RETRACTIVE NIL-EXTENSIONS OF BANDS OF GROUPS*

Stojan Bogdanović and Miroslav Ćirić

Abstract

The present paper is the continuation of [6,7] and it is devoted to study of retractive nil-extensions of bands of groups, in the general and in some more important particular cases. Especially, combining the methods from S. Bogdanović and M. Ćirić $[6,7]$ and the ones of M. Petrich $[12,13]$ and M. Ćirić and S. Bogdanović [10], retractive nil-extensions of bands of groups whose idempotents form a subsemigroup will be characterized via subdirect products.

1. Introduction

Throughout this paper, \mathbf{Z}^{+}will denote the set of all positive integers. For a semigroup $S, \operatorname{Reg}(S)(G r(S), E(S))$ will denote the set of all regular (completely regular, idempotent) elements of S, for $a \in \operatorname{Reg}(S), V(a)$ will denote the set of all inverses of a, i.e. $V(a)=\{x \in S \mid a=a x a, x=x a x\}$, and for $a \in G r(S), a^{-1}$ will denote the group inverse of a in the subgroup of S containing it. For a congruence ϱ of a semigroup S, ϱ^{\natural} will denote the natural homomorphism determined by ϱ, and if the related factor is a semilattice of groups, then ϱ is a semilattice-of-groups congruence.

An element a of a semigroup S is π-regular if some its power is regular and it is completely π-regular if some its power is completely regular. It is well-known that for a completely π-regular element a of a semigroup S, all its completely regular powers lie in the same subgroup of S, and a^{0} will denote the identity of this group and $\bar{a}=\left(a a^{0}\right)^{-1}$. Clearly, $a^{0}=a \bar{a}=\bar{a} a$. A semigroup S is (completely) π-regular if each its element is (completely) π-regular. By a nil-extension of a semigroup we mean any its ideal extension by a nil-semigroup. A semigroup S is a π-group if it is a nil-extension of a group. A semigroup S is completely Archimedean if it is a nil-extension of

[^0]a completely simple semigroup. A subsemigroup T of a semigroup S is a retract of S if there exists a homomorphism φ of S onto T such that $a \varphi=a$, for each $a \in T$, and such a homomorphism will be called a retraction. An ideal extension S of a semigroup T is a retractive extension of T if T is a retract of S.

Let B be a band. For $i \in B,[i]$ will denote the class of i with respect to the smallest semilattice congruence of B, and \preccurlyeq will denote the quasiorder on B defined by: $j \preccurlyeq i \Leftrightarrow j i j=j$ (or equivalently $[j] \leq[i]$), $(i, j \in B)$, where \leq is the natural partial order on the greatest semilattice homomorphic image of B. To each $i \in B$ let we associate a semigroup S_{i} such that $S_{i} \cap S_{j}=\varnothing$ if $i \neq j$. Let $\varphi_{i, j}$ be homomorphisms of S_{i} onto S_{j}, defined for $i \succcurlyeq j$, such that $\varphi_{i, i}$ is the identity mapping on S_{i}, for each $i \in B$, and $\varphi_{i, j} \varphi_{j, k}=\varphi_{i, k}$ whenever $i \succcurlyeq j \succcurlyeq k$. Define a multiplication $*$ on $S=\cup_{i \in B} S_{i}$ by: $a * b=\left(a \varphi_{i, i j}\right)\left(b \varphi_{j, i j}\right)$, for $a \in S_{i}, b \in S_{j}$. Then S is a band B of semigroups $S_{i}, i \in B$, in notation $S=\left[B ; S_{i}, \varphi_{i, j}\right]$, called a strong band of semigroups $S_{i}, i \in B,[10]$.

For undefined notions and notations we refer to [4] and [14].

2. Preliminary Results

In this section we will give several results that are needed in our further considerations. First we quote Lemma 3.1 [5], in the following slightly changed form:

Lemma 1. Let S be a completely π-regular semigroup and let $G r(S)$ be a subsemigroup of S. If φ is a retraction of S onto $\operatorname{Gr}(S)$, then $a \varphi=a a^{0}$, for each $a \in S$.

