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Abstract. Subdirect decomipositions of iinary algebras are stidied in connection with one-
element subalgebras, cores, Rees extensions of congruences of subalgebras, dense extensions
and disjunctive elements. In garticiular, subdirectly irreducible unary algebras are described
in terms of these notions.

1. Introduction

There are two well-known natural ways of viewing finite automata as algebraic structures. If
one regards the input sequences of an automaton as elements of the free monoid generated by
a finite alphabet of input symbols, then it is natural to treat the automaton as a finite monoid
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of transformations. This approach has been very successful indeed. In particular, it has been
the starting point for the elegant classification theory of regular languages based on syntactic
monoids and varieties of finite monoids, and it is the basis of the renowned Krohn-Rhodes
decomposition theory of finite automata. These theories not only rely on semigroup theory,
but they have also greatly stimulated the study of finite semigroups. However, it is equally
natural to regard an automaton as a finite algebra in which each input symbol is realized as
a unary operation. This interpretation, advocated by J.R. Biichi and J.B. Wright already in
the late fifties, links automata with universal algebra, and the theory of tree automata in which
arbitrary finite algebras are viewed as automata arose almost spontaneously from it ([1] offers
an interesting historical perspective of these ideas).

Many basic notions of universal algebra have natural interpretations in the theory of au-
tomata. For example, an automaton with no proper subalgebras is strongly connected, mor-
phisms are used for defining ways of representing an automaton by another, and direct products
and subdirect representations correspond to parallel connections and parallel decompositions,
respectively. In particular, the subdirect irreducibility of an automaton-algebra means that it
cannot be realized by a parallel connection of simpler automata.

The subdirectly irreducible (finite) automata with one input symbol were characterized by
Yoeli [15], and Wenzel [14] determined all subdirectly irreducible mono-unary algebras. The
subdirectly irreducible automata with arbitrary input alphabets of some special types, such as
nilpotent, commutative or definite automata, have been described in [3], [4], [7], [8] and [L1].

In this paper we use both universal algebra and semigroup theory as we discuss subdirect
decompositions and the subdirect irreducibility of unary algebras in terms of traps, cores, ex-
tensions and disjunctive elements, that is to say, in terms of notions originating mostly from
semigroup theory. Since no finiteness assumptions are needed, we consider general unary alge-
bras rather than just automata. In fact, the cardinality of the set of operation symbols may also
be infinite.

In Section 2 we recall some basic concepts and fix our general notation. Traps, trap-connected
(unary) algebras, cores and kernels are introduced in the following section. A trap is an element
which forms a one-element subalgebra, and an algebra is said to be trap-connected if it has
a trap and this trap appears in every subalgebra. If an algebra A has a least subalgebra, it
is called the kernel of A, and if A has a least nontrivial subalgebra, it is the core of A. That
nontrivial subdirectly irreducible unary algebras have cores was shown by Setoyanagi [11] and we
study the properties of these cores. In Section 4 we consider Rees extensions of congruences of a
subalgebra, a notion studied already in [14] and [11], and extensions of algebras. In particular,
we show that if a unary algebra A is an extension of a subalgebra B by an algebra C, then A
is a subdirect product of C and a dense extension of B; an algebra A is a dense extension of a
subalgebra B if the diagonal relation on A is the only congruence on A which restricted to B is
the diagonal on B.

In Section 5 we study traps, cores and disjunctive elements in subdirectly irreducible unary
algebras, and we characterize subdirectly irreducible unary algebras in terms of these. An ele-
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ment ¢ of an algebra A is said to be disjunctive if the principal congruence generated by it is the
diagonal relation, that is to say, if ¢ alone does not form a congruence class of any nontrivial con-
gruence. That any nontrivial subdirectly irreducible algebra has disjunctive elements is known
from before, but here we show that a unary algebra with two traps is subdirectly irreducible if
and only if the traps are disjunctive.

