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Stojan Bogdanović and Miroslav Ćirić

Abstract. This paper is the continuation of [1], [2] and [4]. Here we consider
semigroups that are bands of nil-extensions of groups and various special types
of them.

1. Introduction and Preliminaries

Throughout this paper, Z+ will denote the set of all positive integers.
A semigroup S is π-regular if for every a ∈ S there exists n ∈ Z+

such that an ∈ anSan. A semigroup S is completely π- regular if for
every a ∈ S there exist n ∈ Z+ and x ∈ S such that an = anxan

and anx = xan. Let us denote by Reg(S) (Gr(S), E(S)) the set of
all regular (completely regular, idempotent) elements of a semigroup S.
A semigroup S is Archimedean (left Archimedean, right Archimedean, t-
Archimedean) if for all a, b ∈ S there exists n ∈ Z+ such that an ∈
SbS (an ∈ Sb, an ∈ bS, an ∈ bS ∩ Sb). A semigroup S is completely
Archimedean if S is Archimedean and has a primitive idempotent. By
radical of the subset A of a semigroup S we mean the set

√
A defined by√

A = {a ∈ S | (∃n ∈ Z+) an ∈ A}. If e is an idempotent of a semigroup
S, then by Ge we denote the maximal subgroup of S with e as its
identity and by Te we denote the set Te =

√
Ge. On a semigroup S we

define the relation τ by

a τ b def⇐⇒ (∃e ∈ E(S)) a, b ∈ Te (a, b ∈ S)

The relation τ always is symmetric and transitive, and it is an equivalence
if and only if S is completely π-regular.

A semigroup S with the zero 0 is a nil-semigroup if for every a ∈ S
there exists n ∈ Z+ such that an = 0. An ideal extension S of T is a
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nil-extension if S/T is a nil-semigroup. A subsemigroup T of a semigroup
S is a retract of S if there exists a homomorphism ϕ of S onto T such
that ϕ(t) = t for all t ∈ T . Such a homomorphism we call a retraction.
An ideal extension S of T is a retract extension (or retractive extension)
of T if T is a retract of S. A semigroup S is a π-group if S is a
nil-extension of a group.

A semigroup S is a Rédei’s band if xy = x or xy = y for all x, y ∈ S.
A band S is left regular(normal, left normal) if S satisfies the identity
ax = axa (axya = ayxa, axy = ayx).

Veronesi’s theorem. [13] A semigroup S is a semilattice of completely
Archimedean semigroups if and only if S is π-regular and Reg(S) =
Gr(S).

Munn’s lemma. [9] Let a be an element of a semigroup S such that
an lies in some subgroup G of S, for some n ∈ Z+. If e is the identity
of G, then ea = ae ∈ Ge and am ∈ Ge for all m ∈ Z+, m ≥ n.

Bogdanović-Milić’s lemma. [5] If S is a π-regular semigroup all of
whose idempotents are primitive, then S is completely π-regular with max-
imal subgroups given by Ge = eSe (e ∈ E(S)).

Define a relation t∼ on a semigroup S by:

a t∼ b def⇐⇒ (∃m, n ∈ Z+) am ∈ bS ∩ Sb and bn ∈ aS ∩ Sa.

Putcha’s theorem. [11] A semigroup S is a band of t-Archimedean
semigroups if and only if

xay t∼ xa2y,

for all a ∈ S, x, y ∈ S1.

For undefined notions and notations we refer to [10].

2. Bands of Nil-extensions of Groups

Bands of nil-extensions of groups (π-groups) are studied by J.L. Galbiati
and M.L. Veronesi [7], B.L.Madison, T.K. Mukherjee and M.K. Sen [8] and
L.N. Shevrin [12]. In the present paper some new characterizations of bands
of nil-extensions of groups are given.

By Theorems 1,2 and 3 three preliminary results of decompositions of
π-regular semigroups into a semilattice of retractive nil-extensions of com-
pletely simple semigroups will be given. The main results are Theorems 4
and 5.
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Theorem 1. Let S be a π-regular semigroup and let for all a, b ∈ S
there exists n ∈ Z+ such that

(1) (ab)n ∈ a2Sb2.

Then S is a semilattice of retractive nil-extensions of completely simple
semigroups.