The following theorem, which is a generalization of Theorem 3.1 [13], will be very useful in the proofs of the main theorems of this paper.
Theorem 1. Let a semigroup S be a band of π-groups. Then $E(S)$ is a subsemigroup of S if and only if a relation η on S defined by

$$
\begin{equation*}
a \eta b \Leftrightarrow a a^{0}=a^{0} b b^{0} a^{0}, \quad b b^{0}=b^{0} a a^{0} b^{0} \quad(a, b \in S) \tag{1}
\end{equation*}
$$

is a semilattice-of-groups congruence on S. In this case it is the smallest semilattice-of-groups congruence on S.
Proof. Assume that S is a band B of semigroups $S_{i}, i \in B$, and for $i \in B$, let S_{i} be a nil-extension of a group G_{i} with the identity e_{i}. Let $T=\operatorname{Reg}(S)$. Clearly, $T=G r(S)=\cup_{i \in B} G_{i}$.

Let $E(S)$ be a subsemigroup of S. Then T is also a subsemigroup of S, so by Theorem $3[8], T$ is a retract of S and it is a band B of groups
$G_{i}, i \in B$. By Theorem $2[16], T=\left[B ; G_{i}, \varphi_{i, j}\right]$ (see also Lemma 2 [10]). As it was noted in [10], $\varphi_{i, j}$ are uniquely determined by $a \varphi_{i, j}=e_{j} a e_{j}$, for $a \in S_{i}, i, j \in B, i \succcurlyeq j$. Let φ be a retraction of S onto T. By Lemma 1, $a \varphi=a a^{0}$, for each $a \in S$. Now, if for $i, j \in B, i \succcurlyeq j$, we define a homomorphism $\phi_{i, j}$ of S_{i} into G_{j} by $a \phi_{i, j}=(a \varphi) \varphi_{i, j},\left(a \in S_{i}\right)$, then

$$
a \eta b \Leftrightarrow a \in S_{i}, b \in S_{j},[i]=[j], a \phi_{i, i}=b \phi_{j, i} \text { and } b \phi_{j, j}=a \phi_{i, j} .
$$

Clearly, η is reflexive and symmetric. Let $a \eta b, b \eta c, a \in S_{i}, b \in S_{j}, c \in$ $S_{k}, i, j, k \in B$. Then $a \phi_{i, k}=a \varphi \varphi_{i, k}=a \phi_{i, i} \varphi_{i, k}=b \phi_{j, i} \varphi_{i, k}=b \varphi \varphi_{j, i} \varphi_{i, k}=$ $b \varphi \varphi_{j, k}=b \phi_{j, k}=c \phi_{k, k}$. Thus, $a \phi_{i, k}=c \phi_{k, k}$. Similarly we obtain that $c \phi_{k, i}=a \phi_{i, i}$. Therefore, η is transitive.

Assume $a, b, x \in S, a \eta b$. Let $a \in S_{i}, b \in S_{j}, x \in S_{k}, i, j, k \in B$. Then $a x \in S_{i k}, b x \in S_{j k},[i k]=[i][k]=[j][k]=[j k]$ and

$$
\begin{aligned}
(a x) \phi_{i k, j k} & =(a x) \varphi \varphi_{i k, j k}=[(a \varphi)(x \varphi)] \varphi_{i k, j k} \\
& =\left[\left(a \varphi \varphi_{i, i k}\right)\left(x \varphi \varphi_{k, i k}\right)\right] \varphi_{i k, j k}=\left(a \varphi \varphi_{i, j k}\right)\left(x \varphi \varphi_{k, j k}\right) \\
& =\left(a \varphi \varphi_{i, j} \varphi_{j, j k}\right)\left(x \phi_{k, j k}\right)=\left(a \phi_{i, j} \varphi_{j, j k}\right)\left(x \phi_{k, j k}\right) \\
& =\left(b \phi_{j, j} \varphi_{j, j k}\right)\left(x \phi_{k, j k}\right)=\left(b \phi_{j, j k}\right)\left(x \phi_{k, j k}\right)=(b x) \phi_{j k, j k}
\end{aligned}
$$

Similarly we prove that $(a x) \phi_{i k, i k}=(b x) \phi_{j k, i k}$. Thus, $a x \eta b x$, and similarly, xa $\eta x b$. Hence, η is a congruence on S.

