MORE ON NORMAL BAND COMPOSITIONS OF SEMIGROUPS*

Miroslav Ćirić and Stojan Bogdanović

This paper is dedicated to Professor D. S. Mitrinović

Abstract. The authors in [1] gave a construction of a normal band of arbitrary semigroups, and in [2] they studied band compositions which are (punched) spined products of a band and a semilattice of semigroups. This paper is a continuation of these two papers. Using the constructions from [1], in this paper we give a construction of a semigroup which is a (punched) spined product of a normal band and a semilattice of semigroups, different than the one from [2]. The obtained results generalize the well-known characterizations of spined products of a normal band and a semilattice of groups through orthodox normal bands of groups and through strong semilattices of rectangular groups.

Let B be a band. By \leq we will denote the natural partial order on B, i.e. the relation on B defined by: $j \leq i \Leftrightarrow ij = ji = j$, $(i, j \in B)$. By \preccurlyeq we will denote a quasi-order on B defined by: $j \preccurlyeq i \Leftrightarrow j = jij$, $(i, j \in B)$. Let $i \mapsto [i], i \in B$, denote the natural homomorphism of the smallest semilattice congruence on B. It is easy to verify that $j \preccurlyeq i \Leftrightarrow [j] \leq [i]$, for all $i, j \in B$. If P and Q are two semigroups having a common homomorphic image Y, then the spined product of P and Q with respect to Y is $S = \{(a, b) \in$ $P \times Q \mid a\varphi = b\psi\}$, where $\varphi : P \to Y$ and $\psi : Q \to Y$ are homomorphisms onto Y, [6], [8], [9]. If Y is a semilattice and P and Q are a semilattice Y of semigroups $P_{\alpha}, \alpha \in Y$, and $Q_{\alpha}, \alpha \in Y$, respectively, then the spined product of P and Q, is a punched spined product of P and Q with respect to Y, that is also a subdirect product of P and Q, is a punched spined product of P and Q with respect to Y, [5]. If ξ is a congruence on a semigroup S, ξ^{\natural} will denote the natural homomorphism induced by ξ .

Received March 17, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 20M10.

^{*}Supported by Grant 04M03B of RFNS through Math. Inst. SANU

Let *B* be a band. To each $i \in B$ we associate a semigroup S_i and an oversemigroup D_i of S_i such that $D_i \cap D_j = \emptyset$, if $i \neq j$. For $i, j \in B$, $i \geq j$, let $\phi_{i,j}$ be a mapping of S_i into D_j and suppose that the family of $\phi_{i,j}$ satisfies the following conditions:

- (1) $\phi_{i,i}$ is the identity mapping on S_i , for every $i \in B$;
- (2) $(S_i\phi_{i,ij})(S_j\phi_{j,ij}) \subseteq S_{ij}$, for all $i, j \in B$;
- (3) $[(a\phi_{i,ij})(b\phi_{j,ij})]\phi_{ij,k} = (a\phi_{i,k})(b\phi_{j,k}), \text{ for } a \in S_i, b \in S_j, ij \succeq k, i, j, k \in B.$

Define a multiplication * on $S = \bigcup_{i \in B} S_i$ by: $a * b = (a\phi_{i,ij})(b\phi_{j,ij})$, for $a \in S_i, b \in S_j$. Then S is a band B of semigroups $S_i, i \in B$, in notation $S = (B; S_i, \phi_{i,j}, D_i)$. If we assume i = j in (3), then we obtain that $\phi_{i,k}$ is a homomorphism, for all $i, k \in B$, $i \succeq k$. If $D_i = S_i$, for each $i \in B$, then we write $S = (B; S_i, \phi_{i,j})$. Here the condition (2) can be omitted. If $S = (B; S_i, \phi_{i,j}, D_i)$ and if

