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Abstract. The authors in [1] gave a construction of a normal band of arbitrary
semigroups, and in [2] they studied band compositions which are (punched)
spined products of a band and a semilattice of semigroups. This paper is a
continuation of these two papers. Using the constructions from [1], in this paper
we give a construction of a semigroup which is a (punched) spined product of
a normal band and a semilattice of semigroups, different than the one from
[2]. The obtained results generalize the well-known characterizations of spined
products of a normal band and a semilattice of groups through orthodox normal
bands of groups and through strong semilattices of rectangular groups.

Let B be a band. By < we will denote the natural partial order on B, i.e.
the relation on B defined by: j <i < ij =ji =7, (i,j € B). By < we will
denote a quasi-order on B defined by: j i < j = jij, (i,j € B). Let
i — [i], i € B, denote the natural homomorphism of the smallest semilattice
congruence on B. It is easy to verify that j < ¢ < [j] <[i], for all i,5 € B.
If P and @) are two semigroups having a common homomorphic image Y,
then the spined product of P and Q with respect to Y is S = {(a,b) €
PxQ | ap=>by}, where p : P — Y and ¢ : Q — Y are homomorphisms
onto Y, [6], [8], [9]. If Y is a semilattice and P and @ are a semilattice
Y of semigroups P,, a € Y, and Q,, o € Y, respectively, then the spined
product of P and ) with respect to Y is S = Unpey Py X Q- A subsemigroup
S of a spined product of semigroups P and @ with respect to Y, that is also
a subdirect product of P and @Q, is a punched spined product of P and Q
with respect to Y, [5]. If £ is a congruence on a semigroup S, &% will denote
the natural homomorphism induced by €.
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Let B be a band. To each i € B we associate a semigroup S; and an
oversemigroup D; of S; such that D, N D; =0, if i # j. For 4,5 € B, i = j,
let ¢; ; be a mapping of S; into D; and suppose that the family of ¢; ;
satisfies the following conditions:

(1) ¢, is the identity mapping on S;, for every i € B;

(2) (Sithiij)(S;j05,5) € Sij, for all 4, j € B;

(3) [(aiij)(0dj,i5)|ijr = (adik)(bd; k), for a€S;,beS;,iji=k,i,j, ke B.
Define a multiplication * on S = U;epS; by: a*b = (adiij)(bp;i;), for
a € S;, b€ Sj. Then S is a band B of semigroups S;, ¢« € B, in notation
S = (B;S;, ¢ij,D;i). If we assume ¢ = j in (3), then we obtain that ¢; j
is a homomorphism, for all i,k € B, i = k. If D; = S;, for each i € B,
then we write S = (B;S;, ¢;,;). Here the condition (2) can be omitted. If
S = (B, Si, ¢i,j7 D,) and lf

(4) Si(bi,j - Sj, for [Z] = [j], i,j S B;

(5) ¢ijbjk = Gik, for [i] = [j] = [K], 4,4,k € B;
then we will write S = [[Bvsza¢z,]7Dz]] Ifs = (B,S“(Z)Z’J) with (4) and
(5), then we will write S = [B;S;, ¢ ], [2]. If S = (B;S;, ¢ ;) and if
{¢i; | i,5 € B, i = j} is a transitive system of homomorphisms, i.e. if
GijOjk = Gik, for i = j = k, then we will write S = [B; S;, ¢; ;], and we will
say that S is a strong band B of semigroups S;. If B is a semilattice, then we
obtain a strong semilattice of semigroups. A strong semilattice of rectangular
bands will be called a normal band and in the further considerations, the
phrase "B = [Y; B, 04 3] is a normal band” will mean: a band B is a strong
semilattice Y of rectangular bands B,, o € Y, with {0, g} as its transitive
system of homomorphisms.