Let $Q=S / \eta$ and let $u \in Q$. Then $u=a \eta^{\natural}$, for some $a \in S$, whence $u=(a \varphi) \eta^{\natural}$, since $(a, a \varphi) \in \eta$, so u is completely regular. Therefore, Q is a union of groups. Assume $p, q \in E(Q)$. By Corollary 2 [2], $p=e \eta^{\natural}, q=f \eta^{\natural}$, for some $e, f \in E(S)$. If $e \in S_{i}, f \in S_{j}, i, j \in B$, then $e f \in S_{i j}$, fe \in $S_{j i},[i j]=[j i]$, so ef $\eta f e$, whence $p q=q p$. Hence, Q is a semilattice of groups.

Conversely, let η be a semilattice-of-groups congruence on S. Let $Q=S / \eta$ be a semilattice Y of groups $G_{\alpha}, \alpha \in Y$ and for $\alpha \in Y$, let e_{α} be an identity of G_{α}. Assume $e, f \in E(S)$. Then $e \eta^{\natural}=e_{\alpha}, f \eta^{\natural}=e_{\beta}$, for some $\alpha, \beta \in Y$, whence $(e f) \eta^{\natural}=e_{\alpha \beta}=(f e) \eta^{\natural}$. Therefore, ef $\eta f e$, so by (1)

$$
e f=(e f)^{0} f e(e f)^{0}=\overline{e f} \text { effeef } \overline{e f}=\overline{e f} \text { efef } \overline{e f}=\left((e f)^{0}\right)^{2}=(e f)^{0} .
$$

Hence, ef $\in E(S)$, i.e. $E(S)$ is a subsemigroup of S.
Finally, let η be a semilattice-of-groups congruence on S, let μ be an arbitrary semilattice-of-groups congruence on S, let S / μ be a semilattice Y of groups $G_{\alpha}, \alpha \in Y$, for $\alpha \in Y$, let e_{α} be an identity of G_{α}, and let $(a, b) \in \eta$. i.e. let $a a^{0}=a^{0} b b^{0} a^{0}$ and $b b^{0}=b^{0} a a^{0} b^{0}$. Then $a \mu^{\natural} \in G_{\alpha}, b \mu^{\natural} \in G_{\beta}$, for some $\alpha, \beta \in Y$, and it is easy to verify that $a^{0} \mu^{\natural}=e_{\alpha}, b^{0} \mu^{\natural}=e_{\beta}$, whence $a \mu^{\natural}=\left(a a^{0}\right) \mu^{\natural}=\left(a^{0} b b^{0} a^{0}\right) \mu^{\natural} e_{\alpha}\left(b \mu^{\natural}\right) e_{\beta} e_{\alpha} \in G_{\alpha \beta}$, so $\alpha \beta=\alpha$, and similarly
$\alpha \beta=\beta$. Thus, $\alpha=\beta$, whence $a \mu^{\natural}=e_{\alpha}\left(b \mu^{\natural}\right) e_{\alpha}=b \mu^{\natural}$, i.e. $(a, b) \in \mu$. Therefore, $\eta \subseteq \mu$, so η is the smallest semilattice-of-groups congruence on S.

Remark 1. Note that if a semigroup S is a band of π-groups, with ξ as the related band congruence, if $E(S)$ is a subsemigroup of S, η is a relation on S defined by (1) and if φ is a retraction of S onto $\operatorname{Reg}(S)$, then $\xi \cap \eta=\operatorname{ker} \varphi$.

