FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. 9(1994), 7–17

THE LATTICE OF POSITIVE QUASI-ORDERS ON A SEMIGROUP II*

Miroslav Ćirić and Stojan Bogdanović

Abstract. Positive quasi-orders on semigroups have been studied from different points of view by B. M. Schein, T. Tamura, M. S. Putcha and the authors. T. Tamura [11] related them to the study of semilattice decompositions of semigroups. Yet other aspects of the role of positive quasi-orders in semilattice decompositions of semigroups were studied by the authors in [5] and [7]. In this paper we investigate some properties of positive quasi-orders on semigroups with zero. The obtained results will be a very useful tool in studying of quasi-semilattice decompositions of semigroups with zero, which will be introduced and studied in the next paper of the authors [8].

1. Introduction

Throughout this paper, \mathbf{Z}^+ will denote the set of all positive integers, and S^1 will denote a semigroup S with an identity possibly adjoined. Further, $S = S^0$ means that S is a semigroup with zero 0. If $S = S^0$, we will write 0 instead $\{0\}$, and if A is a subset of S, then $A^{\bullet} = A - 0$, $A^0 = A \cup 0$ and $A' = (S - A)^0$.

A subset A of a semigroup S is: consistent, if for $x, y \in S$, $xy \in A$ implies $x, y \in A$, completely semiprime, if for $x \in S$, $n \in \mathbb{Z}^+$, $x^n \in A$ implies $x \in A$, and it is completely prime, if for $x, y \in S$, $xy \in A$ implies $x \in A$ or $y \in A$. For semigroups with zero we introduce also the following more general notions: a subset A of a semigroup $S = S^0$ is: 0-consistent, if A^{\bullet} is consistent, completely 0-semiprime, if A^{\bullet} is completely semiprime, completely 0-prime, if A^{\bullet} is completely prime, and A is a 0-filter, if it is a 0-consistent subsemigroup of S.

If ξ is a binary relation on a set A, ξ^{-1} will denote the relation defined by: $a\xi^{-1}b \Leftrightarrow b\xi a$, for $a \in A$, $a\xi = \{x \in A \mid a\xi x\}$, $\xi a = \{x \in A \mid x\xi a\}$, for

Received February 15, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 20M10.

^{*}Supported by Grant 0401B of RFNS through Math. Inst. SANU

 $X \subseteq A, X\xi = \bigcup_{x \in X} x\xi, \xi X = \bigcup_{x \in X} \xi x$, and ξ^{∞} will denote the transitive closure of ξ . By a *quasi-order* we mean a reflexive and transitive binary relation. The poset of quasi-orders on a set A is a complete lattice and it will be denoted by $\mathcal{Q}(A)$. For a quasi-order ξ on a set $A, \tilde{\xi}$ will denote the *natural equivalence* of ξ , i.e. an equivalence relation on A defined by: $\tilde{\xi} = \xi \cap \xi^{-1}$.

A binary relation ξ on a semigroup S is: *positive*, if $a \xi ab$ and $b \xi ab$, for all $a, b \in S$, *lower-potent*, if $a^n \xi a$, for all $a \in S$, $n \in \mathbb{Z}^+$, and it satisfies the *cm-property*, if for $a, b, c \in S$, $a \xi c$ and $b \xi c$ implies $ab \xi c$, [11]. For semigroups with zero we introduce the following, more general notions: a binary relation ξ on a semigroup $S = S^0$ is: *0-positive*, if for $a, b \in S$, $ab \neq 0$ implies $a \xi ab$ and $b \xi ab$, *0-lower-potent*, if for $a \in S$, $n \in \mathbb{Z}^+$, $a^n \neq 0$ implies $a^n \xi a$, and it satisfies the *0-cm-property*, if for $a, b, c \in S$, $ab \neq 0$, $a \xi c$ and $b \xi c$ implies $ab \xi c$.

