MORE ON NORMAL BAND COMPOSITIONS OF SEMIGROUPS*

Miroslav Ćirić and Stojan Bogdanović

This paper is dedicated to Professor D. S. Mitrinović

Abstract

The authors in [1] gave a construction of a normal band of arbitrary semigroups, and in [2] they studied band compositions which are (punched) spined products of a band and a semilattice of semigroups. This paper is a continuation of these two papers. Using the constructions from [1], in this paper we give a construction of a semigroup which is a (punched) spined product of a normal band and a semilattice of semigroups, different than the one from [2]. The obtained results generalize the well-known characterizations of spined products of a normal band and a semilattice of groups through orthodox normal bands of groups and through strong semilattices of rectangular groups.

Let B be a band. By \leq we will denote the natural partial order on B, i.e. the relation on B defined by: $j \leq i \Leftrightarrow i j=j i=j,(i, j \in B)$. By \preccurlyeq we will denote a quasi-order on B defined by: $j \preccurlyeq i \Leftrightarrow j=j i j,(i, j \in B)$. Let $i \mapsto[i], i \in B$, denote the natural homomorphism of the smallest semilattice congruence on B. It is easy to verify that $j \preccurlyeq i \Leftrightarrow[j] \leq[i]$, for all $i, j \in B$. If P and Q are two semigroups having a common homomorphic image Y, then the spined product of P and Q with respect to Y is $S=\{(a, b) \in$ $P \times Q \mid a \varphi=b \psi\}$, where $\varphi: P \rightarrow Y$ and $\psi: Q \rightarrow Y$ are homomorphisms onto Y, [6], [8], [9]. If Y is a semilattice and P and Q are a semilattice Y of semigroups $P_{\alpha}, \alpha \in Y$, and $Q_{\alpha}, \alpha \in Y$, respectively, then the spined product of P and Q with respect to Y is $S=\cup_{\alpha \in Y} P_{\alpha} \times Q_{\alpha}$. A subsemigroup S of a spined product of semigroups P and Q with respect to Y, that is also a subdirect product of P and Q, is a punched spined product of P and Q with respect to $Y,[5]$. If ξ is a congruence on a semigroup S, ξ^{\natural} will denote the natural homomorphism induced by ξ.

[^0]Let B be a band. To each $i \in B$ we associate a semigroup S_{i} and an oversemigroup D_{i} of S_{i} such that $D_{i} \cap D_{j}=\emptyset$, if $i \neq j$. For $i, j \in B, i \succcurlyeq j$, let $\phi_{i, j}$ be a mapping of S_{i} into D_{j} and suppose that the family of $\phi_{i, j}$ satisfies the following conditions:
(1) $\phi_{i, i}$ is the identity mapping on S_{i}, for every $i \in B$;
(2) $\left(S_{i} \phi_{i, i j}\right)\left(S_{j} \phi_{j, i j}\right) \subseteq S_{i j}$, for all $i, j \in B$;
(3) $\left[\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)\right] \phi_{i j, k}=\left(a \phi_{i, k}\right)\left(b \phi_{j, k}\right)$, for $a \in S_{i}, b \in S_{j}, i j \succcurlyeq k, i, j, k \in B$.

