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SER. MATH. INFORM. 12 (1997), 15–21

MORE ON NORMAL BAND COMPOSITIONS
OF SEMIGROUPS*
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Abstract. The authors in [1] gave a construction of a normal band of arbitrary
semigroups, and in [2] they studied band compositions which are (punched)
spined products of a band and a semilattice of semigroups. This paper is a
continuation of these two papers. Using the constructions from [1], in this paper
we give a construction of a semigroup which is a (punched) spined product of
a normal band and a semilattice of semigroups, different than the one from
[2]. The obtained results generalize the well-known characterizations of spined
products of a normal band and a semilattice of groups through orthodox normal
bands of groups and through strong semilattices of rectangular groups.

Let B be a band. By ≤ we will denote the natural partial order on B, i.e.
the relation on B defined by: j ≤ i ⇔ ij = ji = j, (i, j ∈ B). By 4 we will
denote a quasi-order on B defined by: j 4 i ⇔ j = jij, (i, j ∈ B). Let
i 7→ [i], i ∈ B, denote the natural homomorphism of the smallest semilattice
congruence on B. It is easy to verify that j 4 i ⇔ [j] ≤ [i], for all i, j ∈ B.
If P and Q are two semigroups having a common homomorphic image Y ,
then the spined product of P and Q with respect to Y is S = {(a, b) ∈
P × Q | aϕ = bψ}, where ϕ : P → Y and ψ : Q → Y are homomorphisms
onto Y , [6], [8], [9]. If Y is a semilattice and P and Q are a semilattice
Y of semigroups Pα, α ∈ Y , and Qα, α ∈ Y , respectively, then the spined
product of P and Q with respect to Y is S = ∪α∈Y Pα×Qα. A subsemigroup
S of a spined product of semigroups P and Q with respect to Y , that is also
a subdirect product of P and Q, is a punched spined product of P and Q
with respect to Y , [5]. If ξ is a congruence on a semigroup S, ξ\ will denote
the natural homomorphism induced by ξ.
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Let B be a band. To each i ∈ B we associate a semigroup Si and an
oversemigroup Di of Si such that Di ∩Dj = ∅, if i 6= j. For i, j ∈ B, i < j,
let φi,j be a mapping of Si into Dj and suppose that the family of φi,j

satisfies the following conditions:

(1) φi,i is the identity mapping on Si, for every i ∈ B;
(2) (Siφi,ij)(Sjφj,ij) ⊆ Sij , for all i, j ∈ B;
(3) [(aφi,ij)(bφj,ij)]φij,k =(aφi,k)(bφj,k), for a∈Si, b∈Sj , ij <k, i, j, k∈B.

Define a multiplication ∗ on S = ∪i∈BSi by: a ∗ b = (aφi,ij)(bφj,ij), for
a ∈ Si, b ∈ Sj . Then S is a band B of semigroups Si, i ∈ B, in notation
S = (B; Si, φi,j , Di). If we assume i = j in (3), then we obtain that φi,k

is a homomorphism, for all i, k ∈ B, i < k. If Di = Si, for each i ∈ B,
then we write S = (B; Si, φi,j). Here the condition (2) can be omitted. If
S = (B; Si, φi,j , Di) and if

(4) Siφi,j ⊆ Sj , for [i] = [j], i, j ∈ B;
(5) φi,jφj,k = φi,k, for [i] = [j] ≥ [k], i, j, k ∈ B;

then we will write S = [[B;Si, φi,j , Di]]. If S = (B;Si, φi,j) with (4) and
(5), then we will write S = [[B;Si, φi,j ]], [2]. If S = (B; Si, φi,j) and if
{φi,j | i, j ∈ B, i < j} is a transitive system of homomorphisms , i.e. if
φi,jφj,k = φi,k, for i < j < k, then we will write S = [B;Si, φi,j ], and we will
say that S is a strong band B of semigroups Si. If B is a semilattice, then we
obtain a strong semilattice of semigroups. A strong semilattice of rectangular
bands will be called a normal band and in the further considerations, the
phrase ”B = [Y ; Bα, θα,β ] is a normal band” will mean: a band B is a strong
semilattice Y of rectangular bands Bα, α ∈ Y , with {θα,β} as its transitive
system of homomorphisms.

