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SEMIGROUPS OF GALBIATI–VERONESI III
(SEMILATTICE OF NIL-EXTENSIONS OF LEFT

AND RIGHT GROUPS)

Stojan Bogdanović and Miroslav Ćirić

Abstract. This paper is the continuation of [1] and [2]. Here we consider semigroups which
are semilattice of nil-extensions of left and right groups.

1. Introduction and preliminares

J. L. Galbiati and M. L. Veronesi [6] studied π-regular semigroups in which every
regular element is completely regular (semigruppi quasi fortemente regolari). These
semigroups are completely described by M. L. Veronesi in [11]. L. N. Ševrin [9],[10]
has anounced several conditions equivalent to various decomposition of completely
π-regular (called quasiperiodic) semigroups, but the details are not now available
to the authors. Semigroups which are semilattice of nil-extensions of rectangular
groups are described by the first author in [1]. Using the well known method of
the semilattice decomposition of Tamura and Putcha, here we consider semigroups
which are semilattice of nil-extensions of left and right groups and several subclasses
of these semigroups.

Throughout this paper, Z+ will denote the set of all positive integers. A semi-
group S is π-regular if for every a ∈ S there exists m ∈ Z+ such that am ∈ amSam.
Let us denote by Reg(S) (Gr(S),E(S)) the set of all regular (completely regu-
lar, idenpotent) elements of a semigroup S. S is a GV -semigroup (semigroup of
Galbiati-Veronesi) if S is π-regular and Reg(S) = Gr(S) (see [6]). A semigroup S
is a π-group if for every a ∈ S there exists n ∈ Z+ such that an ∈ G, where G is a
subgroup of S.

For undefined notions and notations we refer to [5] and [8].
In our investigations the following result is fundamental (see [1, Theorem 2.1]).
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Theorem (Bogdanović). S is a semilattice of nil-extensions of rectangular groups
if and only if S is a GV -semigroup and for every e, f ∈ E(S) there exists n ∈ Z+

such that (ef)n = (ef)n+1.

2. Weakened Rédei’s band

A band S is a singular band either S is a left or a right zero band. In this paper
semilattices and chains of singular bands will be described.

Definition 2.1. A semigroup S is a weakened Rédei’s band (or simply WR-band)
if

(2.1) (∀x, y ∈ S) xy ∈ {x, y} ∨ yx ∈ {x, y}.

Lemma 2.1. S is a rectangular WR-band if and only if S is a singular band.

Proof. Let S be a rectangular WR-band. Let a, b ∈ S. If ba = a, then ab = bab = b.
If ba = b, then ab = aba = a. Hence, by this and by (2.1) it follows that

ab = a or ab = b

Assume that ab = a. Then we will prove that xy = x for all x, y ∈ S. Let x, y ∈ S.
In a similar way we prove that

xa ∈ {x, a} and xb ∈ {x, b} ,

ya ∈ {y, a} and yb ∈ {y, b} .

By Proposition IV 3.2. [7] we have that

xa = xab = xb ∈ {x, a} ∩ {x, b} = {x}

and
ya = yab = yb ∈ {y, a} ∩ {y, b} = {y}

Thus, xa = xb = x and ya = yb = y. Now by Proposition IV 3.2. [7] we have that

xy = xya = xa = x.

Therefore, S is a left zero band. Similarly, if ab = b for some a, b ∈ S, then xy = y
for all x, y ∈ S, so S is a right zero band.

The converse follows immediately. �

Now we have the following theorem:
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Theorem 2.1. S is a WR-band if and only if S is a chan of singular bands.

Proof. Let S be a WR-band. By Theorem IV 3.1 [7] we have that S is a semilattice
Y of rectangular bands Sα, α ∈ Y . By Lemma 2.1 it follows that Sα is a singular
band for every α ∈ Y , and by (2.1) it follows that Y is a chain.

Conversely, let S be a chain Y of singular bands Sα, α ∈ Y . Let x ∈ Sα, y ∈
Sβ , α, β ∈ Y . Then xy = xxy = x if α ≤ β and Sα is a left zero band, xy =
xyy = y if β ≤ α and Sβ is a right zero band, yx = yxx = x if α ≤ β and Sα is a
right zero band and yx = yyx = y if β ≤ α and Sβ is a left zero band. Thus, S is a
WR-band. �

A semigroup S is a Rédei’s band (L. Rédei) if xy ∈ {x, y} for every x, y ∈ S. It
is clear that every Rédei’s band is a WR-band. A chain Y of semigroups Sα, α ∈ Y
is an ordinal sum of semigroups Sα if xy = yx = x for all x ∈ Sα, y ∈ Sβ , α ≤ β,
α, β ∈ Y .