Define a multiplication $*$ on $S=\cup_{i \in B} S_{i}$ by: $a * b=\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)$, for $a \in S_{i}, b \in S_{j}$. Then S is a band B of semigroups $S_{i}, i \in B$, in notation $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$. If we assume $i=j$ in (3), then we obtain that $\phi_{i, k}$ is a homomorphism, for all $i, k \in B, i \succcurlyeq k$. If $D_{i}=S_{i}$, for each $i \in B$, then we write $S=\left(B ; S_{i}, \phi_{i, j}\right)$. Here the condition (2) can be omitted. If $S=\left(B ; S_{i}, \phi_{i, j}, D_{i}\right)$ and if
(4) $S_{i} \phi_{i, j} \subseteq S_{j}$, for $[i]=[j], i, j \in B$;
(5) $\phi_{i, j} \phi_{j, k}=\phi_{i, k}$, for $[i]=[j] \geq[k], i, j, k \in B$;
then we will write $S=\left[\left[B ; S_{i}, \phi_{i, j}, D_{i}\right]\right]$. If $S=\left(B ; S_{i}, \phi_{i, j}\right)$ with (4) and (5), then we will write $S=\left[\left[B ; S_{i}, \phi_{i, j}\right]\right.$, [2]. If $S=\left(B ; S_{i}, \phi_{i, j}\right)$ and if $\left\{\phi_{i, j} \mid i, j \in B, i \succcurlyeq j\right\}$ is a transitive system of homomorphisms, i.e. if $\phi_{i, j} \phi_{j, k}=\phi_{i, k}$, for $i \succcurlyeq j \succcurlyeq k$, then we will write $S=\left[B ; S_{i}, \phi_{i, j}\right]$, and we will say that S is a strong band B of semigroups S_{i}. If B is a semilattice, then we obtain a strong semilattice of semigroups. A strong semilattice of rectangular bands will be called a normal band and in the further considerations, the phrase " $B=\left[Y ; B_{\alpha}, \theta_{\alpha, \beta}\right]$ is a normal band" will mean: a band B is a strong semilattice Y of rectangular bands $B_{\alpha}, \alpha \in Y$, with $\left\{\theta_{\alpha, \beta}\right\}$ as its transitive system of homomorphisms.

Let a band B be a semilattice Y of rectangular bands $B_{\alpha}, \alpha \in Y$, and let $\left\{S_{i} \mid i \in B\right\}$ be a family pairwise disjoint semigroups. The authors in [1] showed that a semigroup S is a band B of semigroups $S_{i}, i \in B$, if and only if the following conditions hold:
(6) $S=\left(Y ; S_{\alpha}, \phi_{\alpha, \beta}, D_{\alpha}\right)$;
(7) for every $\alpha \in Y, S_{\alpha}$ is a matrix B_{α} of semigroups $S_{i}, i \in B_{\alpha}$;
(8) $\left(S_{i} \phi_{\alpha, \alpha \beta}\right)\left(S_{j} \phi_{\beta, \alpha \beta}\right) \subseteq S_{i j}$, for all $i \in B_{\alpha}, j \in B_{\beta}, \alpha, \beta \in Y$. Furthermore, they proved that in a semigroup satisfying (6), (7) and (8), for each $\alpha \in Y, D_{\alpha}$ can be chosen to satisfy:
(9) D_{α} is a matrix B_{α} of semigroups $D_{i}, i \in B_{\alpha}$;
(10) $S_{i} \subseteq D_{i}$, for every $i \in B_{\alpha}$;
if and only if B is a normal band. This gives a construction of a normal band of arbitrary semigroups. Here we pose the following question: How to obtain a (punched) spined product of a normal band and a semilattice of semigroups from this construction? An answer for this question will be
given by the next theorems.
For undefined notions and notations we refer to [1], [2] and [7].
In the further considerations of semigroups S satisfying the conditions (6), (7) and (8), * will denote the multiplication in S, o will denote the multiplications in $D_{\alpha}, \alpha \in Y$, and the multiplications in $S_{i}, i \in B$, will be denoted in the usual way.

Theorem 1. Let $B=\left[Y ; B_{\alpha}, \theta_{\alpha, \beta}\right]$ be a normal band.
If S is a semigroup which satisfies the conditions (6), (7) and (8), and if for each $\alpha \in Y$, a semigroup D_{α} can be chosen to satisfy:
(11) $D_{\alpha}=\left(B_{\alpha} ; D_{i}, \chi_{i, j}, E_{i}\right)$;
(12) $S_{i} \subseteq D_{i}$, for every $i \in B_{\alpha}$.

