SEMIGROUPS OF GALBIATI-VERONESI IV (BANDS OF NIL-EXTENSIONS OF GROUPS)*

Stojan Bogdanović and Miroslav Ćirić

Abstract

This paper is the continuation of [1], [2] and [4]. Here we consider semigroups that are bands of nil-extensions of groups and various special types of them.

1. Introduction and Preliminaries

Throughout this paper, \mathbf{Z}^{+}will denote the set of all positive integers. A semigroup S is π-regular if for every $a \in S$ there exists $n \in \mathbf{Z}^{+}$ such that $a^{n} \in a^{n} S a^{n}$. A semigroup S is completely π-regular if for every $a \in S$ there exist $n \in \mathbf{Z}^{+}$and $x \in S$ such that $a^{n}=a^{n} x a^{n}$ and $a^{n} x=x a^{n}$. Let us denote by $\operatorname{Reg}(S)(G r(S), E(S))$ the set of all regular (completely regular, idempotent) elements of a semigroup S. A semigroup S is Archimedean (left Archimedean, right Archimedean, t Archimedean) if for all $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that $a^{n} \in$ $S b S\left(a^{n} \in S b, a^{n} \in b S, a^{n} \in b S \cap S b\right)$. A semigroup S is completely Archimedean if S is Archimedean and has a primitive idempotent. By radical of the subset A of a semigroup S we mean the set \sqrt{A} defined by $\sqrt{A}=\left\{a \in S \mid\left(\exists n \in \mathbf{Z}^{+}\right) a^{n} \in A\right\}$. If e is an idempotent of a semigroup S, then by G_{e} we denote the maximal subgroup of S with e as its identity and by T_{e} we denote the set $T_{e}=\sqrt{G_{e}}$. On a semigroup S we define the relation τ by

$$
a \tau b \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad(\exists e \in E(S)) a, b \in T_{e} \quad(a, b \in S)
$$

The relation τ always is symmetric and transitive, and it is an equivalence if and only if S is completely π-regular.

A semigroup S with the zero 0 is a nil-semigroup if for every $a \in S$ there exists $n \in \mathbf{Z}^{+}$such that $a^{n}=0$. An ideal extension S of T is a

[^0]nil-extension if S / T is a nil-semigroup. A subsemigroup T of a semigroup S is a retract of S if there exists a homomorphism φ of S onto T such that $\varphi(t)=t$ for all $t \in T$. Such a homomorphism we call a retraction. An ideal extension S of T is a retract extension (or retractive extension) of T if T is a retract of S. A semigroup S is a π-group if S is a nil-extension of a group.

A semigroup S is a Rédei's band if $x y=x$ or $x y=y$ for all $x, y \in S$. A band S is left regular(normal, left normal) if S satisfies the identity $a x=a x a(a x y a=a y x a, a x y=a y x)$.

Veronesi's theorem. [13] A semigroup S is a semilattice of completely Archimedean semigroups if and only if S is π-regular and $\operatorname{Reg}(S)=$ $G r(S)$.

Munn's lemma. [9] Let a be an element of a semigroup S such that a^{n} lies in some subgroup G of S, for some $n \in \mathbf{Z}^{+}$. If e is the identity of G, then $e a=a e \in G_{e}$ and $a^{m} \in G_{e}$ for all $m \in \mathbf{Z}^{+}, m \geq n$.

Bogdanović-Milić's lemma. [5] If S is a π-regular semigroup all of whose idempotents are primitive, then S is completely π-regular with maximal subgroups given by $G_{e}=e S e(e \in E(S))$.

Define a relation $\stackrel{t}{\sim}$ on a semigroup S by:

$$
a \stackrel{t}{\sim} b \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad\left(\exists m, n \in \mathbf{Z}^{+}\right) \quad a^{m} \in b S \cap S b \text { and } b^{n} \in a S \cap S a .
$$

Putcha's theorem. [11] A semigroup S is a band of t-Archimedean semigroups if and only if

$$
x a y \stackrel{t}{\sim} x a^{2} y,
$$

for all $a \in S, x, y \in S^{1}$.
For undefined notions and notations we refer to [10].

2. Bands of Nil-extensions of Groups

Bands of nil-extensions of groups (π-groups) are studied by J.L. Galbiati and M.L. Veronesi [7], B.L. Madison, T.K. Mukherjee and M.K. Sen [8] and L.N. Shevrin [12]. In the present paper some new characterizations of bands of nil-extensions of groups are given.

By Theorems 1,2 and 3 three preliminary results of decompositions of π-regular semigroups into a semilattice of retractive nil-extensions of completely simple semigroups will be given. The main results are Theorems 4 and 5.

Theorem 1. Let S be a π-regular semigroup and let for all $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
(a b)^{n} \in a^{2} S b^{2} \tag{1}
\end{equation*}
$$

Then S is a semilattice of retractive nil-extensions of completely simple semigroups.

