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Abstract 
The purpose of this paper is twofold. First, we intend to encourage researchers in social sciences to use some 

contemporary mathematical methods different than the traditional methods of statistics and data analysis, in 

particular, to encourage them to use methods of the social network analysis. Second, we want to propagate 

the fuzzy approach as a way to overcome the vagueness that is always present in social  sciences. We give a 

brief overview of the main ideas and recent results in the positional analysis of fuzzy social networks, and we 

point to relationships between the social network analysis and certain up-to-date areas of computer science 

and mathematics. 

 

 

1. Introduction 

Network analysis has originated as a branch of sociology and mathematics which pro-
vides formal models and methods for the systematic study of social structures, and it has 
an especially long tradition in sociology, social psychology and anthropology. But, concepts 
of network analysis capture the common properties of all networks and its methods are 
applicable to the analysis of networks in general. For that reason, methods of network 
analysis are nowadays increasingly applied to many networks which are not social net-
works but share a number of commonalities with social networks, such as the hyperlink 
structure on the Web, the electric grid, computer networks, information networks or vari-
ous large-scale networks appearing in nature. Network analysis is carried out in areas such 
as project planning, complex systems, electrical circuits, social networks, transportation 
systems, communication networks, epidemiology, bioinformatics, hypertext systems, text 
analysis, organization theory, event analysis, bibliometrics, genealogical research, and oth-
ers. In most of these applications network analysis rely on a formal basis that is fairly cohe-
rent. In this paper, however, we have in mind primarily the application in the study of so-
cial structures. 

The key difference between network analysis and other approaches is the focus on rela-
tionships among actors (social entities) rather than the attributes of individual actors. 
Network analysis takes a global view on network structures, based on the belief that types 
and patterns of relationships emerge from individual connectivity and that the presence 
(or absence) of such types and patterns have substantial effects on the network and its 
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constituents. In particular, the network structure provides opportunities and imposes con-
straints on the individual actors by determining the transfer or flow of resources (material 
or immaterial) across the network. Such an approach requires a set of methods and ana-
lytic concepts that are distinct from the methods of traditional statistics and data analysis.  

The natural means to model networks mathematically is provided by the mathematical 
notion of a relation, and because we work only with finite sets of actors, these relations are 
usually represented by matrices and visualized as graphs. Consequently, methods of net-
work analysis primarily originate from semigroup theory (semigroups of relations), linear 
algebra and graph theory. This formality served network analysis to reduce the vagueness 
in formulating and testing its theories, and contributed to more coherence in the field by 
allowing researchers to carry out more precise discussions in the literature and to compare 
results across studies. More information on various aspects of the network analysis and its 
applications can be found in the books [6, 8, 16, 22, 26, 32]. 

Nevertheless, the above mentioned vagueness in social networks (as well as in many 
other kinds of networks) can not be completely avoided, since relations between actors are 
in essence vague. This vagueness can be overcame applying fuzzy approach to the network 
analysis, but just few authors dealt with this topic so far (cf. [12, 14, 15, 23, 24]). 

Our interest in social networks originates from our research in the theory of fuzzy au-
tomata. It turned out that some very important concepts that we used in the state reduction 
of fuzzy automata are closely related to the concept of a regular equivalence, which is fun-
damental in the positional analysis of social networks. The methodology that was devel-
oped in [11,31], has been since applied in [17] to the general study of certain systems of 
fuzzy relation equations and inequalities, what led to results that are directly applicable to 
fuzzy social networks. Here we give a brief overview of the main ideas and recent results in 
the positional analysis of fuzzy social networks, and we point to relationships between the 
social network analysis and certain up-to-date areas of computer science and mathematics. 

 

2. Fuzzy sets and fuzzy relations 

 
Fuzzy sets were introduced in 1965 by L. A. Zadeh [34], as a method for representing 

some imprecise aspects of human knowledge that would be used in dealing with problems 
when the source of imprecision is the absence of sharply defined criteria of class member-
ship. Such problems are very often when one deals with classes of objects encountered in 
the real physical world, and for that reason fuzzy sets have significant applications in many 
scientific fields.  