Then
(A1) a relation ρ on S defined by: $a \rho b$ if and only if $a \in S_{i}, b \in S_{j}, i, j \in$ $B_{\alpha}, \alpha \in Y$, and

$$
a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, k}=b \phi_{\alpha, \beta} \chi_{j \theta_{\alpha, \beta}, k},
$$

for every $\beta \in Y, \alpha \geq \beta, k \in B_{\beta}$, is a congruence on S and the semigroup $T=S / \rho$ is a semilattice Y of semigroups $T_{\alpha}=S_{\alpha} \rho^{\natural}, \alpha \in$ Y;
(A2) S is a punched spined product of T and B with respect to Y.
Conversely, if a semigroup S is a punched spined product of semigroups $T=\left(Y ; T_{\alpha}, \omega_{\alpha, \beta}, U_{\alpha}\right)$ and B with respect to Y and if we assume that:
(B1) $S_{\alpha}=\left(T_{\alpha} \times B_{\alpha}\right) \cap S, D_{\alpha}=U_{\alpha} \times B_{\alpha}$, for $\alpha \in Y$;
(B2) for $\alpha, \beta \in Y, \alpha \geq \beta$, a mapping $\phi_{\alpha, \beta}: S_{\alpha} \rightarrow D_{\beta}$ is defined by:

$$
(a, i) \phi_{\alpha, \beta}=\left(a \omega_{\alpha, \beta}, i \theta_{\alpha, \beta}\right), \quad\left((a, i) \in S_{\alpha}\right)
$$

(B3) $S_{i}=\left(T_{\alpha} \times\{i\}\right) \cap S, D_{i}=U_{\alpha} \times\{i\}$, for $\alpha \in Y, i \in B_{\alpha}$;
then S satisfies the conditions (6), (7) $i(8)$, for every $\alpha \in Y, D_{\alpha}$ is a strong matrix B_{α} of semigroups $D_{i}, i \in B_{\alpha}$, and the condition (12) holds.

Proof. Let S be a semigroup which satisfies (6), (7) and (8), and let for every $\alpha \in Y$, a semigroup D_{α} can be chosen to satisfy (11) and (12).
(A1) It is clear that ρ is reflexive and symmetric. Let $a \rho b$ and $b \rho c$, $a, b, c \in S$. Then $a \in S_{i}, b \in S_{j}, c \in S_{k}, i, j, k \in B_{\alpha}, \alpha \in Y$. Assume $\beta \in Y$ such that $\alpha \geq \beta$, and assume $l \in B_{\beta}$. Then

$$
a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, l}=b \phi_{\alpha, \beta} \chi_{j \theta_{\alpha, \beta}, l}=c \phi_{\alpha, \beta} \chi_{k \theta_{\alpha, \beta}, l},
$$

whence $a \rho c$. Thus, ρ is transitive.

Assume $a, b \in S$ such that $a \rho b$, and assume $x \in S$. Let $a \in S_{i}, b \in$ $S_{j}, i, j \in B_{\alpha}, x \in S_{k}, k \in B_{\beta}, \alpha, \beta \in Y$. Then $a * x \in S_{i k}, b * x \in S_{j k}$, and $i k, j k \in B_{\alpha \beta}$. Assume $\gamma \in Y$ such that $\alpha \beta \geq \gamma$, and assume $l \in B_{\gamma}$. Then