It is easy to prove the following
Lemma 2. A completely π-regular semigroup S is a band of π-groups if and only if $(a b)^{0}=a^{0} b^{0}$, for all $a, b \in S$.
Lemma 3. Let S be a π-regular semigroup. Then for every regular element of S, each its inverse is a group inverse if and only if S is a semilattice of π-groups.
Proof. This follows by Theorem 3.2 [3].
Corollary 1. Let S be a regular semigroup. Then for every element of S, each its inverse is a group inverse if and only if S is a semilattice of groups.
Lemma 4. Let a semigroup S be a subdirect product of semilattices of groups. Then the following conditions are equivalent:
(i) S is π-regular;
(ii) S is regular;
(iii) S is completely regular;
(iv) S is a semilattice of groups.

Proof. Let $S \subseteq \prod_{i \in I} S_{i}$ be a subdirect product of semigroups $S_{i}, i \in I$, that are semilattices of groups.
(iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i). This follows immediately.
(i) \Rightarrow (iii). Assume $a=\left(a_{i}\right) \in S$. Then $a^{n} \in \operatorname{Reg}(S)$, for some $n \in \mathbf{Z}^{+}$. Assume $x=\left(x_{i}\right) \in V\left(a^{n}\right)$. Then for each $i \in I, x_{i} \in V\left(a_{i}^{n}\right)$, so by Corollary $1, x_{i}$ is a group inverse of a_{i}^{n} in some subgroup G of S_{i}. Now, $y_{i}=a_{i}^{n-2} x_{i} a_{i}$ is a group inverse of a_{i} in G, for $y=\left(y_{i}\right), y=a^{n-2} x a \in S$ and it is a group inverse of a. Therefore, S is completely regular.
(iii) \Rightarrow (iv). This follows by the fact that the idempotents of S commutes.

3. The Main Theorems

In [8] the authors proved that a π-regular semigroup is a band of π-groups and $\operatorname{Reg}(S)$ is a subsemigroup of S if and only if $\operatorname{Reg}(S)$ is a band of groups
and a retract of S. Here we apply this result to describe retractive nilextensions of bands of groups. Combining the results from [8] and [7] we go to the main theorem of this paper.

Theorem 2. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a band of groups;
(ii) S is π-regular and for all $x, a, y \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
x a^{n} y \in x^{2} a S a y^{2} ; \tag{2}
\end{equation*}
$$

(iii) S is a band of π-groups and $\operatorname{Reg}(S)$ is an ideal of S.

Proof. (i) \Rightarrow (ii). Let S be a retractive nil-extension of a semigroup K that is a band of groups, let ξ be the related band congruence on K and let φ be the related retraction of S onto K. Clearly, S is π-regular. Assume $x, a, y \in S$. Then $a^{n} \in K$, for some $n \in \mathbf{Z}^{+}$, so $x a^{n} y, x^{2} a^{n} y^{2} \in K$ and

$$
x a^{n} y=\left(x a^{n} y\right) \varphi=(x \varphi) a^{n}(y \varphi) \xi(x \varphi)^{2} a^{n}(y \varphi)^{2}=x^{2} a^{n} y^{2} .
$$

Therefore, $x a^{n} y, x^{2} a^{n} y^{2} \in G$, where G is a subgroup of K, whence $x a^{n} y \in$ $x^{2} a^{n} y^{2} G x^{2} a^{n} y^{2} \subseteq x^{2} a S a y^{2}$.
(ii) \Rightarrow (iii). By Theorem $1[7], \operatorname{Reg}(S)$ is an ideal of S. Further, for $a, b \in$ S, by (2), there exists $n \in \mathbf{Z}^{+}$such that $(a b)^{n+1}=a(b a)^{n} b \in a^{2} b a S b a b^{2}$, so by Theorem $4[8], S$ is a band of π-groups.
(iii) \Rightarrow (i). By Theorem $3[8], \operatorname{Reg}(S)$ is a band of groups and a retract of S, whence we obtain (i).

As we noted above, retractive nil-extensions of bands of groups whose idempotents form a subsemigroup will be characterized via subdirect products.

