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THE LATTICE OF POSITIVE QUASI-ORDERS
ON A SEMIGROUP II*

Miroslav Ćirić and Stojan Bogdanović

Abstract. Positive quasi-orders on semigroups have been studied from different
points of view by B. M. Schein, T. Tamura, M. S. Putcha and the authors. T.
Tamura [11] related them to the study of semilattice decompositions of semi-
groups. Yet other aspects of the role of positive quasi-orders in semilattice
decompositions of semigroups were studied by the authors in [5] and [7]. In this
paper we investigate some properties of positive quasi-orders on semigroups
with zero. The obtained results will be a very useful tool in studying of quasi-
semilattice decompositions of semigroups with zero, which will be introduced
and studied in the next paper of the authors [8].

1. Introduction

Throughout this paper, Z+ will denote the set of all positive integers, and
S1 will denote a semigroup S with an identity possibly adjoined. Further,
S = S0 means that S is a semigroup with zero 0. If S = S0, we will write
0 instead {0}, and if A is a subset of S, then A• = A − 0, A0 = A ∪ 0 and
A′ = (S −A)0.

A subset A of a semigroup S is: consistent , if for x, y ∈ S, xy ∈ A
implies x, y ∈ A, completely semiprime, if for x ∈ S, n ∈ Z+, xn ∈ A
implies x ∈ A, and it is completely prime, if for x, y ∈ S, xy ∈ A implies
x ∈ A or y ∈ A. For semigroups with zero we introduce also the following
more general notions: a subset A of a semigroup S = S0 is: 0-consistent ,
if A• is consistent, completely 0-semiprime, if A• is completely semiprime,
completely 0-prime, if A• is completely prime, and A is a 0-filter , if it is a
0-consistent subsemigroup of S.

If ξ is a binary relation on a set A, ξ−1 will denote the relation defined by:
a ξ−1 b ⇔ b ξ a, for a ∈ A, aξ = {x ∈ A | a ξ x}, ξa = {x ∈ A | x ξ a}, for
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X ⊆ A, Xξ =
⋃

x∈X xξ, ξX =
⋃

x∈X ξx, and ξ∞ will denote the transitive
closure of ξ. By a quasi-order we mean a reflexive and transitive binary
relation. The poset of quasi-orders on a set A is a complete lattice and it
will be denoted by Q(A). For a quasi-order ξ on a set A, ˜ξ will denote
the natural equivalence of ξ, i.e. an equivalence relation on A defined by:
˜ξ = ξ ∩ ξ−1.

A binary relation ξ on a semigroup S is: positive, if a ξ ab and b ξ ab, for
all a, b ∈ S, lower-potent , if an ξ a, for all a ∈ S, n ∈ Z+, and it satisfies
the cm-property , if for a, b, c ∈ S, a ξ c and b ξ c implies ab ξ c, [11]. For
semigroups with zero we introduce the following, more general notions: a
binary relation ξ on a semigroup S = S0 is: 0-positive, if for a, b ∈ S, ab 6= 0
implies a ξ ab and b ξ ab, 0-lower-potent , if for a ∈ S, n ∈ Z+, an 6= 0 implies
an ξ a, and it satisfies the 0-cm-property , if for a, b, c ∈ S, ab 6= 0, a ξ c and
b ξ c implies ab ξ c.