Proof. Let (1) hold and let $a \in \operatorname{Reg}(S)$. Then there exists $x \in S$ such that $a=a x a$, so

$$
\begin{aligned}
a & =a x a=(a x)^{n} a & & \text { for every } n \in \mathbf{Z}^{+} \\
& \in a^{2} S x^{2} a & & \text { by }(1), \\
& \subseteq a^{2} S, & & \\
a & =a x a=a(x a)^{n} & & \text { for every } n \in \mathbf{Z}^{+} \\
& \in a x^{2} S a^{2} & & \text { by (1), } \\
& \subseteq S a^{2} . & &
\end{aligned}
$$

Thus, $a \in G r(S)$, so by Veronesi's theorem it follows that S is a semilattice Y of completely Archimedean semigroups $S_{\alpha}, \alpha \in Y$.

Let $\alpha \in Y$. Then S_{α} is a nil-extension of a completely simple semigroup K_{α}. Let $a \in T_{e} \subseteq S_{\alpha}$ for some $e \in E\left(S_{\alpha}\right)$ and let $f \in E\left(S_{\alpha}\right)$. We will prove that

$$
\begin{equation*}
a f=e a f \quad \text { and } \quad f a=f a e . \tag{2}
\end{equation*}
$$

First, we will prove that for every $m \in \mathbf{Z}^{+}$there exist $n \in \mathbf{Z}^{+}$and $u \in S$ such that

$$
\begin{equation*}
(a f)^{n}=a^{m} u f \tag{3}
\end{equation*}
$$

It is clear that this holds for $m=1$. Assume that $(a f)^{n}=a^{m} u f$ for some $n \in \mathbf{Z}^{+}$and $u \in S$. Then by (1) it follows that there exists $k \in \mathbf{Z}^{+}$and $v \in S$ such that

$$
(a f)^{n k}=\left((a f)^{n}\right)^{k}=\left(a^{m} u f\right)^{k}=a^{2 m} v(u f)^{2}=a^{m+1} u_{1} f
$$

where $u_{1}=a^{m-1} v u f u$. Therefore, for every $m \in \mathbf{Z}^{+}$there exist $n \in \mathbf{Z}^{+}$ and $u \in S$ such that (3) holds.

Assume that $m \in \mathbf{Z}^{+}$is such that $a^{m} \in G_{e}$ and let $n \in \mathbf{Z}^{+}$and $u \in S$ be such that (3) holds. Since $a f \in K_{\alpha}$, then af $\mathcal{H}(a f)^{n}$, where \mathcal{H} is the Green's relation on K_{α}, so $a f=(a f)^{n} v$ for some $v \in S$. Thus

$$
a f=(a f)^{n} v=a^{m} u f v=e a^{m} u f v=e a f
$$

Hence, the first part of (2) holds. In a similar way it can be proved the second part of (2). Therefore, (2) holds.

Define a mapping $\varphi: S_{\alpha} \rightarrow K_{\alpha}$ by:

$$
\varphi(a)=e a \quad \text { if } a \in T_{e}, e \in E\left(S_{\alpha}\right) .
$$

Let $a \in T_{e}, b \in T_{f}, e, f \in E\left(S_{\alpha}\right)$. Assume that $a b \in T_{g}$ for some $g \in E\left(S_{\alpha}\right)$. Then by (2) and by Munn's lemma we have that

$$
\begin{aligned}
\varphi(a b) & =g a b=g a e b=g a e b f=g a b f=a b f=a f b=e a f b \\
& =\varphi(a) \varphi(b)
\end{aligned}
$$

Therefore, φ is a homomorphism and since $\varphi(a)=a$ if $a \in K_{\alpha}$, then φ is a retraction, so S is a semilattice of retractive nil-extensions of completely simple semigroups.
Theorem 2. Let S be a π-regular semigroup and let for all $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
(a b)^{n} \in a^{2} S a
$$

Then S is a semilattice of retractive nil-extensions of left groups.
Proof. By Theorem 2.2 [1] it follows that S is a semilattice Y of semigroups $S_{\alpha}, \alpha \in Y$, and for every $\alpha \in Y, S_{\alpha}$ is a nil-extension of a left group K_{α}.

Let $\alpha \in Y$, let $a \in T_{e} \subseteq S_{\alpha}$, for some $e \in E\left(S_{\alpha}\right)$ and let $f \in E\left(S_{\alpha}\right)$. As in the proof of Theorem 1 we obtain that $a f=e a f$. On the other hand, there exists $n \in \mathbf{Z}^{+}$such that $(f a)^{n} \in S f$, so $(f a)^{n}=(f a)^{n} f$. Since fa $\mathcal{H}(f a)^{n}$, where \mathcal{H} is the Green's relation on K_{α}, then $f a=f a f$, so $(f a)^{n}=f a^{n}$ for every $n \in \mathbf{Z}^{+}$. Assume that $n \in \mathbf{Z}^{+}$is such that $a^{n} \in G_{e}$. Then $f a=u(f a)^{n}$ (since $\left.f a \mathcal{H}(f a)^{n}\right)$, whence

$$
f a=u(f a)^{n}=u f a^{n}=u f a^{n} e=f a e .
$$

Therefore $f a=f a e$, so as in the proof of Theorem 1 we prove that S_{α} is a retractive nil-extension of K_{α}.

Theorem 3. Let S be a band of π-groups and let $\operatorname{Reg}(S)$ be a subsemigroup of S. Then $\operatorname{Reg}(S)$ is a band of groups and a retract of S.

Conversely, if S has a retract K which is a band of groups and $S=$ \sqrt{K}, then S is a band of π-groups.