Theorem 3. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a band of groups and $E(S)$ is a subsemigroup of S;
(ii) S is π-regular and a subdirect product of a nil-semigroup, a band and a semilattice of groups;
(iii) S is π-regular and a subdirect product of a nil-semigroup, a band and of groups with a zero possibly adjoined.

Proof. (i) \Rightarrow (ii). Let S be a retractive nil-extension of a semigroup K that is a band of groups and let $E(S)(=E(K))$ be a subsemigroup. By Theorem $2, S$ is a band of π-groups, and by this and by Theorem 1, a relation η on S, defined by (1), is a semilattice-of-groups congruence on S. Let ξ denote the related band congruence on S whose classes are π-groups and let ϱ denote
the Rees congruence on S induced by K. Assume $(a, b) \in \varrho \cap \xi \cap \eta$. Clearly, if $a, b \notin K$, then $a=b$. Let $a, b \in K$. By $(a, b) \in \xi, a^{0}=b^{0}$, so by $(a, b) \in \eta$, i.e. by (1), $a=a a^{0}=a^{0} b b^{0} a^{0}=b b^{0}=b$. Therefore, $\varrho \cap \xi \cap \eta$ is the identity relation on S, so S is a subdirect product of $S / \varrho, S / \xi$ and S / η, i.e. of a nil-semigroup, a band and a semilattice of groups.
(ii) \Rightarrow (i). Let S be a π-regular semigroup and let $S \subseteq N \times B \times T$ be a subdirect product of N, B and T, where N is a nil-semigroup, B is a band and T is a semilattice of groups. Let $K=(\{0\} \times B \times T) \cap S$. For $a=$ $(u, i, p) \in \operatorname{Reg}(S), x=(v, j, q) \in V(a)$ we obtain $v \in V(u), j \in V(i), q \in$ $V(p)$, whence $u=v=0$, so $\operatorname{Reg}(S) \subseteq K$. Assume $a=(0, i, p) \in K$. Then $a^{n} \in \operatorname{Reg}(S)$, for some $n \in \mathbf{Z}^{+}$, and for $x=(0, j, q) \in V\left(a^{n}\right), j \in V(i)$ and $q \in V\left(p^{n}\right)$. By Corollary 1, $q=\left(p^{n}\right)^{-1}, p^{n-1} q p=p^{0}=p^{n-2} q p^{2}$ and $p^{n-1} q p^{2}=p$. Now, $y=a^{n-2} x a \in S$ and

$$
\begin{aligned}
a y a & =a^{n-1} x a^{2}=\left(0, i, p^{n-1}\right) \cdot(0, j, q) \cdot\left(0, i, p^{2}\right) \\
& =\left(0, i j i, p^{n-1} q p^{2}\right)=(0, i, p)=a, \\
a y & =a^{n-1} x a=\left(0, i, p^{n-1}\right) \cdot(0, j, q) \cdot(0, i, p) \\
& =\left(0, i j i, p^{n-1} q p\right)=\left(0, i, p^{0}\right)=\left(0, i j i, p^{n-2} q p^{2}\right) \\
& =\left(0, i, p^{n-2}\right) \cdot(0, j, q) \cdot\left(0, i, p^{2}\right)=a^{n-2} x a^{2}=y a .
\end{aligned}
$$

Thus, $K=\operatorname{Gr}(S)=\operatorname{Reg}(S)$, and clearly, it is an ideal of S.
Further, if $a=(u, i, p) \in S$, then $u^{n}=0$, for some $n \in \mathbf{Z}^{+}$, so

$$
a^{0}=\left(a^{n}\right)^{0}=\left(0, i, p^{n}\right)^{0}=\left(0, i,\left(p^{n}\right)^{0}\right)=\left(0, i, p^{0}\right)
$$

Since T is a semilattice of groups, then $(p q)^{0}=p^{0} q^{0}$, for all $p, q \in T$, whence $(a b)^{0}=a^{0} b^{0}$, for all $a, b \in S$, so by Lemma $2, S$ is band of π-groups. Now, by Theorem 2, S is a retractive nil-extension of a band of groups. Clearly, $E(S)$ is a subsemigroup of S.
(ii) \Rightarrow (iii). This follows by Corollary 2.3 [13].
(iii) \Rightarrow (ii). This follows by Lemma 4 .