Let a band B be a semilattice Y of rectangular bands B,, « € Y, and
let {S; | i € B} be a family pairwise disjoint semigroups. The authors in [1]
showed that a semigroup S is a band B of semigroups S;, ¢ € B, if and only
if the following conditions hold:

(6) S = (Ya Sav ¢a,ﬂ7Da);

(7) for every a € Y, S, is a matrix B, of semigroups S;, i € By;

(8) (Si¢a,ap)(Sj0ds.a8) C Sij, foralli € B,, j € Bg, o, 3 € Y. Further-
more, they proved that in a semigroup satisfying (6), (7) and (8), for
each o € Y, D, can be chosen to satisfy:

(9) D, is a matrix B, of semigroups D;, i € B,;

(10) S; C Dy, for every i € By;
if and only if B is a normal band. This gives a construction of a normal
band of arbitrary semigroups. Here we pose the following question: How

to obtain a (punched) spined product of a normal band and a semilattice
of semigroups from this construction? An answer for this question will be
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given by the next theorems.

For undefined notions and notations we refer to [1], [2] and [7].

In the further considerations of semigroups S satisfying the conditions
(6), (7) and (8), * will denote the multiplication in S, o will denote the
multiplications in D,, o € Y, and the multiplications in S;, i € B, will be
denoted in the usual way.

Theorem 1. Let B =[Y; By, 04,3] be a normal band.

If S is a semigroup which satisfies the conditions (6), (7) and (8), and if
for each a €Y, a semigroup Dy can be chosen to satisfy:

(11) D, = (Ba;Dz’,XiJ’Ei);

(12) S; C D, for every i € B,.

Then
(A1) a relation p on S defined by: a p b if and only ifa € S;, be S;, i,j €
By, €Y, and

Pa,BXi0a, 5.k = 0Pa,BXj00 5.k

for every 3 € Y, a > 3, k € Bg, is a congruence on S and the
semigroup T = S/p is a semilattice Y of semigroups T, = Sap?, o €
Y;
(A2) S is a punched spined product of T and B with respect to Y.
Conversely, if a semigroup S is a punched spined product of semigroups
T = (Y;Ty, wap,Us) and B with respect to'Y and if we assume that:

(B1l) So = (To X Bo) NS, Dy =U, X By, fora €Y;
(B2) fora,B €Y, a> (3, a mapping ¢, : Sa — Dg is defined by:

(@,9)¢a,5 = (0o, 0a,5), ((a,7) € Sa);

(B3) S; = (To x{i})NS, D; =U, x{i}, fora €Y, i € By;
then S satisfies the conditions (6), (7) i (8), for every a € Y, Dy, is a strong
matriz By, of semigroups D;, i € By, and the condition (12) holds.
Proof. Let S be a semigroup which satisfies (6), (7) and (8), and let for every
a €Y, a semigroup D, can be chosen to satisfy (11) and (12).

(A1) It is clear that p is reflexive and symmetric. Let a p b and b p c,
a,b,ce S. ThenacS;, be Sj, c€ Sy, i,j,k € By, a €Y. Assume S €Y
such that a > 3, and assume | € Bg. Then

ADa,BXi00. 5,0 = VOa,5X 00 5.1 = CPo,BXkba. 5,15

whence a p c¢. Thus, p is transitive.
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Assume a,b € S such that a p b, and assume € S. Let a € S;, b €
Sj, i, € Bo, x € Sk, k€ B, a, €Y. Then axx € Si, bxx € Sj, and
ik, jk € Bog. Assume v € Y such that af > v, and assume [ € B,,. Then

(a % 2)Pap X (ik)0as. | = [(@Pa,ap) © (TDp,a8)]PasAX(ik)0us.- .1
= [(aga,y) © (33¢ﬁ,'y)]X(ik)0ag,7,l
= [(@®ay Xiba (00 ) (k05.) ) (TDPBA XK. (100 ) (K05 )X (100 ) (KOs ).
= (0Pay Xibo - 1) (XPAXK05 1) = (0Pa,A X600 1) (TPBA XK, .1)
=+ = (0% T)PaBy X(jk)0up b>

since (ik)0aps,y = [(10a,08)(k038,08)]1008,y = (i0a,)(kb3,). Thus, axx p bxx.
Similarly,  * a p x * b. Hence, p is a congruence. Let 1 be a semilattice
congruence on S whose classes are the various S,, @ € Y. Then p C 7, so
T = S/p is a semilattice Y of semigroups Ty, = Sap".