Proof. Let (1) hold and let a ∈ Reg(S). Then there exists x ∈ S such
that a = axa, so

a = axa = (ax)na for every n ∈ Z+,
∈ a2Sx2a by (1),
⊆ a2S ,

a = axa = a(xa)n for every n ∈ Z+,
∈ ax2Sa2 by (1),
⊆ Sa2 .

Thus, a ∈ Gr(S), so by Veronesi’s theorem it follows that S is a semilattice
Y of completely Archimedean semigroups Sα, α ∈ Y .

Let α ∈ Y . Then Sα is a nil-extension of a completely simple semigroup
Kα. Let a ∈ Te ⊆ Sα for some e ∈ E(Sα) and let f ∈ E(Sα). We will
prove that

(2) af = eaf and fa = fae.

First, we will prove that for every m ∈ Z+ there exist n ∈ Z+ and u ∈ S
such that

(3) (af)n = amuf.

It is clear that this holds for m = 1. Assume that (af)n = amuf for some
n ∈ Z+ and u ∈ S. Then by (1) it follows that there exists k ∈ Z+ and
v ∈ S such that

(af)nk = ((af)n)k = (amuf)k = a2mv(uf)2 = am+1u1f,

where u1 = am−1vufu. Therefore, for every m ∈ Z+ there exist n ∈ Z+

and u ∈ S such that (3) holds.

Assume that m ∈ Z+ is such that am ∈ Ge and let n ∈ Z+ and
u ∈ S be such that (3) holds. Since af ∈ Kα, then af H (af)n, where
H is the Green’s relation on Kα, so af = (af)nv for some v ∈ S. Thus

af = (af)nv = amufv = eamufv = eaf.

Hence, the first part of (2) holds. In a similar way it can be proved the
second part of (2). Therefore, (2) holds.

Define a mapping ϕ : Sα → Kα by:
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ϕ(a) = ea if a ∈ Te, e ∈ E(Sα).

Let a ∈ Te, b ∈ Tf , e, f ∈ E(Sα). Assume that ab ∈ Tg for some
g ∈ E(Sα). Then by (2) and by Munn’s lemma we have that

ϕ(ab) = gab = gaeb = gaebf = gabf = abf = afb = eafb
= ϕ(a)ϕ(b) .

Therefore, ϕ is a homomorphism and since ϕ(a) = a if a ∈ Kα, then ϕ is
a retraction, so S is a semilattice of retractive nil-extensions of completely
simple semigroups. �

Theorem 2. Let S be a π-regular semigroup and let for all a, b ∈ S
there exists n ∈ Z+ such that

(ab)n ∈ a2Sa.

Then S is a semilattice of retractive nil-extensions of left groups.

Proof. By Theorem 2.2 [1] it follows that S is a semilattice Y of semi-
groups Sα, α ∈ Y , and for every α ∈ Y , Sα is a nil-extension of a left
group Kα.

Let α ∈ Y , let a ∈ Te ⊆ Sα, for some e ∈ E(Sα) and let f ∈ E(Sα).
As in the proof of Theorem 1 we obtain that af = eaf . On the other hand,
there exists n ∈ Z+ such that (fa)n ∈ Sf , so (fa)n = (fa)nf . Since
fa H (fa)n, where H is the Green’s relation on Kα, then fa = faf ,
so (fa)n = fan for every n ∈ Z+. Assume that n ∈ Z+ is such that
an ∈ Ge. Then fa = u(fa)n (since fa H (fa)n), whence

fa = u(fa)n = ufan = ufane = fae.

Therefore fa = fae, so as in the proof of Theorem 1 we prove that Sα is
a retractive nil-extension of Kα. �

Theorem 3. Let S be a band of π-groups and let Reg(S) be a subsemi-
group of S. Then Reg(S) is a band of groups and a retract of S.

Conversely, if S has a retract K which is a band of groups and S =√
K, then S is a band of π-groups.

Proof. Let S be a band I of π-groups Si, i ∈ I, and let Reg(S) be a
subsemigroup of S. For i ∈ I, let Si be a nil-extension of a group Gi

with the identity ei. Then Reg(S) = Gr(S) = ∪{Gi | i ∈ I}. Then it is
clear that Reg(S) is a band I of groups Gi, i ∈ I. Define a mapping
ϕ : S → Reg(S) by:

ϕ(x) = xei if x ∈ Si, i ∈ I.

