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THE LATTICE OF POSITIVE QUASI-ORDERS
ON AN AUTOMATON*

Miroslav Ćirić, Stojan Bogdanović and Tatjana Petković

Abstract. Making a specialization of the general definition of positive quasi-
orders on universal algebras to automata, treated as unary algebras, we define
positive quasi-orders on automata, and we study them from the aspects of
their relationships with lattices of subautomata of automata and direct sum
decompositions of automata.

1. Introduction and Preliminaries

Positive quasi-orders have been first defined and studied by B. M. Schein
[18], 1965, in Theory of semigroups, where they shown oneself to be very use-
ful, especially in investigations of semilattice decompositions of semigroups
and related decompositions, carried out by T. Tamura in [21], M. S. Putcha
in [15], [16], and S. Bogdanović and M. Ćirić in [4]–[6] and [8]–[10]. By
M. Ćirić, S. Bogdanović and T. Petković in [12], the definition of positive
quasi-orders was extended to an arbitrary universal algebra, and making a
specialization of this general notion to automata, treated as unary algebras,
one obtains the positive quasi-orders on an automaton, which are the topic
of the present investigation.

Positive quasi-orders on an automaton will be here studied from the as-
pect of their relationships with the lattice of subautomata of this automaton,
and from the aspect of their usage in the general theory of direct sum de-
compositions of automata, developed by M. Ćirić and S. Bogdanović in [11].
Many of the results obtained here generalize certain results obtained in [11].

Throughout this paper, N will denote the set of all positive integers.

Let ξ be a binary relation on a set H. For n ∈ N, ξn will denote the n-th
power of ξ in the semigroup of binary relations on H, ξT will denote the
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transitive closure of ξ and ξ−1 will denote the relation defined by: a ξ−1 b ⇔
b ξ a. For a ∈ H, the set aξ = {x ∈ H | a ξ x} will be called the left coset of
H determined by a, and the set ξa = {x ∈ H | x ξ a} will be called the right
coset of H determined by a. Similarly, for G ⊆ H, the sets

Gξ =
⋃

a∈G

aξ and ξG =
⋃

a∈G

ξa

will be called the left coset and the right coset of H determined by G,
respectively. By ∆H we denote the equality relation on H. If it is clear on
which set this relation is considered, then we write simply ∆.

Let L be a complete lattice. If K is a subset of L containing the meet of
any its nonempty subset, then K is called a complete meet-subsemilattice of
L. A complete join-subsemilattice is defined dually. If K is both complete
meet-subsemilattice and complete join-subsemilattice of L, then it is called a
complete sublattice of L. For a complete lattice L, C(L) will denote the lattice
of all complete 0,1-sublattices of L, and for a complete Boolean algebra B,
B(B) will denote the lattice of all complete Boolean subalgebras of B. These
lattices are also complete. A sublattice K of L containing the zero and the
unity of L is called a 0,1-sublattice of L.

A complete lattice L is infinitely distributive for meets if a∧ (
∨

α∈Y xα) =
∨

α∈Y (a ∧ xα), for every a ∈ L and every nonempty subset {xα | α ∈ Y } of
L. Such lattices are also called complete Brouwerian lattices . An element
a of a lattice L with the zero 0 is an atom of L, if 0 < a and there exists
no x ∈ L such that 0 < x < a. A complete Boolean algebra B is atomic if
every element of B is the join of some set of atoms of B.

It is well-known that the set of all elements of a distributive lattice L
with zero 0 and unity 1, having a complement with respect to 0 and 1, is a
Boolean algebra, which we call the Boolean part of L and which we denote
by B(L). If L is a complete Brouwerian lattice, then the mapping B of C(L)
into B(B(L)) is defined by B : K 7→ B(K), where B(K) is the Boolean part
of K.

A mapping ϕ of a poset P into a poset Q is isotone (antitone) if for
x, y ∈ P , x ≤ y implies xϕ ≤ yϕ ( x ≤ y implies yϕ ≤ xϕ ), and ϕ is an
order isomorphism (dual order isomorphism) if it is an isotone (antitone)
bijection with isotone (antitone) inverse. Note that a poset isomorphic or
dually isomorphic to a (complete) lattice is also a (complete) lattice, and by
Lemma II 3.2 [1] and its dual, any (dual) order isomorphism between lattices
is a (dual) lattice isomorphism.