2. Preliminaries

In what follows, X is always an alphabet, but not necessarily finite. As usual, X* denotes the
set of all (finite) words over X. The empty word is denoted by e. With the catenation of words
as the operation and e as the unit element, X* is the free monoid generated by X. However,
we shall also treat X as a set of unary operation symbols and words over X are then to be
regarded as X-terms over a one-element set of variables {e} written in reverse Polish notation:
the empty word represents the term & and any nonempty word z1zo...2z, (n > 1) the term
ET1T2 ... Tn. An X-algebra A = (A, X) is a system where A is a nonempty set and each symbol
z € X is realized as a unary operation z* : A — A. For any o € A and z € X, we write az? for
x*(a). For any word w = z123 ...z, (€ X*), w? : A = A is defined as the composition of the
mappings x{‘, mé‘l, e ,wﬁ, that is to say, sw? = a.ac“fle‘ . :Jcﬁ for every @ € A. In particular, e”
is the identity mapping 14 of A. If A is known from the context, we write simply gw instead
of aw?. An X-algebra A = (A, X) is finite if A is a finite set, and A is trivial if A has only
one element. In what follows, we often assume, without saying so, that A, B and C are the

X-algebras (A, X), (B, X) and (C, X), respectively.

Subalgebras, morphisms, congruences, quotiens and direct products of X-algebras are defined
as for algebras in general (cf. [2] or [5], for example). Hence B = (B, X) is a subalgebra of an
X-algebra A = (A, X) if B C A and bz® = bz for all z € X and b € B, and then B is a closed
subset of A, i.e., bz* € B for all z € X and b € B. For any H C A, we denote the least closed
subset containing H as a subset by (H). If H # (), this is the subalgebra generated by H. It is
obvious that (H) = {aw : o € H,w € X*} for every H C A. For a singleton set H = {a}, we
use the notation (a).

A morphism from A to B is mapping ¢ : A — B such that azp = ap2?B for all @ € A and
2 € X, and we write then ¢ : 4 — B. A morphism is called an isomorphism, a monomorphism
or an epimorphism if it is, respectively, bijective, injective or surjective. Two X-algebras A and
B are isomorphic if there is an isomorphism ¢ : A — B and this is expressed by writing A = B.

The set of all equivalences on a set A is denoted by Eq(A). If 0 € Eq(A), the #-class {b € A :
a0b} of any a € A is denoted by af. An equivalence 6 € Eq(A) is a congruence on an algebra
A= (A, X) if az 0 bx for all z € X whenever 2 0b. The set of all congruences on A is denoted by
Con(.A). Obviously, Con(.A) always includes the diagonal relation Ay = {(a,a) : o € A} and the
universal relation V4 = A x A. Note that if @ € Con(A) and « 6 b, then aw 0 bw for all w € X*.
For any 0 € Con(A), the quotient algebra A/ = (A/6, X) is defined so that (20)z4/? = (azx*)6
for all @ € A and z € X. The corresponding canonical epimorphism 6% : A — A/0 is defined by
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the condition af! = af (a € A).

Direct products and subdirect decompositions of X-algebras are also defined as usual. How-
ever, here it suffices to know

(1) that every proper subdirect decomposition of an algebra A is obtained from a family of
nontrivial congruences F on A such that | F = Ay, and

(2) that a nontrivial X-algebra is subdirectly irreducible if and only if it has a least nontrivial
congruence.

These facts are due to G. Birkhoff (¢f. [2] or [5]).

An X-algebra A = (A, X) is called also an automaton if X and A are finite. In fact, our work
is motivated to a great extent by the theory of automata and we shall also use some terminology
from that theory. An X-algebra A is connected if for all pairs of elements a,b € A, there are
words u,v € X* such that ou = bv, and it is strongly connected if for all pairs of elements
a,b € A, there exists a word w € X* such that ew = b. Obviously, A = (A, X) is strongly
connected if and only if (¢) = A for every element ¢ € A.

3. Traps, Cores and Kernels

An element o € A of an X-algebra A = (A, X) is called a trap if ax = a for every z € X, and
A is a trap algebra if it has a trap. Obviously, a connected X-algebra can have at most one
trap, and if it has a trap, it is said to be trap-connected. Furthermore, a nontrivial X-algebra
A = (A, X) is strongly trap-connected if it has a trap a9 € A and (a) = A for every o € A\ {ap}.
Any strongly trap-connected algebra is trap-connected, but the converse does not hold. An
X-algebra is called discrete if all of its elements are traps.

The least ideal of a semigroup S, if it exists, is called the kernel of S (cf. [6], for example).
We call the least subalgebra of an X-algebra A, if it exists, the kernel of A. If A has a least
non-trivial subalgebra, it is called the core of A. Cores of automata were considered also by
Setoyanagi [11]. It is clear that if an X-algebra A has a core, it is the intersection of all non-
trivial subalgebras of 4. Similarly, the kernel, when it exists, is the intersection of all subalgebras

of A.