$$
\begin{aligned}
(a * & x) \phi_{\alpha \beta, \gamma} \chi_{(i k) \theta_{\alpha \beta, \gamma}, l}=\left[\left(a \phi_{\alpha, \alpha \beta}\right) \circ\left(x \phi_{\beta, \alpha \beta}\right)\right] \phi_{\alpha \beta, \gamma} \chi_{(i k) \theta_{\alpha \beta, \gamma}, l} \\
& =\left[\left(a \phi_{\alpha, \gamma}\right) \circ\left(x \phi_{\beta, \gamma}\right)\right] \chi_{(i k) \theta_{\alpha \beta, \gamma}, l} \\
& =\left[\left(a \phi_{\alpha, \gamma} \chi_{i \theta_{\alpha, \gamma},\left(i \theta_{\alpha, \gamma}\right)\left(k \theta_{\beta, \gamma}\right)}\right)\left(x \phi_{\beta, \gamma} \chi_{k \theta_{\beta, \gamma}\left(i \theta_{\alpha, \gamma}\right)\left(k \theta_{\beta, \gamma}\right)}\right] \chi_{\left(i \theta_{\alpha, \gamma}\right)\left(k \theta_{\beta, \gamma}\right), l}\right. \\
& =\left(a \phi_{\alpha, \gamma} \chi_{i \theta_{\alpha, \gamma}, l}\right)\left(x \phi_{\beta, \gamma} \chi_{k \theta_{\beta, \gamma}, l}\right)=\left(b \phi_{\alpha, \gamma} \chi_{j \theta_{\alpha, \gamma}, l}\right)\left(x \phi_{\beta, \gamma} \chi_{k \theta_{\beta, \gamma}, l}\right) \\
& =\cdots=(b * x) \phi_{\alpha \beta, \gamma} \chi_{(j k) \theta_{\alpha \beta, \gamma}, l},
\end{aligned}
$$

since $(i k) \theta_{\alpha \beta, \gamma}=\left[\left(i \theta_{\alpha, \alpha \beta}\right)\left(k \theta_{\beta, \alpha \beta}\right)\right] \theta_{\alpha \beta, \gamma}=\left(i \theta_{\alpha, \gamma}\right)\left(k \theta_{\beta, \gamma}\right)$. Thus, $a * x \rho b * x$. Similarly, $x * a \rho x * b$. Hence, ρ is a congruence. Let η be a semilattice congruence on S whose classes are the various $S_{\alpha}, \alpha \in Y$. Then $\rho \subseteq \eta$, so $T=S / \rho$ is a semilattice Y of semigroups $T_{\alpha}=S_{\alpha} \rho^{\natural}$.
(A2) Let ξ be the band congruence on S determined by the partition $\left\{S_{i} \mid i \in B\right\}$. Clearly, $\rho \cap \xi=\Delta$, where Δ is the equality relation on S. Thus S is a subdirect product of T and B, where an one-to-one homomorphism Φ of S into $T \times B$ is given by: $a \Phi=\left(a \rho^{\natural}, a \xi^{\natural}\right), a \in S$. Assume $a \in S$. Let $a \in S_{i}, i \in B_{\alpha}, \alpha \in Y$. Then by $a \in S_{\alpha}$ we obtain that $a \rho^{\natural} \in T_{\alpha}, a \xi^{\natural}=i \in$ B_{α}, i.e. $a \Phi \in T_{\alpha} \times B_{\alpha}$. Thus, $S \Phi \subseteq \cup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$. Hence, S is a punched spined product of semigroups T and B with respect to Y.

The converse follows immediately.
Theorem 2. Let $B=\left[Y ; B_{\alpha}, \theta_{\alpha, \beta}\right]$ be a normal band.
If S is a semigroup which satisfies the conditions (6), (7) and (8), and if for every $\alpha \in Y$, a semigroup D_{α} can be chosen to satisfy:
(13) $D_{\alpha}=\left[B_{\alpha} ; D_{i}, \chi_{i, j}\right]$;
(14) $S_{i} \subseteq D_{i}$, for each $i \in B_{\alpha}$;
(15) $S_{i} \chi_{i, j} \subseteq S_{j}$, for all $i, j \in B_{\alpha}$;
(16) $a \chi_{i, j} \phi_{\alpha, \beta}=a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, j \theta_{\alpha, \beta}}$, for $\alpha, \beta \in Y, \alpha \geq \beta, i, j \in B_{\alpha}, a \in S_{i}$; then the condition (A1) of Theorem 1 holds and S is a spined product of semigroups T and B with respect to Y.