A mapping ϕ of a poset P into a poset Q is isotone (antitone) if for
x, y ∈ P , x ≤ y implies xϕ ≤ yϕ ( x ≤ y implies yϕ ≤ xϕ ), and ϕ is an
order isomorphism (dual order isomorphism) if it is an isotone (antitone)
bijection with isotone (antitone) inverse. Note that a poset isomorphic or
dually isomorphic to a (complete) lattice is also a (complete) lattice, and by
Lemma II 3.2 [1] and its dual, any (dual) order isomorphism between lattices
is a (dual) lattice isomorphism. A mapping ϕ of a lattice L into itself is:
extensive, if x ≤ xϕ, for any x ∈ L, contractive, if xϕ ≤ x, for any x ∈ L, and
idempotent , if (xϕ)ϕ = xϕ, for any x ∈ L. An extensive, idempotent and
isotone mapping of a lattice L into itself will be called a closure operation
on L, and elements x ∈ L for which xϕ = x will be called closed elements
of L (with respect to ϕ). Similarly, a contractive, idempotent and isotone
mapping of a lattice L into itself will be called an interior operation on L,
and elements x ∈ L for which xϕ = x will be called open elements of L (with
respect to ϕ).

Let L be a complete lattice with the zero 0 and the unity 1. A subset K
of L is closed for meets (closed for joins) if it contains the meet (the join) of
any its non-empty subset, and it is a closed subset of L if it is closed both for
meets and joins. Clearly, any closed subset of L is its complete sublattice. A
sublattice K of L is a 1-sublattice (0-sublattice) of L if 1 ∈ K ( 0 ∈ K ), and
it is a 0,1-sublattice of L if 0, 1 ∈ K. A subset A of a lattice L is meet-dense
in L if any element of L can be represented as a meet of some subset of A.

By Id(S) we will denote the lattice of all ideals of a semigroup S. For a
semigroup with zero, it is a complete lattice. Let K be a subset of Id(S)
closed for meets, containing the unity of Id(S). Then for any a ∈ S, there
exists a smallest element of K containing a, in notation K(a), called the
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principal element of K generated by a. For a semigroup S = S0, the set of
completely 0-semiprime ideals is a complete 0,1-sublalttice of Id(S), and it
will be denoted by Idc0s(S). For a sublattice K of Idc0s(S) we say that it
satisfies the c-0-pi-property (completely 0-prime ideal-property) if the set of
completely 0-prime ideals from K is meet-dense in K.

For undefined notions and notations we refer to [1], [2], [9] and [10].

2. Restriction Operations on Positive Quasi-Orders

In studying of semigroups with zero, it is often of interest to use relations
and subsets with some ”restrictions” and ”weakenings” on the zero. On a
relation ξ on a semigroup S = S0 we define the following restriction oper-
ations: •ξ = ξ − (0 × S•), ξ• = ξ − (S• × 0), •ξ• = ξ − (0 × S• ∪ S• × 0).
Clearly, •ξ• = (•ξ)• = •(ξ•). Especially, γl = •ω, γr = ω• and γ = •ω•,
where ω denotes the universal relation on S. A relation ξ on a semigroup
S = S0 is left 0-restricted (right 0-restricted) if 0ξ = 0 (ξ0 = 0), and it is
0-restricted if it is both left and right 0-restricted, i.e. if 0ξ = ξ0 = 0.

The following lemma, that can be proved immediately, gives some basic
properties of operations defined above:

Lemma 1. For any semigroup S = S0, the mappings ξ 7→ •ξ, ξ 7→ ξ• and
ξ 7→ •ξ• are interior operators on the lattice Q(S) and the related sets of open
elements are sets of left 0-restricted, of right 0-restricted and of 0-restricted
quasi-orders on S, respectively.

A characterization of restricted quasi-orders is given by the following:

Lemma 2. The following conditions for a quasi-order ξ on a semigroup
S = S0 are equivalent:

(i) ξ is left 0-restricted (right 0-restricted, 0-restricted);
(ii) for each a ∈ S•, 0 /∈ ξa ( 0 /∈ aξ, 0 /∈ ξa ∪ aξ );
(iii) ξ ⊆ γl ( ξ ⊆ γr, ξ ⊆ γ ).

Proof. It is enough to prove the one part of the lemma that characterizes
left 0-restricted quasi-orders.

(i) ⇔ (ii). This follows immediately.

(i) ⇒ (iii). If (a, b) ∈ ξ, then (a, b) /∈ 0× S•, whence (a, b) ∈ γl.