Let a band B be a semilattice Y of rectangular bands Bα, α ∈ Y , and
let {Si | i ∈ B} be a family pairwise disjoint semigroups. The authors in [1]
showed that a semigroup S is a band B of semigroups Si, i ∈ B, if and only
if the following conditions hold:

(6) S = (Y ; Sα, φα,β , Dα);
(7) for every α ∈ Y , Sα is a matrix Bα of semigroups Si, i ∈ Bα;
(8) (Siφα,αβ)(Sjφβ,αβ) ⊆ Sij , for all i ∈ Bα, j ∈ Bβ , α, β ∈ Y . Further-

more, they proved that in a semigroup satisfying (6), (7) and (8), for
each α ∈ Y , Dα can be chosen to satisfy:

(9) Dα is a matrix Bα of semigroups Di, i ∈ Bα;
(10) Si ⊆ Di, for every i ∈ Bα;

if and only if B is a normal band. This gives a construction of a normal
band of arbitrary semigroups. Here we pose the following question: How
to obtain a (punched) spined product of a normal band and a semilattice
of semigroups from this construction? An answer for this question will be
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given by the next theorems.
For undefined notions and notations we refer to [1], [2] and [7].
In the further considerations of semigroups S satisfying the conditions

(6), (7) and (8), ∗ will denote the multiplication in S, ◦ will denote the
multiplications in Dα, α ∈ Y , and the multiplications in Si, i ∈ B, will be
denoted in the usual way.

Theorem 1. Let B = [Y ; Bα, θα,β ] be a normal band.
If S is a semigroup which satisfies the conditions (6), (7) and (8), and if

for each α ∈ Y , a semigroup Dα can be chosen to satisfy:
(11) Dα = (Bα;Di, χi,j , Ei);
(12) Si ⊆ Di, for every i ∈ Bα.

Then
(A1) a relation ρ on S defined by: a ρ b if and only if a ∈ Si, b ∈ Sj , i, j ∈

Bα, α ∈ Y , and

aφα,βχiθα,β ,k = bφα,βχjθα,β ,k,

for every β ∈ Y, α ≥ β, k ∈ Bβ, is a congruence on S and the
semigroup T = S/ρ is a semilattice Y of semigroups Tα = Sαρ\, α ∈
Y ;

(A2) S is a punched spined product of T and B with respect to Y .

Conversely, if a semigroup S is a punched spined product of semigroups
T = (Y ;Tα, ωα,β , Uα) and B with respect to Y and if we assume that:

(B1) Sα = (Tα ×Bα) ∩ S, Dα = Uα ×Bα, for α ∈ Y ;
(B2) for α, β ∈ Y, α ≥ β, a mapping φα,β : Sα → Dβ is defined by:

(a, i)φα,β = (aωα,β , iθα,β), ( (a, i) ∈ Sα);

(B3) Si = (Tα × {i}) ∩ S, Di = Uα × {i}, for α ∈ Y, i ∈ Bα;
then S satisfies the conditions (6), (7) i (8), for every α ∈ Y , Dα is a strong
matrix Bα of semigroups Di, i ∈ Bα, and the condition (12) holds.

Proof. Let S be a semigroup which satisfies (6), (7) and (8), and let for every
α ∈ Y , a semigroup Dα can be chosen to satisfy (11) and (12).

(A1) It is clear that ρ is reflexive and symmetric. Let a ρ b and b ρ c,
a, b, c ∈ S. Then a ∈ Si, b ∈ Sj , c ∈ Sk, i, j, k ∈ Bα, α ∈ Y . Assume β ∈ Y
such that α ≥ β, and assume l ∈ Bβ . Then

aφα,βχiθα,β ,l = bφα,βχjθα,β ,l = cφα,βχkθα,β ,l,

whence a ρ c. Thus, ρ is transitive.
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Assume a, b ∈ S such that a ρ b, and assume x ∈ S. Let a ∈ Si, b ∈
Sj , i, j ∈ Bα, x ∈ Sk, k ∈ Bβ , α, β ∈ Y . Then a ∗ x ∈ Sik, b ∗ x ∈ Sjk, and
ik, jk ∈ Bαβ . Assume γ ∈ Y such that αβ ≥ γ, and assume l ∈ Bγ . Then

(a ∗ x)φαβ,γχ(ik)θαβ,γ ,l = [(aφα,αβ) ◦ (xφβ,αβ)]φαβ,γχ(ik)θαβ,γ ,l

= [(aφα,γ) ◦ (xφβ,γ)]χ(ik)θαβ,γ ,l

= [(aφα,γχiθα,γ ,(iθα,γ)(kθβ,γ))(xφβ,γχkθβ,γ ,(iθα,γ)(kθβ,γ)]χ(iθα,γ)(kθβ,γ),l

= (aφα,γχiθα,γ ,l)(xφβ,γχkθβ,γ ,l) = (bφα,γχjθα,γ ,l)(xφβ,γχkθβ,γ ,l)

= · · · = (b ∗ x)φαβ,γχ(jk)θαβ,γ ,l,

since (ik)θαβ,γ = [(iθα,αβ)(kθβ,αβ)]θαβ,γ = (iθα,γ)(kθβ,γ). Thus, a∗x ρ b∗x.
Similarly, x ∗ a ρ x ∗ b. Hence, ρ is a congruence. Let η be a semilattice
congruence on S whose classes are the various Sα, α ∈ Y . Then ρ ⊆ η, so
T = S/ρ is a semilattice Y of semigroups Tα = Sαρ\.

