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RETRACTIVE NIL-EXTENSIONS
OF BANDS OF GROUPS*

Stojan Bogdanović and Miroslav Ćirić

Abstract. The present paper is the continuation of [6,7] and it is devoted
to study of retractive nil-extensions of bands of groups, in the general and
in some more important particular cases. Especially, combining the methods
from S. Bogdanović and M. Ćirić [6,7] and the ones of M.Petrich [12,13] and
M. Ćirić and S. Bogdanović [10], retractive nil-extensions of bands of groups
whose idempotents form a subsemigroup will be characterized via subdirect
products.

1. Introduction

Throughout this paper, Z+ will denote the set of all positive integers.
For a semigroup S, Reg(S) ( Gr(S), E(S) ) will denote the set of all regular
(completely regular, idempotent) elements of S, for a ∈ Reg(S), V (a) will
denote the set of all inverses of a, i.e. V (a) = {x ∈ S | a = axa, x = xax},
and for a ∈ Gr(S), a−1 will denote the group inverse of a in the subgroup
of S containing it. For a congruence % of a semigroup S, %\ will denote
the natural homomorphism determined by %, and if the related factor is a
semilattice of groups, then % is a semilattice-of-groups congruence.

An element a of a semigroup S is π-regular if some its power is regular
and it is completely π-regular if some its power is completely regular. It
is well-known that for a completely π-regular element a of a semigroup S,
all its completely regular powers lie in the same subgroup of S, and a0 will
denote the identity of this group and a = (aa0)−1. Clearly, a0 = aa = aa.
A semigroup S is (completely) π-regular if each its element is (completely)
π-regular. By a nil-extension of a semigroup we mean any its ideal extension
by a nil-semigroup. A semigroup S is a π-group if it is a nil-extension of a
group. A semigroup S is completely Archimedean if it is a nil-extension of
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a completely simple semigroup. A subsemigroup T of a semigroup S is a
retract of S if there exists a homomorphism ϕ of S onto T such that aϕ = a,
for each a ∈ T , and such a homomorphism will be called a retraction. An
ideal extension S of a semigroup T is a retractive extension of T if T is a
retract of S.

Let B be a band. For i ∈ B, [i] will denote the class of i with respect
to the smallest semilattice congruence of B, and 4 will denote the quasi-
order on B defined by: j 4 i ⇔ jij = j (or equivalently [j] ≤ [i]),
(i, j ∈ B), where ≤ is the natural partial order on the greatest semilattice
homomorphic image of B. To each i ∈ B let we associate a semigroup Si

such that Si ∩ Sj = ∅ if i 6= j. Let ϕi,j be homomorphisms of Si onto
Sj , defined for i < j, such that ϕi,i is the identity mapping on Si, for each
i ∈ B, and ϕi,jϕj,k = ϕi,k whenever i < j < k. Define a multiplication ∗ on
S = ∪i∈BSi by: a ∗ b = (aϕi,ij)(bϕj,ij), for a ∈ Si, b ∈ Sj . Then S is a band
B of semigroups Si, i ∈ B, in notation S = [B; Si, ϕi,j ], called a strong band
of semigroups Si, i ∈ B, [10].

For undefined notions and notations we refer to [4] and [14].

2. Preliminary Results

In this section we will give several results that are needed in our fur-
ther considerations. First we quote Lemma 3.1 [5], in the following slightly
changed form:

Lemma 1. Let S be a completely π-regular semigroup and let Gr(S) be a
subsemigroup of S. If ϕ is a retraction of S onto Gr(S), then aϕ = aa0, for
each a ∈ S.

The following theorem, which is a generalization of Theorem 3.1 [13], will
be very useful in the proofs of the main theorems of this paper.

Theorem 1. Let a semigroup S be a band of π-groups. Then E(S) is a
subsemigroup of S if and only if a relation η on S defined by

(1) a η b ⇔ aa0 = a0bb0a0, bb0 = b0aa0b0 (a, b ∈ S),

is a semilattice-of-groups congruence on S. In this case it is the smallest
semilattice-of-groups congruence on S.

Proof. Assume that S is a band B of semigroups Si, i ∈ B, and for i ∈ B,
let Si be a nil-extension of a group Gi with the identity ei. Let T = Reg(S).
Clearly, T = Gr(S) = ∪i∈BGi.