Corollary 2.1 (L. Rédei). S is a Rédei’s band if and only if S is an ordinal sum
of singular bands.

Definition 2.2. A semigroup S is a left-weakened Rédei’s band (or simply LWR-
band) if

(2.2) (∀x, y ∈ S) xy = x ∨ yx = y

Dually we define a right weakened Rédei’s band (or simply RWR-band).

Corollary 2.2. S is a chain of left zero bands if and only if S is a LWR-band.

Example 2.1. A semigroup S given by the following table

e f g h
e e e e e
f f f f f
g f f g h
h f f g h

is a chain of singular bands i.e. it is a WR-band, but this is not a Rédei’s band, since
ge = f 6∈ {g, e}. Also, this is not an LWR-band, since gh = h 6= g and hg = g 6= h, and
this is not an RWR-band, since ef = e 6= f and fe = f 6= e.

Example 2.2. A semigroup given by the following table

e f g h
e e e e e
f f f f f
g f f g g
h f f h h

is an LWR-band, so this is a WR-band, but this is not a Rédei’s band and this is not an
RWR-band.

Example 2.3. A semigroup given by the following table

e f g
e e g g
f g f g
g g g g

is a semilattice, but it is not a chain, so it is not a WR-band.
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Definition 2.3. A band S is an LR-band if

(2.3) (∀x, y ∈ S) xy = xyx ∨ xy = yxy

Lemma 2.2. S is a rectangular LR-band if and only if S is a singular band.

Proof. This follows by (2.3), by Proposition IV 3.2 [7] and by Lemma 2.1. �

Theorem 2.2. The following condition on a semigroup S are equivalent:
(i) S is an LR-band;
(ii) S is a semilattice of singular bands;
(iii) S is regular and

(2.4) (∀x, y ∈ S) xy = xyx ∨ xy = yxy

(iv) S is regular and

(2.5) (∀x, y ∈ S) xyx = xy ∨ xyx = yx.

Proof. (i)⇒ (ii). This follows by Theorem IV 3.1 [7] and by Lemma 2.2.
(ii)⇒ (iii). Let S be a semilattice Y of singular bands Sα, α ∈ Y It is clear that

S is regular. Let x ∈ Sα, y ∈ Sβ , α, β ∈ Y . Then xy, yx ∈ Sαβ so

xy = (xy)(yx) = xyx ,

if Sαβ is a left zero band, and

xy = (yx)(xy) = yxy,

if Sαβ is a right zero band. Thus, (2.4) holds.
(iii)⇒ (i). Let S be regular and (2.4) holds. Let a ∈ S. Then a = axa for some

x ∈ S, and by (2.4) we have that ax = axa = a or ax = xax. If ax = a, then
a2 = a. If ax = xax, then a = axa = (xa)2 = xa, whence a2 = a. Therefore, S is a
band and it is an LR-band.

(i)⇒ (iv). Let S be an LR-band. Then S is regular. Let x, y ∈ S. If xy = yxy,
then xyx = (yx) = yx. By this and by (2.3) it follow that (2.5) holds.

(iv)⇒ (i). Let S be regular and let (2.5) holds. As in the proof of (iii)⇒ (i) we
have that S is a band. Let x, y ∈ S and xyx = yx. Then yxy = (xy)2 = xy. Thus,
(2.3) holds, i.e. S is an LR-band. �

Theorem 2.3. A semigroup S is a chain of rectangular bands if and only if

(2.6) (∀x, y ∈ S) x = xyx ∨ y = yxy.

Proof. Let S be a chain Y of rectangular bands Sα, α ∈ Y . Let x ∈ Sα, y ∈
Sβ , α, β ∈ Y . Assume that α ≤ β. Then x, xy ∈ Sα, whence

xyx = x(xy)x = x

Similarly, if β ≤ α, then yxy = y. Thus, (2.6) holds.
Conversely, let (2.6) holds. Let x ∈ S. Then by (2.6) we have that x = x3, and

x = xx2x = x4 = x2 or x2 = x2xx2 = x5 = x

Thus, S is a band. By theorem IV 3.1 [7] we have that S is a semilattice Y of
rectangular bands, and by (2.6) it follows that Y is a chain. �
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3. Semilattice of nil-extensions of left and right groups

By L(a) and R(a) we denote the principal left ideal and the principal right ideal
of a semigroup S generated by the element a of S.