(A2) Let £ be the band congruence on S determined by the partition
{S; | i € B}. Clearly, pN¢ = A, where A is the equality relation on S. Thus
S is a subdirect product of T" and B, where an one-to-one homomorphism
® of S into T x B is given by: a® = (ap?,at?), a € S. Assume a € S. Let
a€8S;, i € By, a €Y. Then by a € S, we obtain that ap? € T,,, a&® =i €
B,, ie. a® €T, x B,. Thus, S® C UyecyTn X B,. Hence, S is a punched
spined product of semigroups 7" and B with respect to Y.

The converse follows immediately. O

Theorem 2. Let B =[Y; By, 04,3] be a normal band.

If S is a semigroup which satisfies the conditions (6), (7) and (8), and if
for every a €Y, a semigroup D, can be chosen to satisfy:

(13) Do = [Ba; Di, Xi,5l;

(14) S; C Dy, for each i € By;

(15) SiXi,j - Sj, foralli,j € By;

(16) axi,jPa,s = aPa,BXi0, 5,005, for o, BEY, > B, i,j € By, a € S;;
then the condition (Al) of Theorem 1 holds and S is a spined product of
semigroups T and B with respect to 'Y .

Conversely, if a semigroup S is a spined product of semigroups T =
(Y Ty, wa 8,Us) and B with respect to Y, then in notations from (B1)—(B3)
of Theorem 1, S satisfies the conditions (6)—(8) and (13)—(16).

Proof. Let a semigroup S satisfies the conditions (6)—(8) and let for every
a € Y, a semigroup D, can be chosen to satisfy the conditions (13)—(16).
Note that for a, 3 € Y, a > 3, i € By, by Theorem 2 [1] Si¢a,3 C Dig,, 4,
so the right hand side of (16) is correct. Also, the conditions (11) and (12)
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hold, so by Theorem 1 we have that (Al) holds and that S is a punched
spined product of semigroups 7" and B with respect to Y.

Assume an arbitrary (u,7) € UqeyTo X Bo. Then (u,i) € T, X By, for
some o € Y, and u = bp’, for some b € S,. Let b € Sj, j € By, and let
a = byj,i. By (15), a € S;. Assume [ € Y such that a > (3, and assume
k € Bz. Then by (13) and (16) we obtain

ADa,BXi00. 5.k = OXjiPa,BXi00. 5.k = 0P, BXj0u 5,i00.5Xi00 5.k = 0P, 3X 00 5.k

Hence, a pb, so ap® = bp? = u, whence a® = (u,4). Thus, S® = Uyey T, X
B, so S is a spined product of semigroups 7" and B with respect to Y.

The converse follows immediately. [
Theorem 3. Let B = [Y;B,,0,,] be a normal band and let {S; | i € B}
be a family of pairwise disjoint semigroups. Then

(a) S = [[B, Si7¢i,j]] lf and Only ZfS = (Y, Sou¢a,ﬂ); Sa = [BOL;SiaXi,j];
for every a €Y, and

(17) aXijPa,f = APa,BXi04a.5,i00.5

fOTOL,ﬁ € }/a o> 57 Za] € Baa ac Si:'
(b) S = [37517¢Z,j] Zf and Only ZfS = [Y§Sa7¢a,6]; SOt = [BOHS’MXL]L
for every a € Y, and (17) holds.

Proof. (a) Let S = [B;S;, ¢i;]l. By Theorem 3 [2] we obtain that S is a
spined product of semigroups T' = (Y;7T,,wq,3) and B with respect to Y.
Without loss of generality, we can assume that S = Ugey Ty X Bo. Let
Sa =To X By, a €Y, fora,f €Y, a > f3, let a mapping ¢, g of S, into
S be defined by

(avi)qba,ﬁ = (awa,ﬁv iea,ﬁ)v ((a,z) € Sa)?