A mapping φ of a poset P into a poset Q is *isotone* (*antitone*) if for $x, y \in P, x \leq y$ implies $x\varphi \leq y\varphi$ ($x \leq y$ implies $y\varphi \leq x\varphi$), and φ is an order isomorphism (dual order isomorphism) if it is an isotone (antitone) bijection with isotone (antitone) inverse. Note that a poset isomorphic or dually isomorphic to a (complete) lattice is also a (complete) lattice, and by Lemma II 3.2 [1] and its dual, any (dual) order isomorphism between lattices is a (dual) lattice isomorphism. A mapping φ of a lattice L into itself is: extensive, if $x \leq x\varphi$, for any $x \in L$, contractive, if $x\varphi \leq x$, for any $x \in L$, and idempotent, if $(x\varphi)\varphi = x\varphi$, for any $x \in L$. An extensive, idempotent and isotone mapping of a lattice L into itself will be called a closure operation on L, and elements $x \in L$ for which $x\varphi = x$ will be called closed elements of L (with respect to φ). Similarly, a contractive, idempotent and isotone mapping of a lattice L into itself will be called open elements of L (with respect to φ).

Let L be a complete lattice with the zero 0 and the unity 1. A subset K of L is closed for meets (closed for joins) if it contains the meet (the join) of any its non-empty subset, and it is a closed subset of L if it is closed both for meets and joins. Clearly, any closed subset of L is its complete sublattice. A sublattice K of L is a 1-sublattice (0-sublattice) of L if $1 \in K$ ($0 \in K$), and it is a 0,1-sublattice of L if $0, 1 \in K$. A subset A of a lattice L is meet-dense in L if any element of L can be represented as a meet of some subset of A.

By $\mathcal{I}d(S)$ we will denote the lattice of all ideals of a semigroup S. For a semigroup with zero, it is a complete lattice. Let K be a subset of $\mathcal{I}d(S)$ closed for meets, containing the unity of $\mathcal{I}d(S)$. Then for any $a \in S$, there exists a smallest element of K containing a, in notation K(a), called the

principal element of K generated by a. For a semigroup $S = S^0$, the set of completely 0-semiprime ideals is a complete 0,1-sublattice of $\mathcal{I}d(S)$, and it will be denoted by $\mathcal{I}d^{\mathbf{c0s}}(S)$. For a sublattice K of $\mathcal{I}d^{\mathbf{c0s}}(S)$ we say that it satisfies the *c*-0-*pi*-*property* (completely 0-prime ideal-property) if the set of completely 0-prime ideals from K is meet-dense in K.

For undefined notions and notations we refer to [1], [2], [9] and [10].

2. Restriction Operations on Positive Quasi-Orders

In studying of semigroups with zero, it is often of interest to use relations and subsets with some "restrictions" and "weakenings" on the zero. On a relation ξ on a semigroup $S = S^0$ we define the following restriction operations: ${}^{\bullet}\xi = \xi - (0 \times S^{\bullet}), \xi^{\bullet} = \xi - (S^{\bullet} \times 0), {}^{\bullet}\xi^{\bullet} = \xi - (0 \times S^{\bullet} \cup S^{\bullet} \times 0).$ Clearly, ${}^{\bullet}\xi^{\bullet} = ({}^{\bullet}\xi)^{\bullet} = {}^{\bullet}(\xi^{\bullet})$. Especially, $\gamma_l = {}^{\bullet}\omega, \gamma_r = \omega^{\bullet}$ and $\gamma = {}^{\bullet}\omega^{\bullet}$, where ω denotes the universal relation on S. A relation ξ on a semigroup $S = S^0$ is *left 0-restricted* (*right 0-restricted*) if $0\xi = 0$ ($\xi 0 = 0$), and it is *0-restricted* if it is both left and right 0-restricted, i.e. if $0\xi = \xi_0 = 0$.

The following lemma, that can be proved immediately, gives some basic properties of operations defined above:

Lemma 1. For any semigroup $S = S^0$, the mappings $\xi \mapsto {}^{\bullet}\xi, \xi \mapsto \xi^{\bullet}$ and $\xi \mapsto {}^{\bullet}\xi^{\bullet}$ are interior operators on the lattice $\mathcal{Q}(S)$ and the related sets of open elements are sets of left 0-restricted, of right 0-restricted and of 0-restricted quasi-orders on S, respectively.

