup.
 - **Proof.** (i) \Rightarrow (ii). This follows by Theorem 2.3. and by Lemma 3.1.
 - (ii) ⇒ (i). This implication follows immediately.
- (i) \Rightarrow (iii). This implication follows by Theorem 2.3. and by Lemmas 3.1. and 3.2.
- (iii) \Rightarrow (i). We prove only that if S_{α} is a retract extension of a left zero band E_{α} by a *U*-nil-semigroup with the retraction $\varphi: S_{\alpha} \to E_{\alpha}$, then S_{α} is a $U_{(5,5)}$ -semigroup. If $x \in E_{\alpha}$ and $y \in S_{\alpha} E_{\alpha}$, then $xy = x\varphi(y) = x$. If $x \in S_{\alpha} E_{\alpha}$ and $y \in E_{\alpha}$ then $xy = \varphi(x)y = \varphi(x) = x^5$, since $x^5 \in S_{\alpha}^5 = E_{\alpha}$ and $x^5 = \varphi(x^5) = (\varphi(x))^5 = \varphi(x)$. Thus S_{α} is a $U_{(5,5)}$ -semigroup. By symmetry, we also have that a retract extension of a right zero band by a *U*-nil-semigroup is a $U_{(5,5)}$ -semigroup. Now, using the fact that *S* is a $U_{(n,n)}$ -chain *Y* of semigroups S_{α} , $\alpha \in Y$ we have that *S* is a $U_{(n,n)}$ -semigroup. \square

THEOREM 3.2. Let $2 \le n \le 4$. Then the following conditions are equivalent on a semigroup S:

- (i) S is a $U_{(n,n)}$ -semigroup;
- (ii) S is a $U_{(n,n)}$ -chain \bar{Y} of semigroups S_{α} , $\alpha \in Y$ and one of the following conditions hold:
- (1) S_{α} is a retract extension of a singular band E_{α} by a $U_{(n, n)}$ -nil-semigroup Q_{α} and

$$(\forall x \in Q_{\alpha}) \quad x^n = 0; \tag{3.2}$$

- (2) S_{α} is a $U_{(n, n)}$ -semigroup with only one idempotent; (iii) S is a $U_{(n, n)}$ -band of $U_{(n, n)}$ -semigroups with only one idempotent.
- **Proof.** (i) \Rightarrow (ii). Let S be a $U_{(n, n)}$ -semigroup. Then S is a U-semigroup and by Theorem 2.3. S is a U-chain of semigroups S_{α} , $\alpha \in Y$ and S_{α} is a retract extension of a singular band by a U-nil-semigroup or S_{α} is an ideal extension of a U-group by a U-nil-semigroup. Now by Lemma 3.1. we have that S is a retract extension of a singular band by a $U_{(n, n)}$ -nil-semigroup or S is a $U_{(n, n)}$ -semigroup with only one idempotent. Let S_{α} be a retract extension of a singular band E_{α} by a $U_{(n, n)}$ -nil-semigroup Q_{α} with the retraction φ . Let $|E_{\alpha}| \geq 2$, $x \in S_{\alpha} E_{\alpha} = Q_{\alpha} \{0\}$, and let $\varphi(x) = e$. Then there exists $f \in E$ such that $f \neq e$, so $xf = \varphi(x)f = ef = e$, if E_{α} is a left zero band and $fx = f\varphi(x) = fe = e$, if E_{α} is a right zero band. Since we have that xf, $fx \in \{x, x^2, \dots, x^n, f\}$, then $e = x^k$ for some k, $1 \leq k \leq n$, whence $x^n = e$. Thus $x^n = 0$ in Q.
- (ii) \Rightarrow (i). We prove only that a retract extension S_{α} of a left zero band E_{α} by a $U_{(n, n)}$ -nil-semigroup Q_{α} with (3.2) is a $U_{(n, n)}$ -semigroup. Let $\varphi: S_{\alpha} \to E_{\alpha}$ be the retraction. If $x \in E_{\alpha}$, $y \in S_{\alpha} E_{\alpha}$, then $xy = x\varphi(y) = x$. If $x \in S_{\alpha} E_{\alpha}$, $y \in E_{\alpha}$, then $xy = \varphi(x)y = \varphi(x) = x^n$, since by (3.2) $x^n = 0$ in Q, i.e. $x^n \in E_{\alpha}$ so $x^n = \varphi(x^n) = (\varphi(x))^n = \varphi(x)$. If $x, y \in S_{\alpha} E_{\alpha}$ and $xy \in E_{\alpha}$, then $xy = \varphi(x)\varphi(y) = \varphi(x) = x^n$. Thus S_{α} is a $U_{(n, n)}$ -semigroup. The remainder of the proof now follows without difficulty. We have the similar proof if E_{α} is a right zero band.
 - (i) \Rightarrow (iii). This follows by Theorem 2.3.
 - (iii) \Rightarrow (i). This follows immediately. \Box