- (4) $S_i \phi_{i,j} \subseteq S_j$, for $[i] = [j], i, j \in B$;
- (5) $\phi_{i,j}\phi_{j,k} = \phi_{i,k}$, for $[i] = [j] \ge [k], i, j, k \in B$;

then we will write $S = [B; S_i, \phi_{i,j}, D_i]$. If $S = (B; S_i, \phi_{i,j})$ with (4) and (5), then we will write $S = [B; S_i, \phi_{i,j}]$, [2]. If $S = (B; S_i, \phi_{i,j})$ and if $\{\phi_{i,j} \mid i, j \in B, i \geq j\}$ is a transitive system of homomorphisms, i.e. if $\phi_{i,j}\phi_{j,k} = \phi_{i,k}$, for $i \geq j \geq k$, then we will write $S = [B; S_i, \phi_{i,j}]$, and we will say that S is a strong band B of semigroups S_i . If B is a semilattice, then we obtain a strong semilattice of semigroups. A strong semilattice of rectangular bands will be called a normal band and in the further considerations, the phrase " $B = [Y; B_{\alpha}, \theta_{\alpha,\beta}]$ is a normal band" will mean: a band B is a strong semilattice Y of rectangular bands $B_{\alpha}, \alpha \in Y$, with $\{\theta_{\alpha,\beta}\}$ as its transitive system of homomorphisms.

Let a band B be a semilattice Y of rectangular bands B_{α} , $\alpha \in Y$, and let $\{S_i \mid i \in B\}$ be a family pairwise disjoint semigroups. The authors in [1] showed that a semigroup S is a band B of semigroups S_i , $i \in B$, if and only if the following conditions hold:

- (6) $S = (Y; S_{\alpha}, \phi_{\alpha,\beta}, D_{\alpha});$
- (7) for every $\alpha \in Y$, S_{α} is a matrix B_{α} of semigroups S_i , $i \in B_{\alpha}$;
- (8) $(S_i\phi_{\alpha,\alpha\beta})(S_j\phi_{\beta,\alpha\beta}) \subseteq S_{ij}$, for all $i \in B_\alpha$, $j \in B_\beta$, $\alpha, \beta \in Y$. Furthermore, they proved that in a semigroup satisfying (6), (7) and (8), for each $\alpha \in Y$, D_α can be chosen to satisfy:
- (9) D_{α} is a matrix B_{α} of semigroups D_i , $i \in B_{\alpha}$;
- (10) $S_i \subseteq D_i$, for every $i \in B_{\alpha}$;

if and only if B is a normal band. This gives a construction of a normal band of arbitrary semigroups. Here we pose the following question: How to obtain a (punched) spined product of a normal band and a semilattice of semigroups from this construction? An answer for this question will be given by the next theorems.

For undefined notions and notations we refer to [1], [2] and [7].

In the further considerations of semigroups S satisfying the conditions (6), (7) and (8), * will denote the multiplication in S, \circ will denote the multiplications in D_{α} , $\alpha \in Y$, and the multiplications in S_i , $i \in B$, will be denoted in the usual way.

Theorem 1. Let $B = [Y; B_{\alpha}, \theta_{\alpha,\beta}]$ be a normal band.

If S is a semigroup which satisfies the conditions (6), (7) and (8), and if for each $\alpha \in Y$, a semigroup D_{α} can be chosen to satisfy:

- (11) $D_{\alpha} = (B_{\alpha}; D_i, \chi_{i,j}, E_i);$
- (12) $S_i \subseteq D_i$, for every $i \in B_{\alpha}$.

Then

(A1) a relation ρ on S defined by: $a \rho b$ if and only if $a \in S_i$, $b \in S_j$, $i, j \in B_{\alpha}$, $\alpha \in Y$, and

$$a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},k} = b\phi_{\alpha,\beta}\chi_{j\theta_{\alpha,\beta},k},$$

for every $\beta \in Y$, $\alpha \geq \beta$, $k \in B_{\beta}$, is a congruence on S and the semigroup $T = S/\rho$ is a semilattice Y of semigroups $T_{\alpha} = S_{\alpha}\rho^{\natural}$, $\alpha \in Y$;

(A2) S is a punched spined product of T and B with respect to Y.