For a nonempty set H, P (H) will denote the lattice of subsets of H.
Let H be a nonempty set and let L be a sublattice of P (H) containing its
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unity and having the property that any nonempty intersection of elements
of L is also in L. Then for any a ∈ H there exists the smallest element
of L containing a (it is the intersection of all elements of L containing a),
which will be called the principal element of L generated by a. The set of
all principal elements of L is called the principal part of L.

Given a nonempty set H. By B(H) we denote the Boolean algebra of all
binary relations on H. By a quasi-order on H we mean a reflexive and tran-
sitive binary relation on H. The set Q(H) of quasi-orders on an nonempty
set H, partially ordered by inclusion of relations, is a complete lattice, in
which the meet and the join of a subset Q of Q(H) are defined as follows.
The meet of Q equals the set-theoretical intersection of all elements of Q,
and the join of Q equals the set-theoretical union of all elements of the sub-
semigroup generated by Q of the semigroup of all binary relations on H.
The subset E(H) of Q(S) consisting of all equivalence relations on H is a
complete sublattice of Q(H).

Given a complete lattice L. By an operator on L we mean any mapping
of L into itself. The set O(L) of all operators on L is partially ordered by a
relation ≤ defined by: for M, N ∈ O(L), M ≤ N ⇔ (∀a ∈ L) aM ≤ aN .
With such a partial ordering, O(L) is a complete lattice in which the meet
and the join of a subset {Mi | i ∈ I} of O(L) are the operators on L defined
respectively by

a
(
∧

i∈I

Mi
)

=
∧

i∈I

(aMi) and a
(
∨

i∈I

Mi
)

=
∨

i∈I

(aMi),

for a ∈ L. On the other hand, with respect to the usual multiplication of
mappings, i.e. the multiplication defined for M, N ∈ O(L) by a(MN) =
(aM)N , for a ∈ L, O(L) is a semigroup.

An operator M on L is called extensive, if a ≤ aM , for any a ∈ L, and
idempotent , if M2 = M . An extensive, isotone operator is called a semi-
closure operator [20], and an idempotent semi-closure operator is called a
closure operator . If M is an operator on L, we say that an element a ∈ L is
closed with respect to M , or shortly M -closed , if aM = a.

As was proved by T. Tamura in [20], the set S(L) of all semi-closure
operators on L is a complete sublattice and a subsemigroup of O(L), and the
partial order ≤ is compatible with the multiplication on S(L). Furthermore,
the partial order ≤ is positive, i.e. S(L) is a positively ordered semigroup.
Closure operators on L are exactly the idempotents of the semigroup S(L).

A semi-closure operator M on a complete lattice L will be called algebraic
(join-conservative, in Tamura’s terms) if

(∨

i∈I ai
)

M =
∨

i∈I(aiM), for any
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directed subset {ai | i ∈ I} of L, where a non-empty subset K of L is defined
to be directed if any finite subset of K has a upper bound in K. Further, if
(∨

i∈I ai
)

M =
∨

i∈I(aiM), for each subset {ai | i ∈ I} of L, then we say that
M is a complete semi-closure operator .

The following two useful propositions were proved by T. Tamura in [20].

Proposition 1. Let {Mi | i ∈ I} be a family of semi-closure operators on L
and let an operator M on L be defined by:

(1) aM =
∧

{b ∈ L | a ≤ b and b is Mi-closed, for all i ∈ I},

for a ∈ L. Then M is the smallest closure operator on L which is a upper
bound of {Mi | i ∈ I}.

The above defined closure operator M is called a closure operator on L
generated by {Mi | i ∈ I}, and is denoted by M = {Mi | i ∈ I}#.

Proposition 2. Let {Mi | i ∈} be a family of algebraic semi-closure opera-
tors on L. Then

(2) {Mi | i ∈ I}# =
∨

〈Mi | i ∈ I〉 ,

where 〈Mi | i ∈ I〉 denotes the subsemigroup generated by {Mi | i ∈ I} of the
semigroup S(L).