Unlike ordinary set theory and classical logic, where membership degrees and truth val-
ues  have only values  or  (true or false; yes or no), fuzzy set theory and fuzzy logic allow 
intermediate membership degrees and truth values, i.e., they are taken from some larger 
set . In other words, a fuzzy subset of a set  is defined as any function  which maps  in 

, i.e.,  , where  is a given set of truth values. For every , the value  is the 
membership degree of the element  to the fuzzy subset  . To be able to say that something 
is more or less true than something else, the set  of truth values has to be ordered, and 
also has to have  (absolutely true) as the greatest element and  (absolutely false) as the 
smallest element. Moreover, to define operations on fuzzy subsets analogous to operations 
on ordinary crisp sets, certain lattice-theoretical operations on the set  of truth values are 
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also needed. The most studied and applied structures of truth values are those defined on 
the real unit interval  by means of certain operations on it, but in our research we use 
complete residuated lattices, which include as special cases all structures of truth values 
traditionally used in fuzzy logic.  

A residuated lattice is an algebra   such that  

(L1)  is a lattice with the least element  and the greatest element ,  

(L2) is a commutative monoid with the unit ,  

(L3)  and  form an adjoint pair, i.e., they satisfy the adjunction property: for all 
,  

 
 

If, moreover,  is a complete lattice, then  is called a complete residuated lattice. 
The operations  (called multiplication) and  (called residuum) are intended for 

modeling the conjunction and implication of the corresponding logical calculus, and su-
premum ( ) and infimum ( ) are intended for modeling of the existential and general 
quantifier, respectively. An operation  defined by  

 
 

called biresiduum (or biimplication), is used for modeling the equivalence of truth values. 
The most studied and applied structures of truth values, defined on the real unit interval 

 with  and , are the Łukasiewicz structure (where 
, ), the Goguen structure (or product 

structure) (with , if , and  otherwise), and the Gödel 
structure (with ,  if , and  otherwise). More generally, 
an algebra  is a complete residuated lattice if and only if  is a left-
continuous t-norm and the residuum is defined by  (cf. 
[1,2]). Another important set of truth values is the set , , 
with  and . A special case of the latter alge-

bras is the two-element Boolean algebra of classical logic with the support . The only 
adjoint pair on the two-element Boolean algebra consists of the classical conjunction and 
implication operations. This structure of truth values we call the Boolean structure. If any 
finitelly generated subalgebra of a residuated lattice  is finite, then  is called locally finite. 
For example, every Gödel structure is locally finite, whereas the product structure is not 
locally finite. 

In the rest of the paper, if not noted otherwise,  will be a complete 
residuated lattice, and all fuzzy sets and fuzzy relations that will be considered will take 
their membership values in  (i.e., in ).  

The concept of a fuzzy relation naturally arose from that of fuzzy set in Zadeh's very first 
paper on fuzzy sets [34], and it was further developed in his paper [35], where the notions 
of a fuzzy equivalence relation and fuzzy ordering were introduced. After that, a number of 
papers dealing with various aspects related to these relations have appeared, and today, 
the theory of fuzzy binary relations is probably one of the most important and influential 
branches of the fuzzy set theory. By allowing intermediate degrees of relationship, fuzzy 
relations provide much more freedom to express the subtle nuances of human preferences 
so they found natural applications in modeling various concepts inherent to so-called ‘‘soft’’ 
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sciences like psychology, sociology, linguistics, etc. The concept of a fuzzy relation will be 
also fundamental in our fuzzy approach to social networks. 

A fuzzy relation on a set  is any fuzzy subset of the Cartesian product , that is, any 
function . Let  and B be fuzzy relations on the set . The equality of  and   
is defined as the usual equality of functions, i.e.,  if and only if , for all   

. The inclusion of  in  is also defined pointwise: we put  if and only if 
, for all . 

 
Endowed with this partial order the set  of all fuzzy relations on  forms a com-

plete lattice, in which the meet (intersection)  and the join (union)  of a family 
 of fuzzy relations on  are functions from  into L defined by  

 

A crisp relation on  is a fuzzy relation on  which takes values only in the set .  If  
is a crisp relation on , then expressions “ ” and “ ” will have the same mean-
ing, i.e.,  is considered as an ordinary relation on . The crisp part of a fuzzy relation  on 

 is a crisp relation  defined by , if , and , if 
, i.e., . 

For two fuzzy relations  and  on the set , the composition or product of  and  is a 
fuzzy relation  on  defined by 

 

for all . If  is a finite set with  elements, then  and  can be regarded as  
fuzzy matrices over  and  can be regarded as the matrix product.  