A characterization of restricted quasi-orders is given by the following:

Lemma 2. The following conditions for a quasi-order ξ on a semigroup $S = S^0$ are equivalent:

- (i) ξ is left 0-restricted (right 0-restricted, 0-restricted);
- (ii) for each $a \in S^{\bullet}$, $0 \notin \xi a$ ($0 \notin a\xi$, $0 \notin \xi a \cup a\xi$);
- (iii) $\xi \subseteq \gamma_l$ ($\xi \subseteq \gamma_r$, $\xi \subseteq \gamma$).

Proof. It is enough to prove the one part of the lemma that characterizes left 0-restricted quasi-orders.

(i) \Leftrightarrow (ii). This follows immediately.

(i) \Rightarrow (iii). If $(a,b) \in \xi$, then $(a,b) \notin 0 \times S^{\bullet}$, whence $(a,b) \in \gamma_l$.

(iii) \Rightarrow (i). By Lemma 1, γ_l is left 0-restricted, so $0\xi \subseteq 0\gamma_l = 0$. \Box

Now we obtain the following:

Theorem 1. The sets of left 0-restricted quasi-orders, right 0-restricted quasi-orders and 0-restricted quasi-orders on a semigroup $S = S^0$ are the principal ideals of $\mathcal{Q}(S)$ generated by γ_l , γ_r and γ , respectively.

Proof. This follows by Lemma 2. \Box

On a relation ξ on a semigroup $S = S^0$ we also define the operation $\xi^0 = \xi \cup S^{\bullet} \times 0$. It is easy to prove the following two lemmas that give important properties of this operation.

Lemma 3. For a relation ξ on a semigroup $S = S^0$, $a\xi^0 = (a\xi)^0$, for each $a \in S$, and $\xi^0 a = \xi a$, for each $a \in S^{\bullet}$.

Lemma 4. For any semigroup $S = S^0$, the mapping $\xi \mapsto \xi^0$ is a closure operation on the lattice of left 0-restricted quasi-orders on S, and $\tilde{\xi} = \tilde{\xi}^0$, for any left 0-restricted quasi-order ξ on S.

Further we will consider restriction operations on positive quasi-orders.

Lemma 5. The following conditions for a quasi-order ξ on a semigroup $S = S^0$ are equivalent:

- (i) ξ is positive;
- (ii) $\bullet \xi$ is positive;
- (iii) ξ^{\bullet} is 0-positive.

Proof. (i) \Rightarrow (ii). For $a, b \in S$, $(a, ab), (b, ab) \in \xi$, and clearly $(a, ab), (b, ab) \notin 0 \times S^{\bullet}$, so $(a, ab), (b, ab) \in {}^{\bullet}\xi$.

(ii) \Rightarrow (i). This follows by the proof of Theorem 1 [7], since $\xi \subseteq \xi$.

(i) \Rightarrow (iii). For $a, b \in S$, $ab \neq 0$, $(a, ab), (b, ab) \in \xi$, and $(a, ab), (b, ab) \notin S^{\bullet} \times 0$, whence $(a, ab), (b, ab) \in \xi^{\bullet}$.

(iii) \Rightarrow (i). For $a, b \in S$, if ab = 0, then clearly $(a, ab), (b, ab) \in \xi$, and if $ab \neq 0$, then $(a, ab), (b, ab) \in \xi^{\bullet} \subseteq \xi$. \Box

Recall that the *division relation* \mid on a semigroup S is defined by:

$$a \mid b \Leftrightarrow (\exists x, y \in S^1) \ b = xay.$$

On a semigroup $S = S^0$ we also define the relation || by:

 $a \parallel b \iff a = b = 0 \text{ or } \left((\exists x, y \in S^1) \ b = xay \neq 0 \right).$

Lemma 6. The following conditions for a quasi-order ξ on a semigroup $S = S^0$ are equivalent:

(i) ξ is 0-positive; (ii) ${}^{\bullet}\xi$ is 0-positive; (iii) ξ^{0} is positive; (iv) $\| \subseteq \xi$. *Proof.* (i) \Rightarrow (iii). For $a, b \in S$, if ab = 0, then clearly $(a, ab), (b, ab) \in \xi^0$, and if $ab \neq 0$, then $(a, ab), (b, ab) \in \xi \subseteq \xi^0$.