Proof. Let S be a band I of π-groups $S_{i}, i \in I$, and let $\operatorname{Reg}(S)$ be a subsemigroup of S. For $i \in I$, let S_{i} be a nil-extension of a group G_{i} with the identity e_{i}. Then $\operatorname{Reg}(S)=\operatorname{Gr}(S)=\cup\left\{G_{i} \mid i \in I\right\}$. Then it is clear that $\operatorname{Reg}(S)$ is a band I of groups $G_{i}, i \in I$. Define a mapping $\varphi: S \rightarrow \operatorname{Reg}(S)$ by:

$$
\varphi(x)=x e_{i} \quad \text { if } \quad x \in S_{i}, i \in I .
$$

Let $x_{i} \in S_{i}, x_{j} \in S_{j}, i, j \in I$. Then $e_{i} e_{i j}=\left(e_{i} e_{i j}\right) e_{i j} \in S_{i j} G_{i j} \subseteq G_{i j}$ and $e_{i j} e_{j}=e_{i j}\left(e_{i j} e_{j}\right) \in G_{i j} S_{i j} \subseteq G_{i j}$, so

$$
\begin{aligned}
& \left(e_{i} e_{i j}\right)^{2}=e_{i}\left(e_{i j}\left(e_{i} e_{i j}\right)\right)=e_{i}\left(e_{i} e_{i j}\right)=e_{i} e_{i j} \in S_{i j} \\
& \left(e_{i j} e_{j}\right)^{2}=\left(\left(e_{i j} e_{j}\right) e_{i j}\right) e_{j}=\left(e_{i j} e_{j}\right) e_{j}=e_{i j} e_{j} \in S_{i j}
\end{aligned}
$$

Since $S_{i j}$ contain exactly one idempotent $e_{i j}$, then

$$
\begin{equation*}
e_{i} e_{i j}=e_{i j} e_{j}=e_{i j} \tag{4}
\end{equation*}
$$

Now we obtain that

$$
\begin{align*}
\varphi\left(x_{i}\right) \varphi\left(x_{j}\right) & =\left(x_{i} e_{i}\right)\left(x_{j} e_{j}\right) & & \\
& =e_{i j}\left(x_{i} e_{i}\right)\left(x_{j} e_{j}\right) e_{i j} & & \left(\text { since } x_{i} e_{i} x_{j} e_{j} \in G_{i} G_{j} \subseteq G_{i j}\right) \\
& =e_{i j} e_{i} x_{i} x_{j} e_{j} e_{i j} & & \text { (by Munn's lemma) } \\
& =e_{i j} e_{i} x_{i} e_{i} x_{j} e_{i j} e_{j} e_{i j} & & \left(\text { since } e_{i j} e_{i} x_{i} x_{j} \in G_{i j} S_{i j} \subseteq G_{i j}\right) \\
& =e_{i j} e_{i} x_{i} x_{j} e_{i j} & & \text { (by (4)) } \tag{4}\\
& =e_{i j} e_{i} e_{i j} x_{i} x_{j} e_{i j} & & \left(\text { since } x_{i} x_{j} e_{i j} \in S_{i j} G_{i j} \subseteq G_{i j}\right) \\
& =e_{i j} x_{i} x_{j} e_{i j} & & (\text { by (4)) } \tag{4}\\
& =x_{i} x_{j} e_{i j} & & \left(\text { since } x_{i} x_{j} e_{i j} \in G_{i j}\right) \\
& =\varphi\left(x_{i} x_{j}\right) . & &
\end{align*}
$$

Therefore, φ is a homomorphism and since $\varphi(a)=a$ if $a \in \operatorname{Reg}(S)$, then φ is a retraction of S onto $\operatorname{Reg}(S)$.

Conversely, let S have a retract K which is a band I of groups $G_{i}, i \in I$ and let $\sqrt{K}=S$. Let $\varphi: S \rightarrow K$ be a retraction and let $S_{i}=\varphi^{-1}\left(G_{i}\right), i \in I$. Then $S_{i} \cap K=G_{i}$ and $S_{i}=\sqrt{G_{i}}$ for every $i \in I$. Therefore, S_{i} is a π-group for all $i \in I$, so S is a band I of π-groups $S_{i}, i \in I$.

Corollary 1. [7] (i) A semigroup S is a retractive nil-extension of a completely simple semigroup if and only if S is a rectangular band of π groups.
(ii) A semigroup S is a retractive nil-extension of a left (right) group if and only if S is a left (right) zero band of π-groups.

Theorem 4. The following conditions on a semigroup S are equivalent:
(i) S is π-regular and for all $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
(a b)^{n} \in a^{2} b S a b^{2} \tag{5}
\end{equation*}
$$

(ii) S is completely π-regular and for all $a, b \in S$ is

$$
\begin{equation*}
a b \tau a^{2} b \tau a b^{2} \tag{6}
\end{equation*}
$$

(iii) S is a band of π-groups.

Proof. $(i) \Rightarrow(i i)$. Let (i) hold. Then by Theorem 1 we have that S is a semilattice Y of semigroups $S_{\alpha}, \alpha \in Y$, and for every $\alpha \in Y, S_{\alpha}$ is a retractive nil-extension of a completely simple semigroup K_{α}. Therefore,
S is completely π-regular and by Corollary 1 it follows that S_{α} is a rectangular band of π-groups for all $\alpha \in Y$.