Definition 3.1. A semigroup S is an LR-semigroup if

(∀x, y ∈ S)(∃n ∈ Z+) (xy)n ∈ L(x) ∪R(y).

Lemma 3.1. A semigroup S is an LR-semigroup if and only if

(3.2) (∀x, y ∈ S)(∃n ∈ Z+) (xy)n ∈ Sx ∪ yS.

Proof. Let S be an LR-semigroup and let x, y ∈ S. Then (xy)n ∈ L(x) ∪ R(y) =
x ∪ Sx ∪ y ∪ yS = {x, y} ∪ Sx ∪ yS, for some n ∈ Z+. If (xy)n ∈ {x, y}, then
(xy)2n ∈ {x2, y2} ⊂ Sx ∪ yS. Hence, (3.2) holds.

The converse follows immediately. �

Lemma 3.2. If S is a semilattice of left and right archimedean semigroups, then
S is an LR-semigroup.

Proof. Let S be a semilattice Y of left and right arhimedian semigroups Sα, α ∈ Y
Than for x ∈ Sα, y ∈ Sβ , α, β ∈ Y we have that xy, yx ∈ Sαβ , whence

(xy)n ∈ Sαβyx ⊂ Sx,

for some n ∈ Z+, if Sαβ is a left archimedian semigroup, and

(xy)n ∈ yxSαβyx ⊂ yS,

for some n ∈ Z+, if Sαβ is a right archimedian semigroup. Now, by Lemma 3.1. it
follows that S is an LR-semigroup. �

Lemma 3.3 [3]. A semigroup S is a left (right) group if and only if x ∈ xSa (x ∈
aSx) for all a, x ∈ S.

Theorem 3.1. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of left and right groups;
(ii) (∀x, y ∈ S)(∃n ∈ Z+) (xy)n ∈ (xy)nS(yx)n ∪ (yx)nS(xy)n;
(iii) S is a π-regular LR-semigroup;
(iv) S a GV -semigroup and for every e, f ∈ E(S) there exists n ∈ Z+ such that:

(3.3) (ef)n = (efe)n ∨ (ef)n = (fef)n;

(v) S is π-regular and

(3.4) a = axa ⇒ ax = ax2a ∨ ax = xa2x.
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Proof. (i)⇒(ii). Let S be a semilattice Y of semigroups Sα , α ∈ Y and let Sα be
a nil-extension of Tα, where Tα , α ∈ Y is a left or a right group. For x ∈ Sα , y ∈
Sβ , α, β ∈ Y we have that xy, yx ∈ Sα,β . Then there exists n ∈ Z+ such that
(xy)n, (yx)n ∈ Tα,β . By Lemma 3.3 it follows that

(xy)n ∈ (xy)nS(yx)n ,

if Tα,β is a left group, and

(xy)n ∈ (yx)nS(xy)n ,

if Tα,β is a right group. Thus, (ii) holds.
(ii) ⇒ (iii). Let (ii) holds. For any x ∈ S there exists n ∈ Z+ such that

x2n ∈ x2nSx2n, so S is π− regular. By (ii) it follows that S is an LR-semigroup.
(iii) ⇒ (iv). Let S be a π−regular LR-semigroup. Let a ∈ Reg(S). Then there

exists b ∈ S such that a = aba. By (3.2) we have that ab ∈ Sa∪bS and ba ∈ Sb∪aS.
Let ab = ua for some u ∈ S. Then a = aba = ua2 ∈ Sa2. Let ab = bv for some
v ∈ S. Then a = aba = bva, whence a2 = abva and a = bva = babva = ba2 ∈ Sa2.
Similarly, from ba ∈ Sb ∪ aS it follows that a ∈ a2S. Therefore, a is a completely
regular element and so S is a GV-semigroup.

Let e, f ∈ E(S). Then there exists n ∈ Z+ such that (ef)n ∈ Se ∪ fS. Let
(ef)n = ue for some u ∈ S. Then

(efe)n = (ef)ne = uee = ue = (ef)n .

From (ef)n ∈ fS it follows that (fef)n = (ef)n for some n ∈ Z+. Therefore, (3.3)
holds.