Conversely, if a semigroup S is a punched spined product of semigroups $T = (Y; T_{\alpha}, \omega_{\alpha,\beta}, U_{\alpha})$ and B with respect to Y and if we assume that:

- (B1) $S_{\alpha} = (T_{\alpha} \times B_{\alpha}) \cap S, \ D_{\alpha} = U_{\alpha} \times B_{\alpha}, \ for \ \alpha \in Y;$
- (B2) for $\alpha, \beta \in Y$, $\alpha \geq \beta$, a mapping $\phi_{\alpha,\beta} : S_{\alpha} \to D_{\beta}$ is defined by:

$$(a,i)\phi_{\alpha,\beta} = (a\omega_{\alpha,\beta}, i\theta_{\alpha,\beta}), \qquad ((a,i) \in S_{\alpha});$$

(B3) $S_i = (T_\alpha \times \{i\}) \cap S, \ D_i = U_\alpha \times \{i\}, \ for \ \alpha \in Y, \ i \in B_\alpha;$

then S satisfies the conditions (6), (7) i (8), for every $\alpha \in Y$, D_{α} is a strong matrix B_{α} of semigroups D_i , $i \in B_{\alpha}$, and the condition (12) holds.

Proof. Let S be a semigroup which satisfies (6), (7) and (8), and let for every $\alpha \in Y$, a semigroup D_{α} can be chosen to satisfy (11) and (12).

(A1) It is clear that ρ is reflexive and symmetric. Let $a \ \rho \ b$ and $b \ \rho \ c$, $a, b, c \in S$. Then $a \in S_i, b \in S_j, c \in S_k, i, j, k \in B_{\alpha}, \alpha \in Y$. Assume $\beta \in Y$ such that $\alpha \geq \beta$, and assume $l \in B_{\beta}$. Then

$$a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},l} = b\phi_{\alpha,\beta}\chi_{j\theta_{\alpha,\beta},l} = c\phi_{\alpha,\beta}\chi_{k\theta_{\alpha,\beta},l},$$

whence $a \rho c$. Thus, ρ is transitive.

Assume $a, b \in S$ such that $a \rho b$, and assume $x \in S$. Let $a \in S_i, b \in S_j, i, j \in B_\alpha, x \in S_k, k \in B_\beta, \alpha, \beta \in Y$. Then $a * x \in S_{ik}, b * x \in S_{jk}$, and $ik, jk \in B_{\alpha\beta}$. Assume $\gamma \in Y$ such that $\alpha\beta \geq \gamma$, and assume $l \in B_\gamma$. Then

$$\begin{aligned} (a*x)\phi_{\alpha\beta,\gamma}\chi_{(ik)\theta_{\alpha\beta,\gamma},l} &= [(a\phi_{\alpha,\alpha\beta})\circ(x\phi_{\beta,\alpha\beta})]\phi_{\alpha\beta,\gamma}\chi_{(ik)\theta_{\alpha\beta,\gamma},l} \\ &= [(a\phi_{\alpha,\gamma})\circ(x\phi_{\beta,\gamma})]\chi_{(ik)\theta_{\alpha\beta,\gamma},l} \\ &= [(a\phi_{\alpha,\gamma}\chi_{i\theta_{\alpha,\gamma},(i\theta_{\alpha,\gamma})(k\theta_{\beta,\gamma})})(x\phi_{\beta,\gamma}\chi_{k\theta_{\beta,\gamma},(i\theta_{\alpha,\gamma})(k\theta_{\beta,\gamma})}]\chi_{(i\theta_{\alpha,\gamma})(k\theta_{\beta,\gamma}),l} \\ &= (a\phi_{\alpha,\gamma}\chi_{i\theta_{\alpha,\gamma},l})(x\phi_{\beta,\gamma}\chi_{k\theta_{\beta,\gamma},l}) = (b\phi_{\alpha,\gamma}\chi_{j\theta_{\alpha,\gamma},l})(x\phi_{\beta,\gamma}\chi_{k\theta_{\beta,\gamma},l}) \\ &= \cdots = (b*x)\phi_{\alpha\beta,\gamma}\chi_{(jk)\theta_{\alpha\beta,\gamma},l},\end{aligned}$$

since $(ik)\theta_{\alpha\beta,\gamma} = [(i\theta_{\alpha,\alpha\beta})(k\theta_{\beta,\alpha\beta})]\theta_{\alpha\beta,\gamma} = (i\theta_{\alpha,\gamma})(k\theta_{\beta,\gamma})$. Thus, $a * x \rho b * x$. Similarly, $x * a \rho x * b$. Hence, ρ is a congruence. Let η be a semilattice congruence on S whose classes are the various S_{α} , $\alpha \in Y$. Then $\rho \subseteq \eta$, so $T = S/\rho$ is a semilattice Y of semigroups $T_{\alpha} = S_{\alpha}\rho^{\natural}$.