Let xi ∈ Si, xj ∈ Sj , i, j ∈ I. Then eieij = (eieij)eij ∈ SijGij ⊆ Gij and
eijej = eij(eijej) ∈ GijSij ⊆ Gij , so
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(eieij)2 = ei(eij(eieij)) = ei(eieij) = eieij ∈ Sij ,
(eijej)2 = ((eijej)eij)ej = (eijej)ej = eijej ∈ Sij .

Since Sij contain exactly one idempotent eij , then

(4) eieij = eijej = eij .

Now we obtain that

ϕ(xi)ϕ(xj) = (xiei)(xjej)
= eij(xiei)(xjej)eij (since xieixjej ∈ GiGj ⊆ Gij)
= eijeixixjejeij (by Munn’s lemma)
= eijeixieixjeijejeij (since eijeixixj ∈ GijSij ⊆ Gij)
= eijeixixjeij (by (4))
= eijeieijxixjeij (since xixjeij ∈ SijGij ⊆ Gij)
= eijxixjeij (by (4))
= xixjeij (since xixjeij ∈ Gij)
= ϕ(xixj) .

Therefore, ϕ is a homomorphism and since ϕ(a) = a if a ∈ Reg(S), then
ϕ is a retraction of S onto Reg(S).

Conversely, let S have a retract K which is a band I of groups
Gi, i ∈ I and let

√
K = S. Let ϕ : S → K be a retraction and let

Si = ϕ−1(Gi), i ∈ I. Then Si ∩K = Gi and Si =
√

Gi for every i ∈ I.
Therefore, Si is a π-group for all i ∈ I, so S is a band I of π-groups
Si, i ∈ I. �

Corollary 1. [7] (i) A semigroup S is a retractive nil-extension of a
completely simple semigroup if and only if S is a rectangular band of π-
groups.

(ii) A semigroup S is a retractive nil-extension of a left (right ) group
if and only if S is a left (right) zero band of π-groups.

Theorem 4. The following conditions on a semigroup S are equivalent:
(i) S is π-regular and for all a, b ∈ S there exists n ∈ Z+ such that

(5) (ab)n ∈ a2bSab2;

(ii) S is completely π-regular and for all a, b ∈ S is

(6) ab τ a2b τ ab2;

(iii) S is a band of π-groups.

Proof. (i) ⇒ (ii). Let (i) hold. Then by Theorem 1 we have that S is
a semilattice Y of semigroups Sα, α ∈ Y , and for every α ∈ Y , Sα is a
retractive nil-extension of a completely simple semigroup Kα. Therefore,
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S is completely π-regular and by Corollary 1 it follows that Sα is a
rectangular band of π-groups for all α ∈ Y .

Let a, b ∈ S. Then a ∈ Sα, b ∈ Sβ for some α, β ∈ Y and
ab, a2b, ab2 ∈ Sαβ . Moreover, Sαβ is a rectangular band I × Λ of π-
groups Tiλ, i ∈ I, λ ∈ Λ. Let ab ∈ Tiλ, a2b ∈ Tjµ, ab2 ∈ Tlν for
some i, j, l ∈ I, λ, µ, ν ∈ Λ. Let ejµ be the idempotent of Tjµ. Then
ejµa2b ∈ T 2

jµ ⊆ Tjµ and

ejµa2b = ejµejµaab ∈ TjµSαβTiλ ⊆ Tjλ,

so µ = λ. In a similar way it can be proved that l = i. Also, by (5) it
follows that there exist n ∈ Z+ and u ∈ S such that (ab)n = a2buab2,
whence uab2a2bu ∈ Sαβ , so

(ab)2n = a2b(uab2a2bu)ab2 ∈ TjλSαβTiν ⊆ Tjν .

Since (ab)2n ∈ Tiλ, then j = i and ν = λ. Therefore, ab, a2b, ab2 ∈ Tiλ,
so (6) holds.

(ii) ⇒ (iii). Let (ii) hold and let a, b ∈ S. Assume that a ∈ Te, b ∈
Tf for some e, f ∈ E(S). By (6) it follows that ab τ akb for every
k ∈ Z+. Let k ∈ Z+ be such that ak ∈ Ge. Then

eb = ak(ak)−1b τ (ak)2(ak)−1b = akeb = akb τ ab.