(iv) ⇒ (i). By (3.3) we obtain that

(ef)n+1 = (ef)nef = (efe)nf = (ef)nf = (ef)n

or
(ef)n+1 = ef(ef)n = e(fef)n = e(ef)n = (ef)n

for some n ∈ Z+. Now, by Theorem of Bogdanović we have that S is a semilattice
Y of semigroups Sα, α ∈ Y where Sα is a nil-extension of a rectangular group
Tα, α ∈ Y . Since Eα = E(Sα) = E(Tα) , α ∈ Y is a rectangular band, then we
have that for every e, f ∈ Eα there exists n ∈ Z+ such that

ef = (ef)n = (efe)n = en = e

or
ef = (ef)n = (fef)n = fn = f.

Thus, Eα is a rectangular Rédei’s band, so by Lemma 2.1 we have that Eα is a
singular band. Now, Tα, α ∈ Y is a left or right group, i.e. Sα, α ∈ Y is a
nil-extension of a left or a right group.
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(i) ⇒ (v). Let S be a semilattice Y of semigroups Sα, α ∈ Y , where Sα is a
nil-extension of a left or a right group Tα, α ∈ Y . It is clear that S is π-regular.
Assume that a = axa, wrere a ∈ Sα, x ∈ Sβ , α, β ∈ Y . Then

ax, xa ∈ Sαβ ∪ E(S) = E(Sαβ) = Eαβ ,

whence
ax = (ax)(xa) = ax2a ,

if Eαβ is a left zero band, and

ax = (xa)(ax) = xa2x ,

if Eαβ is a right zero band. Thus (3.4) holds.
(v) ⇒ (i). Let S be π−regular and let (3.4) holds. Assume that a = axa , a, x ∈

S. By (3.4) we have that

a = (ax)a = (ax2a)a = ax2a2

or
a = (ax)2a = (ax)(xa2x)a = ax2a(axa) = ax2a2 .

Now, by Theorem 2.1 [1] we have that S is a semilattice Y of semigroups Sα , α ∈ Y
where Sα is a nil-extension of a rectangular group Tα , α ∈ Y . Let e, f ∈ E(Sα) =
E(Tα). Since E(Tα) is a rectangular band, then by (3.4) we have that e = efe
implies that

ef = ef2e = efe = e or ef = fe2f = fef = f .

Hence, E(Tα) is a rectangular Rédei’s band and by Lemma 2.1 it follows that E(Tα)
is a singular band. Then by Theorem IV 3.9 ([8]) Tα is a left or a right group.
Therefore, S is a semilattice of nil-extensions of left and right groups. �

Corollary 3.1. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of left groups ;
(ii) (∀x, y ∈ S)(∃n ∈ Z+) (xy)n ∈ (xy)nS(yx)n ;
(iii) S is π−regular and

(3.5) (∀x, y ∈ S)(∃n ∈ Z+) (xy)n ∈ L(x) .

Theorem 3.2. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of singular bands ;
(ii) (∀x, y ∈ S)(∃n ∈ Z+) (xy)n = (xy)nx ∨ (xy)n = y(xy)n ;
(iii) S is π−regular LR-semigroup and Reg(S) = E(S) ;
(iv) S is π−regular and

(3.6) a = axa ⇒ a = axa ∨ a = xa .
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Proof. (i) ⇒ (ii). Let S be a semilattice Y of semigroups Sα , α ∈ Y and let Sα is
a nil-extension of a singular band Eα , α ∈ Y . Let x ∈ Sα, y ∈ Sα, α, β ∈ Y . Then
xy, yx ∈ Sαβ and there exists n ∈ Z+ such that (xy)n, (yx)n ∈ Eαβ . Since Eαβ is
an ideal of Sαβ , then we have that

(xy)nx = (xy)n(xy)2nx = (xy)n

if Eαβ is a left zero band, and

y(xy)n = y(xy)2n(xy)n = (xy)n

if Eαβ is a right zero band. Thus, (ii) holds. (ii) ⇒ (iii). Let (ii) holds. Let x ∈ S.
Then there exists n ∈ Z+ such that x2n = x2n+1, and by this it follows that S is
π−regular. Let x, y ∈ S. Then we have that

(xy)n ∈ {(xy)nx, y(xy)n} ⊆ Sx ∪ yS ,

for some n ∈ Z+, so S is an LR-semigroup. Let a ∈ Reg(S). Then there exists
x ∈ S such that a = axa and x = xax. Now we have that there exists n ∈ Z+ such
that

ax = (ax)n = (ax)na = axa = a

or
ax = (ax)n = x(ax)n = xax = x .