Moreover, for a finite set {M1,M2, . . . , Mk} of algebraic semi-closure op-
erators on L we have

(3) {M1,M2, . . . ,Mk}# =
∨

n∈N
(M1σM2σ · · ·Mkσ)n,

for an arbitrary permutation σ of the set {1, 2, . . . , k}.

All automata which will be considered throughout this paper will be au-
tomata without outputs, in the sense of definition from the book of F. Gécseg
and I. Peák [13]. Since there will be no danger of confusion if the set of states
of an automaton A we denote by the same letter A, this will be done in order
to simplify the notations. For any considered automaton A, its input alpha-
bet will be denoted by X, and the free monoid over X, i.e. the input monoid
of A, will be denoted by X∗. By au we will denote the state of an automaton
A in which A goes from the state a of A under the input word u ∈ X∗. Since
only automata without outputs will be considered, and it is well-known that
these automata can be treated as unary algebras, and vice versa, the notions
such as congruence, subautomaton, generating set etc., will have their usual
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algebraic meanings. The set Sub(A) of all subautomata of an automaton
A, where we also include the empty set – the empty subautomaton of A,
is a complete sublattice of the lattice P (A) of all subsets of A, and it is a
complete Brouwerian lattice.

An automaton A is a direct sum of its subautomata Aα, α ∈ Y , in nota-
tion A =

∑

α∈Y Aα, if

A =
⋃

α∈Y

Aα and Aα ∩Aβ = ∅, for α 6= β.

As was proved by M. Ćirić and S. Bogdanović in [11], the equivalence relation
on A whose classes are different Aα, α ∈ Y , is a congruence on A, and it
is called a direct sum congruence on A. The related partition of A is called
a direct sum decomposition of A, and the automata Aα, α ∈ Y are called
direct summands of A.

A subset H of an automaton A will be called a consistent subset of A, if
for all a ∈ A, u ∈ X∗, au ∈ H implies a ∈ H. Clearly, the free monoid X∗

can be replaced above by the input alphabet X. A consistent subautomaton
of A will be called a filter of A. The empty subautomaton of A is also
defined to be a filter of A. A non-empty filter of A different than the whole
automaton A is called a proper filter of A.

For undefined notions and notations we refer to the books [1], [7], [13],
[14], [17] and [19].

2. Direct Sum Congruence Generating

In this section we give a new representation for the equivalence closure op-
erator and we show how we can generate the smallest direct sum congruence
on an automaton containing a given relation.

For a non-empty set H let B(H) denote the lattice of all binary relations
on H. Define operators U and L on B(H) in the following way: for ξ ∈ B(H)
let

ξU = ξξ−1 and ξL = ξ−1ξ.

Equivalently, U and L can be defined by: for ξ ∈ B(H),

(a, b) ∈ ξU ⇔ (∃c ∈ H) a ξ c & b ξ c;

(a, b) ∈ ξL ⇔ (∃c ∈ H) c ξ a & c ξ b.

By the following two lemmas we describe some properties of the operators
U and L:
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Lemma 1. For an arbitrary ξ ∈ B(H), ξU and ξL are symmetric relations.
If ξ ∈ B(H) is a reflexive relation, then ξU and ξL are also reflexive

relations.

Proof. We have (ξU)−1 = (ξξ−1)−1 = ξξ−1 = ξU , so ξU is symmetric.
If ξ is reflexive, i.e. if ∆ ⊆ ξ, then ∆ = ∆−1 ⊆ ξ−1 and ∆ = ∆2 ⊆ ξξ−1 =

ξU , which means that ξU is reflexive.
The assertions concerning the operator L we prove similarly. �

Lemma 2. The operators U and L are isotone operators on B(H).
On the lattice of reflexive binary relations on H they are extensive oper-

ators.

Proof. Assume ξ, η ∈ B(H) such that ξ ⊆ η. Then ξ−1 ⊆ η−1, so ξU =
ξξ−1 ⊆ ηη−1 = ηU , whence it follows that U is an isotone operator. If
ξ ∈ B(H) is a reflexive relation, i.e. if ∆ ⊆ ξ, then ∆ = ∆−1 ⊆ ξ−1 and
ξ = ξ∆ ⊆ ξξ−1 = ξU , which proves that U is an extensive operator on the
lattice of reflexive binary relations on H.