Let E(S) be a subsemigroup of S. Then T is also a subsemigroup of
S, so by Theorem 3 [8], T is a retract of S and it is a band B of groups
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Gi, i ∈ B. By Theorem 2 [16], T = [B; Gi, ϕi,j ] (see also Lemma 2 [10]).
As it was noted in [10], ϕi,j are uniquely determined by aϕi,j = ejaej ,
for a ∈ Si, i, j ∈ B, i < j. Let ϕ be a retraction of S onto T . By
Lemma 1, aϕ = aa0, for each a ∈ S. Now, if for i, j ∈ B, i < j, we define a
homomorphism φi,j of Si into Gj by aφi,j = (aϕ)ϕi,j , (a ∈ Si), then

a η b ⇔ a ∈ Si, b ∈ Sj , [i] = [j], aφi,i = bφj,i and bφj,j = aφi,j .

Clearly, η is reflexive and symmetric. Let a η b, b η c, a ∈ Si, b ∈ Sj , c ∈
Sk, i, j, k ∈ B. Then aφi,k = aϕϕi,k = aφi,iϕi,k = bφj,iϕi,k = bϕϕj,iϕi,k =
bϕϕj,k = bφj,k = cφk,k. Thus, aφi,k = cφk,k. Similarly we obtain that
cφk,i = aφi,i. Therefore, η is transitive.

Assume a, b, x ∈ S, a η b. Let a ∈ Si, b ∈ Sj , x ∈ Sk, i, j, k ∈ B. Then
ax ∈ Sik, bx ∈ Sjk, [ik] = [i][k] = [j][k] = [jk] and

(ax)φik,jk = (ax)ϕϕik,jk = [(aϕ)(xϕ)]ϕik,jk

= [(aϕϕi,ik)(xϕϕk,ik)]ϕik,jk = (aϕϕi,jk)(xϕϕk,jk)

= (aϕϕi,jϕj,jk)(xφk,jk) = (aφi,jϕj,jk)(xφk,jk)

= (bφj,jϕj,jk)(xφk,jk) = (bφj,jk)(xφk,jk) = (bx)φjk,jk

Similarly we prove that (ax)φik,ik = (bx)φjk,ik. Thus, ax η bx, and similarly,
xa η xb. Hence, η is a congruence on S.

Let Q = S/η and let u ∈ Q. Then u = aη\, for some a ∈ S, whence
u = (aϕ)η\, since (a, aϕ) ∈ η, so u is completely regular. Therefore, Q is a
union of groups. Assume p, q ∈ E(Q). By Corollary 2 [2], p = eη\, q = fη\,
for some e, f ∈ E(S). If e ∈ Si, f ∈ Sj , i, j ∈ B, then ef ∈ Sij , fe ∈
Sji, [ij] = [ji], so ef η fe, whence pq = qp. Hence, Q is a semilattice of
groups.

Conversely, let η be a semilattice-of-groups congruence on S. Let Q = S/η
be a semilattice Y of groups Gα, α ∈ Y and for α ∈ Y , let eα be an identity
of Gα. Assume e, f ∈ E(S). Then eη\ = eα, fη\ = eβ , for some α, β ∈ Y ,
whence (ef)η\ = eαβ = (fe)η\. Therefore, ef η fe, so by (1)

ef = (ef)0fe(ef)0 = ef effeef ef = ef efef ef =
(

(ef)0
)2

= (ef)0.

Hence, ef ∈ E(S), i.e. E(S) is a subsemigroup of S.
Finally, let η be a semilattice-of-groups congruence on S, let µ be an

arbitrary semilattice-of-groups congruence on S, let S/µ be a semilattice Y of
groups Gα, α ∈ Y , for α ∈ Y , let eα be an identity of Gα, and let (a, b) ∈ η.
i.e. let aa0 = a0bb0a0 and bb0 = b0aa0b0. Then aµ\ ∈ Gα, bµ\ ∈ Gβ , for
some α, β ∈ Y , and it is easy to verify that a0µ\ = eα, b0µ\ = eβ , whence
aµ\ = (aa0)µ\ = (a0bb0a0)µ\eα(bµ\)eβeα ∈ Gαβ , so αβ = α, and similarly
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αβ = β. Thus, α = β, whence aµ\ = eα(bµ\)eα = bµ\, i.e. (a, b) ∈ µ.
Therefore, η ⊆ µ, so η is the smallest semilattice-of-groups congruence on
S. �

Remark 1. Note that if a semigroup S is a band of π-groups, with ξ as the
related band congruence, if E(S) is a subsemigroup of S, η is a relation on S
defined by (1) and if ϕ is a retraction of S onto Reg(S), then ξ ∩ η = ker ϕ.

It is easy to prove the following

Lemma 2. A completely π-regular semigroup S is a band of π-groups if and
only if (ab)0 = a0b0, for all a, b ∈ S.