(iii) ⇒ (i). By Lemma 1, γl is left 0-restricted, so 0ξ ⊆ 0γl = 0. �

Now we obtain the following:
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Theorem 1. The sets of left 0-restricted quasi-orders, right 0-restricted
quasi-orders and 0-restricted quasi-orders on a semigroup S = S0 are the
principal ideals of Q(S) generated by γl, γr and γ, respectively.

Proof. This follows by Lemma 2. �

On a relation ξ on a semigroup S = S0 we also define the operation
ξ0 = ξ ∪ S• × 0. It is easy to prove the following two lemmas that give
important properties of this operation.

Lemma 3. For a relation ξ on a semigroup S = S0, aξ0 = (aξ)0, for each
a ∈ S, and ξ0a = ξa, for each a ∈ S•.

Lemma 4. For any semigroup S = S0, the mapping ξ 7→ ξ0 is a closure
operation on the lattice of left 0-restricted quasi-orders on S, and ˜ξ = ˜ξ0, for
any left 0-restricted quasi-order ξ on S.

Further we will consider restriction operations on positive quasi-orders.

Lemma 5. The following conditions for a quasi-order ξ on a semigroup
S = S0 are equivalent:

(i) ξ is positive;
(ii) •ξ is positive;
(iii) ξ• is 0-positive.

Proof. (i) ⇒ (ii). For a, b ∈ S, (a, ab), (b, ab) ∈ ξ, and clearly (a, ab), (b, ab)
/∈ 0× S•, so (a, ab), (b, ab) ∈ •ξ.

(ii) ⇒ (i). This follows by the proof of Theorem 1 [7], since •ξ ⊆ ξ.
(i) ⇒ (iii). For a, b ∈ S, ab 6= 0, (a, ab), (b, ab) ∈ ξ, and (a, ab), (b, ab) /∈

S• × 0, whence (a, ab), (b, ab) ∈ ξ•.
(iii) ⇒ (i). For a, b ∈ S, if ab = 0, then clearly (a, ab), (b, ab) ∈ ξ, and if

ab 6= 0, then (a, ab), (b, ab) ∈ ξ• ⊆ ξ. �

Recall that the division relation | on a semigroup S is defined by:

a | b ⇔ (∃x, y ∈ S1) b = xay.

On a semigroup S = S0 we also define the relation ‖ by:

a ‖ b ⇔ a = b = 0 or
(

(∃x, y ∈ S1) b = xay 6= 0
)

.

Lemma 6. The following conditions for a quasi-order ξ on a semigroup
S = S0 are equivalent:

(i) ξ is 0-positive;
(ii) •ξ is 0-positive;
(iii) ξ0 is positive;
(iv) ‖ ⊆ ξ.
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Proof. (i) ⇒ (iii). For a, b ∈ S, if ab = 0, then clearly (a, ab), (b, ab) ∈ ξ0,
and if ab 6= 0, then (a, ab), (b, ab) ∈ ξ ⊆ ξ0.

(iii) ⇒ (i). For a, b ∈ S, if ab 6= 0, then by (a, ab), (b, ab) ∈ ξ0 it follows
(a, ab), (b, ab) ∈ ξ.

(i) ⇔ (iv). Clearly, ‖ ⊆ ξ if and only if ‖0 ⊆ ξ0, and ‖0 =|, so by (i) ⇔ (iii)
and by the proof of Theorem 1 [7] we obtain that (i) ⇔ (iv).

(i) ⇔ (ii). This follows since (i) ⇔ (iv). �

The following theorem characterizes left 0-restricted positive quasi-orders
on a semigroup in terms of closed 0,1-sublattices of ideal lattices.

Theorem 2. The poset of left 0-restricted positive quasi-orders on a semi-
group S = S0 is a complete lattice and it is dually isomorphic to the lattice
of closed 0,1-sublattices of Id(S).