The following theorem describe $U_{(n,n)}$ -groups.

THEOREM 3.3. G is a $U_{(n, n)}$ -group if and only if G is a cyclic group of order $p^k \le n$ for some prime $p, k \in \mathbb{Z}^+$.

Proof. Let G be a $U_{(n, n)}$ -group. Then G is a U-group and by Lemma 2.3. G is a cyclic group of order p^k or G is a $Z_{p\infty}$ for some prime p. Let xG and let r(x) be the order of x. Let e be the identity of G. Then $e = xx^{-1} \in \{x, x^2, ..., x^n, (x^{-1}), ..., (x^{-1})^n\}$ so $x^k = e$ for some k, $1 \le k \le n$. Therefore, for every $x \in G$, $r(x) \le n$ so G is a cyclic group of order $p^k \le n$ for some prime p. The converse follows by Lemmas 2.2. and 2.3. \square

THEOREM 3.4. Let p be a prime. Let A be a $U_{(p, p)}$ -nil-semigroup with the zero e and let G be a cyclic group of the order p with the identity e, such that $A \cap G = \{e\}$. Define a multiplication * on $S = A \cup G$ by:

$$x * y = \begin{cases} xy & \text{if} & (x, y) \in A \times A \cup G \times G \\ x & \text{if} & (x, y) \in G \times A \\ y & \text{if} & (x, y) \in A \times G \end{cases}$$

Then (S, *) is a $U_{(p, p)}$ -semigroup with only one idempotent.

Conversely, every $U_{(p, p)}$ -semigroup with only one idempotent which is an ideal extension of a group of order p can be so constructed.

Proof. It is simple to verify that (S, *) is a $U_{(p,p)}$ -semigroup with only one idempotent. Conversely, let S be a $U_{(p,p)}$ -semigroup with only one idempotent e and let S be an ideal extension of a group $G = \{b, b^2, ..., b^{p-1}, b^p = e\}$ of order p. Then this extension is retractive. Assume that $\varphi: S \to G$ is the retraction of S onto G. If we put $Y_k = \varphi^{-1}(b^k)$, k = 1, 2, ..., p, then $b^k \in Y_k$, $Y_i \cap Y_j = \emptyset$ if $i \neq j$, $S = \bigcup_{k=1}^p Y_k$ and $Y_i Y_j \subseteq Y_{i+j}$ if $i + j \geq p$, and $Y_i Y_j \subseteq Y_{i+j-p}$ if i + j > p, $1 \leq i$, $j \leq p$. Let $x \in Y_k$ for some k, $1 \leq k \leq p-1$. Then $ex \in G \cap Y_k = \{b^k\}$ so $ex = b^k$. On the other hand, $b^k = ex \in \{e, x, x^2, ..., x^p\}$, and since $x^i \in Y_j$ where $j \equiv ki \pmod{p}$, i = 2, 3, ..., p and $b^{ki} \neq b^k$, then we have that $b^k = x$. Indeed, if $b^k = b^{ki}$ for some $i \in \{2, ..., p\}$ then $b^{k(i-1)} = e$, which is not possible, since the order of b^k is p. Thus $Y_k = \{b^k\}$ for every $k \in \{1, 2, ..., p-1\}$. Assume that $A = Y_p$. Then it is clear that A = S/G. By Lemma 3.1. A is a $U_{(p,p)}$ -nil-semigroup. We have, also, that $A \cap G = \{e\}$, $S = A \cup G$ and for all $x \in A$, $y \in G$ xy = yx = y. \square

THEOREM 3.5. Let A be a $U_{(3,3)}$ -nil-semigroup with the zero element e.