Lemma 3. Let S be a π-regular semigroup. Then for every regular element
of S, each its inverse is a group inverse if and only if S is a semilattice of
π-groups.

Proof. This follows by Theorem 3.2 [3]. �

Corollary 1. Let S be a regular semigroup. Then for every element of S,
each its inverse is a group inverse if and only if S is a semilattice of groups.

Lemma 4. Let a semigroup S be a subdirect product of semilattices of
groups. Then the following conditions are equivalent:

(i) S is π-regular;
(ii) S is regular;
(iii) S is completely regular;
(iv) S is a semilattice of groups.

Proof. Let S ⊆
∏

i∈I Si be a subdirect product of semigroups Si, i ∈ I,
that are semilattices of groups.

(iv) ⇒ (iii) ⇒ (ii) ⇒ (i). This follows immediately.
(i) ⇒ (iii). Assume a = (ai) ∈ S. Then an ∈ Reg(S), for some n ∈ Z+.

Assume x = (xi) ∈ V (an). Then for each i ∈ I, xi ∈ V (an
i ), so by Corollary

1, xi is a group inverse of an
i in some subgroup G of Si. Now, yi = an−2

i xiai
is a group inverse of ai in G, for y = (yi), y = an−2xa ∈ S and it is a group
inverse of a. Therefore, S is completely regular.

(iii) ⇒ (iv). This follows by the fact that the idempotents of S com-
mutes. �

3. The Main Theorems

In [8] the authors proved that a π-regular semigroup is a band of π-groups
and Reg(S) is a subsemigroup of S if and only if Reg(S) is a band of groups
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and a retract of S. Here we apply this result to describe retractive nil-
extensions of bands of groups. Combining the results from [8] and [7] we go
to the main theorem of this paper.

Theorem 2. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a band of groups;
(ii) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

(2) xany ∈ x2aSay2;

(iii) S is a band of π-groups and Reg(S) is an ideal of S.

Proof. (i) ⇒ (ii). Let S be a retractive nil-extension of a semigroup K
that is a band of groups, let ξ be the related band congruence on K and let
ϕ be the related retraction of S onto K. Clearly, S is π-regular. Assume
x, a, y ∈ S. Then an ∈ K, for some n ∈ Z+, so xany, x2any2 ∈ K and

xany = (xany)ϕ = (xϕ)an(yϕ) ξ (xϕ)2an(yϕ)2 = x2any2.
Therefore, xany, x2any2 ∈ G, where G is a subgroup of K, whence xany ∈
x2any2Gx2any2 ⊆ x2aSay2.

(ii) ⇒ (iii). By Theorem 1 [7], Reg(S) is an ideal of S. Further, for a, b ∈
S, by (2), there exists n ∈ Z+ such that (ab)n+1 = a(ba)nb ∈ a2baSbab2, so
by Theorem 4 [8], S is a band of π-groups.

(iii) ⇒ (i). By Theorem 3 [8], Reg(S) is a band of groups and a retract
of S, whence we obtain (i). �

As we noted above, retractive nil-extensions of bands of groups whose
idempotents form a subsemigroup will be characterized via subdirect prod-
ucts.

Theorem 3. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a band of groups and E(S) is a

subsemigroup of S;
(ii) S is π-regular and a subdirect product of a nil-semigroup, a band and

a semilattice of groups;
(iii) S is π-regular and a subdirect product of a nil-semigroup, a band and

of groups with a zero possibly adjoined.

Proof. (i) ⇒ (ii). Let S be a retractive nil-extension of a semigroup K that
is a band of groups and let E(S) ( = E(K) ) be a subsemigroup. By Theorem
2, S is a band of π-groups, and by this and by Theorem 1, a relation η on S,
defined by (1), is a semilattice-of-groups congruence on S. Let ξ denote the
related band congruence on S whose classes are π-groups and let % denote
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the Rees congruence on S induced by K. Assume (a, b) ∈ %∩ ξ ∩ η. Clearly,
if a, b /∈ K, then a = b. Let a, b ∈ K. By (a, b) ∈ ξ, a0 = b0, so by (a, b) ∈ η,
i.e. by (1), a = aa0 = a0bb0a0 = bb0 = b. Therefore, % ∩ ξ ∩ η is the identity
relation on S, so S is a subdirect product of S/%, S/ξ and S/η, i.e. of a
nil-semigroup, a band and a semilattice of groups.