(A2) Let ξ be the band congruence on S determined by the partition $\{S_i \mid i \in B\}$. Clearly, $\rho \cap \xi = \Delta$, where Δ is the equality relation on S. Thus S is a subdirect product of T and B, where an one-to-one homomorphism Φ of S into $T \times B$ is given by: $a\Phi = (a\rho^{\natural}, a\xi^{\natural}), \ a \in S$. Assume $a \in S$. Let $a \in S_i, \ i \in B_{\alpha}, \ \alpha \in Y$. Then by $a \in S_{\alpha}$ we obtain that $a\rho^{\natural} \in T_{\alpha}, \ a\xi^{\natural} = i \in B_{\alpha}$, i.e. $a\Phi \in T_{\alpha} \times B_{\alpha}$. Thus, $S\Phi \subseteq \bigcup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$. Hence, S is a punched spined product of semigroups T and B with respect to Y.

The converse follows immediately. \Box

Theorem 2. Let $B = [Y; B_{\alpha}, \theta_{\alpha,\beta}]$ be a normal band.

If S is a semigroup which satisfies the conditions (6), (7) and (8), and if for every $\alpha \in Y$, a semigroup D_{α} can be chosen to satisfy:

- (13) $D_{\alpha} = [B_{\alpha}; D_i, \chi_{i,j}];$
- (14) $S_i \subseteq D_i$, for each $i \in B_{\alpha}$;
- (15) $S_i \chi_{i,j} \subseteq S_j$, for all $i, j \in B_{\alpha}$;

(16) $a\chi_{i,j}\phi_{\alpha,\beta} = a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},j\theta_{\alpha,\beta}}$, for $\alpha, \beta \in Y, \alpha \geq \beta$, $i, j \in B_{\alpha}, a \in S_i$; then the condition (A1) of Theorem 1 holds and S is a spined product of semigroups T and B with respect to Y.

Conversely, if a semigroup S is a spined product of semigroups $T = (Y; T_{\alpha}, \omega_{\alpha,\beta}, U_{\alpha})$ and B with respect to Y, then in notations from (B1)–(B3) of Theorem 1, S satisfies the conditions (6)–(8) and (13)–(16).

Proof. Let a semigroup S satisfies the conditions (6)–(8) and let for every $\alpha \in Y$, a semigroup D_{α} can be chosen to satisfy the conditions (13)–(16). Note that for $\alpha, \beta \in Y$, $\alpha \geq \beta$, $i \in B_{\alpha}$, by Theorem 2 [1] $S_i \phi_{\alpha,\beta} \subseteq D_{i\theta_{\alpha,\beta}}$, so the right hand side of (16) is correct. Also, the conditions (11) and (12)

hold, so by Theorem 1 we have that (A1) holds and that S is a punched spined product of semigroups T and B with respect to Y.

Assume an arbitrary $(u, i) \in \bigcup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$. Then $(u, i) \in T_{\alpha} \times B_{\alpha}$, for some $\alpha \in Y$, and $u = b\rho^{\natural}$, for some $b \in S_{\alpha}$. Let $b \in S_j$, $j \in B_{\alpha}$, and let $a = b\chi_{j,i}$. By (15), $a \in S_i$. Assume $\beta \in Y$ such that $\alpha \geq \beta$, and assume $k \in B_{\beta}$. Then by (13) and (16) we obtain

$$a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},k} = b\chi_{j,i}\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},k} = b\phi_{\alpha,\beta}\chi_{j\theta_{\alpha,\beta},i\theta_{\alpha,\beta}}\chi_{i\theta_{\alpha,\beta},k} = b\phi_{\alpha,\beta}\chi_{j\theta_{\alpha,\beta},k}.$$

Hence, $a \ \rho b$, so $a\rho^{\natural} = b\rho^{\natural} = u$, whence $a\Phi = (u, i)$. Thus, $S\Phi = \bigcup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$, so S is a spined product of semigroups T and B with respect to Y.