Let $a, b \in S$. Then $a \in S_{\alpha}, b \in S_{\beta}$ for some $\alpha, \beta \in Y$ and $a b, a^{2} b, a b^{2} \in S_{\alpha \beta}$. Moreover, $S_{\alpha \beta}$ is a rectangular band $I \times \Lambda$ of π groups $T_{i \lambda}, i \in I, \lambda \in \Lambda$. Let $a b \in T_{i \lambda}, a^{2} b \in T_{j \mu}, a b^{2} \in T_{l \nu}$ for some $i, j, l \in I, \lambda, \mu, \nu \in \Lambda$. Let $e_{j \mu}$ be the idempotent of $T_{j \mu}$. Then $e_{j \mu} a^{2} b \in T_{j \mu}^{2} \subseteq T_{j \mu}$ and

$$
e_{j \mu} a^{2} b=e_{j \mu} e_{j \mu} a a b \in T_{j \mu} S_{\alpha \beta} T_{i \lambda} \subseteq T_{j \lambda},
$$

so $\mu=\lambda$. In a similar way it can be proved that $l=i$. Also, by (5) it follows that there exist $n \in \mathbf{Z}^{+}$and $u \in S$ such that $(a b)^{n}=a^{2} b u a b^{2}$, whence $u a b^{2} a^{2} b u \in S_{\alpha \beta}$, so

$$
(a b)^{2 n}=a^{2} b\left(u a b^{2} a^{2} b u\right) a b^{2} \in T_{j \lambda} S_{\alpha \beta} T_{i \nu} \subseteq T_{j \nu}
$$

Since $(a b)^{2 n} \in T_{i \lambda}$, then $j=i$ and $\nu=\lambda$. Therefore, $a b, a^{2} b, a b^{2} \in T_{i \lambda}$, so (6) holds.
(ii) \Rightarrow (iii). Let (ii) hold and let $a, b \in S$. Assume that $a \in T_{e}, b \in$ T_{f} for some $e, f \in E(S)$. By (6) it follows that $a b \tau a^{k} b$ for every $k \in \mathbf{Z}^{+}$. Let $k \in \mathbf{Z}^{+}$be such that $a^{k} \in G_{e}$. Then

$$
e b=a^{k}\left(a^{k}\right)^{-1} b \tau\left(a^{k}\right)^{2}\left(a^{k}\right)^{-1} b=a^{k} e b=a^{k} b \tau a b .
$$

Thus, $a b \tau e b$. In a similar way it can be proved that eb $e f$. Therefore, $a b \tau e f$, so τ is a congruence on S. It is clear that τ is a band congruence and every τ-class is a π-group. Hence, (iii) holds.
(iii) $\Rightarrow \quad(i)$. Let S be a band I of π-groups $S_{i}, i \in I$. Let $a \in S_{i}, b \in S_{j}, i, j \in I$. Then $a b, a^{2} b, a b^{2} \in S_{i j}$, so (i) holds.

Remark. $(i i) \Leftrightarrow(i i i)$ of the previous theorem is proved in [8], but here a new proof is given.

Theorem 5. The following conditions on a semigroup S are equivalent: (i) S is π-regular and for all $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
(a b)^{n} \in a^{2} b S a ; \tag{7}
\end{equation*}
$$

(ii) S is completely π-regular and for all $a, b \in S$

$$
\begin{equation*}
a b \tau a^{2} b \tau a b a ; \tag{8}
\end{equation*}
$$

(iii) S is a left regular band of π-groups.

Proof. $(i) \Rightarrow(i i)$. Let (i) hold. Then by Theorem 2 it follows that S is a semilattice Y of semigroups $S_{\alpha}, \alpha \in Y$, and for every $\alpha \in Y, S_{\alpha}$ is a retractive nil-extension of a left group K_{α}. By this and by Corollary

1 it follows that for all $\alpha \in Y, S_{\alpha}$ is a left zero band of π-groups. It is clear that S is completely π-regular.

Let $a, b \in S$. Then $a \in S_{\alpha}, b \in S_{\beta}$ for some $\alpha, \beta \in Y$ and $a b, a^{2} b, a b a \in S_{\alpha \beta}$. Moreover, $S_{\alpha \beta}$ is a left zero band I of π-groups $T_{i}, i \in I$. Assume that $a b \in T_{i}, a^{2} b \in T_{j}$ and $a b a \in T_{k}$ for some $i, j, k \in I$. Then $(a b a)^{2} \in T_{k}$ and

$$
(a b a)^{2}=a b\left(a^{2} b a\right) \in T_{i} S_{\alpha \beta} \subseteq T_{i},
$$

so $k=i$. Thus, $a b \tau a b a$. On the other hand, by (7) it follows that there exist $n \in \mathbf{Z}^{+}$and $u \in S$ such that $(a b)^{n}=a^{2} b u a$. Since $u a^{2} b \in S_{\alpha \beta}$, then

$$
(a b)^{n+1}=a^{2} b\left(u a^{2} b\right) \in T_{j} S_{\alpha \beta} \subseteq T_{j},
$$

so $j=i$. Thus, $a b \tau a^{2} b$. Hence, (ii) holds.
(ii) \Rightarrow (iii). Let (ii) hold and let $a, b \in S$. Assume that $a \tau e$ and $b \tau f$ for some $e, f \in E(S)$. As in the proof of Theorem 4 it can be proved that $a b \tau e b$, so τ is a right congruence. By this and by (8) it follows that $(a b a) b \tau(a b) b$, whence