Thus, ab τ eb. In a similar way it can be proved that eb τ ef . Therefore,
ab τ ef , so τ is a congruence on S. It is clear that τ is a band congruence
and every τ -class is a π-group. Hence, (iii) holds.

(iii) ⇒ (i). Let S be a band I of π-groups Si, i ∈ I. Let
a ∈ Si, b ∈ Sj , i, j ∈ I. Then ab, a2b, ab2 ∈ Sij , so (i) holds. �

Remark. (ii) ⇔ (iii) of the previous theorem is proved in [8], but here a new
proof is given.

Theorem 5. The following conditions on a semigroup S are equivalent:
(i) S is π-regular and for all a, b ∈ S there exists n ∈ Z+ such that

(7) (ab)n ∈ a2bSa;

(ii) S is completely π-regular and for all a, b ∈ S

(8) ab τ a2b τ aba;

(iii) S is a left regular band of π-groups.

Proof. (i) ⇒ (ii). Let (i) hold. Then by Theorem 2 it follows that S
is a semilattice Y of semigroups Sα, α ∈ Y , and for every α ∈ Y , Sα

is a retractive nil-extension of a left group Kα. By this and by Corollary



Semigroups of Galbiati-Veronesi IV 29

1 it follows that for all α ∈ Y , Sα is a left zero band of π-groups. It is
clear that S is completely π-regular.

Let a, b ∈ S. Then a ∈ Sα, b ∈ Sβ for some α, β ∈ Y and
ab, a2b, aba ∈ Sαβ . Moreover, Sαβ is a left zero band I of π-groups
Ti, i ∈ I. Assume that ab ∈ Ti, a2b ∈ Tj and aba ∈ Tk for some
i, j, k ∈ I. Then (aba)2 ∈ Tk and

(aba)2 = ab(a2ba) ∈ TiSαβ ⊆ Ti,

so k = i. Thus, ab τ aba. On the other hand, by (7) it follows that there
exist n ∈ Z+ and u ∈ S such that (ab)n = a2bua. Since ua2b ∈ Sαβ ,
then

(ab)n+1 = a2b(ua2b) ∈ TjSαβ ⊆ Tj ,

so j = i. Thus, ab τ a2b. Hence, (ii) holds.

(ii) ⇒ (iii). Let (ii) hold and let a, b ∈ S. Assume that a τ e and
b τ f for some e, f ∈ E(S). As in the proof of Theorem 4 it can be proved
that ab τ eb, so τ is a right congruence. By this and by (8) it follows
that (aba)b τ (ab)b, whence

ab τ (ab)2 = (aba)b τ (ab)b = ab2.

Therefore, (6) holds, whence S is a band S/τ of π-groups. Let
aτ, bτ ∈ S/τ . Then by (8) it follows that (aτ)(bτ) = (aτ)(bτ)(aτ), so
S/τ is a left regular band.

(iii) ⇒ (i). Let S be a left regular band I of π-groups Si, i ∈ I.
Let a, b ∈ S. Then a ∈ Si, b ∈ Sj for some i, j ∈ I, whence ab, a2b ∈ Sij

and aba ∈ Siji = Sij . Since Sij is a π-group, then it follows that (7)
holds. Hence, (i) holds. �

3. Normal Bands of t-Archimedean Semigroups

In [11] bands of t-Archimedean semigroups and various other (semilattice)
band decompositions were also characterized. In this section we characterize
normal bands of t-Archimedean semigroups and using this characterization
we obtain some characterizations for normal bands of π-groups.

Theorem 6. A semigroup S is a normal band of t-Archimedean semi-
groups if and only if for all a, b, c ∈ S there exists n ∈ Z+ such that

(9) (abc)n ∈ acSac .

Proof. Let (9) hold and let a ∈ S, x, y ∈ S1. Assume that x, y ∈ S (in
a similar way we can prove the cases with x = 1 or y = 1). Then by (9)
it follows that there exists n ∈ Z+ such that
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(xa2y)n = ((xa)ay)n ∈ xaySxay.

Moreover, there exists m ∈ Z+ such that

(xay)2m = ((xa)(yx)(ay))m ∈ xa2ySxa2y.