Similarly we prove the assertions concerning the operator L. �

Let R, S, T and E denote the reflexive, symmetric, transitive and equiv-
alence closure operator on B(H), respectively. It is well-known that the
operator E has the representations E = RST = SRT = STR (see T.
Tamura [20] and T. Tamura and R. Dickinson [22]). Here we give some
other representations of the operator E:

Theorem 1. On the lattice B(H) of binary relations on an arbitrary non-
empty set H the following equalities hold:

E = RUT = RLT.

Proof. Assume an arbitrary ξ ∈ B(H) and set η = ξE. Then η is an
equivalence relation, so η−1 = η = η2, whence ηU = ηη−1 = η2 = η, and
hence ξEU = ξE. Therefore, EU = E. By this, by Lemma 2 and by R ≤ E
we obtain RU ≤ EU = E and so RUT ≤ ET = E. Hence, RUT ≤ E.

On the other hand, by Lemma 1 we have that RS ≤ RU , whence E =
RST ≤ RUT , which completes the proof of the assertion E = RUT .

Similarly we prove E = RLT . �

The general definition of a positive relation on an algebra, given by the
authors in [12], applied to an automaton considered as a unary algebra,
yields the following definition: A relation ξ on an automaton A is defined
to be positive if a ξ au, for any a ∈ A and u ∈ X+. The smallest positive
relation on an automaton A is {(a, au) | a ∈ A, u ∈ X+}, and the set of all
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positive relations on A is the principal dual ideal of B(A) generated by this
relation. Moreover, the operator P on B(A) defined by

ξP = ξ ∪ {(a, au) | a ∈ A, u ∈ X+},

for ξ ∈ B(A), is a closure operator on B(A), and the set of all P -closed
elements of B(A) is exactly the set of all positive relations on A. The
operator P will be called the positive closure operator on B(A).

A natural generalization of the division relation on a semigroup is the
division relation on an algebra, defined by the authors in [12]. Applying
this definition to automata we obtain the division relation on an automaton
A, denoted by |, which is defined by M. Ćirić and S. Bogdanović in [11] as
follows: for a, b ∈ A, a | b ⇔ (∃u ∈ X∗) b = au. The division relation
on A is positive and reflexive, and furthermore, positive reflexive relations
on A form a principal dual ideal of B(A), which is generated by the division
relation, and these are precisely the closed elements of B(A) corresponding
to the closure operator RP = PR.

M. Ćirić and S. Bogdanović proved in [11] that the set D(A) of all di-
rect sum congruences on an automaton A is a principal dual ideal of the
lattice E(A) of equivalence relations on A, and hence, it is a complete meet-
subsemilattice of B(A) containing its unity. Therefore, for any ξ ∈ B(A),
the intersection of all direct sum congruences on A containing ξ, denoted
by ξD, is the smallest direct sum congruence on A containing ξ. In other
words, the operator D : ξ 7→ ξD is a closure operator on B(A) and the
set of all D-closed elements of B(A) equals D(A). The operator D is also
characterized in the following way:

Theorem 2. On the lattice B(A) of binary relations on an arbitrary au-
tomaton A, the following equalities hold:

D = {P, E}# = PE.

Proof. As we noted above, semi-closure operators on B(A) form a subsemi-
group of the semigroup of operators on B(A), so PE is a semi-closure op-
erator. On the other hand, the operator E preserves the positivity, since
positive relations form a principal dual ideal of B(A), whence PEP = PE.
Therefore, (PE)2 = (PEP )E = PE2 = PE, so PE is a closure operator on
B(A). Clearly, P ≤ PE and E ≤ PE. If we assume an arbitrary closure
operator on B(A) such that P ≤ M and E ≤ M , then PE ≤ M2 = M .
Hence, we have proved {P,E}# = PE.

Note that by Lemma 3.1 of [11], a relation ξ ∈ B(A) is a positive equiv-
alence relation on A if and only if it is a direct sum congruence on A. Then
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for any ξ ∈ B(A), ξD is a positive equivalence relation, whence P ≤ D
and E ≤ D, and hence, PE ≤ D. On the other hand, for any ξ ∈ B(A),
ξPE is a direct sum congruence on A, whence D ≤ PE. Therefore, we have
D = PE. �

Applying the above theorem to positive quasi-orders we obtain the fol-
lowing:

Corollary 1. On the lattice Qp(A) of positive quasi-orders on an arbitrary
automaton A, the following equalities hold:

D = ST = UT = LT.