$$
a b \tau(a b)^{2}=(a b a) b \tau(a b) b=a b^{2} .
$$

Therefore, (6) holds, whence S is a band S / τ of π-groups. Let $a \tau, b \tau \in S / \tau$. Then by (8) it follows that $(a \tau)(b \tau)=(a \tau)(b \tau)(a \tau)$, so S / τ is a left regular band.
$($ iii $) \Rightarrow(i)$. Let S be a left regular band I of π-groups $S_{i}, i \in I$. Let $a, b \in S$. Then $a \in S_{i}, b \in S_{j}$ for some $i, j \in I$, whence $a b, a^{2} b \in S_{i j}$ and $a b a \in S_{i j i}=S_{i j}$. Since $S_{i j}$ is a π-group, then it follows that (7) holds. Hence, (i) holds.

3. Normal Bands of \mathbf{t}-Archimedean Semigroups

In [11] bands of t-Archimedean semigroups and various other (semilattice) band decompositions were also characterized. In this section we characterize normal bands of t -Archimedean semigroups and using this characterization we obtain some characterizations for normal bands of π-groups.

Theorem 6. A semigroup S is a normal band of t-Archimedean semigroups if and only if for all $a, b, c \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
(a b c)^{n} \in a c S a c . \tag{9}
\end{equation*}
$$

Proof. Let (9) hold and let $a \in S, x, y \in S^{1}$. Assume that $x, y \in S$ (in a similar way we can prove the cases with $x=1$ or $y=1$). Then by (9) it follows that there exists $n \in \mathbf{Z}^{+}$such that

$$
\left(x a^{2} y\right)^{n}=((x a) a y)^{n} \in x a y S x a y
$$

Moreover, there exists $m \in \mathbf{Z}^{+}$such that

$$
(x a y)^{2 m}=((x a)(y x)(a y))^{m} \in x a^{2} y S x a^{2} y
$$

Therefore, $x a y \stackrel{t}{\sim} x a^{2} y$, so by Putcha's theorem we obtain that S is a band I of t-Archimedean semigroups $S_{i}, i \in I$. Let $i, j, k \in I$. Since I is a homomorphic image of S, then by (9) it follows that there exist $n \in \mathbf{Z}^{+}$ and $u \in I$ such that $i j k=(i j k)^{n}=i k u i k$, whence $i j k=i k i j k i k$, so by Proposition II 3.10 [10] we obtain that I is a normal band.

Conversely, let S be a normal band I of t-Archimedean semigroups $S_{i}, i \in I$. Let $a, b, c \in S$. Then $a \in S_{i}, b \in S_{j}, c \in S_{k}$ for some $i, j, k \in I$, so

$$
a c a b c \in S_{i k i j k}=S_{i j k} \quad \text { and } \quad a b c a c \in S_{i j k i k}=S_{i j k},
$$

since I is a normal band. Since $S_{i j k}$ is t-Archimedean, then there exists $m, n \in \mathbf{Z}^{+}$such that

$$
(a b c)^{n} \in a c a b c S a c a b c \quad \text { and } \quad(a b c)^{m} \in a b c a c S a b c a c,
$$

whence $(a b c)^{m+n} \in a c S a c$.
Theorem 7. The following conditions on a semigroup S are equivalent:
(i) S is a left normal band of t-Archimedean semigroups;
(ii) for all $a, b, c \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
(a b c)^{n} \in a c S a
$$

(iii) for all $a, b, c \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
(a b c)^{n} \in a c S b .
$$

Proof. $\quad(i) \Rightarrow(i i)$. Let S be a left normal band I of t-Archimedean semigroups $S_{i}, i \in I$. Let $a, b, c \in S$. Then $a \in S_{i}, b \in S_{j}, c \in S_{k}$ for some $i, j, k \in I$, so $a b c \in S_{i j k}$ and $a c b a \in S_{i j k i}=S_{i j k}$, since I is a left normal band. Therefore, there exixts $n \in \mathbf{Z}^{+}$such that

$$
(a b c)^{n} \in a c b a S a c b a \subseteq a c S a
$$

Hence, (ii) holds.
(ii) \Rightarrow (iii). Let (ii) hold and let $a, b, c \in S$. Then there exists $n \in \mathbf{Z}^{+}$such that $(a b c)^{n} \in a c S a \subseteq a c S$ and there exists $m \in \mathbf{Z}^{+}$such that

$$
(a b c)^{2 m}=((a b)(c a)(b c))^{m} \in a b b c S a b \subseteq S b
$$

so

$$
(a b c)^{2 m+n} \in a c S S b \subseteq a c S b
$$

Therefore, (iii) holds.
(iii) \Rightarrow (i). Let (iii) hold and let $a \in S, x, y \in S^{1}$. Assume that $x, y \in S$ (in a similar way we can prove the cases with $x=1$ or $y=1$). Then there exist $n, m \in \mathbf{Z}^{+}$such that

$$
\begin{gathered}
(x a y)^{2 n}=((x a)(y x)(a y))^{n} \in x a a y S y x \subseteq x a^{2} y S \\
(a y x)^{2 m}=((a y)(x a)(y x))^{m} \in a y y x S x a \subseteq S x a
\end{gathered}
$$

whence

$$
(x a y)^{2 n+2 m+1}=(x a y)^{2 n} x(a y x)^{2 m} a y \in x a^{2} y S x S x a a y \subseteq x a^{2} y S x a^{2} y
$$