Proof. By the proof of Theorem 1 [7], the set of positive quasi-orders on
S is a principal dual ideal of Q(S) generated by |. It is easy to check that
| is left 0-restricted, and by Theorem 1, the set of left 0-restricted positive
quasi-orders on S is equal to the interval [|, γl] of Q(S), so it is a complete
lattice.

In the proof of Theorem 1 [7], the authors proved that the mapping ξ 7→
Kξ, where

(1) Kξ = {I ∈ Id(S) | Iξ = I},

is an isomorphism between the lattice of positive quasi-orders on S and the
lattice of closed 1-sublattices of Id(S). Clearly, ξ is left 0-restricted if and
only if 0 ∈ Kξ, whence we obtain the assertions of the theorem. �

The following theorem will be also very useful:

Theorem 3. The poset of 0-restricted 0-positive quasi-orders on a semi-
group S = S0 is a complete lattice and it is isomorphic to the lattice of left
0-restricted positive quasi-orders on S.

Proof. By Lemma 6, the set of 0-positive quasi-orders on S is the principal
dual ideal of Q(S) generated by ‖, and by Theorem 1, the set of 0-restricted
0-positive quasi-orders on S is equal to the interval [‖, γ] of Q(S), so it is a
complete lattice.

Let ξ be a left 0-restricted positive quasi-order on S. Then S• × 0 ⊆ ξ,
since ξ is positive, whence

(ξ•)0 = (ξ − S• × 0) ∪ S• × 0 = ξ ∪ S• × 0 = ξ.
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On the other hand, let η be a 0-restricted 0-positive quasi-order on S. Since
η is right 0-restricted, then η• = η, by Lemma 1, whence

(η0)• = (η ∪ S• × 0)− S• × 0 = η − S• × 0 = η• = η.

By this and by Lemmas 1 and 4 we obtain that the mappings ξ 7→ ξ•

and η 7→ η0 are mutually inverse bijections between the lattice of left 0-
restricted positive quasi-orders on S and the lattice of 0-restricted 0-positive
quasi-orders on S. By Lemmas 1 and 4, these mappings are isotone, and by
Lemma II 3.2 [1], these are lattice isomorphisms. �

3. The 0-Lower-Potency and the 0-cm-Property

As we seen in [7] and [11], in the study of semilattice decompositions
of semigroups, the lower-potency and the cm-property play a crucial role.
In this section we consider quasi-orders with more general properties: the
0-lower-potency and the 0-cm-property.

First we prove the following:

Lemma 7. The following conditions for a quasi-order ξ on a semigroup
S = S0 are equivalent:

(i) ξ is 0-lower-potent;
(ii) •ξ is 0-lower-potent;
(iii) ξ• is 0-lower-potent;
(iv) ξ0 is 0-lower-potent.

Proof. (i) ⇒ (ii). Let a ∈ S, n ∈ Z+ and an 6= 0. Then (an, a) ∈ ξ and
by an 6= 0 it follows (an, a) ∈ •ξ.

(i) ⇒ (iii). Let a ∈ S, n ∈ Z+ and an 6= 0. Then (an, a) ∈ ξ and a 6= 0,
whence (an, a) ∈ ξ•.

(iv) ⇒ (i). Let a ∈ S, n ∈ Z+ and an 6= 0. Then (an, a) ∈ ξ0 and a 6= 0,
whence (an, a) ∈ ξ.

(ii) ⇒ (i), (iii) ⇒ (i) and (i) ⇒ (iv). This follows by •ξ ⊆ ξ, ξ• ⊆ ξ and
ξ ⊆ ξ0. �

On a semigroup S = S0 we define the following relations:

a   b ⇔ b = 0 or
(

(∃n ∈ Z+)(∃x, y ∈ S1) bn = xay 6= 0
)

,

a � b ⇔ a = b = 0 or
(

(∃n ∈ Z+)(∃x, y ∈ S1) bn = xay 6= 0
)

.
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Lemma 8. The following conditions for a quasi-order ξ on a semigroup
S = S0 are equivalent:

(i) ξ is positive and 0-lower-potent;
(ii) ξ• is 0-positive and 0-lower-potent;
(iii) aξ is a completely 0-semiprime ideal of S, for each a ∈ S;
(iv)  ∞⊆ ξ.