The following observations are immediate consequences of the fact that any set of traps is a
closed subset.

Lemma 3.1. If an X-algebra has a kernel, then it has at most one trap, and an X-algebra with
a core has at most two traps.

Theorem 3.1. Let A be any X-algebra.

(a) The kernel of A, if it exists, is strongly connected.

(b) The core of A, if it exists, is strongly connected, strongly trap-connected or discrete.
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Proof:
If £ = (K, X) is the kernel of A, then K C (a) C K for every o € K, and hence K is strongly
connected.

Assume now that A has a core C. By Lemma 3.1, C contains at most two traps. If there
is no trap, then (a) is a nontrivial subalgebra for every o € C, and hence C must be strongly
connected. If C contains one trap ag, then (a) C C C (a) for every a € C'\ {49}, and hence C
is strongly trap-connected. Finally, if C contains two traps 4 and b, then C' = {4, b} must hold
and C is discrete. O

4. Rees Congruences. Extensions of Algebras

As noted in [13], for example, one may associate with any subalgebra of an X-algebra A a
congruence on A akin to the Rees congruence defined by an ideal on a semigroup. The following
extension of this construction was introduced for mono-unary algebras in [14] and for general
unary algebras in [11].

Let B = (B, X) be a subalgebra of an X-algebra A = (A, X). The Rees extension to A of
a congruence 0 of B is defined as the relation R(f) = 6 U A4. It is clear that R(f) € Con(A).
In particular, the Rees congruence pg modulo B is the Rees extension R(Vp) of the universal
relation V. The quotient algebra A/pp is denoted also by A/B.

We say that an X-algebra A is an eztension of B by C if B is a subalgebra of A4 and
A/B = C. If this is the case, C evidently has a trap which corresponds to the image of B
under the canonical epimorphism A4 — A/B. In other words, we may regard C as the result
of contracting the subautomaton B of A into one element, a trap of C. A trap-extension of an
algebra is obtained by adjoining to it a trap, that is to say, A is a trap-extension of an algebra
B if it is an extension of B by a two-element discrete algebra.

Theorem 4.1. If B is a subalgebra of an X-algebra A = (A, X), then 6§ — R(0) defines an
isomorphism from the congruence lattice of B onto the principal ideal (pp] = {p € Con(A) :
A4 Cp Cppl of the lattice Con(A).

Proof:

It is clear that R(01) # R(03) for any two distinct congruences 61 and 6, of B. It is also obvious
that if p € (pg], then R(pNVpE) = (pNVp)UA, = p. Hence, R defines a bijection between
Con(B) and (pg|. Furthermore, for any congruences ¢, and 6, on B,

01 COy<— 0, UA, COUA,,
and hence R : Con(B) — (pg], p — R(p), is an order-isomorphism. |

Let B be a subalgebra of A. A congruence 6 on A is called a B-congruence if 0NV = Ap.
If A4 is the only B-congruence on A, we say that A is a dense extension of B. In particular,
every algebra is a dense extension of itself.
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Theorem 4.2. If an X-algebra A is an extension of an X-algebra B by an X-algebra C, then
A is a subdirect product of C and some dense extension of B.

Proof:

Since the union of any chain of B-congruences on A is obviously also a B-congruence, it follows
from Zorn’s Lemma that A4 has maximal B-congruences. Let x4 be any maximal B-congruence
and let D = A/u. Since u is a B-congruence, B is isomorphic to the subalgebra B’ = (B’, X) of
D, where B' = {au : o € B} and thus D may be regarded as an extension of B. Let us now
show that this extension is dense.

By the Correspondence Theorem (cf, p.49 in [2]), the mapping

0 0/u={(ap,bu) : (a,b) € 0}

is an isomorphism from the interval [u, V 4] of the lattice Con(.A) onto Con(D). Let 6 € [u, V 4]
be such that 6/u is a B'-congruence on D. If a6b for some a,b € B, then au,by € B' and
(ap,bp) € 0/, and hence au = bu. Since p is a B-congruence, this implies ¢ = b. Thus 6 is a
B-congruence such that p C 6, and hence 6 = p by the maximality of x. This shows that D has
no nontrivial B’-congruence, and therefore D is a dense extension of B.