The converse follows immediately. \Box

Theorem 3. Let $B = [Y; B_{\alpha}, \theta_{\alpha,\beta}]$ be a normal band and let $\{S_i \mid i \in B\}$ be a family of pairwise disjoint semigroups. Then

(a) $S = \llbracket B; S_i, \phi_{i,j} \rrbracket$ if and only if $S = (Y; S_\alpha, \phi_{\alpha,\beta}), S_\alpha = \llbracket B_\alpha; S_i, \chi_{i,j} \rrbracket$, for every $\alpha \in Y$, and

(17)
$$a\chi_{i,j}\phi_{\alpha,\beta} = a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},j\theta_{\alpha,\beta}},$$

for $\alpha, \beta \in Y$, $\alpha \geq \beta$, $i, j \in B_{\alpha}$, $a \in S_i$;

(b) $S = [B; S_i, \phi_{i,j}]$ if and only if $S = [Y; S_\alpha, \phi_{\alpha,\beta}]$, $S_\alpha = [B_\alpha; S_i, \chi_{i,j}]$, for every $\alpha \in Y$, and (17) holds.

Proof. (a) Let $S = [B; S_i, \phi_{i,j}]$. By Theorem 3 [2] we obtain that S is a spined product of semigroups $T = (Y; T_{\alpha}, \omega_{\alpha,\beta})$ and B with respect to Y. Without loss of generality, we can assume that $S = \bigcup_{\alpha \in Y} T_{\alpha} \times B_{\alpha}$. Let $S_{\alpha} = T_{\alpha} \times B_{\alpha}, \ \alpha \in Y$, for $\alpha, \beta \in Y, \ \alpha \geq \beta$, let a mapping $\phi_{\alpha,\beta}$ of S_{α} into S_{β} be defined by

$$(a,i)\phi_{\alpha,\beta} = (a\omega_{\alpha,\beta}, i\theta_{\alpha,\beta}), \qquad ((a,i) \in S_{\alpha}),$$

 $S_i = T_{\alpha} \times \{i\}, i \in B_{\alpha}, \alpha \in Y$, and for $\alpha \in Y, i, j \in B_{\alpha}$, let a mapping $\chi_{i,j}$ of S_i into S_j be defined by

$$(a,i)\chi_{i,j} = (a,j),$$
 $((a,i) \in S_i).$

Then it is easy to verify that $S = (Y; S_{\alpha}, \phi_{\alpha,\beta}), S_{\alpha} = [B_{\alpha}; S_i, \chi_{i,j}]$, for every $\alpha \in Y$, and that (17) holds.

Conversely, let $S = (Y; S_{\alpha}, \phi_{\alpha,\beta}), S_{\alpha} = [B_{\alpha}; S_i, \chi_{i,j}]$, for every $\alpha \in Y$, and let (17) holds. For $i, j \in B, i \geq j, \alpha = [i], \beta = [j]$, let $\phi_{i,j}$ be a mapping of S_i into S_j defined by

$$a\phi_{i,j} = a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},j}, \qquad (a \in S_i).$$

Clearly, $a\phi_{i,i} = a\phi_{\alpha,\alpha}\chi_{i,i} = a$, for every $i \in B$. Assume $\alpha, \beta, \gamma \in Y$, $\alpha\beta \geq \gamma$, $i \in B_{\alpha}, j \in B_{\beta}, k \in B_{\gamma}, a \in S_i, b \in S_j$. Then