Proof. (i) ⇒ (ii). This follows by Lemmas 5 and 7.

(i) ⇒ (iii). Let a ∈ S. By Lemma 1 [7], aξ is an ideal of S. Let
x ∈ S, n ∈ Z+, xn 6= 0 and xn ∈ aξ. Then a ξ xn ξ x, whence x ∈ aξ. Thus,
aξ is completely 0-semiprime.

(iii) ⇒ (i). By Lemma 1 [7], ξ is positive. Let x ∈ S, n ∈ Z+ and xn 6= 0.
Then xn ∈ (xn)ξ, whence x ∈ (xn)ξ, i.e. xn ξ x.

(i) ⇒ (iv). Let a, b ∈ S and a   b. If b = 0, then a ξ b, since ξ is positive,
and if b 6= 0, then bn = xay 6= 0, for some n ∈ Z+, x, y ∈ S1, whence
a ξ xa ξ xay = bn ξ b, i.e. a ξ b. Thus,  ⊆ ξ, whence  ∞⊆ ξ∞ = ξ.

(iv) ⇒ (i). Since  ∞ is positive and 0-lower-potent, then ξ is also positive
and 0-lower-potent. �

Similarly we prove the following

Lemma 9. The following conditions for a quasi-order ξ on a semigroup
S = S0 are equivalent:

(i) ξ is 0-positive and 0-lower-potent;
(ii) ξ0 is positive and 0-lower-potent;
(iii) (aξ)0 is a completely 0-semiprime ideal of S, for each a ∈ S;
(iv) �∞⊆ ξ.

Now we obtain the following two theorems:

Theorem 4. The poset of left 0-restricted positive 0-lower-potent quasi-
orders and the poset of 0-restricted 0-positive 0-lower-potent quasi-orders on
a semigroup S = S0 are isomorphic complete lattices.

Proof. By Lemmas 8 and 9, the poset of left 0-restricted positive 0-lower-
potent quasi-orders and the poset of 0-restricted 0-positive 0-lower-potent
quasi-orders on S are the principal dual ideals of Q(S) generated by  ∞

and �∞, respectively, so these are complete lattices. By Lemma 7 and
Theorem 3, the mapping ξ 7→ ξ• is an isomorphism of the first onto the
second cited lattice. �
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Theorem 5. The lattice of left 0-restricted positive 0-lower-potent quasi-
orders on a semigroup S = S0 is dually isomorphic to the lattice of closed
0,1-sublattices of Idc0s(S).

Proof. Consider a mapping ξ 7→ Kξ from the proof of Theorem 2. By
Lemma 8, ξ is 0-lower-potent if and only if Kξ is a sublattice of Idc0s(S),
whence we obtain the assertion of the theorem. �

Finally, we will consider quasi-orders satisfying the 0-cm-property.

Lemma 10. The following conditions for a quasi-order ξ on a semigroup
S = S0 are equivalent:

(i) ξ is positive and it satisfies the 0-cm-property;
(ii) •ξ is positive and it satisfies the 0-cm-property;
(iii) ξ• is 0-positive and it satisfies the 0-cm-property.

Proof. (i) ⇒ (iii). By Lemma 5, ξ• is 0-positive. Let a, b, c ∈ S, ab 6= 0
and (a, c), (b, c) ∈ ξ•, i.e. (a, c), (b, c) ∈ ξ and (a, c), (b, c) /∈ S• × 0. Then
c 6= 0 and (ab, c) ∈ ξ, whence (ab, c) ∈ ξ•.