Therefore, xay t∼ xa2y, so by Putcha’s theorem we obtain that S is a
band I of t-Archimedean semigroups Si, i ∈ I. Let i, j, k ∈ I. Since I is
a homomorphic image of S, then by (9) it follows that there exist n ∈ Z+

and u ∈ I such that ijk = (ijk)n = ikuik, whence ijk = ikijkik, so by
Proposition II 3.10 [10] we obtain that I is a normal band.

Conversely, let S be a normal band I of t-Archimedean semigroups
Si, i ∈ I. Let a, b, c ∈ S. Then a ∈ Si, b ∈ Sj , c ∈ Sk for some
i, j, k ∈ I, so

acabc ∈ Sikijk = Sijk and abcac ∈ Sijkik = Sijk,

since I is a normal band. Since Sijk is t-Archimedean, then there exists
m,n ∈ Z+ such that

(abc)n ∈ acabcSacabc and (abc)m ∈ abcacSabcac,

whence (abc)m+n ∈ acSac. �

Theorem 7. The following conditions on a semigroup S are equivalent:
(i) S is a left normal band of t-Archimedean semigroups;

(ii) for all a, b, c ∈ S there exists n ∈ Z+ such that

(abc)n ∈ acSa;

(iii) for all a, b, c ∈ S there exists n ∈ Z+ such that

(abc)n ∈ acSb.

Proof. (i) ⇒ (ii). Let S be a left normal band I of t-Archimedean
semigroups Si, i ∈ I. Let a, b, c ∈ S. Then a ∈ Si, b ∈ Sj , c ∈ Sk for
some i, j, k ∈ I, so abc ∈ Sijk and acba ∈ Sijki = Sijk, since I is a left
normal band. Therefore, there exixts n ∈ Z+ such that

(abc)n ∈ acbaSacba ⊆ acSa.

Hence, (ii) holds.

(ii) ⇒ (iii). Let (ii) hold and let a, b, c ∈ S. Then there exists
n ∈ Z+ such that (abc)n ∈ acSa ⊆ acS and there exists m ∈ Z+ such
that

(abc)2m = ((ab)(ca)(bc))m ∈ abbcSab ⊆ Sb.
so

(abc)2m+n ∈ acSSb ⊆ acSb.
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Therefore, (iii) holds.

(iii) ⇒ (i). Let (iii) hold and let a ∈ S, x, y ∈ S1. Assume that
x, y ∈ S (in a similar way we can prove the cases with x = 1 or y = 1).
Then there exist n, m ∈ Z+ such that

(xay)2n = ((xa)(yx)(ay))n ∈ xaaySyx ⊆ xa2yS,
(ayx)2m = ((ay)(xa)(yx))m ∈ ayyxSxa ⊆ Sxa,

whence
(xay)2n+2m+1 = (xay)2nx(ayx)2may ∈ xa2ySxSxaay ⊆ xa2ySxa2y.

Moreover, there exist k, t ∈ Z+ such that

(xa2y)k = ((xa)ay)k ∈ xayS,
(yxa2)t = (y(xa)a)t ∈ yaSxa ⊆ Sxa,

so
(xa2y)k+t+1 = (xa2y)kxa2(yxa2)ty ∈ xaySxa2Sxay ⊆ xaySxay.

Therefore, xa2y t∼ xay, so by Putcha’s theorem it follows that S is a
band I of t-Archimedean semigroups. Since I is a homomorphic image
of S, then for i, j, k ∈ I there exist n ∈ Z+ and u ∈ I such that
ijk = (ijk)n = ikuj, whence ijk = ikijkj, so by Proposition II 3.13 [10]
it follows that I is a left normal band. �

Theorem 8. The following conditions on a semigroup S are equivalent:
(i) S is π-regular and for all a, b, c ∈ S there exists n ∈ Z+ such that

(10) (abc)n ∈ acSac;

(ii) S is completely π-regular and for all a, b, c, d ∈ S

(11) abcd τ acbd;

(iii) S is a normal band of π-groups.

Proof. (i) ⇒ (iii). Let (1) hold. Then by Theorem 6 it follows that S is
a normal band I of t-Archimedean semigroups Si, i ∈ I. Let a ∈ Reg(S).
Then a = axa for some x ∈ S, so by (10) it follows that there exists
n ∈ Z+ such that ax = (axax)n ∈ aaxSaax, whence

a = axa ∈ a2xSa2xa ⊆ a2Sa2.