Since the idempotents of a left regular band of groups always form a subsemigroup, then we immediately obtain the following
Corollary 2. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a left regular band of groups;
(ii) S is π-regular and for all $x, a, y \in S$ there exists $n \in \mathbf{Z}^{+}$such that $x a^{n} y \in x^{2} a S x$.
(iii) S is π-regular and a subdirect product of a nil-semigroup, a left regular band and a semilattice of groups;
(iv) S is π-regular and a subdirect product of a nil-semigroup, a left regular band, and of groups with a zero possibly adjoined.

Corollary 3. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of groups;
(ii) S is a retractive nil-extension of a semilattice of groups;
(iii) S is π-regular and for all $x, a, y \in S$ there exists $n \in \mathbf{Z}^{+}$such that $x a^{n} y \in y S x$.
(iv) S is π-regular and a subdirect product of a nil-semigroup and a semilattice of groups;
(v) S is π-regular and a subdirect product of a nil-semigroup and of groups with a zero possibly adjoined.

4. Retractive Nil-Extensions of Normal Bands of Groups

In this section we will describe retractive nil-extensions of normal bands of groups, as very important particular types of the above considered semigroups.

Theorem 4. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a normal band of groups;
(ii) S is π-regular and for all $x, a, y \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
x a^{n} y \in x y a S x y \tag{3}
\end{equation*}
$$

(iii) S is a semilattice of completely Archimedean semigroups and for all $x, a, y \in S$ there exists $n \in \mathbf{Z}^{+}$such that

$$
\begin{equation*}
x a^{n} y \in x y S x y . \tag{4}
\end{equation*}
$$

(iv) S is completely π-regular and a subdirect product of a nil-semigroup and of completely simple semigroups with a zero possibly adjoined.

Proof. (i) \Rightarrow (ii). This can be proved similarly as the related part of Theorem 2.
(ii) \Rightarrow (iii). For $a, b \in S$, there exists $n \in \mathbf{Z}^{+}$such that $(a b)^{n+1}=$ $a(b a)^{n} b \in a b b a S a b \subseteq S b^{2} S$, so by Theorem 1 [11], S is a semilattice of Archimedean semigroups. Further, for $a \in S, a^{n}=a^{n} x a^{n}$, for some $n \in$ $\mathbf{Z}^{+}, x \in S$, whence $a^{n}=\left(a^{n} x\right)\left(a^{n} x\right) a^{n} \in\left(a^{n} x\right) a^{n}\left(a^{n} x\right) S\left(a^{n} x\right) a^{n} \subseteq a^{2 n} S a^{n}$, by (3). Thus, by Proposition 3.2 [3], S is completely π-regular. Finally, by Theorem 2.13 [15], S is a semilattice of completely Archimedean semigroups.
(iii) \Rightarrow (i). By Theorem [16], $\operatorname{Reg}(S)=\operatorname{Gr}(S)$. For $x \in S, e \in E(S)$, by (4), $x e \in x e S x e$ and $e x \in e x S e x$, so $K=\operatorname{Reg}(S)$ is an ideal of S. Thus, S is a nil-extension of a semigroup K that is a union of groups.