(A2) Let ξ be the band congruence on S determined by the partition
{Si | i ∈ B}. Clearly, ρ∩ξ = ∆, where ∆ is the equality relation on S. Thus
S is a subdirect product of T and B, where an one-to-one homomorphism
Φ of S into T × B is given by: aΦ = (aρ\, aξ\), a ∈ S. Assume a ∈ S. Let
a ∈ Si, i ∈ Bα, α ∈ Y . Then by a ∈ Sα we obtain that aρ\ ∈ Tα, aξ\ = i ∈
Bα, i.e. aΦ ∈ Tα ×Bα. Thus, SΦ ⊆ ∪α∈Y Tα ×Bα. Hence, S is a punched
spined product of semigroups T and B with respect to Y .

The converse follows immediately. �

Theorem 2. Let B = [Y ; Bα, θα,β ] be a normal band.

If S is a semigroup which satisfies the conditions (6), (7) and (8), and if
for every α ∈ Y , a semigroup Dα can be chosen to satisfy:

(13) Dα = [Bα;Di, χi,j ];
(14) Si ⊆ Di, for each i ∈ Bα;
(15) Siχi,j ⊆ Sj, for all i, j ∈ Bα;
(16) aχi,jφα,β = aφα,βχiθα,β ,jθα,β , for α, β ∈ Y, α ≥ β, i, j ∈ Bα, a ∈ Si;

then the condition (A1) of Theorem 1 holds and S is a spined product of
semigroups T and B with respect to Y .

Conversely, if a semigroup S is a spined product of semigroups T =
(Y ; Tα, ωα,β , Uα) and B with respect to Y , then in notations from (B1)–(B3)
of Theorem 1, S satisfies the conditions (6)–(8) and (13)–(16).

Proof. Let a semigroup S satisfies the conditions (6)–(8) and let for every
α ∈ Y , a semigroup Dα can be chosen to satisfy the conditions (13)–(16).
Note that for α, β ∈ Y, α ≥ β, i ∈ Bα, by Theorem 2 [1] Siφα,β ⊆ Diθα,β ,
so the right hand side of (16) is correct. Also, the conditions (11) and (12)
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hold, so by Theorem 1 we have that (A1) holds and that S is a punched
spined product of semigroups T and B with respect to Y .

Assume an arbitrary (u, i) ∈ ∪α∈Y Tα × Bα. Then (u, i) ∈ Tα × Bα, for
some α ∈ Y , and u = bρ\, for some b ∈ Sα. Let b ∈ Sj , j ∈ Bα, and let
a = bχj,i. By (15), a ∈ Si. Assume β ∈ Y such that α ≥ β, and assume
k ∈ Bβ . Then by (13) and (16) we obtain

aφα,βχiθα,β ,k = bχj,iφα,βχiθα,β ,k = bφα,βχjθα,β ,iθα,β χiθα,β ,k = bφα,βχjθα,β ,k.

Hence, a ρb, so aρ\ = bρ\ = u, whence aΦ = (u, i). Thus, SΦ = ∪α∈Y Tα ×
Bα, so S is a spined product of semigroups T and B with respect to Y .

The converse follows immediately. �

Theorem 3. Let B = [Y ; Bα, θα,β ] be a normal band and let {Si | i ∈ B}
be a family of pairwise disjoint semigroups. Then

(a) S = [[B;Si, φi,j ]] if and only if S = (Y ; Sα, φα,β), Sα = [Bα;Si, χi,j ],
for every α ∈ Y , and

(17) aχi,jφα,β = aφα,βχiθα,β ,jθα,β ,

for α, β ∈ Y, α ≥ β, i, j ∈ Bα, a ∈ Si;
(b) S = [B;Si, φi,j ] if and only if S = [Y ; Sα, φα,β ], Sα = [Bα; Si, χi,j ],

for every α ∈ Y , and (17) holds.

Proof. (a) Let S = [[B;Si, φi,j ]]. By Theorem 3 [2] we obtain that S is a
spined product of semigroups T = (Y ; Tα, ωα,β) and B with respect to Y .
Without loss of generality, we can assume that S = ∪α∈Y Tα × Bα. Let
Sα = Tα × Bα, α ∈ Y , for α, β ∈ Y, α ≥ β, let a mapping φα,β of Sα into
Sβ be defined by

(a, i)φα,β = (aωα,β , iθα,β), ( (a, i) ∈ Sα),

Si = Tα × {i}, i ∈ Bα, α ∈ Y , and for α ∈ Y, i, j ∈ Bα, let a mapping χi,j

of Si into Sj be defined by

(a, i)χi,j = (a, j), ( (a, i) ∈ Si).