A fuzzy equivalence on a set  is a fuzzy relation  on  which satisfies   
(reflexivity),  (symmetry), and   (transitivity), for 
all . 

For undefined notion and notation the reader is referred to [1,2,9-11,17,31].  
 

3. Positional analysis of fuzzy social networks and regular fuzzy equivalences 

 
A fuzzy social network is defined as a fuzzy relational structure , where  

is a non-empty set of actors or nodes, and  is a given family of fuzzy relations on , 
i.e., a family of fuzzy relations between actors. As usual, the set  is assumed to be finite. 
We also call  shortly a fuzzy network. If  are crisp relations (or  is assumed to be 
the Boolean structure), then  is an ordinary crisp social network, or just a social network.  

Because  is finite, fuzzy relations  can be regarded as fuzzy matrices, which was 
often done in the literature dealing with social networks. Also, social networks were often 
regarded as multigraphs or labeled graphs (with labels taken from the index set ), and in 
the fuzzy context, we can regard fuzzy social networks as directed labeled fuzzy graphs. In 
many situations not only basic relationships given by fuzzy relations  are interesting, but 
also composite relationships between actors given as compositions of basic relations. See-
ing that fuzzy and crisp relations form monoids under the composition, the semigroup-
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theoretical approach to the study of social networks was often applied. It is worth noting 
that fuzzy and crisp social networks can be also regarded as fuzzy and non-deterministic 
automata, but the automata-theoretical approach has not been used until now. However, it 
will be applied in our further research.  

In large and complex systems it is impossible to understand the relationship between 
each pair of individuals, but to a certain extent, it may be possible to understand the sys-
tem, by classifying individuals and describing relationships on the class level. In networks, 
for instance, nodes in the same class can be considered to occupy the same position, or play 
the same role in the network. The main aim of the positional analysis of networks is to find 
similarities between nodes which have to reflect their position in a network. These simi-
larities have been formalized first by Lorrain and White [20] by the concept of a structural 
equivalence. Informally speaking, two nodes are considered to be structurally equivalent if 
they have identical neighborhoods. However, in many situations this concept has shown 
oneself to be too strong, and weakening it sufficiently to make it more appropriate for 
modeling social positions, White and Reitz [33] have introduced the concept of a regular 
equivalence. Here, two nodes are considered to be regularly equivalent if they are equally 
related to equivalent others. Afterwards, regular equivalences have been studied in nu-
merous papers, e.g., in [3, 4, 5, 6, 7, 13, 25, 26]. One of the main problems discussed in these 
papers was to compute the greatest regular equivalence on a given social network, or in 
some cases, the greatest one contained in a given equivalence. The greatest regular equi-
valence is extremely important because it has a minimal number of equivalence classes, 
and therefore, it provides a minimal number of positions in a social network.  

As we have already mentioned, fuzzy equivalences were introduced by Zadeh [35] as a 
generalization of ordinary crisp equivalences and equality to the fuzzy framework. They 
have been since widely studied as a way to measure the degree of indistinguishability or 
similarity between the objects of a given universe of discourse, and they have shown to be 
useful in different contexts such as fuzzy control, approximate reasoning, cluster analysis, 
etc. Depending on the authors and the context in which they appears, they have received 
other names such as similarity relations (original Zadeh's name) or  indistinguishability op-
erators. 

Using the concept of a fuzzy equivalence, Fan et al. [14, 15] have extended the notion of a 
regular equivalence to the fuzzy framework. They defined a regular fuzzy equivalence on a 
fuzzy network  as any fuzzy equivalence  on  such that   
for each . In other words, regular fuzzy equivalences are just solutions to the system of 
fuzzy relation equations  

 

where  is an unknown fuzzy relation and solutions are sought in the set  of all fuzzy 
equivalences on . In a similar way, the notion of a structural equivalence can be extended 
to the fuzzy framework. Namely, a structural fuzzy equivalence on a fuzzy network  is any 
solution to the system of fuzzy relation equations  

 

where  is an unknown fuzzy relation and solutions are also sought in . In particular, if 
 is the two-element Boolean algebra (i.e., if we deal with crisp relations), then solutions to 

this system are exactly the structural equivalences in the sense of Lorrain and White [20] 
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(cf., e.g., [19]). Therefore, our concept of a structural fuzzy equivalence generalizes the con-
cept of a structural equivalence.  