Moreover, there exist $k, t \in \mathbf{Z}^{+}$such that

$$
\begin{gathered}
\left(x a^{2} y\right)^{k}=((x a) a y)^{k} \in x a y S \\
\left(y x a^{2}\right)^{t}=(y(x a) a)^{t} \in y a S x a \subseteq S x a
\end{gathered}
$$

so

$$
\left(x a^{2} y\right)^{k+t+1}=\left(x a^{2} y\right)^{k} x a^{2}\left(y x a^{2}\right)^{t} y \in x a y S x a^{2} S x a y \subseteq x a y S x a y
$$

Therefore, $x a^{2} y \stackrel{t}{\sim} x a y$, so by Putcha's theorem it follows that S is a band I of t-Archimedean semigroups. Since I is a homomorphic image of S, then for $i, j, k \in I$ there exist $n \in \mathbf{Z}^{+}$and $u \in I$ such that $i j k=(i j k)^{n}=i k u j$, whence $i j k=i k i j k j$, so by Proposition II 3.13 [10] it follows that I is a left normal band.

Theorem 8. The following conditions on a semigroup S are equivalent:
(i) S is π-regular and for all $a, b, c \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
(a b c)^{n} \in a c S a c \tag{10}
\end{equation*}
$$

(ii) S is completely π-regular and for all $a, b, c, d \in S$

$$
\begin{equation*}
a b c d \tau a c b d \tag{11}
\end{equation*}
$$

(iii) S is a normal band of π-groups.

Proof. $\quad(i) \Rightarrow(i i i)$. Let (1) hold. Then by Theorem 6 it follows that S is a normal band I of t-Archimedean semigroups $S_{i}, i \in I$. Let $a \in \operatorname{Reg}(S)$. Then $a=a x a$ for some $x \in S$, so by (10) it follows that there exists $n \in \mathbf{Z}^{+}$such that $a x=(a x a x)^{n} \in \operatorname{aaxSaax}$, whence

$$
a=a x a \in a^{2} x S a^{2} x a \subseteq a^{2} S a^{2}
$$

Therefore, $a \in G r(S)$, so S is completely π-regular. It is easy to verify that S_{i} is completely π-regular for every $i \in I$, whence it follows that for every $i \in I, S_{i}$ is a π-group.
$(i i i) \Rightarrow(i i)$. This follows since $a b c a \tau a c b a$ implies $a b c d \tau a c b d$.
$(i i) \Rightarrow(i)$. Let $(i i)$ hold. Then it is clear that S is π-regular. Let $a, b, c \in S$. Then by (11) we obtain that
$(a b c)^{2}=a b(c a b) c \tau a(c a b) b c=a c a b^{2} c, \quad(a b c)^{2}=a(b c a) b c \tau a b(b c a) c=a b^{2} c a c$, whence it follows that there exists $m, n \in \mathbf{Z}^{+}$such that

$$
(a b c)^{2 m} \in a c S \quad \text { and } \quad(a b c)^{2 n} \in S a c
$$

so $(a b c)^{2 m+2 n} \in a c S a c$. Hence, (i) holds.
In a similar way it can be proved the following theorem:
Theorem 9. The following conditions on a semigroup S are equivalent:
(i) S is π-regular and for all $a, b, c \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
(a b c)^{n} \in a c S a
$$

(ii) S is π-regular and for all $a, b, c \in S$ there exists $n \in \mathbf{Z}^{+}$such that $(a b c)^{n} \in a c S b ;$
(iii) S is completely π-regular and for all $a, b, c \in S$, abc τ acb;
(iv) S is a left normal band of π-groups.

4. Rédei's Bands of Nil-extensions of Groups

Rédei's bands of periodic π-groups are studied by the authors [6]. Here, we characterize Rédei's bands of π-groups in the general case.

Theorem 10. The following conditions on a semigroup S are equivalent:
(i) S is a Rédei's band of π-groups;
(ii) S has a retract K that is a Rédei's band of groups and $\sqrt{K}=S$;
(iii) for all $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
a^{n} \in(a b)^{n} S(a b)^{n} \quad \text { or } \quad b^{n} \in(a b)^{n} S(a b)^{n} \tag{12}
\end{equation*}
$$

Proof. $\quad(i) \Rightarrow(i i)$. Let S be a Rédei's band I of π-groups $S_{i}, i \in I$. For $i \in I$, let S_{i} be a nil-extension of a group G_{i} with the identity e_{i}. Then it is clear that $E(S)=\left\{e_{i} \mid i \in I\right\}$. Let $e_{i}, e_{j} \in E(S), i, j \in I$. Then $e_{i} e_{j} \in S_{i j}$. If $i j=i$, then $e_{i} e_{j} \in S_{i}$, so $e_{i} e_{j}=e_{i}\left(e_{i} e_{j}\right) \in G_{i} S_{i} \subseteq G_{i}$, whence

$$
\left(e_{i} e_{j}\right)^{2}=\left(\left(e_{i} e_{j}\right) e_{i}\right) e_{j}=\left(e_{i} e_{j}\right) e_{j}=e_{i} e_{j}
$$