Note that Qp(A) is the principal dual ideal of the lattice Q(A) of quasi-
orders on A generated by the division relation on A.

3. The Lattice of Positive Quasi-Orders

Further we consider positive quasi-orders on automata. The next lemma
gives some useful properties of such quasi-orders, concerning the structure
of their left and right cosets.

Lemma 3. The following conditions for a quasi-order ξ on an automaton
A are equivalent:

(i) ξ is positive;
(ii) (∀a ∈ A)(∀u ∈ X∗) (au)ξ ⊆ aξ;
(iii) (∀a ∈ A)(∀u ∈ X∗) ξa ⊆ ξ(au);
(iv) aξ is a subautomaton of A, for each a ∈ A;
(v) ξa is a consistent subset of A, for each a ∈ A.

Proof. (i) ⇒ (ii). Assume arbitrary a ∈ A, u ∈ X∗. If b ∈ (au)ξ, i.e. au ξ b,
then by the positivity and the transitivity of ξ we have a ξ au ξ b, which yields
a ξ b, i.e. b ∈ aξ, which was to be proved.

(ii) ⇒ (iv). Assume an arbitrary a ∈ A, and assume b ∈ aξ, u ∈ X∗.
By the transitivity of ξ we have bξ ⊆ aξ, so by the reflexivity of ξ and the
hypothesis we obtain bu ∈ (bu)ξ ⊆ bξ ⊆ aξ, which was to be proved.

The implications (i) ⇒ (iii) and (iii) ⇒ (v) we prove similarly as (i) ⇒ (ii)
and (ii) ⇒ (iv). Finally, the implications (iv) ⇒ (i) and (v) ⇒ (i) are
obvious. �

Using the previous lemma we give the following characterization of the
lattice of positive quasi-orders on an automaton:
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Theorem 3. The lattice Qp(A) of positive quasi-orders on an automaton
A is dually isomorphic to the lattice of complete 0,1-sublattices of Sub(A).

Proof. As was noted by the first two authors in [4], the lattice Q(A) of
quasi-orders on A is dually isomorphic to the lattice C(P(A)) of complete
0,1-sublattices of the lattice P(A) of all subsets of A. There are two dual
isomorphisms of Q(A) onto C(P(A)). The first one, denoted by Λ : ξ 7→ ξΛ,
is given in terms of the left cosets of ξ as follows:

ξΛ = {H ∈ P(A) |Hξ = H},

and the second one, denoted by Π : ξ 7→ ξΠ, is given in terms of the right
cosets of ξ as follows:

ξΠ = {H ∈ P(A) | ξH = H}.

In the proof of this theorem we will use the dual isomorphism Λ.

To prove the assertion of the theorem, it is enough to prove that a quasi-
order ξ is positive if and only if ξΛ is contained in Sub(A).

Suppose that ξ is a positive quasi-order on A and assume an arbitrary
H ∈ ξΛ. Then by Lemma 3 we have

H = Hξ =
⋃

a∈H

aξ ∈ Sub(A),

since Sub(A) is a complete sublattice of P(A).

Conversely, let ξΛ is contained in Sub(A). Then for any a ∈ A we have
aξ ∈ ξΛ ⊆ Sub(A), so by Lemma 3 we have that ξ is positive. This completes
the proof of the theorem. �

If we consider the dual isomorphism Π instead of Λ, we obtain the follow-
ing theorem:

Theorem 4. The lattice Qp(A) of positive quasi-orders on an automaton
A is dually isomorphic to the lattice of complete 0,1-sublattices of the lattice
of consistent subsets of A.

Note that the principal elements of the lattices ξΛ and ξΠ are exactly the
left cosets aξ, a ∈ A, and the right cosets ξa, a ∈ A, respectively.

As a consequence of Theorems 3 and 4 we obtain the following theorem
proved by M. Ćirić and S. Bogdanović in [11].
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Theorem 5. The lattice D(A) of direct sum congruences on an automaton
A is dually isomorphic to the lattice of complete Boolean subalgebras of the
Boolean algebra F(A) of filters of A.