If ax = a, then a = axa = a(ax)a = a2. Therefore, Reg(S) = E(S).
(iii) ⇒ (i). Let S is a π−regular LR-semigroup and Reg(S) = E(S). Then by

Theorem 3.1 we have that S is a semilattice of nil- extensions of left and right
groups. Since Reg(S) = E(S), then S is a semilattice of nil-extensions of singular
bands.

(ii) ⇒ (iv). Let (ii) holds and let a = axa. As in the proof of (ii)⇒(iii) we obtain
that ax = a or ax = x and that S is π− regular. If ax = x, then we have that
a = axa = xa, so (3.6) holds.

(iv) ⇒ (i). Let S be π−regular and let (3.6) holds. Let a ∈ Reg(S). then
a = axa and x = xax for some x ∈ S. By (3.6) we have that a = ax or ax = x,
i.e. ax = a or xa = axa = a, whence a = axa = a2. Therefore, Reg(S) = E(S). By
Theorem 6 [2] we have that S is a semilattice Y of semigroups Sα , α ∈ Y and Sα

is a nil-extension of a rectangular band Eα , α ∈ Y and e, f ∈ Eα. Then efe = e,
so by (3.6) it follows that ef = e or fe = e. Thus, Eα is a rectangular WR-band,
so by Lemma 2.1 it follows that Eα is a singular band. Thus, S is a semilattice of
nil-extensions of singular bands. �

Theorem 3.3. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of left and right groups ;
(ii) S is regular and

(3.7) (∀x, y ∈ S) xy ∈ Sx ∪ yS ;



Semigroups of Galbiati–Veronesi III 9

(iii) S is regular and

(3.8) (∀x, y ∈ S) xy ∈ L(x) ∪R(y) ;

(iv) S is a regular LR-semigroup ;
(v) S is completely regular and E(S) is an LR-band ;
(vi) S is regular and

(3.9) a = axa ⇒ ax = ax2a ∨ ax = xa2x .

Proof. (i) ⇒ (ii). Let S be a semilattice Y of semigroups Sα, α ∈ Y where Sα is a
left or right group, α ∈ Y . Let x ∈ Sα, y ∈ Sβ , α, β ∈ Y . Then xy, yx ∈ Sαβ and
by Lemma 3.3 we have that

xy ∈ xySαβyx ⊆ Sx,

if Sαβ is a left group, and
xy ∈ yxSαβxy ⊆ yS,

if Sαβ is a right group. Thus (3.7) holds. It is clear that S is regular.
(ii) ⇒ (iii) and (iii) ⇒ (iv) follows immediately.
(iv)⇒ (i). Let S be a regular LR-semigroup. By Theorem 3.1 S is a semilattice Y

of semigroups Sα, α ∈ Y , Sα is a nil-extension of Tα and Tα is a left or a right group,
α ∈ Y . Let α ∈ Y and a ∈ Sα. Since S is regular, then there exists x ∈ S such that
a = axa and x = xax. Then x ∈ Sα and ax, xa ∈ Sα∩E(S) = E(Sα) = E(Tal) ⊆ T .
Since Tα is an ideal of Sα, then a = axa ∈ SαTα ⊆ Tα. Thus Sα = Tα for all α ∈ Y ,
whence S is a semilattice of left and right groups.

(ii) ⇒ (v). Let S be regular and let (3.7) holds. As in the proof of Theorem 3.1
we obtain that S is completely regular. Let e, f ∈ E(S). Then ef ∈ Se ∪ fS. Let
ef = ue for some u ∈ S. Then

efe = uee = ue = ef.

Similarly, by ef = fv for some v ∈ S it follows that fef = ef . Now (ef)2 = ef
and by Theorem 2.2 we have that E(S) is an LR-band.

(v) ⇒ (i). Let S be completely regular and E(S) be an LR-band. By Proposition
IV 3.7 [8] S is a semilattice Y of rectangular groups Sα, α ∈ Y . Let α ∈ Y . Since
E(S) is an LR-band, then E(Sα) is an LR-band. Thus, E(Sα) is a rectangular
LR-band and by Lemma 2.2 E(Sα) is a singular band. Therefore, Sα is a left or
right group, so S is a semilattice of left and right groups.