(iii) \Rightarrow (i). For $a, b \in S$, if $ab \neq 0$, then by $(a, ab), (b, ab) \in \xi^0$ it follows $(a, ab), (b, ab) \in \xi$.

(i) \Leftrightarrow (iv). Clearly, $\| \subseteq \xi$ if and only if $\|^0 \subseteq \xi^0$, and $\|^0 = |$, so by (i) \Leftrightarrow (iii) and by the proof of Theorem 1 [7] we obtain that (i) \Leftrightarrow (iv).

(i) \Leftrightarrow (ii). This follows since (i) \Leftrightarrow (iv). \Box

The following theorem characterizes left 0-restricted positive quasi-orders on a semigroup in terms of closed 0,1-sublattices of ideal lattices.

Theorem 2. The poset of left 0-restricted positive quasi-orders on a semigroup $S = S^0$ is a complete lattice and it is dually isomorphic to the lattice of closed 0,1-sublattices of $\mathcal{Id}(S)$.

Proof. By the proof of Theorem 1 [7], the set of positive quasi-orders on S is a principal dual ideal of $\mathcal{Q}(S)$ generated by |. It is easy to check that | is left 0-restricted, and by Theorem 1, the set of left 0-restricted positive quasi-orders on S is equal to the interval $[|, \gamma_l]$ of $\mathcal{Q}(S)$, so it is a complete lattice.

In the proof of Theorem 1 [7], the authors proved that the mapping $\xi \mapsto K_{\xi}$, where

(1)
$$K_{\xi} = \{ I \in \mathcal{I}d(S) \mid I\xi = I \},$$

is an isomorphism between the lattice of positive quasi-orders on S and the lattice of closed 1-sublattices of $\mathcal{I}d(S)$. Clearly, ξ is left 0-restricted if and only if $0 \in K_{\xi}$, whence we obtain the assertions of the theorem. \Box

The following theorem will be also very useful:

Theorem 3. The poset of 0-restricted 0-positive quasi-orders on a semigroup $S = S^0$ is a complete lattice and it is isomorphic to the lattice of left 0-restricted positive quasi-orders on S.

Proof. By Lemma 6, the set of 0-positive quasi-orders on S is the principal dual ideal of $\mathcal{Q}(S)$ generated by \parallel , and by Theorem 1, the set of 0-restricted 0-positive quasi-orders on S is equal to the interval $[\parallel, \gamma]$ of $\mathcal{Q}(S)$, so it is a complete lattice.

Let ξ be a left 0-restricted positive quasi-order on S. Then $S^{\bullet} \times 0 \subseteq \xi$, since ξ is positive, whence

$$(\xi^{\bullet})^0 = (\xi - S^{\bullet} \times 0) \cup S^{\bullet} \times 0 = \xi \cup S^{\bullet} \times 0 = \xi.$$

On the other hand, let η be a 0-restricted 0-positive quasi-order on S. Since η is right 0-restricted, then $\eta^{\bullet} = \eta$, by Lemma 1, whence

$$(\eta^0)^{\bullet} = (\eta \cup S^{\bullet} \times 0) - S^{\bullet} \times 0 = \eta - S^{\bullet} \times 0 = \eta^{\bullet} = \eta.$$

By this and by Lemmas 1 and 4 we obtain that the mappings $\xi \mapsto \xi^{\bullet}$ and $\eta \mapsto \eta^0$ are mutually inverse bijections between the lattice of left 0restricted positive quasi-orders on S and the lattice of 0-restricted 0-positive quasi-orders on S. By Lemmas 1 and 4, these mappings are isotone, and by Lemma II 3.2 [1], these are lattice isomorphisms. \Box

3. The 0-Lower-Potency and the 0-cm-Property

As we seen in [7] and [11], in the study of semilattice decompositions of semigroups, the lower-potency and the cm-property play a crucial role. In this section we consider quasi-orders with more general properties: the 0-lower-potency and the 0-cm-property.

First we prove the following:

Lemma 7. The following conditions for a quasi-order ξ on a semigroup $S = S^0$ are equivalent:

- (i) ξ is 0-lower-potent;
- (ii) • ξ is 0-lower-potent;
- (iii) ξ^{\bullet} is 0-lower-potent;
- (iv) ξ^0 is 0-lower-potent.