(ii) ⇒ (i). Let S be a π-regular semigroup and let S ⊆ N × B × T be a
subdirect product of N , B and T , where N is a nil-semigroup, B is a band
and T is a semilattice of groups. Let K = ({0} ×B × T ) ∩ S. For a =
(u, i, p) ∈ Reg(S), x = (v, j, q) ∈ V (a) we obtain v ∈ V (u), j ∈ V (i), q ∈
V (p), whence u = v = 0, so Reg(S) ⊆ K. Assume a = (0, i, p) ∈ K. Then
an ∈ Reg(S), for some n ∈ Z+, and for x = (0, j, q) ∈ V (an), j ∈ V (i)
and q ∈ V (pn). By Corollary 1, q = (pn)−1, pn−1qp = p0 = pn−2qp2 and
pn−1qp2 = p. Now, y = an−2xa ∈ S and

aya = an−1xa2 = (0, i, pn−1) · (0, j, q) · (0, i, p2)

= (0, iji, pn−1qp2) = (0, i, p) = a,

ay = an−1xa = (0, i, pn−1) · (0, j, q) · (0, i, p)

= (0, iji, pn−1qp) = (0, i, p0) = (0, iji, pn−2qp2)

= (0, i, pn−2) · (0, j, q) · (0, i, p2) = an−2xa2 = ya.
Thus, K = Gr(S) = Reg(S), and clearly, it is an ideal of S.

Further, if a = (u, i, p) ∈ S, then un = 0, for some n ∈ Z+, so
a0 = (an)0 = (0, i, pn)0 = (0, i, (pn)0) = (0, i, p0).

Since T is a semilattice of groups, then (pq)0 = p0q0, for all p, q ∈ T , whence
(ab)0 = a0b0, for all a, b ∈ S, so by Lemma 2, S is band of π-groups. Now,
by Theorem 2, S is a retractive nil-extension of a band of groups. Clearly,
E(S) is a subsemigroup of S.

(ii) ⇒ (iii). This follows by Corollary 2.3 [13].
(iii) ⇒ (ii). This follows by Lemma 4. �

Since the idempotents of a left regular band of groups always form a
subsemigroup, then we immediately obtain the following

Corollary 2. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a left regular band of groups;
(ii) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

xany ∈ x2aSx.
(iii) S is π-regular and a subdirect product of a nil-semigroup, a left reg-

ular band and a semilattice of groups;
(iv) S is π-regular and a subdirect product of a nil-semigroup, a left reg-

ular band, and of groups with a zero possibly adjoined.
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Corollary 3. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of groups;
(ii) S is a retractive nil-extension of a semilattice of groups;
(iii) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

xany ∈ ySx.
(iv) S is π-regular and a subdirect product of a nil-semigroup and a semi-

lattice of groups;
(v) S is π-regular and a subdirect product of a nil-semigroup and of

groups with a zero possibly adjoined.

4. Retractive Nil-Extensions of Normal Bands of Groups

In this section we will describe retractive nil-extensions of normal bands
of groups, as very important particular types of the above considered semi-
groups.

Theorem 4. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a normal band of groups;
(ii) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

(3) xany ∈ xyaSxy.

(iii) S is a semilattice of completely Archimedean semigroups and for all
x, a, y ∈ S there exists n ∈ Z+ such that

(4) xany ∈ xySxy.

(iv) S is completely π-regular and a subdirect product of a nil-semigroup
and of completely simple semigroups with a zero possibly adjoined.

Proof. (i) ⇒ (ii). This can be proved similarly as the related part of
Theorem 2.

(ii) ⇒ (iii). For a, b ∈ S, there exists n ∈ Z+ such that (ab)n+1 =
a(ba)nb ∈ abbaSab ⊆ Sb2S, so by Theorem 1 [11], S is a semilattice of
Archimedean semigroups. Further, for a ∈ S, an = anxan, for some n ∈
Z+, x ∈ S, whence an = (anx)(anx)an ∈ (anx)an(anx)S(anx)an ⊆ a2nSan,
by (3). Thus, by Proposition 3.2 [3], S is completely π-regular. Finally, by
Theorem 2.13 [15], S is a semilattice of completely Archimedean semigroups.

(iii) ⇒ (i). By Theorem [16], Reg(S) = Gr(S). For x ∈ S, e ∈ E(S), by
(4), xe ∈ xeSxe and ex ∈ exSex, so K = Reg(S) is an ideal of S. Thus, S
is a nil-extension of a semigroup K that is a union of groups.

Assume x ∈ S, e ∈ E(S). We will prove that
(5) (xe)m ∈ xmeS, for each m ∈ Z+,
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Assume m ∈ Z+ such that (xe)m = xmeu, for some u ∈ S. Then by (4),

(xe)m+1 = xe(xe)m = xe(xmeu) ∈ x(xmeu)Sx(xmeu) ⊆ xm+1eS.