(iv) ⇒ (vi) and (vi) ⇒ (iv) follows by Theorem 3.1. �

Corollary 3.2 [8]. A semigroup S is a semilattice of left groups if and only if S is
regular and

(∀x, y ∈ S)xy ∈ Sx.

Corollary 3.3. A band S is an LR-band if and only if S is an LR-semigroup.
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4. Chain of nil-extensions of rectangular groups

Chains of nil-extensions of rectangular groups are considered in [1] (Theorem 5.2
[1]). Now we have the following theorem:

Theorem 4.1. The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of rectangular groups;
(ii) S is completely π regular and E(S) is a chain of rectangular bands;
(iii) S is a GV -semigroup and E(S) is a chain of rectangular bands.

Proof. (i) ⇒ (ii). Let S be a chain Y of semigroups Sα, α ∈ Y and let Sα is a nil-
extension of a rectangular group Tα, α ∈ Y . By Theorem IV 2 [5] S is completely
π-regular. Let e, f ∈ E(S). Then by Theorem 5.2 [1] it follows that there exists
n ∈ Z+ such that e = (efe)n or f = (fef)n, and by Bogdanović’s theorem we have
that there exists m ∈ Z+ such that (ef)m = (ef)m+1, whence (ef)k = (ef)m for
every k ∈ Z+, k ≥ m and (ef)m ∈ E(S). Now

ef = emf = (efe)mnf = (ef)mnef = (ef)mn+1 = (ef)m ∈ E(S)

or
ef = efm = e(fef)mn = ef(ef)mn = (ef)mn+1 = (ef)m ∈ E(S).

Therefore, E(S) is a band, whence efe, fef ∈ E(S) for all e, f ∈ E(S). Now, by
Theorem 5.2 [1] it follows that e = efe or f = fef for all e, f ∈ E(S), so by
Theorem 2.3 it follows that E(S) is a chain of rectangular bands.

(ii) ⇒ (iii). Let S be completely π-regular and let E(S) be a chain of rectangular
bands. Since E(S) is a subsemigroup of S, then by Proposition 1 [4], T = Reg(S)
is a regular subsemigroup of S, Let a ∈ T = Reg(s). Then a = axa and x = xax
for some x ∈ T . Since ax, xa ∈ E(S) and E(S) is a chain of rectangular bands, then
by Theorem 2.3 we have that

a = axa = (ax)(xa)(ax)a = ax2a2xa ∈ Ta2T

or
a = axa = a(xa)(ax)(xa) = axa2x2a ∈ Ta2T.

Therefore, T is intra-regular so by Theorem II 4.5 [8] T is a semilattice Y of simple
semigroups Tα, α ∈ Y . Let α ∈ Y and a ∈ Tα. Since S is completely π-regular,
then there exist n ∈ Z+ and x ∈ S such that

an = anxan and anx = xan.

Let y = xanx. Then anyan = an, yany = y and any = yan. Thus, y ∈ T and it is
not hard to verify that y ∈ Tα. Hence Tαis a simple completely π-regular semigroup,
so by Theorem VI 2.1.1 [5] we have that Tα is completely simple. Therefore, T is a
semilattice of completely simple semigroups, so T = Reg(S) is completely regular,
i.e. S is a GV -semigroup.

(iii) ⇒ (i). This follows by Theorem 5.2 [1] and Theorem 4.3. �
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Corollary 4.1. The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of groups;
(ii) S is completely π-regular and E(S) is a chain;
(iii) S is a GV -semigroup and E(S) is a chain.

Corollary 4.2. The following conditions on a semigroup S are equivalent:
(i) S is a chain of rectangular groups;
(ii) S is regular, completely π-regular and E(S) is a chain of rectangular bands;
(iii) S is completely regular and E(S) is a chain of rectangular bands.

Corollary 4.3. A semigroup S is a chain of nil-extensions of periodic rectangular
groups if and only if S is periodic and E(S) is a chain of rectangular bands.

Corollary 4.4. A semigroup S is a chain of periodic rectangular groups if and only
if S is regular, periodic and E(S) is a chain of rectangular bands.

Theorem 4.2. The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of rectangular bands;
(ii) (∀x, y ∈ S)(∃n ∈ Z+) x2n = xnyxn ∨ y2n = ynxyn;
(iii) S is π-regular and Reg(S) is a chain of rectangular bands.