Proof. (i) \Rightarrow (ii). Let $a \in S$, $n \in \mathbb{Z}^+$ and $a^n \neq 0$. Then $(a^n, a) \in \xi$ and by $a^n \neq 0$ it follows $(a^n, a) \in {}^{\bullet}\xi$.

(i) \Rightarrow (iii). Let $a \in S$, $n \in \mathbb{Z}^+$ and $a^n \neq 0$. Then $(a^n, a) \in \xi$ and $a \neq 0$, whence $(a^n, a) \in \xi^{\bullet}$.

(iv) \Rightarrow (i). Let $a \in S$, $n \in \mathbb{Z}^+$ and $a^n \neq 0$. Then $(a^n, a) \in \xi^0$ and $a \neq 0$, whence $(a^n, a) \in \xi$.

(ii) \Rightarrow (i), (iii) \Rightarrow (i) and (i) \Rightarrow (iv). This follows by ${}^{\bullet}\xi \subseteq \xi, \xi^{\bullet} \subseteq \xi$ and $\xi \subseteq \xi^0$. \Box

On a semigroup $S = S^0$ we define the following relations:

$$a \rightsquigarrow b \Leftrightarrow b = 0 \text{ or } \left((\exists n \in \mathbf{Z}^+) (\exists x, y \in S^1) b^n = xay \neq 0 \right),$$

$$a \twoheadrightarrow b \Leftrightarrow a = b = 0 \text{ or } \left((\exists n \in \mathbf{Z}^+) (\exists x, y \in S^1) b^n = xay \neq 0 \right).$$

Lemma 8. The following conditions for a quasi-order ξ on a semigroup $S = S^0$ are equivalent:

- (i) ξ is positive and 0-lower-potent;
- (ii) ξ^{\bullet} is 0-positive and 0-lower-potent;
- (iii) $a\xi$ is a completely 0-semiprime ideal of S, for each $a \in S$;
- (iv) $\rightsquigarrow^{\infty} \subseteq \xi$.

Proof. (i) \Rightarrow (ii). This follows by Lemmas 5 and 7.

(i) \Rightarrow (iii). Let $a \in S$. By Lemma 1 [7], $a\xi$ is an ideal of S. Let $x \in S, n \in \mathbb{Z}^+, x^n \neq 0$ and $x^n \in a\xi$. Then $a \xi x^n \xi x$, whence $x \in a\xi$. Thus, $a\xi$ is completely 0-semiprime.

(iii) \Rightarrow (i). By Lemma 1 [7], ξ is positive. Let $x \in S$, $n \in \mathbb{Z}^+$ and $x^n \neq 0$. Then $x^n \in (x^n)\xi$, whence $x \in (x^n)\xi$, i.e. $x^n \xi x$.

(i) \Rightarrow (iv). Let $a, b \in S$ and $a \rightsquigarrow b$. If b = 0, then $a \xi b$, since ξ is positive, and if $b \neq 0$, then $b^n = xay \neq 0$, for some $n \in \mathbb{Z}^+$, $x, y \in S^1$, whence $a \xi xa \xi xay = b^n \xi b$, i.e. $a \xi b$. Thus, $\rightsquigarrow \subseteq \xi$, whence $\rightsquigarrow \infty \subseteq \xi^{\infty} = \xi$.

(iv) \Rightarrow (i). Since $\rightsquigarrow^{\infty}$ is positive and 0-lower-potent, then ξ is also positive and 0-lower-potent. \Box

Similarly we prove the following

Lemma 9. The following conditions for a quasi-order ξ on a semigroup $S = S^0$ are equivalent:

- (i) ξ is 0-positive and 0-lower-potent;
- (ii) ξ^0 is positive and 0-lower-potent;
- (iii) $(a\xi)^0$ is a completely 0-semiprime ideal of S, for each $a \in S$;
- (iv) $\twoheadrightarrow^{\infty} \subseteq \xi$.

Now we obtain the following two theorems:

Theorem 4. The poset of left 0-restricted positive 0-lower-potent quasiorders and the poset of 0-restricted 0-positive 0-lower-potent quasi-orders on a semigroup $S = S^0$ are isomorphic complete lattices.