(A) Let B be a nonempty set such that $A \cap B = \emptyset$ and let b be a fixed element from B. Let $\varphi : B \to A$ be a mapping such that

$$(\forall x \in A)(\forall y \in B) \ x \varphi(y) = \varphi(y)x = \varphi(b). \tag{3.3}$$

Assume that $B \times B = M \cup N$ and let

$$(\forall y \in B) \ (b, \ y) \in M \ \land \ (y, \ b) \in N. \tag{3.4}$$

Define a multiplication * on $S = A \cup B$ by

$$x * y = \begin{cases} xy & \text{if} & (x, y) \in A \times A \\ b & \text{if} & (x, y) \in A \times B \cup B \times A \\ \varphi(x) & \text{if} & (x, y) \in M \\ \varphi(y) & \text{if} & (x, y) \in N \end{cases}$$

(B) Let G be a cyclic group of the order 3 with the identity e such that $A \cap G = \{e\}$. Define a multiplication on $S = A \cup G$ by:

$$x * y = \begin{cases} xy & \text{if} & (x, y) \in A \times A \cup G \times G \\ x & \text{if} & (x, y) \in G \times A \\ y & \text{if} & (x, y) \in A \times G \end{cases}$$

Then (S, *) from (A) or (B) is a $U_{(3, 3)}$ -semigroup with only one idempotent.

Conversely, every $U_{(3, 3)}$ -semigroup with only one idempotent is a $U_{(3, 3)}$ -nil-semigroup or it can be constructed by (A) or by (B).

Proof. (A) Let $x,y,z \in S$. If $(x,y,z) \in A \times A \times B$ then x * (y * z) = x * b = b = (xy) * z = (x * y) * z. The associativity in the case $(x,y,z) \in A \times B \times B$ can be proved in a similar way as above. Let $(x,y,z) \in B \times A \times B$. Then $(x * y) * z = b * z = \varphi(b)$ and $x * (y * z) = x * b = \varphi(b)$. So (x * y) * z = x * (y * z). Finally, let $(x,y,z) \in B \times B \times B$. Then

$$(x * y) * z = \begin{cases} \varphi(x) * z = b & \text{if} & (x, y) \in M \\ \varphi(y) * z = b & \text{if} & (x, y) \in N \end{cases}$$
$$x * (y * z) = \begin{cases} x * \varphi(y) = b & \text{if} & (y, z) \in M \\ x * \varphi(z) = b & \text{if} & (y, z) \in N \end{cases}$$

so (x*y)*z=x*(y*z). Therefore, (S,*) is a semigroup. It is clear that S contains only one idempotent. Let $(x,y)\in A\times B$. Then x*y=b and $y^2=y*y=\varphi(y)$, $y^3=y^2*y=\varphi(y)*y=b$. Thus, $x*y=y^3$. Analogously, if $(x,y)\in B\times A$, then $x*y=b=x^3$. If $x,y\in B$, then $x*y\in \{\varphi(x), \varphi(y)\}=\{x^2, y^2\}$. Therefore, S is a $U_{(3,3)}$ -semigroup.

(B) That (S, *) from the construction is a $U_{(3, 3)}$ -semigroup with only one idempotent follows by Theorem 3.4.