Proof. (i) ⇒ (ii). Let S be a chain Y of semigroups Sα, α ∈ Y and let Sα is a nil-
extension of a rectangular band Eα, α ∈ Y . Let x ∈ Sα, y ∈ Sβ , α, β ∈ Y . Assume
that α ≤ β. Then xn ∈ Eα for some n ∈ Z+, xny ∈ Sα. Since Eα is an ideal of Sα,
then xnyxn ∈ SαEα ⊆ Eα. Now we have that

x2n = xn(xnyxn)xn = x2nyx2n = xnyxn.

Similarly, if α ≤ β, then we obtain that y2n = ynxyn for some n ∈ Z+. Thus (ii)
holds.

(ii) ⇒ (iii). Let (ii) holds. For every x ∈ S there exists n ∈ Z+ such that x2n =
x2n+1 so by Lemma 4.2 [1] S is a union of nil-semigroups. Let e, f ∈ E(S). Then
we have that e = efe or f = fef , so by Theorem 2.3 E(S) is a chain of rectangular
bands. Now, by Theorem 4.1 S is a GV -semigroup, whence Reg(S) = Gr(S) and
by Theorem 5 [2] we have that Gr(S) = E(S). Thus, Reg(S) = E(S) is a chain of
rectangular bands.

(iii) ⇒ (i). Let S be π-regular and ler Reg(S) be a chain of rectangular bands.
It is clear that E(S) = Reg(S). Thus S is periodic, so by Theorem 4.1 S is a chain
of nil-extensions of rectangular groups. Since E(S) = Reg(S), then S is a chain of
nil-extensions of rectangular bands. �

5. Chain of nil-extensions of left and right groups

Theorem 5.1. The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of left and right groups;
(ii) for every x, y ∈ S there exists n ∈ Z+ such that

xn ∈ x2nS(xy)n ∪ (yx)nSx2n or yn ∈ y2nS(yx)n ∪ (xy)nSy2n;
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(iii) S is completely π-regular and E(S) is a WR-band;
(iv) S is a GV -semigroup and E(S) is a WR-band.

Proof. (i) ⇒ (ii). Let S be a chain Y of semigroups Sα, α ∈ Y Sα is a nil-extension
of Tα and Tα is a left or a right group, α ∈ Y . Let x ∈ Sα, y ∈ Sβ , α, β ∈ Y .
Assume that α ≤ β. Then x, xy, yx ∈ Sα and there exists n ∈ Z+ such that
xn, (xy)n, (yx)n ∈ Tα. Let Tα be a left group. Let xn ∈ Ge (this is the maximal
subgroup of S with the identity element e), (xy)n ∈ Gf , e, f ∈ E(Tα), then ef =
e, whence xn = xne = xnef = x2n(xn)−1((xy)n)−1(xy)n, so xn ∈ x2nS(xy)n.
Similarly, if Tα is a right group, then xn ∈ (yx)nSx2n. In a similar way we consider
the case β ≤ α. Thus, (ii) holds.

(ii) ⇒ (iii). Let x ∈ S. Then there exists n ∈ Z+ such that xn ∈ x2nSx2n, so S
is completely π-regular. Let e, f ∈ E(S). Then there exists n ∈ Z+ such that

e ∈ eS(ef)n ∪ (fe)nSe or f ∈ fS(fe)n ∪ (ef)nSf,

whence it follows that E(S) is a WR-band.
(iii) ⇒ (iv). This follows by Theorem 2.1 and by Theorem 4.1.
(iv) ⇒ (i). Let S be a GV -semigroup and let E(S) be a WR-band. By Theorem

2.1 and by Theorem 4.1 we have that S is a chain Y of semigroups Sα, α ∈ Y and
Sα is a nil-extension of a rectangular group Tα, α ∈ Y . Let α ∈ Y . Let α ∈ Y .
Then E(Tα) is a rectangular WR-band, so by Lemma 2.1 it follows that E(Tα) is a
singular band. Thus, Tα is a left or a right group, so S is a chain of nil-extensions
of left and right groups. �

Corollary 5.1. The following conditions on a semigroup S are equivalent:
(i) S is a chain of left and right groups;
(ii) (∀x, y ∈ S) x ∈ xySxy ∪ yxSyx or y ∈ xySxy ∪ yxSyx;
(iii) S is regular, comletely π-regular and E(S) is a WR-band;
(iv) S is a comletely regular and E(S) is a WR-band.