(iii) ⇒ (i). By Lemma 5, ξ is positive. Let a, b, c ∈ S, ab 6= 0 and
(a, c), (b, c) ∈ ξ. If c = 0, then (ab, c) ∈ ξ, since ξ is positive, and if c 6= 0,
then (a, c), (b, c) ∈ ξ•, whence (ab, c) ∈ ξ• ⊆ ξ.

(i) ⇔ (ii). This can be proved similarly as (i) ⇔ (iii). �

Lemma 11. The following conditions for a quasi-order ξ on a semigroup
S = S0 are equivalent:

(i) ξ is 0-positive and it satisfies the 0-cm-property;
(ii) •ξ is 0-positive and it satisfies the 0-cm-property;
(iii) (ξa)0 is a 0-filter of S, for each a ∈ S;
(iv) (∀a, b ∈ S) ab 6= 0 ⇒ aξ ∩ bξ = (ab)ξ.

If ξ is right 0-restricted, then any of the previous conditions is equivalent to
the following:

(v) ξ0 is positive and it satisfies the 0-cm-property.

Proof. (i) ⇔ (ii). This can be proved similarly as Lemma 10.
(i) ⇒ (iii). Let a ∈ S. If x, y ∈ S and xy ∈ (ξa)0, xy 6= 0, then xy ξ a,

whence x ξ a and y ξ a, i.e. xy ∈ ξa, since ξ is 0-positive, so (ξa)0 is 0-
consistent. Assume x, y ∈ (ξa)0. If xy = 0, then clearly xy ∈ (ξa)0, and
if xy 6= 0, then x, y ∈ ξa, whence xy ∈ ξa ⊆ (ξa)0, by the 0-cm-property.
Thus, (ξa)0 is a subsemigroup of S.

(iii) ⇒ (i). Let a, b ∈ S and ab 6= 0. Then a, b ∈ ξ(ab), since (ξ(ab))0 is
0-consistent, so ξ is 0-positive. Let a, b, c ∈ S, ab 6= 0 and (a, c), (b, c) ∈ ξ.
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Then a, b ∈ ξc, whence ab ∈ (ξc)0, and by ab 6= 0 we obtain ab ∈ ξc. Thus,
ξ satisfies the 0-cm-property.

(i) ⇒ (iv). Let a, b ∈ S and ab 6= 0. Since ξ is 0-positive, then (ab)ξ ⊆
aξ ∩ bξ, and the opposite inclusion it follows by the 0-cm-property.

(iv) ⇒ (i). This follows immediately.
Further, let ξ be right 0-restricted.
(i) ⇒ (v). This can be proved similarly as Lemma 10.
(v) ⇒ (i). By Lemma 6, ξ is 0-positive. Let a, b, c ∈ S, ab 6= 0 and

(a, c), (b, c) ∈ ξ. Then (a, c), (b, c) ∈ ξ0, whence (ab, c) ∈ ξ0, and since ab 6= 0
and ξ is right 0-restricted, then c 6= 0 and (ab, c) ∈ ξ. �

Now we go to the main theorems of this paper:

Theorem 6. The poset of left 0-restricted positive quasi-orders on a semi-
group S = S0 satisfying the 0-cm-property and the poset of 0-restricted 0-
positive quasi-orders on S satisfying the 0-cm-property are isomorphic com-
plete lattices.

Proof. It is easy to verify that the intersection of any non-empty family
of quasi-orders on S satisfying the 0-cm-property satisfies also the 0-cm-
property, and that γl and γ satisfy the 0-cm-property. By this it follows
that the above cited posets are complete lattices. By Lemmas 10 and 11
and Theorem 3, the mapping ξ 7→ ξ• is an isomorphism of the first onto the
second cited lattice. �

Lemma 12. A subset A of a semigroup S = S0 is a 0-filter of S if and
only if A′ is a completely 0-prime ideal of S.