Conversely, if a semigroup S is a spined product of semigroups $T=$ $\left(Y ; T_{\alpha}, \omega_{\alpha, \beta}, U_{\alpha}\right)$ and B with respect to Y, then in notations from (B1)-(B3) of Theorem 1, S satisfies the conditions (6)-(8) and (13)-(16).

Proof. Let a semigroup S satisfies the conditions (6)-(8) and let for every $\alpha \in Y$, a semigroup D_{α} can be chosen to satisfy the conditions (13)-(16). Note that for $\alpha, \beta \in Y, \alpha \geq \beta, i \in B_{\alpha}$, by Theorem $2[1] S_{i} \phi_{\alpha, \beta} \subseteq D_{i \theta_{\alpha, \beta}}$, so the right hand side of (16) is correct. Also, the conditions (11) and (12)
hold, so by Theorem 1 we have that (A1) holds and that S is a punched spined product of semigroups T and B with respect to Y.

Assume an arbitrary $(u, i) \in \cup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$. Then $(u, i) \in T_{\alpha} \times B_{\alpha}$, for some $\alpha \in Y$, and $u=b \rho^{\natural}$, for some $b \in S_{\alpha}$. Let $b \in S_{j}, j \in B_{\alpha}$, and let $a=b \chi_{j, i}$. By (15), $a \in S_{i}$. Assume $\beta \in Y$ such that $\alpha \geq \beta$, and assume $k \in B_{\beta}$. Then by (13) and (16) we obtain

$$
a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, k}=b \chi_{j, i} \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, k}=b \phi_{\alpha, \beta} \chi_{j \theta_{\alpha, \beta}, i \theta_{\alpha, \beta}} \chi_{i \theta_{\alpha, \beta}, k}=b \phi_{\alpha, \beta} \chi_{j \theta_{\alpha, \beta}, k} .
$$

Hence, $a \rho b$, so $a \rho^{\natural}=b \rho^{\natural}=u$, whence $a \Phi=(u, i)$. Thus, $S \Phi=\cup_{\alpha \in Y} T_{\alpha} \times$ B_{α}, so S is a spined product of semigroups T and B with respect to Y.

The converse follows immediately.
Theorem 3. Let $B=\left[Y ; B_{\alpha}, \theta_{\alpha, \beta}\right]$ be a normal band and let $\left\{S_{i} \mid i \in B\right\}$ be a family of pairwise disjoint semigroups. Then
(a) $S=\llbracket B ; S_{i}, \phi_{i, j} \rrbracket$ if and only if $S=\left(Y ; S_{\alpha}, \phi_{\alpha, \beta}\right), S_{\alpha}=\left[B_{\alpha} ; S_{i}, \chi_{i, j}\right]$, for every $\alpha \in Y$, and

$$
\begin{equation*}
a \chi_{i, j} \phi_{\alpha, \beta}=a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, j \theta_{\alpha, \beta}}, \tag{17}
\end{equation*}
$$

for $\alpha, \beta \in Y, \alpha \geq \beta, i, j \in B_{\alpha}, a \in S_{i}$;
(b) $S=\left[B ; S_{i}, \phi_{i, j}\right]$ if and only if $S=\left[Y ; S_{\alpha}, \phi_{\alpha, \beta}\right], S_{\alpha}=\left[B_{\alpha} ; S_{i}, \chi_{i, j}\right]$, for every $\alpha \in Y$, and (17) holds.