Proof. By Lemmas 8 and 9, the poset of left 0-restricted positive 0-lowerpotent quasi-orders and the poset of 0-restricted 0-positive 0-lower-potent quasi-orders on S are the principal dual ideals of $\mathcal{Q}(S)$ generated by $\rightsquigarrow^{\infty}$ and $\twoheadrightarrow^{\infty}$, respectively, so these are complete lattices. By Lemma 7 and Theorem 3, the mapping $\xi \mapsto \xi^{\bullet}$ is an isomorphism of the first onto the second cited lattice. \Box **Theorem 5.** The lattice of left 0-restricted positive 0-lower-potent quasiorders on a semigroup $S = S^0$ is dually isomorphic to the lattice of closed 0,1-sublattices of $\mathcal{I}d^{c0s}(S)$.

Proof. Consider a mapping $\xi \mapsto K_{\xi}$ from the proof of Theorem 2. By Lemma 8, ξ is 0-lower-potent if and only if K_{ξ} is a sublattice of $\mathcal{I}d^{\mathbf{c0s}}(S)$, whence we obtain the assertion of the theorem. \Box

Finally, we will consider quasi-orders satisfying the 0-cm-property.

Lemma 10. The following conditions for a quasi-order ξ on a semigroup $S = S^0$ are equivalent:

- (i) ξ is positive and it satisfies the 0-cm-property;
- (ii) ξ is positive and it satisfies the 0-cm-property;
- (iii) ξ^{\bullet} is 0-positive and it satisfies the 0-cm-property.

Proof. (i) \Rightarrow (iii). By Lemma 5, ξ^{\bullet} is 0-positive. Let $a, b, c \in S$, $ab \neq 0$ and $(a, c), (b, c) \in \xi^{\bullet}$, i.e. $(a, c), (b, c) \in \xi$ and $(a, c), (b, c) \notin S^{\bullet} \times 0$. Then $c \neq 0$ and $(ab, c) \in \xi$, whence $(ab, c) \in \xi^{\bullet}$.

(iii) \Rightarrow (i). By Lemma 5, ξ is positive. Let $a, b, c \in S$, $ab \neq 0$ and $(a, c), (b, c) \in \xi$. If c = 0, then $(ab, c) \in \xi$, since ξ is positive, and if $c \neq 0$, then $(a, c), (b, c) \in \xi^{\bullet}$, whence $(ab, c) \in \xi^{\bullet} \subseteq \xi$.

(i) \Leftrightarrow (ii). This can be proved similarly as (i) \Leftrightarrow (iii). \Box

Lemma 11. The following conditions for a quasi-order ξ on a semigroup $S = S^0$ are equivalent:

(i) ξ is 0-positive and it satisfies the 0-cm-property;

(ii) ξ is 0-positive and it satisfies the 0-cm-property;

- (iii) $(\xi a)^0$ is a 0-filter of S, for each $a \in S$;
- (iv) $(\forall a, b \in S) \ ab \neq 0 \Rightarrow a\xi \cap b\xi = (ab)\xi.$

If ξ is right 0-restricted, then any of the previous conditions is equivalent to the following:

(v) ξ^0 is positive and it satisfies the 0-cm-property.

Proof. (i) \Leftrightarrow (ii). This can be proved similarly as Lemma 10.

(i) \Rightarrow (iii). Let $a \in S$. If $x, y \in S$ and $xy \in (\xi a)^0$, $xy \neq 0$, then $xy \xi a$, whence $x \xi a$ and $y \xi a$, i.e. $xy \in \xi a$, since ξ is 0-positive, so $(\xi a)^0$ is 0consistent. Assume $x, y \in (\xi a)^0$. If xy = 0, then clearly $xy \in (\xi a)^0$, and if $xy \neq 0$, then $x, y \in \xi a$, whence $xy \in \xi a \subseteq (\xi a)^0$, by the 0-*cm*-property. Thus, $(\xi a)^0$ is a subsemigroup of S.

(iii) \Rightarrow (i). Let $a, b \in S$ and $ab \neq 0$. Then $a, b \in \xi(ab)$, since $(\xi(ab))^0$ is 0-consistent, so ξ is 0-positive. Let $a, b, c \in S$, $ab \neq 0$ and $(a, c), (b, c) \in \xi$.