Now by induction we obtain (5). On the other hand, since K is completely
regular, xe = (xe)2v, for some v ∈ S, whence xe = (xe)m+1vm, for any
m ∈ Z+, so by (5), xe = (xe)m+1vme ∈ xmeSxevme ⊆ xmSe. Hence,
xe ∈ xmSe, for each m ∈ Z+, and similarly we obtain that ex ∈ eSxm, for
each m ∈ Z+. Now as in the proof of Theorem 1 [7] we obtain that K is a
retract of S.

Further, K is a semilattice Y of completely simple semigroups Kα, α ∈ Y ,
and for a, b ∈ K, ab, a2b, ab2 ∈ Kα, for some α ∈ Y . By (4), there exists
n ∈ Z+, u ∈ S, such that a(ab)nb = abuab. Without loss of generality we
can assume that u ∈ Kα. Let G be the maximal subgroup of Kα containing
ab. Since Kα is completely simple, G is a bi-ideal of S, so a(ab)nb ∈ G.
Therefore, ab ∈ a(ab)nbGa(ab)nb ⊆ a2bKab2, so by Theorem 4 [8] and by
the regularity of K, K is a band of groups. Let B be the related band
homomorphic image of S. Then B satisfies (4), so it is easy to check that it
satisfies the identities xyz = xzxyz and xyz = xyzxz. Now by Proposition
II.3.10 [14], B is a normal band.

(i) ⇒ (iv). This follows by Theorem 1 [6] and Theorem 4.1 [12].
(iv) ⇒ (i). By the transitivity of subdirect products, S is a subdirect

product of a nil-semigroup and of a semigroup T ⊆
∏

i∈I Ti that is a sub-
direct product of semigroups Ti, i ∈ I, where Ti are completely simple
semigroups with a zero possibly adjoined. Since T is a homomorphic image
of S, then it is completely π-regular.

Assume a = (ai) ∈ T . Then an ∈ Gr(T ), for some n ∈ Z+. Let x be
the group inverse of an and x = (xi). It is not hard to show that for each
i ∈ I, xi is the group inverse of an

i . For each i ∈ I, Ti is a union of groups,
so an−2

i xiai is the group inverse of ai in Ti. Thus, y = an−2xa ∈ T and it is
a group inverse of a in T , so T is completely regular. Now by Theorem 4.1
[12] and by Theorem 1 [7] we obtain (i). �

Remark 2. It is easy to verify that the condition (3) can be replaced by each
condition of the form xany ∈ xyuSvxy, where u and v are any words from the free
monoid over an alphabet {x, a, y} such that one of u and v is a non-empty word.

Similarly we prove the following two corollaries

Corollary 4. The following conditions on a semigroup S are equivalent:

(i) S is a retractive nil-extension of a normal band of groups and E(S)
is a subsemigroup of S;
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(ii) S is π-regular and a subdirect product of a nil-semigroup, a normal
band and a semilattice of groups;

(iii) S is π-regular and a subdirect product of a nil-semigroup, a normal
band and of groups with a zero possibly adjoined;

(iv) S is completely π-regular and a subdirect product of a nil-semigroup
and of rectangular groups with a zero possibly adjoined.

Corollary 5. The following conditions on a semigroup S are equivalent:

(i) S is a retractive nil-extension of a left normal band of groups;
(ii) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

xany ∈ xySx.
(iii) S is π-regular and a subdirect product of a nil-semigroup, a left nor-

mal band and a semilattice of groups;
(iv) S is completely π-regular and a subdirect product of a nil-semigroup,

a left normal band and of groups with a zero possibly adjoined;
(v) S is completely π-regular and a subdirect product of a nil-semigroup

and of left groups with a zero possibly adjoined.
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Yugoslavia

University of Nǐs
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RETRAKTIVNE NIL-EKSTENZIJE TRAKA GRUPA

Stojan Bogdanović i Miroslav Ćirić

Ovaj rad je nastavak radova [6,7] i posvećen je proučavanju retraktivnih nil-
ekstenzija traka grupa, u opštem i nekim važnijim specijalnim slučajevima. Poseb-
no, kombinujući metode iz radova S. Bogdanovića i M. Ćirića [6,7] i one M. Petricha
[12,13] i M. Ćirića i S. Bogdanovića [10], dajemo karakterizaciju retraktivnih nil-
ekstenzija traka grupa čiji idempotenti čine podpolugrupu, preko poddirektnih
proizvoda.