Proof. This follows by the fact that a subset X of S is a consistent subset
of S if and only if S −X is an ideal of S, and X is a subsemigroup of S if
and only if S −X is a completely prime subset of S. �

Theorem 7. The poset of closed 0,1-sublattices of Idc0s(S) satisfying the
c-0-pi-property is a complete lattice and it is dually isomorphic to the lattice
of 0-restricted 0-positive quasi-orders on a semigroup S = S0 satisfying the
0-cm-property.

Proof. Consider the mapping ξ 7→ Kξ from the proof of Theorem 2.
Assume that ξ satisfies the 0-cm-property. For a ∈ S•, let Pa =

(

(ξa)0
)′

=
(ξa)′. By Lemma 12, Pa is a completely 0-prime ideal of S and a /∈ Pa. Let
y ∈ Paξ. Then x ξ y, for some x ∈ Pa, and if y ∈ ξa, i.e. y ξ a, then x ξ a, i.e.
x ∈ ξa, so we obtain a contradiction. Therefore, y ∈ Pa, so Paξ = Pa and
Pa ∈ Kξ, for each a ∈ S•. Now, for I ∈ Kξ, I =

⋂

a∈S−I Pa, so Kξ satisfies
the c-0-pi-property.
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Conversely, let Kξ satisfies the c-0-pi-property, let a, b ∈ S and ab 6= 0.
By Lemma 9, ((ab)ξ)0 is a completely 0-semiprime ideal of S, so there exists
a familly {Pα | α ∈ Y } of completely 0-prime ideals from Kξ such that
((ab)ξ)0 =

⋂

α∈Y Pα. Let U = {α ∈ Y | a ∈ Pα}, V = {α ∈ Y | b ∈ Pα}.
Without loss of generality, we can assume that U 6= ∅ and V 6= ∅ (for
example, we can assume that S is one of Pα). Since Pα is completely 0-
prime and ab ∈ Pα, for each α ∈ Y , then Y = U ∪ V . Now, for each α ∈ Y ,
a ∈ Pα implies (aξ)0 = Kξ(a) ⊆ Pα, since Pα ∈ Kξ, so (aξ)0 ⊆

⋂

α∈U Pα.
Similarly, (bξ)0 ⊆

⋂

β∈V Pβ . Thus,

(aξ)0 ∩ (bξ)0 ⊆
(

⋂

α∈U

Pα
)

∩
(

⋂

β∈V

Pβ
)

=
⋂

α∈Y

Pα = ((ab)ξ)0 .

By this and by Lemma 11, ξ satisfies the 0-cm-property.

Hence, there exists a dual order isomorphism between the lattice of 0-
restricted 0-positive quasi-orders on S satisfying the 0-cm-property and the
poset of closed 0,1-sublattices of Idc0s(S) satisfying the c-0-pi-property, so
these are dually isomorphic complete lattices. �
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MREŽA POZITIVNIH KVAZI-URED̄ENJA NA POLUGRUPI II

Miroslav Ćirić i Stojan Bogdanović

Pozitivna kvazi-ured̄enja na polugrupama su sa različitih tačaka gledǐsta izu-
čavane od strane B. M. Scheina, T. Tamurae, M. S. Putchae i autora ovog rada.
T. Tamura ih je u [11] povezao sa izučavanjem polumrežnih razlaganja polugrupa.
Neki drugi aspekti uloge pozitivnih kvazi-ured̄enja u polumrežnim razlaganjima
polugrupa su proučavani u radovima autora [5] i [7]. U ovom radu istražujemo neka
svojstva pozitivnih kvazi-ured̄enja na polugrupama sa nulom. Dobijeni rezultati
biće veoma korisno orud̄e u izučavanju kvazi-polumrežnih razlaganja polugrupa sa
nulom, koja će biti uvedena i proučavana u narednom radu autora [8].