Assume $x \in S, e \in E(S)$. We will prove that

$$
\begin{equation*}
(x e)^{m} \in x^{m} e S, \quad \text { for each } m \in \mathbf{Z}^{+}, \tag{5}
\end{equation*}
$$

Assume $m \in \mathbf{Z}^{+}$such that $(x e)^{m}=x^{m} e u$, for some $u \in S$. Then by (4),

$$
(x e)^{m+1}=x e(x e)^{m}=x e\left(x^{m} e u\right) \in x\left(x^{m} e u\right) S x\left(x^{m} e u\right) \subseteq x^{m+1} e S .
$$

Now by induction we obtain (5). On the other hand, since K is completely regular, $x e=(x e)^{2} v$, for some $v \in S$, whence $x e=(x e)^{m+1} v^{m}$, for any $m \in \mathbf{Z}^{+}$, so by (5), $x e=(x e)^{m+1} v^{m} e \in x^{m} e^{S x e v}{ }^{m} e \subseteq x^{m} S e$. Hence, $x e \in x^{m} S e$, for each $m \in \mathbf{Z}^{+}$, and similarly we obtain that $e x \in e S x^{m}$, for each $m \in \mathbf{Z}^{+}$. Now as in the proof of Theorem $1[7]$ we obtain that K is a retract of S.

Further, K is a semilattice Y of completely simple semigroups $K_{\alpha}, \alpha \in Y$, and for $a, b \in K, a b, a^{2} b, a b^{2} \in K_{\alpha}$, for some $\alpha \in Y$. By (4), there exists $n \in \mathbf{Z}^{+}, u \in S$, such that $a(a b)^{n} b=a b u a b$. Without loss of generality we can assume that $u \in K_{\alpha}$. Let G be the maximal subgroup of K_{α} containing $a b$. Since K_{α} is completely simple, G is a bi-ideal of S, so $a(a b)^{n} b \in G$. Therefore, $a b \in a(a b)^{n} b G a(a b)^{n} b \subseteq a^{2} b K a b^{2}$, so by Theorem 4 [8] and by the regularity of K, K is a band of groups. Let B be the related band homomorphic image of S. Then B satisfies (4), so it is easy to check that it satisfies the identities $x y z=x z x y z$ and $x y z=x y z x z$. Now by Proposition II.3.10 [14], B is a normal band.
(i) \Rightarrow (iv). This follows by Theorem $1[6]$ and Theorem 4.1 [12].
(iv) \Rightarrow (i). By the transitivity of subdirect products, S is a subdirect product of a nil-semigroup and of a semigroup $T \subseteq \prod_{i \in I} T_{i}$ that is a subdirect product of semigroups $T_{i}, i \in I$, where T_{i} are completely simple semigroups with a zero possibly adjoined. Since T is a homomorphic image of S, then it is completely π-regular.

Assume $a=\left(a_{i}\right) \in T$. Then $a^{n} \in G r(T)$, for some $n \in \mathbf{Z}^{+}$. Let x be the group inverse of a^{n} and $x=\left(x_{i}\right)$. It is not hard to show that for each $i \in I, x_{i}$ is the group inverse of a_{i}^{n}. For each $i \in I, T_{i}$ is a union of groups, so $a_{i}^{n-2} x_{i} a_{i}$ is the group inverse of a_{i} in T_{i}. Thus, $y=a^{n-2} x a \in T$ and it is a group inverse of a in T, so T is completely regular. Now by Theorem 4.1 [12] and by Theorem 1 [7] we obtain (i).

Remark 2. It is easy to verify that the condition (3) can be replaced by each condition of the form $x a^{n} y \in x y u S v x y$, where u and v are any words from the free monoid over an alphabet $\{x, a, y\}$ such that one of u and v is a non-empty word.

Similarly we prove the following two corollaries
Corollary 4. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a normal band of groups and $E(S)$ is a subsemigroup of S;
(ii) S is π-regular and a subdirect product of a nil-semigroup, a normal band and a semilattice of groups;
(iii) S is π-regular and a subdirect product of a nil-semigroup, a normal band and of groups with a zero possibly adjoined;
(iv) S is completely π-regular and a subdirect product of a nil-semigroup and of rectangular groups with a zero possibly adjoined.

Corollary 5. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a left normal band of groups;
(ii) S is π-regular and for all $x, a, y \in S$ there exists $n \in \mathbf{Z}^{+}$such that $x a^{n} y \in x y S x$.
(iii) S is π-regular and a subdirect product of a nil-semigroup, a left normal band and a semilattice of groups;
(iv) S is completely π-regular and a subdirect product of a nil-semigroup, a left normal band and of groups with a zero possibly adjoined;
(v) S is completely π-regular and a subdirect product of a nil-semigroup and of left groups with a zero possibly adjoined.