Therefore, a ∈ Gr(S), so S is completely π-regular. It is easy to verify
that Si is completely π-regular for every i ∈ I, whence it follows that for
every i ∈ I, Si is a π-group.

(iii) ⇒ (ii). This follows since abca τ acba implies abcd τ acbd.

(ii) ⇒ (i). Let (ii) hold. Then it is clear that S is π-regular. Let
a, b, c ∈ S. Then by (11) we obtain that
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(abc)2 = ab(cab)c τ a(cab)bc = acab2c, (abc)2 = a(bca)bc τ ab(bca)c = ab2cac,

whence it follows that there exists m,n ∈ Z+ such that

(abc)2m ∈ acS and (abc)2n ∈ Sac,

so (abc)2m+2n ∈ acSac. Hence, (i) holds. �

In a similar way it can be proved the following theorem:

Theorem 9. The following conditions on a semigroup S are equivalent:
(i) S is π-regular and for all a, b, c ∈ S there exists n ∈ Z+ such that

(abc)n ∈ acSa;

(ii) S is π-regular and for all a, b, c ∈ S there exists n ∈ Z+ such that

(abc)n ∈ acSb;

(iii) S is completely π-regular and for all a, b, c ∈ S, abc τ acb;
(iv) S is a left normal band of π-groups.

4. Rédei’s Bands of Nil-extensions of Groups

Rédei’s bands of periodic π-groups are studied by the authors [6]. Here,
we characterize Rédei’s bands of π-groups in the general case.

Theorem 10. The following conditions on a semigroup S are equivalent:
(i) S is a Rédei’s band of π-groups;

(ii) S has a retract K that is a Rédei’s band of groups and
√

K = S;
(iii) for all a, b ∈ S there exists n ∈ Z+ such that

(12) an ∈ (ab)nS(ab)n or bn ∈ (ab)nS(ab)n.

Proof. (i) ⇒ (ii). Let S be a Rédei’s band I of π-groups Si, i ∈ I.
For i ∈ I, let Si be a nil-extension of a group Gi with the identity ei.
Then it is clear that E(S) = {ei | i ∈ I}. Let ei, ej ∈ E(S), i, j ∈ I. Then
eiej ∈ Sij . If ij = i, then eiej ∈ Si, so eiej = ei(eiej) ∈ GiSi ⊆ Gi,
whence

(eiej)2 = ((eiej)ei)ej = (eiej)ej = eiej .

If ij = j, then in a similar way it can be proved that (eiej)2 = eiej .
Therefore, E(S) is a subsemigroup of S, so by Proposition 1 [3] we obtain
that Reg(S) is a subsemigroup of S and by Theorem 3 it follows that
(ii) holds.

(ii) ⇒ (i). This follows by Theorem 3.

(i) ⇒ (iii). Let S be a Rédei’s band I of π-groups Si, i ∈ I. For
i ∈ I, let Si be a nil-extension of a group Gi. Let a, b ∈ S. Then
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a ∈ Si, b ∈ Sj for some i, j ∈ I. If ij = i, then ab ∈ Si, so there exists
n ∈ Z+ such that (ab)n, an ∈ Gi, whence

an ∈ (ab)nGi(ab)n ⊆ (ab)nS(ab)n.

If ij = j, then in a similar way it can be proved that

bn ∈ (ab)nS(ab)n,

for some n ∈ Z+. Hence, (iii) holds.

(iii) ⇒ (i). Let (iii) hold. Then it is clear that S is completely
π-regular. Also, by (12) it follows that

e ∈ Sf or f ∈ eS,

for all e, f ∈ E(S), so it is easy to verify that E(S) is a Rédei’s band. By
Theorem 5.1 [4] it follows that S is a chain Y of Sα, α ∈ Y , and for
every α ∈ Y , Sα is a nil-extension of a left or a right group Kα.

Let α ∈ Y and let a, b ∈ Sα. Assume that Kα is a left group. Let
a ∈ Te, b ∈ Tf , e, f ∈ E(Sα), e 6= f . By (12) we obtain that there exists
n ∈ Z+ such that

an ∈ (af)nS(af)n or f ∈ (af)nS(af)n.