Fan et al. [14, 15] proved the existence of the greatest regular fuzzy equivalence on a 
fuzzy network contained in a given fuzzy equivalence, and provided procedures for compu-
ting the greatest regular fuzzy equivalence and the greatest regular crisp equivalence con-
tained in a given fuzzy (resp. crisp) equivalence. However, they have considered only fuzzy 
networks over the Gödel structure. Here we discuss a more general case of fuzzy networks 
over a complete residuated lattice, where some difficulties appear which are not present 
when we work with fuzzy networks over the Gödel structure.  
 

4. Computing the greatest regular fuzzy equivalence on a fuzzy network 

 
As we have noted in the previous section, the greatest structural fuzzy equivalence on 

the fuzzy network  is the greatest solution in  to the system  

 

Clearly, the system (4.1) is the conjunction of two systems of fuzzy relation equations: 

 

 

Using the well-known results by Sanchez [30] (see also [27-29]), it has been shown in [17] 
that the greatest fuzzy equivalences  and  which are solutions to (4.2) and (4.3), 
respectively, are given by 

 

 

for all .  
Consequently, the greatest structural fuzzy equivalence on the fuzzy network  is the 

intersection of  and , i.e., . Moreover, for any given fuzzy equivalence  
on , the greatest structural fuzzy equivalence on  contained in  is just the intersection 

 of  and .   
As well as the greatest regular fuzzy equivalence is concerned, the situation is much 

complicated. It has been found in [17] that it is very convenient to represent the system  

 

as the conjunction of two systems of fuzzy relation inequalities: 

 

 

The splitting of the system (4.4) is extremely important for computing its greatest solution. 
Namely, it has been shown in [17] that the system (4.5) is equivalent to the system of fuzzy 
relation equations 
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and (4.6) is equivalent to the system 

 

and it turned out the systems (4.7) and (4.8) are more convenient for computing the great-
est solutions. Indeed, let us define functions , , and  of  into itself by 

 

 

 

for all  and . Then the systems (4.7) and (4.8), i.e., the systems (4.5) and 
(4.6), are respectively equivalent to the following fuzzy relation inequalities 

 

and consequently, the system (4.4) is equivalent to the fuzzy relation inequality 

 

Therefore, the greatest regular fuzzy equivalence on the fuzzy network  contained in a 
given fuzzy equivalence  on  can be computed as the greatest solution in  to the fol-
lowing system of fuzzy relation inequalities  

 

In the sequel we present an algorithm for computing the greatest solution to (4.12). 
Let us define a sequence  of fuzzy equivalences on  by 

 

The sequence  is descending, and if it is finite, i.e., if , for some , 
then , for every , and  equals the greatest regular fuzzy equivalence con-
tained in the given fuzzy equivalence  (cf. [17]).  

Therefore, we have the following algorithm: 

Algorithm. (Construction of the greatest regular fuzzy equivalences). The input of this algo-
rithm are a fuzzy network  and a given fuzzy eqivalence  on , and the 
output is the greatest regular fuzzy equivalence  contained in .  

The procedure is to construct the descending sequence  which correspond to  
and . It is constructed inductively in the following way: 

(A1) The first member of the sequence is  , i.e., we put . 

(A2) After the -th step let the -th member  of the sequence have been constructed. 

(A3) In the next step we construct the -st member  of the sequence by means 
of the formulas (4.9)–(4.11) and (4.13).  

(A4) Then we check whether . If it is not true, we go to the next step. Otherwise, 
if it is true, then the procedure terminates and outputs  . 
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If the underlying structure of truth values  is locally finite, i.e., if every finitely generated 
subalgebra of  is finite, then the algorithm terminates in a finite number of steps, for every 
fuzzy network over . In particular, this is true in the traditional fuzzy logic based on the 
Gödel structure. But, if  is not locally finite, then the sequence  may not be finite, 
and then the algorithm does not terminate in a finite number of steps, although the greatest 
regular fuzzy equivalence  contained in  always exist. In fact, we have that 

 

but the equality in (4.14) does not necessarily hold. Certain necessary conditions under 
which the sequence  must be finite, or the equality in (4.14) must hold, have been 
described in [17].  