Then it is easy to verify that S = (Y ; Sα, φα,β), Sα = [Bα; Si, χi,j ], for every
α ∈ Y , and that (17) holds.

Conversely, let S = (Y ;Sα, φα,β), Sα = [Bα; Si, χi,j ], for every α ∈ Y ,
and let (17) holds. For i, j ∈ B, i < j, α = [i], β = [j], let φi,j be a
mapping of Si into Sj defined by

aφi,j = aφα,βχiθα,β ,j , (a ∈ Si).
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Clearly, aφi,i = aφα,αχi,i = a, for every i ∈ B. Assume α, β, γ ∈ Y, αβ ≥
γ, i ∈ Bα, j ∈ Bβ , k ∈ Bγ , a ∈ Si, b ∈ Sj . Then

[(aφi,ij)(bφj,ij)]φij,k = [(aφα,αβχiθα,αβ ,ij)(bφβ,αβχjθβ,αβ ,ij)]φij,k

= [(aφα,αβ) ◦ (bφβ,αβ)]φαβ,γχ(ij)θαβ,γ ,k = [(aφα,γ) ◦ (bφβ,γ)]χ(ij)θαβ,γ ,k

= [(aφα,γχiθα,γ ,(iθα,γ)(jθβ,γ))(bφβ,γχjθβ,γ ,(iθα,γ)(jθβ,γ))]χ(iθα,γ)(jθβ,γ),k

= (aφα,γχiθα,γ ,k)(bφβ,γχjθβ,γ ,k) = (aφi,k)(bφj,k),

since (ij)θαβ,γ = [(iθα,αβ)(jθβ,αβ)]θαβ,γ = (iθα,γ)(jθβ,γ), and

a ∗ b = (aφα,αβ) ◦ (bφβ,αβ) = (aφα,αβχiθα,αβ ,ij)(bφβ,αβχjθβ,αβ ,ij)

= (aφi,ij)(bφj,ij).

Therefore, S = (B;Si, φi,j).

Assume α, β ∈ Y, α ≥ β, i, j ∈ Bα, k ∈ Bβ , a ∈ Si. Then by (17),

aφi,jφj,k = aφα,αχi,jφα,βχjθα,β ,k = aχi,jφα,βχjθα,β ,k

= aφα,βχiθα,β ,jθα,β χjθα,β ,k = aφα,βχiθα,β ,k = aφi,k,

Hence, S = [[B; Si, φi,j ]].

(b) Let S = [B; Si, φi,j ]. Assume that Sα = ∪i∈BαSi. Clearly, Sα =
[Bα; Si, χi,j ], for every α ∈ Y , where χi,j = φi,j , i, j ∈ Bα. For α, β ∈
Y, α ≥ β, define a mapping φα,β of Sα into Sβ by

aφα,β = aφi,iθα,β , (a ∈ Si, i ∈ Bα).

Clearly, {φα,β} is a transitive system of homomorphisms. Assume α, β ∈
Y, i ∈ Bα, j ∈ Bβ , a ∈ Si, b ∈ Sj . Then

(aφα,αβ) ◦ (bφβ,αβ) = (aφi,iθα,αβ ) ◦ (bφj,jθβ,αβ )

= (aφi,iθα,αβ φiθα,αβ ,ij)(bφj,jθβ,αβ φjθβ,αβ ,ij) = (aφi,ij)(bφj,ij) = a ∗ b,

since ij = (iθα,αβ)(jθβ,αβ). Therefore, S = [Y ; Sα, φα,β ]. Assume α, β ∈
Y, α ≥ β, i, j ∈ Bα, a ∈ Si. Then

aφα,βχiθα,β ,jθα,β = aφi,iθα,β φiθα,β ,jθα,β = aφi,jθα,β = aφi,jφj,jθα,β

= aχi,jφα,β .

Therefore, (17) holds.



More on Normal Band Compositions of Semigroups 21

Conversely, let S = [Y ;Sα, φα,β ], Sα = [Bα;Si, χi,j ], for every α ∈ Y ,
and let (17) holds. By (a) we have that S = [[B; Si, φi,j ]]. In notations from
(a), assume that i, j, k ∈ B such that i < j < k, i.e. i ∈ Bα, j ∈ Bβ , k ∈
Bγ , α, β γ ∈ Y, α ≥ β ≥ γ. Let a ∈ Si. Then

aφi,jφj,k = aφα,βχiθα,β ,jφβ,γχjθβ,γ ,k = aφα,βφβ,γχiθα,βθβ,γ ,jθβ,γ χjθβ,γ ,k

= aφα,γχiθα,γ ,k = aφi,k.

Therefore, S = [B; Si, φi,j ]. �
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