Proof. (a) Let $S=\llbracket B ; S_{i}, \phi_{i, j} \rrbracket$. By Theorem 3 [2] we obtain that S is a spined product of semigroups $T=\left(Y ; T_{\alpha}, \omega_{\alpha, \beta}\right)$ and B with respect to Y. Without loss of generality, we can assume that $S=\cup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$. Let $S_{\alpha}=T_{\alpha} \times B_{\alpha}, \alpha \in Y$, for $\alpha, \beta \in Y, \alpha \geq \beta$, let a mapping $\phi_{\alpha, \beta}$ of S_{α} into S_{β} be defined by

$$
(a, i) \phi_{\alpha, \beta}=\left(a \omega_{\alpha, \beta}, i \theta_{\alpha, \beta}\right), \quad\left((a, i) \in S_{\alpha}\right)
$$

$S_{i}=T_{\alpha} \times\{i\}, i \in B_{\alpha}, \alpha \in Y$, and for $\alpha \in Y, i, j \in B_{\alpha}$, let a mapping $\chi_{i, j}$ of S_{i} into S_{j} be defined by

$$
(a, i) \chi_{i, j}=(a, j), \quad\left((a, i) \in S_{i}\right)
$$

Then it is easy to verify that $S=\left(Y ; S_{\alpha}, \phi_{\alpha, \beta}\right), S_{\alpha}=\left[B_{\alpha} ; S_{i}, \chi_{i, j}\right]$, for every $\alpha \in Y$, and that (17) holds.

Conversely, let $S=\left(Y ; S_{\alpha}, \phi_{\alpha, \beta}\right), S_{\alpha}=\left[B_{\alpha} ; S_{i}, \chi_{i, j}\right]$, for every $\alpha \in Y$, and let (17) holds. For $i, j \in B, i \succcurlyeq j, \alpha=[i], \beta=[j]$, let $\phi_{i, j}$ be a mapping of S_{i} into S_{j} defined by

$$
a \phi_{i, j}=a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, j}, \quad\left(a \in S_{i}\right)
$$

Clearly, $a \phi_{i, i}=a \phi_{\alpha, \alpha} \chi_{i, i}=a$, for every $i \in B$. Assume $\alpha, \beta, \gamma \in Y, \alpha \beta \geq$ $\gamma, i \in B_{\alpha}, j \in B_{\beta}, k \in B_{\gamma}, a \in S_{i}, b \in S_{j}$. Then

$$
\begin{aligned}
& {\left[\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)\right] \phi_{i j, k}=\left[\left(a \phi_{\alpha, \alpha \beta} \chi_{i \theta_{\alpha, \alpha \beta}, i j}\right)\left(b \phi_{\beta, \alpha \beta} \chi_{j \theta_{\beta, \alpha \beta}, i j}\right)\right] \phi_{i j, k}} \\
& \quad=\left[\left(a \phi_{\alpha, \alpha \beta}\right) \circ\left(b \phi_{\beta, \alpha \beta}\right)\right] \phi_{\alpha \beta, \gamma} \chi_{(i j) \theta_{\alpha \beta, \gamma}, k}=\left[\left(a \phi_{\alpha, \gamma}\right) \circ\left(b \phi_{\beta, \gamma}\right)\right] \chi_{(i j) \theta_{\alpha \beta, \gamma}, k} \\
& \quad=\left[\left(a \phi_{\alpha, \gamma} \chi_{i \theta_{\alpha, \gamma},\left(i \theta_{\alpha, \gamma}\right)\left(j \theta_{\beta, \gamma}\right)}\right)\left(b \phi_{\beta, \gamma} \chi_{j \theta_{\beta, \gamma},\left(i \theta_{\alpha, \gamma}\right)\left(j \theta_{\beta, \gamma}\right)}\right)\right] \chi_{\left(i \theta_{\alpha, \gamma}\right)\left(j \theta_{\beta, \gamma}\right), k} \\
& \quad=\left(a \phi_{\alpha, \gamma} \chi_{i \theta_{\alpha, \gamma}, k}\right)\left(b \phi_{\beta, \gamma} \chi_{j \theta_{\beta, \gamma}, k}\right)=\left(a \phi_{i, k}\right)\left(b \phi_{j, k}\right),
\end{aligned}
$$