Proof. (i) ⇒ (ii). Let S be a chain Y of left and right groups Sα, α ∈ Y . Let
x ∈ Sα, y ∈ Sβ , α, β ∈ Y . Assume that α ≤ β (the similar proof we have in the case
β ≤ α). Then x, xy, yx ∈ Sα Assume that x ∈ Ge, e ∈ E(Sα). If Sα is a left group.
then xy = exy ∈ GeSα ⊆ Ge, whence

x ∈ xyGexu ⊆ xySxy.

If Sα is a right group, then, similarly, yx ∈ Ge, whence x ∈ yxSyx.
(ii) ⇒ (iv). This follows immediately.
(i) ⇔ (iii) ⇔ (iv). This follows by Theorem 5.1. �

Corollary 5.2. S is a chain of nil-extensions of periodic left and right groups if
and only if S is periodic and E(S) is a WR-band.

Corollary 5.3. S is a chain of periodic left and right groups if and only if S is a
regular periodic semigroup and E(S) is WR-band.
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Theorem 5.2. The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of left groups;
(ii) (∀x, y ∈ S) (∃n ∈ Z+)xn ∈ x2nS(xy)n or yn ∈ y2nS(yx)n;
(iii) S is completely π-regular and E(S) is an LWR-band;
(iv) S is a GV -semigroup and E(S) is an LWR-band.

Proof. This follows by Theorem 5.1. �

Corollary 5.4. The following conditions on a semigroup S are equivalent:
(i) S is a chain of left groups;
(ii) (∀x, y ∈ S) x ∈ xSxy ∨ y ∈ ySyx;
(iii) S is regular, comletely π-regular and E(S) is an LWR-band;
(iv) S is a completely regular and E(S) is an LWR-band.

Theorem 5.3. The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of singular bands;
(ii) (∀x, y ∈ S) (∃n ∈ Z+)xn = xny ∨ xn = yxn ∨ yn = ynx ∨ yn = xyn;
(iii) S is π-regular and Reg(S) is a WR-band.

Proof. (i) ⇒ (ii). Let S be a chain Y of semigroups Sα, α ∈ Y and Sα be a nil-
extension of a singular band Eα, α ∈ Y . Let x ∈ Sα, y ∈ Sβ , α, β ∈ Y . Assume
that α ≤ β( the similar proof we have in the case β ≤ α). Then xn ∈ Sα for
some n ∈ Z+ and xny, yxn ∈ Sα. Since Eα is an ideal of Sα, then we have that
xny = xnxny ∈ EαSα ⊆ Eα and similarly yxn ∈ Eα. Now we have that

xn = xnxny = xny,

if Eα is a left zero band, and

xn = yxnxn = yxn,

if Eα is a right zero band. Thus, (ii) holds.

(ii) ⇒ (iii). Let (ii) holds. Then for every x ∈ S there exists n ∈ Z+ such that
xn = xn+1, so by Lemma 4.2 [1] we have that S is a union of nil-semigroups. By
theorem 5 [2] it follows that S is completely π-regular and Gr(S) = E(S). By (ii)
it follows that E(S) is a WR-band, so by Theorem 5.1 we have that S is a GV -
semigroup, i.e. Reg(S) = Gr(S). Thus, Reg(S) = E(S) is a WR-band, i.e. (iii)
holds.

(iii) ⇒ (i). Let S be π-regular and let Reg(S) be a WR-band. Then Reg(S) =
E(S) = Gr(S), so S is a GV -semigroup and E(S) is a WR-band and by Theorem
5.1 it follows that S is a chain of nil-extensions of left and right groups. Since
Reg(S) = E(S), then S is a chain of nil-extensions of singular bands. �

Corollary 5.5. The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of left zero bands;
(ii) (∀x, y ∈ S) (∃n ∈ Z+)xn = xny ∨ yn = ynx;
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(iii) S is π-regular and Reg(S) is an LWR-band;
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2. S. BOGDANOVIĆ: Semigroups of Galbiati-Veronesi II. Facta Univ. Ser. Math. Inform.
2 (l987), 61–66.
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POLUGRUPE GALBIATI–VERONESI III
(POLUMREŽE NIL-EKSTENZIJA LEVIH I DESNIH GRUPA)

Stojan Bogdanović i Miroslav Ćirić

Ovaj rad je nastavak radova [1] i [2]. Ovde razmatramo polugrupe koje su polumreže nil-
ekstenzija levih i desnih grupa.