If $i j=j$, then in a similar way it can be proved that $\left(e_{i} e_{j}\right)^{2}=e_{i} e_{j}$. Therefore, $E(S)$ is a subsemigroup of S, so by Proposition 1 [3] we obtain that $\operatorname{Reg}(S)$ is a subsemigroup of S and by Theorem 3 it follows that (ii) holds.
$($ ii) $\Rightarrow(i)$. This follows by Theorem 3 .
$(i) \Rightarrow(i i i)$. Let S be a Rédei's band I of π-groups $S_{i}, i \in I$. For $i \in I$, let S_{i} be a nil-extension of a group G_{i}. Let $a, b \in S$. Then
$a \in S_{i}, b \in S_{j}$ for some $i, j \in I$. If $i j=i$, then $a b \in S_{i}$, so there exists $n \in \mathbf{Z}^{+}$such that $(a b)^{n}, a^{n} \in G_{i}$, whence

$$
a^{n} \in(a b)^{n} G_{i}(a b)^{n} \subseteq(a b)^{n} S(a b)^{n}
$$

If $i j=j$, then in a similar way it can be proved that

$$
b^{n} \in(a b)^{n} S(a b)^{n}
$$

for some $n \in \mathbf{Z}^{+}$. Hence, (iii) holds.
$(i i i) \Rightarrow(i)$ Let ($i i i$) hold. Then it is clear that S is completely π-regular. Also, by (12) it follows that

$$
e \in S f \quad \text { or } \quad f \in e S
$$

for all $e, f \in E(S)$, so it is easy to verify that $E(S)$ is a Rédei's band. By Theorem 5.1 [4] it follows that S is a chain Y of $S_{\alpha}, \alpha \in Y$, and for every $\alpha \in Y, S_{\alpha}$ is a nil-extension of a left or a right group K_{α}.

Let $\alpha \in Y$ and let $a, b \in S_{\alpha}$. Assume that K_{α} is a left group. Let $a \in T_{e}, b \in T_{f}, e, f \in E\left(S_{\alpha}\right), e \neq f$. By (12) we obtain that there exists $n \in \mathbf{Z}^{+}$such that

$$
a^{n} \in(a f)^{n} S(a f)^{n} \quad \text { or } \quad f \in(a f)^{n} S(a f)^{n}
$$

Assume that $f \in(a f)^{n} S(a f)^{n} \subseteq a f S a f$, i.e. $f=a f u a f$ for some $u \in S$. Since $a f \in S_{\alpha} K_{\alpha} \subseteq K_{\alpha}$, then $a f \in G_{g}$ for some $g \in E\left(S_{\alpha}\right)$. Now, by Bogdanović-Milić's lemma we obtain that

$$
f=a f u a f=g(a f u a f) g=g f g \in g S_{\alpha} g=G_{g}
$$

whence $f=g$, i.e. $a f \in G_{f}$. Also, $f a=f(f a) \in G_{f} K_{\alpha} \subseteq G_{f}$, since K_{α} is a left group, so $a f=f(a f)=(f a) f=f a$. Since $a^{k} \in G_{e}$ for some $k \in \mathbf{Z}^{+}$and since K_{α} is a left group, then

$$
a^{k}=a^{k} e=a^{k} e f=a^{k} f=f a^{k} \in G_{f} G_{e} \subseteq G_{f}
$$

which is not possible. Therefore, $a^{n} \in(a f)^{n} S(a f)^{n}$, whence $a^{n} \in$ af $S_{\alpha} a f \subseteq a f K_{\alpha} a f$, so by Bogdanović-Milić's lemma we obtain that $a^{n} \mathcal{H} a f$, where \mathcal{H} is the Green's relation on K_{α}. Hence, $a f \in G_{e}$. In a similar way it can be proved that $b e \in G_{f}$, so by Munn's lemma it follows that

$$
b e=f b e=b f e=b f=f b \quad \text { and } \quad a f=e a f=a e f=a e=e a
$$

whence

$$
a b e=a f b=e a b
$$

Assume that $(a b)^{m} \in G_{g}$ for some $g \in E\left(S_{\alpha}\right), m \in \mathbf{Z}^{+}$. Then

$$
(a b)^{m} e \in G_{g} G_{e} \subseteq G_{g} \quad \text { and } \quad(a b)^{m} e=e(a b)^{m} \in G_{e} G_{g} \subseteq G_{e}
$$

Thus, $g=e$, i.e. $(a b)^{m} \in G_{e}$, so $a b \in T_{e}=T_{e f}$. Hence, S_{α} is a left zero
band $E\left(S_{\alpha}\right)$ of π-groups $T_{e}, e \in E\left(S_{\alpha}\right)$. If K_{α} is a right group, then in a similar way it can be proved that S_{α} is a right zero band of π-groups.