REFERENCES

1. S. Bogdanović: Power regular semigroups. Zbornik radova PMF Novi Sad 12 (1982), 417-428.
2. S. Bogdanović: Right π-inverse semigroups. Zbornik radova PMF Novi Sad, 14 (2) (1984), 187-195.
3. S. Bogdanović: Semigroups of Galbiati-Veronesi. Proc. of the conference "Algebra and Logic", Zagreb 1984, Univ. of Novi Sad 1985, 9-20.
4. S. Bogdanović: Semigroups with a system of subsemigroups. Inst. of Math. Novi Sad, 1985.
5. S. Bogdanović and M. ĆIrić: A nil-extension of a regular semigroup. Glasnik Matematički, Vol. 25 (2) (1991), 3-23.
6. S. Bogdanović and M. Ćirić: Retractive nil-extensions of regular semigroups I. Proc. Japan Acad, 68 (5), Ser. A (1992), 115-117.
7. S. Bogdanović and M. Ćirić: Retractive nil-extensions of regular semigroups II. Proc. Japan Acad. 68 (6), Ser. A (1992), 126-130.
8. S. Bogdanović and M. Ćirić: Semigroups of Galbiati-Veronesi IV (Bands of nil-extensions of groups). Facta Univ. (Niš), Ser. Math. Inform. 7 (1992), (to appear).
9. M. ĆIrić and S. Bogdanović: Normal band compositions of semigroups. Proc. Japan. Acad. 69 (8), Ser. A (1993), 256-261.
10. M. Ćirić and S. Bogdanović: Spined products of some semigroups. Proc. Japan. Acad. 69 (9), Ser. A (1993), 357-362.
11. M. ĆIrić and S. Bogdanović: Decompositions of semigroups induced by identities. Semigroup Forum 46 (1993), 329-346.
12. M. Petrich: Regular semigroups satisfying certain conditions on idempotents and ideals. Trans. Amer. Math. Soc. 170 (1972), 245-267.
13. M. Petrich: Regular semigroups which are subdirect products of a band and a semilattice of groups. Glasgow Math. J. 14 (1973), 27-49.
14. M. Petrich: Lectures in semigroups. Akad. Verlag, Berlin, 1977.
15. M. S. Putcha: Semilattice decomposition of semigroups. Semigroup Forum $\mathbf{6}$ (1973), 12-34.
16. B. M. Schein: Bands of unipotent monoids. Acta Sci. Math. Szeged 36 (1974), 145-154.
17. L. N. Shevrin: On decompositions of quasi-periodic semigroups into a band of Archimedean semigroups. XVII Vsesoyuzn. algebr. konf. Tezisy dokl, Novosibirsk, 1977, Vol. 1, 104-105. (Russian).
University of Niš
Faculty of Economics
Trg JNA 11, 18000 Niš
Yugoslavia
University of Niš
Philosophical Faculty
Department of Mathematics
Ćirila i Metodija 2, 18000 Niš
Yugoslavia

RETRAKTIVNE NIL-EKSTENZIJE TRAKA GRUPA

Stojan Bogdanović i Miroslav Ćirić

Ovaj rad je nastavak radova [6,7] i posvećen je proučavanju retraktivnih nilekstenzija traka grupa, u opštem i nekim važnijim specijalnim slučajevima. Posebno, kombinujući metode iz radova S. Bogdanovića i M. Ćirića $[6,7]$ i one M. Petricha [12,13] i M. Ćirića i S. Bogdanovića [10], dajemo karakterizaciju retraktivnih nilekstenzija traka grupa čiji idempotenti čine podpolugrupu, preko poddirektnih proizvoda.

[^0]: Received December 16, 1992.
 1991 Mathematics Subject Classification. 20M10.
 *Supported by Grant 0401A of RFNS through Math. Inst. SANU