Conversely, let S be a $U_{(3,3)}$ -semigroup with only one idempotent e. Then by Lemma 2.8. S is an ideal extension of a U-group G by a U-nil-semigroup. By Lemma 3.3. S is an ideal extension of a $U_{(3,3)}$ -group by a $U_{(3,3)}$ -nil-semigroup. By Theorem 3.3. G is a cyclic group of order $r \ge 3$. If r = 1, then S is a $U_{(3,3)}$ -nil-semigroup. If r = 3, then the assertion follows by Theorem 3.4. Let $G = \{e, b\}$. In this case S is a retract extension of G with the retraction $f: S \to G$. Let $A = f^{-1}(e)$ and $B = f^{-1}(b)$. It is easily to see that $A^2 \subseteq A$, $B^2 \subseteq A$, $AB \subseteq B$ and $BA \subseteq B$. Define a mapping $\varphi: B \to A$ with $\varphi(y) = y^2$, $y \in B$. Since $xy \in \{x, x^2, x^3, y, y^2, y^3\}$ for $x \in A$, $y \in B$ and $\{x, x^2, x^3, y^2\} \subseteq A$ we then have that $xy \in \{y, y^3\}$. If xy = y, then $x^4y = y$. By Lemma 3.3. $x^4 = e$. So $y = x^4y = ey \in G \cap B$, whence $y = b = b^3$. Therefore, if $(x, y) \in A \times B$, then $xy = y^3$. Similarly, $yx = y^3$. If we put x = e, then we obtain that $y^3 = ey = b$. Thus, $(x, y) \in A \times B$ implies that

xy = yx = b. Furthermore, $x\varphi(y) = xy^2 = xyy = by = e = yb = yyx = y^2x = \varphi(y)x$, i.e. (3.3) holds, since $\varphi(b) = b^2 = e$. Let $M = \{(x, y) \in B \times B \mid xy = x^2\}$, $N = \{(x, y) \in B \times B \mid xy = y^2\}$. Then from $xy \in \{x, x^2, x^3, y, y^2, y^3\}$ and from the fact that $B^2 \subseteq A$ and $\{x, x^3, y, y^3\} \subseteq B$ for all $x, y \in B$ we have that $xy \in \{x^2, y^2\}$ for all $x, y \in B$, so $B \times B = M \cup N$. If $(x, y) \in M$ then $xy = \varphi(x)$ and if $(x, y) \in N$, then $xy = \varphi(y)$. Also, for $y \in B$, by, $yb \in G \cap A$, i.e. $by = yb = e = b^2$. Thus, (3.4) holds. Therefore, if |G| = 2, then S can be obtained by (A). \square

THEOREM 3.6. A semigroup S is an n-inflation of a Rédei's band T if and only if

$$x_1 x_2 \dots x_{n+1} \in \left\{ x_1^{n+2}, x_2^{n+2} \dots x_{n+1}^{n+2} \right\}$$
 (3.5)

for every $x_1, x_2,...,x_{n+1} \in S$.

Proof. If (3.5) holds, then $x^{n+1} = x^{n+2}$ for all $x \in S$, so $x^{n+1} \in E(S)$ for every $x \in S$. Thus, $S^{n+1} = E(S)$ and by Lemma 2.5. E(S) is a Rédei's band. Let $x^{n+1} = e$, $y^{n+1} = f$, $e, f \in E(S)$. Then by Theorem 2.3. we have that $(xy)^{n+1} = ef = x^{n+1}y^{n+1}$. Therefore, by Theorem 3.4. [5] we have that S is an n-inflation of a Rédei's band.

Conversely, let S be an *n*-inflation of a Rédei's band T. Then $S^{n+1} = T$ and there exists a retraction φ of S onto T. Then for every $x_1, x_2, \ldots, x_{n+1} \in S$ we have that

$$x_1x_2...x_{n+1} = \varphi(x_1x_2...x_{n+1}) = \varphi(x_1) \varphi(x_2)...\varphi(x_{n+1}).$$

Since

$$\varphi(x_i) = (\varphi(x_i))^{n+2} = \varphi(x_i^{n+2}) = x_i^{n+2}$$

for all $i \in \{1, 2, ..., n + 1\}$, then

$$x_1x_2...x_{n+1}=x_1^{n+2}\;,\;x_2^{n+2}...\;x_{n+1}^{n+2}\in\{x_1^{n+2},x_2^{n+2},...,x_{n+1}^{n+2}\}\;.\;\;\Box$$

COROLLARY 3.1. (A. E. Evseev [8]). A semigroup is an inflation (1-inflation) of a Rédei's band $(U_{(1,1)}$ -semigroup) if and only if $xy \in \{x^3, y^3\}$ for every $x,y \in S$. \square

COROLLARY 3.2. A semigroup S is a 2-inflation of a Rédei's band T and $x^2 \in T$ for all $x \in S$ if and only if $xyz \in \{x^2, y^2, z^2\}$ for all $x, y, z \in S$.