since $(i j) \theta_{\alpha \beta, \gamma}=\left[\left(i \theta_{\alpha, \alpha \beta}\right)\left(j \theta_{\beta, \alpha \beta}\right)\right] \theta_{\alpha \beta, \gamma}=\left(i \theta_{\alpha, \gamma}\right)\left(j \theta_{\beta, \gamma}\right)$, and

$$
\begin{aligned}
a * b & =\left(a \phi_{\alpha, \alpha \beta}\right) \circ\left(b \phi_{\beta, \alpha \beta}\right)=\left(a \phi_{\alpha, \alpha \beta} \chi_{i \theta_{\alpha, \alpha \beta}, i j}\right)\left(b \phi_{\beta, \alpha \beta} \chi_{j \theta_{\beta, \alpha \beta}, i j}\right) \\
& =\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right) .
\end{aligned}
$$

Therefore, $S=\left(B ; S_{i}, \phi_{i, j}\right)$.
Assume $\alpha, \beta \in Y, \alpha \geq \beta, i, j \in B_{\alpha}, k \in B_{\beta}, a \in S_{i}$. Then by (17),

$$
\begin{aligned}
a \phi_{i, j} \phi_{j, k} & =a \phi_{\alpha, \alpha} \chi_{i, j} \phi_{\alpha, \beta} \chi_{j \theta_{\alpha, \beta}, k}=a \chi_{i, j} \phi_{\alpha, \beta} \chi_{j \theta_{\alpha, \beta}, k} \\
& =a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, j \theta_{\alpha, \beta}} \chi_{j \theta_{\alpha, \beta}, k}=a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, k}=a \phi_{i, k},
\end{aligned}
$$

Hence, $S=\llbracket B ; S_{i}, \phi_{i, j} \rrbracket$.
(b) Let $S=\left[B ; S_{i}, \phi_{i, j}\right]$. Assume that $S_{\alpha}=\cup_{i \in B_{\alpha}} S_{i}$. Clearly, $S_{\alpha}=$ [$B_{\alpha} ; S_{i}, \chi_{i, j}$], for every $\alpha \in Y$, where $\chi_{i, j}=\phi_{i, j}, i, j \in B_{\alpha}$. For $\alpha, \beta \in$ $Y, \alpha \geq \beta$, define a mapping $\phi_{\alpha, \beta}$ of S_{α} into S_{β} by

$$
a \phi_{\alpha, \beta}=a \phi_{i, i \theta_{\alpha, \beta}}, \quad\left(a \in S_{i}, i \in B_{\alpha}\right)
$$

Clearly, $\left\{\phi_{\alpha, \beta}\right\}$ is a transitive system of homomorphisms. Assume $\alpha, \beta \in$ $Y, i \in B_{\alpha}, j \in B_{\beta}, a \in S_{i}, b \in S_{j}$. Then

$$
\begin{aligned}
& \left(a \phi_{\alpha, \alpha \beta}\right) \circ\left(b \phi_{\beta, \alpha \beta}\right)=\left(a \phi_{i, i \theta_{\alpha, \alpha \beta}}\right) \circ\left(b \phi_{j, j \theta_{\beta, \alpha \beta}}\right) \\
& \quad=\left(a \phi_{i, i \theta_{\alpha, \alpha \beta}} \phi_{i \theta_{\alpha, \alpha \beta}, i j}\right)\left(b \phi_{j, j \theta_{\beta, \alpha \beta}} \phi_{j \theta_{\beta, \alpha \beta}, i j}\right)=\left(a \phi_{i, i j}\right)\left(b \phi_{j, i j}\right)=a * b,
\end{aligned}
$$

since $i j=\left(i \theta_{\alpha, \alpha \beta}\right)\left(j \theta_{\beta, \alpha \beta}\right)$. Therefore, $S=\left[Y ; S_{\alpha}, \phi_{\alpha, \beta}\right]$. Assume $\alpha, \beta \in$ $Y, \alpha \geq \beta, i, j \in B_{\alpha}, a \in S_{i}$. Then

$$
\begin{aligned}
a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, j \theta_{\alpha, \beta}} & =a \phi_{i, i \theta_{\alpha, \beta}} \phi_{i \theta_{\alpha, \beta}, j \theta_{\alpha, \beta}}=a \phi_{i, j \theta_{\alpha, \beta}}=a \phi_{i, j} \phi_{j, j \theta_{\alpha, \beta}} \\
& =a \chi_{i, j} \phi_{\alpha, \beta} .
\end{aligned}
$$