It is clear that every solution to the system (4.1) must be a solution to the system (4.4), 
and hence, every structural fuzzy equivalence is a regular fuzzy equivalence. As we have 
seen, the greatest structural fuzzy equivalences are easier to compute than the greatest 
regular ones, and they can be computed for fuzzy networks over an arbitrary complete re-
siduated lattice, even in cases when the greatest regular fuzzy equivalence can not be com-
puted by means of the above given procedure. Therefore, in cases when we are not able to 
compute the greatest regular fuzzy equivalence, instead we can use the greatest structural 
one. However, the greatest structural fuzzy equivalences give worse results in the posi-
tional analysis of social networks than the greatest regular ones, because they may give 
strictly greater number of positions.   

Another option that can be used when we are unable to compute the greatest regular 
fuzzy equivalence is to work with the greatest regular crisp equivalence. Namely, the func-
tion  can be modified so that it “computes” the greatest regular crisp equivalence con-
tained in a given fuzzy or crisp equivalence. Let  denote the set of all crisp equiva-
lences on , and let us define a function  by , for every 

. Now, let a sequence   of crisp equivalences on  be defined by 

 

The sequence  is also descending, and it is always finite, independently of the local 
finiteness of , since  and  are finite sets, and   is contained in . Conse-
quently, we have that the sequence  stabilizes at some  ( ), i.e.,  is the least 
member of this sequence, and this  is the greatest regular crisp equivalence contained in 
the given fuzzy equivalence  (cf. [17]).  

It is worth noting that the greatest regular crisp equivalences also give worse results in 
the positional analysis of social networks than the greatest regular fuzzy equivalences, i.e., 
they may also give strictly greater numbers of positions. However, the greatest regular 
crisp equivalences are better than the greatest structural fuzzy equivalences (cf. [17]).  

 

5. Related work 

 
As we have already mentioned, fuzzy social networks have been recently studied by Fan 

et al. [14, 15], who have discussed fuzzy social networks over the Gödel structure. Unlike 
them, we have studied fuzzy social networks over a far more general structure, a complete 
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residuated lattice, where some difficulties have appeared which are not present when we 
work with fuzzy social networks over the Gödel structure. Algorithms given in [14, 15] and 
here, for computing the greatest regular fuzzy equivalence and the greatest regular crisp 
equivalence contained in a given fuzzy or crisp equivalence, are similar, but quite different. 
Actually, they are obtained using completely different methodologies. The results that are 
presented here, concerning regular and structural fuzzy equivalences, have been obtained 
in [17], where not only solutions to the systems (4.1) and (4.4) have been studied, but also 
solutions to the systems (4.2) and (4.3), and (4.5) and (4.6). Solutions to these systems 
have been sought not only in the set  of all fuzzy equivalences on , but also in the set 

 of all fuzzy quasi-orders (reflexive and transitive fuzzy relations) on . 
Solutions to the systems (4.5) and (4.6) in  and  play a very important role in 

the fuzzy automata theory, where they are respectively called left invariant and right inva-
riant fuzzy quasi-orders and equivalences (cf. [11, 31]; in [17] they are called left regular 
and right regular). They have been used in [11, 31] in the state reduction of fuzzy automata 
and fuzzy recognizers. Equivalences which are solutions to a system that correspond to 
(4.6), known as bisimulation equivalences, play an outstanding role in the concurrency 
theory. Bisimulations and bisimulation equivalences emerged from the concurrency theory, 
but they are employed today in a number of areas of computer science and mathematics, 
such as functional languages, object-oriented languages, types, data types, domains, data-
bases, compiler optimizations, program analysis, verification tools, modal logic, set theory, 
etc. For more information about bisimulations and bisimulation equivalences the reader is 
referred to [11,17,31].  
 

Резиме 
 
Овај рад има више циљева. Прво, намера нам је да истраживаче у друштвеним наука-

ма охрабримо да користе неке савремене математичке методе другачије од тради-

ционалних метода статистике и анализе података, a посебно, да користе методе 

анализе социјалних мрежа. Друго, желимо да пропагирамо фази приступ као начин 

за превазилажење неодређености које су увек присутне у истраживањима у друш-

твеним наукама.  У раду је дат сажет преглед главних идеја и најновијих резултата у 

области позиционе анализе социјалних мрежа и указано је на везе између анализе 

социјалних мрежа и неких актуелних области рачунарских и математичких наука.  
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