Then $a, b \in \xi c$, whence $ab \in (\xi c)^0$, and by $ab \neq 0$ we obtain $ab \in \xi c$. Thus, ξ satisfies the 0-*cm*-property.

(i) \Rightarrow (iv). Let $a, b \in S$ and $ab \neq 0$. Since ξ is 0-positive, then $(ab)\xi \subseteq a\xi \cap b\xi$, and the opposite inclusion it follows by the 0-*cm*-property.

 $(iv) \Rightarrow (i)$. This follows immediately.

Further, let ξ be right 0-restricted.

(i) \Rightarrow (v). This can be proved similarly as Lemma 10.

(v) \Rightarrow (i). By Lemma 6, ξ is 0-positive. Let $a, b, c \in S$, $ab \neq 0$ and $(a, c), (b, c) \in \xi$. Then $(a, c), (b, c) \in \xi^0$, whence $(ab, c) \in \xi^0$, and since $ab \neq 0$ and ξ is right 0-restricted, then $c \neq 0$ and $(ab, c) \in \xi$. \Box

Now we go to the main theorems of this paper:

Theorem 6. The poset of left 0-restricted positive quasi-orders on a semigroup $S = S^0$ satisfying the 0-cm-property and the poset of 0-restricted 0positive quasi-orders on S satisfying the 0-cm-property are isomorphic complete lattices.

Proof. It is easy to verify that the intersection of any non-empty family of quasi-orders on S satisfying the 0-*cm*-property satisfies also the 0-*cm*-property, and that γ_l and γ satisfy the 0-*cm*-property. By this it follows that the above cited posets are complete lattices. By Lemmas 10 and 11 and Theorem 3, the mapping $\xi \mapsto \xi^{\bullet}$ is an isomorphism of the first onto the second cited lattice. \Box

Lemma 12. A subset A of a semigroup $S = S^0$ is a 0-filter of S if and only if A' is a completely 0-prime ideal of S.

Proof. This follows by the fact that a subset X of S is a consistent subset of S if and only if S - X is an ideal of S, and X is a subsemigroup of S if and only if S - X is a completely prime subset of S. \Box

Theorem 7. The poset of closed 0,1-sublattices of $\mathcal{Id}^{c0s}(S)$ satisfying the *c*-0-pi-property is a complete lattice and it is dually isomorphic to the lattice of 0-restricted 0-positive quasi-orders on a semigroup $S = S^0$ satisfying the 0-cm-property.

Proof. Consider the mapping $\xi \mapsto K_{\xi}$ from the proof of Theorem 2. Assume that ξ satisfies the 0-cm-property. For $a \in S^{\bullet}$, let $P_a = ((\xi a)^0)' = (\xi a)'$. By Lemma 12, P_a is a completely 0-prime ideal of S and $a \notin P_a$. Let $y \in P_a \xi$. Then $x \notin y$, for some $x \in P_a$, and if $y \in \xi a$, i.e. $y \notin a$, then $x \notin a$, i.e. $x \in \xi a$, so we obtain a contradiction. Therefore, $y \in P_a$, so $P_a \notin = P_a$ and $P_a \in K_{\xi}$, for each $a \in S^{\bullet}$. Now, for $I \in K_{\xi}$, $I = \bigcap_{a \in S-I} P_a$, so K_{ξ} satisfies the c-0-pi-property. Conversely, let K_{ξ} satisfies the *c*-0-*pi*-property, let $a, b \in S$ and $ab \neq 0$. By Lemma 9, $((ab)\xi)^0$ is a completely 0-semiprime ideal of *S*, so there exists a familly $\{P_{\alpha} \mid \alpha \in Y\}$ of completely 0-prime ideals from K_{ξ} such that $((ab)\xi)^0 = \bigcap_{\alpha \in Y} P_{\alpha}$. Let $U = \{\alpha \in Y \mid a \in P_{\alpha}\}, V = \{\alpha \in Y \mid b \in P_{\alpha}\}$. Without loss of generality, we can assume that $U \neq \emptyset$ and $V \neq \emptyset$ (for example, we can assume that *S* is one of P_{α}). Since P_{α} is completely 0prime and $ab \in P_{\alpha}$, for each $\alpha \in Y$, then $Y = U \cup V$. Now, for each $\alpha \in Y$, $a \in P_{\alpha}$ implies $(a\xi)^0 = K_{\xi}(a) \subseteq P_{\alpha}$, since $P_{\alpha} \in K_{\xi}$, so $(a\xi)^0 \subseteq \bigcap_{\alpha \in U} P_{\alpha}$. Similarly, $(b\xi)^0 \subseteq \bigcap_{\beta \in V} P_{\beta}$. Thus,