S; =T, x {i}, i€ By, a €Y, and for a €Y, i,j € By, let a mapping x; ;
of S; into S; be defined by

(a’i)Xi,j = (a’j)v ((avi) € Sz)

Then it is easy to verify that S = (Y; Sa, ¢a,8), Sa = [Ba; Si, Xi,;], for every
a €Y, and that (17) holds.

Conversely, let S = (Y;Sa, ¢a.8)s Sa = [Ba;Si, ] for every a € Y,
and let (17) holds. For i,j € B, i = j, a = [] = [j], let ¢;; be a
mapping of S; into S; defined by

a(bi,j = a¢a,/3Xi9a,5,j7 (a € Sz)
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Clearly, a¢i; = apa,aXii = a, for every ¢ € B. Assume o, 3,7 €Y, aff >
v, 1€ By, j€Bg, ke B,, ac S;, b S;. Then

[(adi,ij)(bb.ij)|Pijk = [(APa,aBXib0.0p.ii) (OPB.aBXi605 ap.ij)]Pidk
= [(ada,ap) © (065,08)0ap X (1)0us -k = [(aDay) © (0OBA)]X(17)00s .- .k
= [(ahay Xi0u.y (00.,)(305.,)) (ODBA X305 (100.2) (105.4))]X (00.1) (165,
= (a¢a,'yxi9a,wk)(b¢ﬁ,'YXj9ﬁ,y,k) = (a¢i,k)(b¢j,k)v

since (i)0aps = [(00,05) (189,08 0ay = (00 (j05,), and

axb=(ada,ap) © (b9g,a8) = (APa,aBXiba,as.ii) (098,a8X 85 0s.i)
= (ag,i;)(boj,i;)-
Therefore, S = (B;S;, ¢ij)-
Assume o, 5 €Y, a >3, i,j € By, k € Bz, a € S;. Then by (17),

adi jbjk = aPa,aXijPo,BXj0n, 5,k = OXi,jPa,8Xj0u, 5,k
= 00a,BXi00,5,j00,5 Xjba,5.k = OPa,BXi04, 5,k = APi k)

Hence, S = [B; S, ¢; ;]

(b) Let S = [B;S;, ¢i;]. Assume that S, = Ujep,S;. Clearly, S, =
[Ba; Sis Xi,5), for every a € Y, where x;; = ¢;;, i,j € By. For a,f €
Y, a > f3, define a mapping ¢, 3 of S, into Sg by

APa,g = aPii0, 5 (@€ S;, i € By).

Clearly, {¢n 5} is a transitive system of homomorphisms. Assume o, €
Y, i€ B,, j€ Bg, ac;, bc S;. Then

(aPa,ap) © (bdg.ap) = (adiio, .5) © (D)0, .5)
= (094,10, 05 Pi0 i3 ) (095,505 05 P05, 0pvis) = (aiiz) (0Bji5) = a b,

since ij = (10qa,03)(708,08). Therefore, S = [Y;S,, ¢a,5]. Assume o, €
Y, a>f, i, € By, a €S;. Then

AP, X 00 5,j00.5 = OPi,i00. 5 Piba 5.i00.5 = APi j00 5 = APi j O] j6n 4
= axlvj¢a7ﬁ'

Therefore, (17) holds.
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Conversely, let S = [Y;S54,¢a,8], Sa = [Ba;Si,Xi,jl, for every a € Y,
and let (17) holds. By (a) we have that S = [B; S;, ¢; ;]|. In notations from
(a), assume that i, j,k € B such that i = j = k,ie. i€ By, j € Bg, k €
B,, a,y€Y, a>p3>~. Let a€S;. Then

adi,jPjk = 0Pa,BXi00 5,iPBAX 05,k = OPa,BPBAXi00 505,705~ X0,k
= aPa,y Xibo ok = APi k-

Therefore, S = [B;S;, ¢; j]. O
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