Proof. This theorem was proved by the first two authors in [11], but here
we give another proof, using Theorems 3 and 4. Note that by Lemma 3.1
[11], direct sum congruences on A are exactly positive equivalence relations
on A, so in view of Theorems 3 and 4, to prove this theorem it is enough to
prove that for an arbitrary positive quasi-order ξ on A, ξ is an equivalence
relation if and only if ξΛ is a Boolean subalgebra of F(A).

Suppose first that ξ is an equivalence relation. Then for an arbitrary
H ∈ P(A) we have Hξ = ξH, and by this and Theorems 3 and 4 it follows
that ξΛ = ξΠ ⊆ F(A). Assume an arbitrary H ∈ ξΛ, Let G be the set-
theoretic complement of H in A. Assume that b ∈ Gξ, i.e. a ξ b, for some
b ∈ G. If a /∈ G, then a ∈ H and then b ∈ ξa ⊆ ξH = Hξ = H, which
contradicts our assumption b ∈ G. Therefore, a ∈ G and so Gξ = G, which
yields G ∈ ξΛ. Hence ξΛ is a Boolean subalgebra of F(A).

Conversely, suppose that ξΛ is a Boolean subalgebra of F(A). Then by
Theorem 56 of [19], ξΛ is atomic, and the atoms of ξΛ are precisely its
principal elements. Therefore, for arbitrary a, b ∈ A, either aξ ∩ bξ = ∅, or
aξ = bξ. Assume now a, b ∈ A such that a ξ b. Then aξ ∩ bξ 6= ∅, whence
aξ = bξ, so b ξ a. Therefore, ξ is an equivalence relation. This completes the
proof of the theorem. �

We also prove the following interesting result:

Theorem 6. For any automaton A, the following diagram commutes:

Qp(A) D−−−−→ D(A)

Λ





y





yΛ

C(Sub(A)) B−−−−→ B(F(A))

In other words, for an any ξ ∈ Qp(A), (ξD)Λ is the Boolean part of ξΛ.

Proof. Assume an arbitrary H ∈ (ξD)Λ. Then H(ξD) = H, whence H ⊆
Hξ ⊆ H(ξD) = H, so H = Hξ and H ∈ ξΛ. Therefore, (ξD)Λ is contained
in ξΛ, and, by the proof of Theorem 5, it is a complete Boolean subalgebra
of B(ξΛ).

Conversely, assume an arbitrary H ∈ B(ξΛ). Then H, H ′ ∈ ξΛ, i.e.
Hξ = H amd H ′ξ = H ′, where H ′ denotes the set-theoretical complement
of H in A. To prove that H(ξD) = H, it is enough to prove H(ξD) ⊆ H,
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so assume an arbitrary a ∈ H(ξD). Then (b, a) ∈ ξD, for some b ∈ H,
and by Corollary 1 we have (b, a) ∈ ξD = ξUT . Therefore, there exist
c1, . . . , cn ∈ A, n ∈ N, n ≥ 2, such that

c1 = b, cn = a and (ci−1, ci) ∈ ξU, for all i ∈ {2, . . . , n}.

Suppose that ci /∈ H, for some i ∈ {2, . . . , n}. Set

k = min{i | 2 ≤ i ≤ n & ci /∈ H}.

Then ck /∈ H, i.e. ck ∈ H ′, and also ck−1 ∈ H and (ck−1, ck) ∈ ξU , i.e.
ck−1ξ ∩ ckξ 6= ∅. But we have that ck−1ξ ⊆ Hξ = H and ckξ ⊆ H ′ξ = H ′,
so ck−1ξ ∩ ckξ = ∅, which gets a contradiction. Thus, we conclude that
ci ∈ H, for any i ∈ {1, . . . , n}, so a = cn ∈ H, which was to be proved.
Hence, H(ξD) = H, i.e. H ∈ (ξD)Λ, so B(ξΛ) ⊆ (ξD)Λ, which completes
the proof of the theorem. �

Note that the mapping Λ in the previous theorem can be replaced by Π
(in this case we replace Sub(A) by the lattice of consistent subset of A).
This is in fact a consequence of the following theorem:

Theorem 7. Let ξ be a positive quasi-order on an automaton A. Then

B(ξΛ) = B(ξΠ) = (ξD)Λ = (ξD)Π = ξΛ ∩ ξΠ.