Therefore, (17) holds.

Conversely, let $S=\left[Y ; S_{\alpha}, \phi_{\alpha, \beta}\right], S_{\alpha}=\left[B_{\alpha} ; S_{i}, \chi_{i, j}\right]$, for every $\alpha \in Y$, and let (17) holds. By (a) we have that $S=\llbracket B ; S_{i}, \phi_{i, j} \rrbracket$. In notations from (a), assume that $i, j, k \in B$ such that $i \succcurlyeq j \succcurlyeq k$, i.e. $i \in B_{\alpha}, j \in B_{\beta}, k \in$ $B_{\gamma}, \alpha, \beta \gamma \in Y, \alpha \geq \beta \geq \gamma$. Let $a \in S_{i}$. Then

$$
\begin{aligned}
a \phi_{i, j} \phi_{j, k} & =a \phi_{\alpha, \beta} \chi_{i \theta_{\alpha, \beta}, j} \phi_{\beta, \gamma} \chi_{j \theta_{\beta, \gamma}, k}=a \phi_{\alpha, \beta} \phi_{\beta, \gamma} \chi_{i \theta_{\alpha, \beta} \theta_{\beta, \gamma}, j \theta_{\beta, \gamma}} \chi_{j \theta_{\beta, \gamma}, k} \\
& =a \phi_{\alpha, \gamma} \chi_{i \theta_{\alpha, \gamma}, k}=a \phi_{i, k}
\end{aligned}
$$

Therefore, $S=\left[B ; S_{i}, \phi_{i, j}\right]$.

REFERENCES

1. M. Ćirić and S. Bogdanović: Normal band compositions of semigroups. Proc. Japan. Acad., Ser. A 69 (1993), no. 8, 256-261.
2. M. Ćirić and S. Bogdanović: Spined products of some semigroups. Proc. Japan. Acad., Ser. A 69 (1993), no. 9, 357-362.
3. M. Ćirić and S. Bogdanović: Strong bands of groups of left quotients. Glasgow Math. J. 38 (1996), 237-242.
4. M. Ćirić and S. Bogdanović: Subdirect products of a band and a semigroup. Portugaliae Math. 53 (1996), no. 1, 117-128.
5. A. El-Qallali: Left regular bands of groups of left quotients. Glasgow Math. J. 33 (1991), 29-40.
6. N. Kimura: The structure of idempotent semigroups I. Pacific J. Math. 8 (1958), 257-275.
7. M. Petrich: Introduction to Semigroups. Merill, Ohio, 1973.
8. M. Yamada: Strictly inversive semigroups. Bull. Shimane Univ. 13 (1964), 128138.
9. M. Yamada: Inversive semigroups III. Proc. Japan. Acad. 41 (1965), 221-224.

University of Niš,
Faculty of Philosophy,
Ćirila i Metodija 2, P.O. Box 91,
18000 Niš, Yugoslavia
e-mail: mciric@archimed.filfak.ni.ac.yu
University of Niš,
Faculty of Economics,
Trg JNA 11, P. O. Box 121,
18000 Niš, Yugoslavia
e-mail: sbogdan@archimed.filfak.ni.ac.yu

[^0]: Received March 17, 1996.
 1991 Mathematics Subject Classification. Primary 20M10.
 *Supported by Grant 04M03B of RFNS through Math. Inst. SANU