Proof. Let $xyz \in x^2$, y^2 , z^2 for all x, y, $z \in S$. Then $x^3 = x^2 \in E(S)$ for every $x \in S$. So $x^2 = x^4$ for every $x \in S$, whence $xyz \in \{x^4, y^4, z^4\}$ for every x, y, $z \in S$, and by Theorem 3.6. we have the assertion.

The converse follows immediately by Theorem 3.6.

COROLLARY 3.3. A semigroup S contains only one idempotent and $xyz \in \{x^4, y^4, z^4\}$ for all x, y, $z \in S$ if and only if $S^3 = 0$. \square

COROLLARY 3.4. A semigroup S contains only one idempotent and $xyz \in \{x^2, y^2, z^2\}$ for all $x, y, z \in S$ if and only if $S^3 = 0$ and $x^2 = 0$ for every $x \in S$. \square

REFERENCES

- [1] S. Bogdanović, P. Kržovski, P. Protić, B. Trpenovski, Bi- and guasi-ideal semigroups with n-property, Third algebraic conference, Beograd, 3-4, 1982, 27-34.
- [2] S. Bogdanović and S. Gilezan, Semigroups with A completely simple kernel, Zbornik radova PMF, Novi Sad, 12 (1982), 429-445.
- [3] S. Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math., N. Sad, 1985.
- [4] S. Bogdanović, Semigroups of Galbiati-Veronesi, Proc. of the Conference "Algebra and Logic", Zagreb 1984, 9-20.
- [5] S. Bogdanović and S. Milić, Inflations of semigroups, Publ. Inst. Math. 41 (55) 1987, 63-73.
- [6] S. Bogdanović and B. Stamenković, Semigroups in which S^{n+1} is a semilattice of right groups (Inflations of a semilattice of right groups), Note di Matematica (to appear).
- [7] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups I, Amer. Math. Soc. 1961.
- [8] А. Е. Евсеев, Полугруппы с некоторыми степенными тождественными включениями, Алгебраические системы с одним действием и отношением, ЛГПИ, Ленинград, 1985, 21–32.
- [9] N. Kimura, T. Tamura, R. Merkel, Semigroups in which all subsemigroups are left ideals, Canad. J. Math. 17 (1965), 52-62.
- [10] Е. С. Ляпин, А. Е. Евсеев, Полугруппы у которых все подполугруппы единично идеальные, изв. В. уч. завед. мат. 10 (101) 1970, 44–48.
- [11] J. Pelikán, On semigroups in which products are equal to one of the factors, Per. Math. Hungarica, 4 (2-3), 1973, 103-106.
- [12] M. Petrich, A simple construction of semigroups all of whose subsemigroups are left ideals, Semigroup Forum, 4 (1972), 262-266.
- [13] M. Petrich, Lectures in semigroups, Akad. Verlag, Berlin, 1977.
- [14] M. Petrich, Introduction to semigroups, Merill, Ohio, 1973.
- [15] B. Pondělíček, On semigroups having regular globals, Colloq. Math. Soc. J. Bolyai, Szeged 20 (1976), 453-460.
- [16] B. Trpenovski, Semigroups with n-properties, Algebraic Conference, N. Sad 1981, 7-12.
- [17] B. Trpenovski and N. Celakoski, Semigroups in which every n-subsemigroup is a subsemigroup, МАНУ, Прилози VI-3, Скопје, 1974, 35-41.
- [18] Е. Г. Шутов, Полугруппы с идеальными подполугруппами, Мат. сб. 57 (99) : 2, 1962, 179–186.
- [19] L. Rédei, Algebra I, Pergamon Press, Oxford, 1967, pp. 81.

Matematički institut 11000 Beograd Knez Mihailova 35 Yugoslavia