$$(a\xi)^0 \cap (b\xi)^0 \subseteq \left(\bigcap_{\alpha \in U} P_\alpha\right) \cap \left(\bigcap_{\beta \in V} P_\beta\right) = \bigcap_{\alpha \in Y} P_\alpha = \left((ab)\xi\right)^0$$

By this and by Lemma 11, ξ satisfies the 0-cm-property.

Hence, there exists a dual order isomorphism between the lattice of 0-restricted 0-positive quasi-orders on S satisfying the 0-cm-property and the poset of closed 0,1-sublattices of $\mathcal{I}d^{\mathbf{c0s}}(S)$ satisfying the c-0-pi-property, so these are dually isomorphic complete lattices. \Box

REFERENCES

- 1. G. BIRKHOFF: *Lattice theory*. Amer. Math. Soc, Coll. Publ. Vol. 25, (3rd. edition, 3rd printing), Providence, 1979.
- 2. S. BOGDANOVIĆ and M. ĆIRIĆ: Semigroups. Prosveta, Niš, 1993 (Serbian).
- S. BOGDANOVIĆ and M. ĆIRIĆ: Orthogonal sums of semigroups. Israel J. Math. (1995), 1–6 (to appear).
- 4. S. BOGDANOVIĆ and M. ČIRIĆ: *Decompositions of semigroups with zero*. Publ. Inst. Math. (to appear).
- 5. S. BOGDANOVIĆ and M. ĆIRIĆ: Positive quasi-orders with the common multiple property on a semigroup. Proc. Math. Conf. Priština (to appear).
- 6. M. ĆIRIĆ and S. BOGDANOVIĆ: Semilattice decompositions of semigroups. Semigroup Forum (to appear).
- 7. M. ĆIRIĆ and S. BOGDANOVIĆ: *The lattice of positive quasi-orders on a semigroup*. submitted in Israel J. Math.
- 8. M. ĆIRIĆ and S. BOGDANOVIĆ: Quasi-semilattice decompositions of semigroups with zero. (to appear).
- 9. M. PETRICH: Introduction to semigroups. Merill, Ohio, 1973.
- 10. G. SZÁSZ: Théorie des treillis. Akadémiai Kiadó, Budapest, et Dunod, Paris, 1971.
- T. TAMURA: Quasi-orders, generalized archimedeaness and semilattice decompositions. Math. Nachr. 68 (1975), 201–220.

University of Niš Philosophical Faculty Department of Mathematics Ćirila i Metodija 2, 18000 Niš Yugoslavia

University of Niš Faculty of Economics Trg JNA 11, 18000 Niš Yugoslavia

MREŽA POZITIVNIH KVAZI-UREĐENJA NA POLUGRUPI II

Miroslav Ćirić i Stojan Bogdanović

Pozitivna kvazi-uređenja na polugrupama su sa različitih tačaka gledišta izučavane od strane B. M. Scheina, T. Tamurae, M. S. Putchae i autora ovog rada. T. Tamura ih je u [11] povezao sa izučavanjem polumrežnih razlaganja polugrupa. Neki drugi aspekti uloge pozitivnih kvazi-uređenja u polumrežnim razlaganjima polugrupa su proučavani u radovima autora [5] i [7]. U ovom radu istražujemo neka svojstva pozitivnih kvazi-uređenja na polugrupama sa nulom. Dobijeni rezultati biće veoma korisno oruđe u izučavanju kvazi-polumrežnih razlaganja polugrupa sa nulom, koja će biti uvedena i proučavana u narednom radu autora [8].