Let $a \in T_{e} \subseteq S_{\alpha}, b \in T_{f} \subseteq S_{\beta}, \alpha, \beta \in Y, \alpha \neq \beta$. Assume that $\alpha<\beta$, i.e. $\quad \alpha \beta=\beta \alpha=\alpha$ (in a similar way we consider the case $\beta<\alpha$). Since $E(S)$ is a Rédei's band, $e f, f e, e \in S_{\alpha}$ and $f \notin S_{\alpha}$, then $e f=f e=e$. By (12) it follows that there exists $n \in \mathbf{Z}^{+}$such that

$$
b^{n} \in(b e)^{n} S(b e)^{n} \quad \text { or } \quad e \in(b e)^{n} S(b e)^{n}
$$

If $b^{n}=(b e)^{n} u(b e)^{n}$ for some $u \in S$, then $u \in S_{\gamma}$ for some $\gamma \in Y$, so $\alpha \beta \gamma=\beta$, whence $\alpha \beta=\beta$, which is not possible. Therefore, $e \in$ $(b e)^{n} S(b e)^{n}$, whence

$$
e \in b e S_{\alpha} b e
$$

Since $b e=(b e) e \in S_{\alpha} K_{\alpha} \subseteq K_{\alpha}$, then by Lemma 1 [5] it follows that $b e \in G_{e}$. In a similar way it can be proved that $e b \in G_{e}$, so $e b=(e b) e=$ $e(b e)=b e$ and $a b e=a e b=e a b$ (by Munn's lemma). Let $(a b)^{m} \in G_{g}$ for some $g \in E\left(S_{\alpha}\right)$ and $m \in \mathbf{Z}^{+}$. Then by Bogdanović-Milić's lemma we have that

$$
\begin{aligned}
(a b)^{m} & =(a b)^{m} g=(a b)^{m} g e g=(a b)^{m} e g=e(a b)^{m} g \\
& =e(a b)^{m}=e e(a b)^{m}=e(a b)^{m} e \\
& \in e S_{\alpha} e \\
& =G_{e}
\end{aligned}
$$

Therefore, $(a b)^{m} \in G_{e}$, i.e. $a b \in T_{e}=T_{e f}$. Hence, S is a Rédei's band $E(S)$ of π-groups $T_{e}, e \in E(S)$.

Corollary 2. A semigroup S is a Rédei's band of groups if and only if $a \in a b S a b$ or $b \in a b S a b$, for all $a, b \in S$.

Corollary 3. [6] A semigroup S is a Rédei's band of periodic π-groups if and only if S is π-regular and for all $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that $(a b)^{n} \in\langle a\rangle \cup\langle b\rangle$.

REFERENCES

1. S. Bogdanović: Semigroups of Galbiati-Veronesi. Proc. of the conference "Algebra and Logic", Zagreb 1984, Univ. of Novi Sad 1985, 9-20.
2. S. Bogdanović: Semigroups of Galbiati-Veronesi II. Facta Univ. Ser. Math. Inform. 2 (1987), 61-66.
3. S. Bogdanović: Nil-extensions of a completely regular semigroup. Proc. of the conference "Algebra and Logic", Sarajevo 1987, Novi Sad 1989, 7-15.
4. S. Bogdanović and M. ĆIrić: Semigroups of Galbiati-Veronesi III (Semilattice of nil-extensions of left and right groups). Facta Univ. Ser. Math. Inform. 4 (1989), 1-14.
5. S. Bogdanović and S. Milić: A nil-extension of a completely simple semigroup. Publ. Inst. Math. (Beograd) (N.S.) 36 (50), (1984), 45-50.
6. M. Ćirić and S. Bogdanović: Rédei's band of periodic π-groups. Zbornik radova Fil. fak. Niš Ser. Math. 3 (1989), 31-42.
7. J. L. Galbiati e M. L. Veronesi: Sui semigruppi che sono un band di t-semigruppi. Rend. Ist. Lombardo, Cl. Sc. (A) 114 (1980), 217-234.
8. B. L. Madison, T. K. Mukherjee and M. K. Sen: Periodic properties of group bound semigroups. Semigroup Forum 22 (1981), 225-234.
9. W.D. Munn: Pseudoinverses in semigroups. Proc. Cambridge Philos. Soc. 57 (1961), 247-250.
10. M. Petrich: Lectures in semigroups. Akad. Verlag, Berlin, 1977.
11. M. S. Putcha: Bands of t-Archimedean semigroups. Semigroup Forum 6 (1973), 232-239.
12. L. N. Shevrin: On decompositions of quasi-periodic semigroups into a band. XVII Vsesoyuzn. algebr. konf. Tezisy dokl, Minsk, 1983, Vol. 1, p. 267. (Russian).
13. M. L. Veronesi: Sui semigruppi quasi fortemente regolari. Riv. Mat. Univ. Parma (4) 10 (1984), 319-329.

University of Niš
Faculty of Economics
Trg JNA 11, 18000 Niš
Yugoslavia
University of Niš
Philosophical Faculty
Department of Mathematics
Ćirila i Metodija 2, 18000 Niš
Yugoslavia

POLUGRUPE GALBIATI-VERONESI IV
 (TRAKE NIL-EKSTENZIJA GRUPA)

Stojan Bogdanović i Miroslav Ćirić

Ovaj rad je nastavak radova [1], [2] i [4]. Ovde razmatramo polugrupe koje su trake nil-ekstenzija grupa i neke posebne slučajeve takvih polugrupa.

[^0]: Received December 3, 1991.
 1991 Mathematics Subject Classification. Primary 20M10.

 * Supported by Grant 0401A of RFNS through Math. Inst. SANU.