Finally, u N pg = Ay since p is a B-congruence, and hence A is a subdirect product of
C=A/Band D= A/pu. 0

Remark 4.1. The subdirect decomposition described above is proper exactly in case the sub-
algebra B is nontrivial and A has nontrivial B-congruences. Indeed, Ay C pgp if and only if
|B| > 1, and A4 C p if and only if A has nontrivial B-congruences.

An epimorphism ¢ : A — B of an X-algebra A onto a subalgebra B is called a retraction
if bp = b for all b € B. If such a retraction exists, B is a retract of A and A is a retractive
extension of B.

Lemma 4.1. If ¢ : A — B is a retraction, then ker ¢ is a mazimal B-congruence on A.

Proof:

That ker ¢ is a B-congruence follows from the fact that by = b for every b € B. Let 6 be any
B-congruence on A such that ker ¢ C 6. If a0 b for some a,b € A, then ap by by transitivity
since (a,a¢), (b,by) € ker ¢ C 6. Since ayp,bp € B, this implies ap = by, and hence ker ¢ = 6
must hold. O

Lemma 4.1 yields immediately the following sharper form of Theorem 4.2 for retractive
extensions.

Corollary 4.1. If A is a retractive extension of B by C, then A is a subdirect product of C and
B.
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5. Subdirectly Irreducible X-algebras

In this section we examine the subdirect irreducibility of X-algebras in terms of traps, cores,
extensions and disjunctive elements. The following fact was observed both in [14] and [11], but
we restate it and give a short direct proof.

Lemma 5.1. An X-algebra is subdirectly irreducible if and only if all of its subalgebras are
subdirectly irreducible.

Proof:

The condition is clearly sufficient. Suppose now that a subalgebra B of an X-algebra A4 has
a proper subdirect decomposition. This means that B has a family of nontrivial congruences
{0; : i € I} such that N{6; : i € [} = Ap. But then also A has a proper subdirect decomposition
since {R(0;) : 1 € I} = Ay while R(0;) =0; UA4 D Ay for every i € 1. |

Theorem 5.1. If an X-algebra A has a nontrivial subalgebra BB, then A is subdirectly irreducible
if and only if B is subdirectly irreducible and A is a dense extension of B.

Proof:

Assume that A is subdirectly irreducible. Then B is subdirectly irreducible by Lemma 5.1, and
by Theorem 4.2 (and its proof) A is a subdirect product of .A/B and a dense extension A/p of
B. Since pg O A4 and A is subdirectly irreducible, 4 = A 4 must hold, and hence A itself is a
dense extension of B.

Suppose now that B is subdirectly irreducible and that A is a dense extension of B. If
{6; : i € I} is a family of congruences on A such that ({6; : i € I} = A4, then §;NVp € Con(B)
for every i € I and N{0; " Vp:i € I} = Ap. Since B is subdirectly irreducible, this means that
0; "Vp = Ap for some ¢ € I, and hence §; = A4 as A is a dense extension of B. This shows
that A has no proper subdirect decomposition. O

A subset H of a set A is saturated by an equivalence 6 on A if H is the union of some
f-classes. For any subset H of an X-algebra A = (A, X), the relation o on A defined so that
for any a,b € A,

aopb < (Vu€ X")(ou e H < bu€ H),

is the greatest congruence on A which saturates H. This fact has been proved in different forms
in various contexts. For example, in semigroup theory the counterparts of the congruences op
are called principal congruences, and for a language H regarded as a subset of a finitely generated
free monoid, o is the syntactic congruence of H. More generally, the syntactic congruence of a
subset of any algebra can be obtained in a similar manner (cf. [12], for example). A subset H of
an X-algebra A = (A, X) is called disjunctive if oy = Ay, and an element a € A is disjunctive
if {a} is disjunctive.

The following fact was first proved for semigroups by Schein [10] and that it holds for algebras
in general was noted in [12].
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Lemma 5.2. Any nontrivial subdirectly irreducible X-algebra has at least two disjunctive ele-
ments.

Theorem 5.2. Any X-algebra A with at least two disjunctive elements has a core and all dis-
Junctive elements of A are in the core.

Proof:

Let B be a nontrivial subalgebra of A. If o € A\ B, then {a} is saturated by pg(D A4), and
hence a4 is not disjunctive. This means that the intersection of the nontrivial subalgebras of A
contains all disjunctive elements. Since A has at least two disjunctive elements, this intersection
is the core of A. 0O

Lemma 5.2, Theorem 5.2 and Lemma, 3.1 yield the following result which combines Lemma
2.3 and Theorem 2.2 of [11].