$$\begin{split} [(a\phi_{i,ij})(b\phi_{j,ij})]\phi_{ij,k} &= [(a\phi_{\alpha,\alpha\beta}\chi_{i\theta_{\alpha,\alpha\beta},ij})(b\phi_{\beta,\alpha\beta}\chi_{j\theta_{\beta,\alpha\beta},ij})]\phi_{ij,k} \\ &= [(a\phi_{\alpha,\alpha\beta})\circ(b\phi_{\beta,\alpha\beta})]\phi_{\alpha\beta,\gamma}\chi_{(ij)\theta_{\alpha\beta,\gamma},k} = [(a\phi_{\alpha,\gamma})\circ(b\phi_{\beta,\gamma})]\chi_{(ij)\theta_{\alpha\beta,\gamma},k} \\ &= [(a\phi_{\alpha,\gamma}\chi_{i\theta_{\alpha,\gamma},(i\theta_{\alpha,\gamma})(j\theta_{\beta,\gamma})})(b\phi_{\beta,\gamma}\chi_{j\theta_{\beta,\gamma},(i\theta_{\alpha,\gamma})(j\theta_{\beta,\gamma})})]\chi_{(i\theta_{\alpha,\gamma})(j\theta_{\beta,\gamma}),k} \\ &= (a\phi_{\alpha,\gamma}\chi_{i\theta_{\alpha,\gamma},k})(b\phi_{\beta,\gamma}\chi_{j\theta_{\beta,\gamma},k}) = (a\phi_{i,k})(b\phi_{j,k}), \end{split}$$

since $(ij)\theta_{\alpha\beta,\gamma} = [(i\theta_{\alpha,\alpha\beta})(j\theta_{\beta,\alpha\beta})]\theta_{\alpha\beta,\gamma} = (i\theta_{\alpha,\gamma})(j\theta_{\beta,\gamma})$, and

$$a * b = (a\phi_{\alpha,\alpha\beta}) \circ (b\phi_{\beta,\alpha\beta}) = (a\phi_{\alpha,\alpha\beta}\chi_{i\theta_{\alpha,\alpha\beta},ij})(b\phi_{\beta,\alpha\beta}\chi_{j\theta_{\beta,\alpha\beta},ij})$$
$$= (a\phi_{i,ij})(b\phi_{j,ij}).$$

Therefore, $S = (B; S_i, \phi_{i,j}).$

Assume $\alpha, \beta \in Y, \ \alpha \geq \beta, \ i, j \in B_{\alpha}, \ k \in B_{\beta}, \ a \in S_i$. Then by (17),

$$a\phi_{i,j}\phi_{j,k} = a\phi_{\alpha,\alpha}\chi_{i,j}\phi_{\alpha,\beta}\chi_{j\theta_{\alpha,\beta},k} = a\chi_{i,j}\phi_{\alpha,\beta}\chi_{j\theta_{\alpha,\beta},k}$$
$$= a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},j\theta_{\alpha,\beta},k}\chi_{j\theta_{\alpha,\beta},k} = a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},k} = a\phi_{i,k},$$

Hence, $S = [\![B; S_i, \phi_{i,j}]\!]$.

(b) Let $S = [B; S_i, \phi_{i,j}]$. Assume that $S_{\alpha} = \bigcup_{i \in B_{\alpha}} S_i$. Clearly, $S_{\alpha} = [B_{\alpha}; S_i, \chi_{i,j}]$, for every $\alpha \in Y$, where $\chi_{i,j} = \phi_{i,j}$, $i, j \in B_{\alpha}$. For $\alpha, \beta \in Y$, $\alpha \geq \beta$, define a mapping $\phi_{\alpha,\beta}$ of S_{α} into S_{β} by

$$a\phi_{\alpha,\beta} = a\phi_{i,i\theta_{\alpha,\beta}},$$
 $(a \in S_i, i \in B_{\alpha}).$

Clearly, $\{\phi_{\alpha,\beta}\}$ is a transitive system of homomorphisms. Assume $\alpha, \beta \in Y$, $i \in B_{\alpha}, j \in B_{\beta}, a \in S_i, b \in S_j$. Then

$$\begin{aligned} (a\phi_{\alpha,\alpha\beta}) \circ (b\phi_{\beta,\alpha\beta}) &= (a\phi_{i,i\theta_{\alpha,\alpha\beta}}) \circ (b\phi_{j,j\theta_{\beta,\alpha\beta}}) \\ &= (a\phi_{i,i\theta_{\alpha,\alpha\beta}}\phi_{i\theta_{\alpha,\alpha\beta},ij})(b\phi_{j,j\theta_{\beta,\alpha\beta}}\phi_{j\theta_{\beta,\alpha\beta},ij}) = (a\phi_{i,ij})(b\phi_{j,ij}) = a * b, \end{aligned}$$