Proof. It is enough to prove that

H ∈ B(ξΛ) ⇔ Hξ = ξH = H,

for an arbitrary H ⊆ A.

Suppose that H ∈ B(ξΛ). This means that H, H ′ ∈ ξΛ, i.e. Hξ = H
and H ′ξ = H ′, where H ′ denotes the set-theoretical complement of H in
A. In order to prove ξH ⊆ H, assume a ∈ ξH. Then a ξ b, for some
b ∈ H, and if a /∈ H, i.e. a ∈ H ′, then b ∈ aξ ⊆ H ′ξ = H ′, which gets a
contradiction. By this we conclude that a ∈ H and hence ξH ⊆ H, so we
proved Hξ = ξH = H.

Conversely, assume that Hξ = ξH = H. By the definition of the mapping
Λ we have H ∈ ξΛ, so it remains to prove that H ′ ∈ ξΛ, i.e. that H ′ξ =
H ′. Assume a ∈ H ′ξ. Then b ξ a, for some b ∈ H ′, and if a ∈ H, then
b ∈ ξa ⊆ ξH = H, which gets a contradiction, so we conclude that a ∈ H ′

and H ′ξ = H ′. This completes the proof of the theorem. �
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For a positive quasi-order ξ on an automaton A define operators Sξ, Cξ

and F ξ on P (A) by

HSξ = Hξ, HCξ = ξH and HF ξ = H(ξD),

for H ∈ P (A). Clearly, H(ξD) = (ξD)H, since ξD is an equivalence rela-
tion. By the above proved theorems, Sξ, Cξ and F ξ are closure operators
on P (A) and the sets of Sξ-closed, Cξ-closed and F ξ-closed elements of
P (A) are exactly ξΛ, ξΠ and ξΛ ∩ ξΠ, respectively. Moreover, we have the
following:

Theorem 8. Let ξ be a positive quasi-order on an automaton A. Then

F ξ = {Sξ, Cξ}# =
∨

n∈N
(SξCξ)n =

∨

n∈N
(CξSξ)n.

Proof. Set Mξ = {Sξ, Cξ}#. For an arbitrary H ∈ P (A), by (1) and the
definition of F ξ we have

HM ξ =
∧

{G ∈ P (A) |H ⊆ G and HSξ = HCξ = H}

=
∧

{G ∈ ξΛ ∩ ξΠ |H ⊆ G} = HF ξ.

Therefore, M ξ = F ξ.
On the other hand, it is easy to verify that Sξ and Cξ are complete

closure operators on P (A), so using Proposition 2 we complete the proof of
the theorem. �

For an arbitrary positive quasi-order ξ on an automaton A we have that
the Boolean algebra (ξD)Λ = (ξD)Π = ξΛ ∩ ξΠ is atomic, and for an
arbitrary a ∈ A, the atom of (ξD)Λ containing a, i.e. the summand in the
direct sum decomposition of A corresponding to the direct sum congruence
ξD, is a(ξD) = aF ξ. The following consequence of the previous theorem
give an algorithm for finding the atoms in (ξD)Λ.

Corollary 2. Let A be an automaton, ξ ∈ Qp(A), a ∈ A and let a sequence
{Uξ

n(a)}n∈N of subsets of A be defined by:

U ξ
1 (a) =

(

aSξ)Cξ, U ξ
n+1(a) =

((

U ξ
n(a)

)

Sξ)Cξ, for n ∈ N.

Then {Uξ
n(a)}n∈N is an increasing sequence of sets and

aF ξ =
⋃

n∈N
Uξ

n(a).
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In view of Theorem 8, the final result of the above procedure will not be
changed when we permute the operators Sξ and Cξ.

By the above corollary we obtain Theorems 2.2. and 2.3 of [11], which
give algorithms for finding the summands in the greatest direct sum decom-
position of an automaton.
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II. Facta Univ. (Nǐs), Ser. Math. Inform. 9, (1994), 7–17.
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