Corollary 5.1. Every nontrivial subdirectly irreducible X-algebra has a core and at most two
traps.

Theorem 5.3. A nontrivial X-algebra A is subdirectly irreducible if and only if it is o dense
extension of a nontrivial subdirectly irreducible subalgebra B by a trap-connected algebra and this
B satisfies one of the following conditions:

(C0) B is the core of A and strongly connected;

(C1) B is the core of A and strongly trap-connected, or B is a trap-extension of the core of A
and the core is strongly connected;

(C2) B is the core of A and a two-element discrete X-algebra.

Moreover, for each k = 0,1,2, B satisfies condition (Ck) if and only if A has ezxactly k traps.

Proof:

Assume first that A is subdirectly irreducible. Then A has by Corollary 5.1 a core C = (C, X)
and at most two traps. jFrom Theorem 5.1 it follows now that C is subdirectly irreducible and
that A is a dense extension of C. We distinguish three cases according to the number of traps

of A.

1. If A has no traps, then the core C is strongly connected. Moreover, A/C is trap-connected
since C C (a) for every @ € A. Hence (CO0) is satisfied for B = C.

2. Assume that A has just one trap gg. If ag € C, then C is strongly trap-connected as shown
in the proof of Theorem 3.1. Furthermore, if @ € A\ {a¢}, then (4) is a nontrivial subalgebra
and hence C C (g). This means that A/C is trap-connected. Hence, the first alternative of
(C1) is satisfied for B = C. If oy € C, then C is strongly connected and B = (B, X), where
B = C U {ayp}, is a trap-extension of C. Again C C (a) for every a € A\ {40}, and therefore
A/B is trap-connected. Hence, the second alternative of (C1) holds.

3. If A has two traps @1 and a9, then obviously C' = {a;,a9}. Moreover, for every o € A\ C,

(@) is a nontrivial subalgebra and therefore C' C (s). This means that A/C is trap-connected,
and hence (C2) is satisfied for B = C.
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Conversely, let A be a dense extension of a nontrivial subdirectly irreducible subalgebra
B by a trap-connected algebra, where B satisfies one of the conditions (C0)-(C2). Then A is
subdirectly irreducible by Theorem 5.1. Moreover, since .4/B is trap-connected, all traps of A,
if there are any, are in B. It is clear that if B satisfies condition (Ck) for some k = 0, 1,2, then
there are exactly k traps. O

The following corollary is an immediate consequence of Lemma 5.2, Theorem 5.2 and Lemma
5.1.

Corollary 5.2. Any nontrivial subdirectly irreducible X-algebra has a subdirectly irreducible
core and at least two disjunctive elements.

Theorem 5.4. An X-algebra with two traps is subdirectly irreducible if and only if its traps are
disjunctive.

Proof:

Let A = (A, X) have two traps a; and ay. If A is subdirectly irreducible, it follows from Theorem
5.3 that A has a core C = (C, X) and that C' = {a1,42}. By Lemma 5.2, A has two disjunctive
elements and by Theorem 5.2 these are in C. Hence 41 and a9 must be disjunctive.

Assume now that the traps a; and a9 are disjunctive. By Theorem 5.2, A has a core which
contains o; and a9, and it is then clear that C = ({s1,42}, X) is the core. Consider any C-
congruence f on A. Suppose first that o 60 for some a,b € A\ {01,452}, a #b. Since {a1,a5} C
(a), (b) and a; is disjunctive, there exists a word w € X* such that either ow = a; # bw or
aw # a1 = bw. Furthermore, in the former case bw # ao and in the second case aw # a9,
because otherwise a1 # a9 would hold. In both cases gw 6 bw, and hence we may conclude that
if 0 # A4, then either a1 0b or a3 0b for some b € A\ {a;1,a5}. Let us suppose that a1 6b. Then
a1 0 bw for every w € X*. Since (a1,a9) ¢ 6, this means that ayw,bw & {as} for all w € X*,
and hence a1 0y,,) b. But this is impossible since a5 is disjunctive, and we can conclude that A
is a dense extension of C. On the other hand, it is clear that C is subdirectly irreducible, and it
follows then from Theorem 5.1 that A is subdirectly irreducible. O
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