since $ij = (i\theta_{\alpha,\alpha\beta})(j\theta_{\beta,\alpha\beta})$. Therefore, $S = [Y; S_{\alpha}, \phi_{\alpha,\beta}]$. Assume $\alpha, \beta \in Y, \alpha \geq \beta, i, j \in B_{\alpha}, a \in S_i$. Then

$$\begin{aligned} a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},j\theta_{\alpha,\beta}} &= a\phi_{i,i\theta_{\alpha,\beta}}\phi_{i\theta_{\alpha,\beta},j\theta_{\alpha,\beta}} = a\phi_{i,j\theta_{\alpha,\beta}} = a\phi_{i,j}\phi_{j,j\theta_{\alpha,\beta}} \\ &= a\chi_{i,j}\phi_{\alpha,\beta}. \end{aligned}$$

Therefore, (17) holds.

Conversely, let $S = [Y; S_{\alpha}, \phi_{\alpha,\beta}], S_{\alpha} = [B_{\alpha}; S_i, \chi_{i,j}]$, for every $\alpha \in Y$, and let (17) holds. By (a) we have that $S = [B; S_i, \phi_{i,j}]$. In notations from (a), assume that $i, j, k \in B$ such that $i \succeq j \succeq k$, i.e. $i \in B_{\alpha}, j \in B_{\beta}, k \in B_{\gamma}, \alpha, \beta \gamma \in Y, \alpha \geq \beta \geq \gamma$. Let $a \in S_i$. Then

$$\begin{aligned} a\phi_{i,j}\phi_{j,k} &= a\phi_{\alpha,\beta}\chi_{i\theta_{\alpha,\beta},j}\phi_{\beta,\gamma}\chi_{j\theta_{\beta,\gamma},k} = a\phi_{\alpha,\beta}\phi_{\beta,\gamma}\chi_{i\theta_{\alpha,\beta}\theta_{\beta,\gamma},j\theta_{\beta,\gamma}}\chi_{j\theta_{\beta,\gamma},k} \\ &= a\phi_{\alpha,\gamma}\chi_{i\theta_{\alpha,\gamma},k} = a\phi_{i,k}. \end{aligned}$$

Therefore, $S = [B; S_i, \phi_{i,j}]$. \Box

REFERENCES

- M. ĆIRIĆ and S. BOGDANOVIĆ: Normal band compositions of semigroups. Proc. Japan. Acad., Ser. A 69 (1993), no. 8, 256–261.
- M. ĆIRIĆ and S. BOGDANOVIĆ: Spined products of some semigroups. Proc. Japan. Acad., Ser. A 69 (1993), no. 9, 357–362.
- M. CIRIĆ and S. BOGDANOVIĆ: Strong bands of groups of left quotients. Glasgow Math. J. 38 (1996), 237–242.
- 4. M. ĆIRIĆ and S. BOGDANOVIĆ: Subdirect products of a band and a semigroup. Portugaliae Math. 53 (1996), no. 1, 117–128.
- A. EL-QALLALI: Left regular bands of groups of left quotients. Glasgow Math. J. 33 (1991), 29–40.
- N. KIMURA: The structure of idempotent semigroups I. Pacific J. Math. 8 (1958), 257–275.
- 7. M. PETRICH: Introduction to Semigroups. Merill, Ohio, 1973.
- M. YAMADA: Strictly inversive semigroups. Bull. Shimane Univ. 13 (1964), 128– 138.
- 9. M. YAMADA: Inversive semigroups III. Proc. Japan. Acad. 41 (1965), 221-224.

University of Niš, Faculty of Philosophy, Ćirila i Metodija 2, P.O. Box 91, 18000 Niš, Yugoslavia e-mail: mciric@archimed.filfak.ni.ac.yu

University of Niš, Faculty of Economics, Trg JNA 11, P. O. Box 121, 18000 Niš, Yugoslavia e-mail: sbogdan@archimed.filfak.ni.ac.yu