Assume that f ∈ (af)nS(af)n ⊆ afSaf , i.e. f = afuaf for some u ∈ S.
Since af ∈ SαKα ⊆ Kα, then af ∈ Gg for some g ∈ E(Sα). Now, by
Bogdanović-Milić’s lemma we obtain that

f = afuaf = g(afuaf)g = gfg ∈ gSαg = Gg,

whence f = g, i.e. af ∈ Gf . Also, fa = f(fa) ∈ GfKα ⊆ Gf , since
Kα is a left group, so af = f(af) = (fa)f = fa. Since ak ∈ Ge for
some k ∈ Z+ and since Kα is a left group, then

ak = ake = akef = akf = fak ∈ GfGe ⊆ Gf ,

which is not possible. Therefore, an ∈ (af)nS(af)n, whence an ∈
afSαaf ⊆ afKαaf , so by Bogdanović-Milić’s lemma we obtain that anHaf ,
where H is the Green’s relation on Kα. Hence, af ∈ Ge. In a similar
way it can be proved that be ∈ Gf , so by Munn’s lemma it follows that

be = fbe = bfe = bf = fb and af = eaf = aef = ae = ea,
whence

abe = afb = eab.

Assume that (ab)m ∈ Gg for some g ∈ E(Sα), m ∈ Z+. Then

(ab)me ∈ GgGe ⊆ Gg and (ab)me = e(ab)m ∈ GeGg ⊆ Ge.

Thus, g = e, i.e. (ab)m ∈ Ge, so ab ∈ Te = Tef . Hence, Sα is a left zero
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band E(Sα) of π-groups Te, e ∈ E(Sα). If Kα is a right group, then in
a similar way it can be proved that Sα is a right zero band of π-groups.

Let a ∈ Te ⊆ Sα, b ∈ Tf ⊆ Sβ , α, β ∈ Y, α 6= β. Assume that α < β,
i.e. αβ = βα = α (in a similar way we consider the case β < α). Since
E(S) is a Rédei’s band, ef, fe, e ∈ Sα and f /∈ Sα, then ef = fe = e.
By (12) it follows that there exists n ∈ Z+ such that

bn ∈ (be)nS(be)n or e ∈ (be)nS(be)n.

If bn = (be)nu(be)n for some u ∈ S, then u ∈ Sγ for some γ ∈ Y ,
so αβγ = β, whence αβ = β, which is not possible. Therefore, e ∈
(be)nS(be)n, whence

e ∈ beSαbe.

Since be = (be)e ∈ SαKα ⊆ Kα, then by Lemma 1 [5] it follows that
be ∈ Ge. In a similar way it can be proved that eb ∈ Ge, so eb = (eb)e =
e(be) = be and abe = aeb = eab (by Munn’s lemma). Let (ab)m ∈ Gg for
some g ∈ E(Sα) and m ∈ Z+. Then by Bogdanović-Milić’s lemma we
have that

(ab)m = (ab)mg = (ab)mgeg = (ab)meg = e(ab)mg
= e(ab)m = ee(ab)m = e(ab)me
∈ eSαe
= Ge .

Therefore, (ab)m ∈ Ge, i.e. ab ∈ Te = Tef . Hence, S is a Rédei’s band
E(S) of π-groups Te, e ∈ E(S). �

Corollary 2. A semigroup S is a Rédei’s band of groups if and only if
a ∈ abSab or b ∈ abSab, for all a, b ∈ S.

Corollary 3. [6] A semigroup S is a Rédei’s band of periodic π-groups if
and only if S is π-regular and for all a, b ∈ S there exists n ∈ Z+ such
that (ab)n ∈ 〈a〉 ∪ 〈b〉.
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3. S. BOGDANOVIĆ: Nil-extensions of a completely regular semigroup. Proc. of the
conference ”Algebra and Logic”, Sarajevo 1987, Novi Sad 1989, 7–15.



Semigroups of Galbiati-Veronesi IV 35
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Philosophical Faculty
Department of Mathematics
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POLUGRUPE GALBIATI-VERONESI IV
(TRAKE NIL-EKSTENZIJA GRUPA)

Stojan Bogdanović i Miroslav Ćirić

Ovaj rad je nastavak radova [1], [2] i [4]. Ovde razmatramo polugrupe koje
su trake nil-ekstenzija grupa i neke posebne slučajeve takvih polugrupa.


