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DIRECT SUM DECOMPOSITIONS

OF QUASI-ORDERED SETS

Miroslav Ćirić, Stojan Bogdanović and Jelena Kovačević
Dedicated to Professor B. M. Schein on the occasion of his 60th birthday

Abstract. The main purpose of this paper is to advance a general theory of
direct sum decompositions of quasi-ordered sets and to show that certain sig-
nificant decompositions of semigroups, automata and graphs can be carried
out as direct sum decompositions of certain quasi-ordered sets associated to
them. In this way we generalize certain results given by M. Petrich in [16]
and [17], S. Bogdanović and M. Ćirić in [3], and [4], and M. Ćirić and S.
Bogdanović in [5] and [6].

1. Introduction and preliminaries

This paper is inspred by certain results in Semigroup Theory and Au-
tomata Theory given by M. Petrich and the first two authors of this paper.
M. Petrich investigated in [16], 1966, some general properties of left zero
band, right zero band and matrix decompositions of semigroups, S. Bog-
danović and M. Ćirić studied in [3] and [4], 1995, orthogonal, left, right and
matrix sum decompositions of semigroups with zero, and in [6] they were
occupied with direct sum decompositions of automata. Analyzing these pa-
pers we observe that a similar methodology was used and the results of
similar form were obtained. So we ask a natural question: Where do these
similarities go from?

In this paper we give one answer to this question. The main purpose of
the paper is to advance a general theory of direct sum decompositions of
quasi-ordered sets and to show that all the above mentioned decompositions
of semigroups and automata can be carried out as direct sum decompositions
of certain quasi-ordered sets associated to them.

In Section 2 we study double ideals of quasi-ordered sets. We prove the
set D(Q) of all double ideals of a quasi-ordered set Q is a complete atomic
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Boolean algebra and we give some algorithms for finding the atoms of D(Q).
In Section 3 we show that direct sum decompositions of a quasi-ordered set
form a complete lattice that is isomorphic to the lattice of complete Boolean
subalgebras of D(Q), and that every quasi-ordered set can be represented as
a direct sum of direct sum indecomposable quasi-ordered sets. Section 4 is
devoted to the lattice I(Q) of ideals of a quasi-ordered set Q. We establish
a connection between direct sum decompositions of Q and decompositions
of I(Q) into a direct product, so prove that I(Q) can be represented as
a direct product of directly indecomposable lattices, and we apply the ob-
tained results distributive, algebraic and dually algebraic lattices. Finally,
in Section 5 we apply the obtained results to semigroups, automata and
graphs. We show that some well-known and vary important decompositions
of semigroups, automata and graphs can be carried out as direct sum de-
compositions of certain quasi-ordered sets associated to them. This approach
makes possible to obtain as special cases certain results of M. Petrich [16]
and [17], S. Bogdanović and M. Ćirić [1], [2], [3] and [4], M. Ćirić and S.
Bogdanović [5] and [6], and M. Ćirić, S. Bogdanović and T. Petković [7] and
[8].

By a quasi-order on a non-empty set Q we mean a reflexive and transitive
binary relation on Q. Throughout the paper, quasi-orders will be usually
denoted by 4. A non-empty set equipped with a quasi-oorder will be called a
quasi-ordered . It will be usually denoted by Q. As known, a anti-symmetric
quasi-order is called a partial order , and related quasi-ordered set is called
a partially ordered set , or shortly a poset . Partial orders will be usually
denoted by ≤. Let P and P ′ be two posets. A mapping ϕ of P into P ′ is
called isotone if for a, b ∈ P , a ≤ b implies aϕ ≤ bϕ, and it is called antitone
if for a, b ∈ P , a ≤ b implies bϕ ≤ aϕ. If ϕ is isotone, one-to-one and onto,
then it is called an order isomorphism of P onto P ′. If ϕ is antitone, one-
to-one and onto, then it is a dual order isomorphism of P onto P ′, and then
P ′ is called a dual of P , and vice versa.

When a quasi-ordered set Q with a quasi-order 4 is given, any non-
empty subset H of Q will be treated as a quasi-ordered set, with respect to
the restriction of 4 to H. A quasi-ordered set Q is called directed if for all
a, b ∈ Q there exists x ∈ Q such that a 4 x and b 4 x, and is called dually
directed if for all a, b ∈ Q there exists x ∈ Q such that x 4 a and x 4 b. A
non-empty subset H of Q is called a directed subset of Q if it is a directed
quasi-ordered set, with respect to the restriction of 4 to H. For a, b ∈ Q,
we say that they are incomparable, and we write a ‖ b, if neither a 4 b nor
b 4 a. For non-empty subsets H, G ⊆ Q, we write H ‖ G if a ‖ b, for each
a ∈ H and each b ∈ G.

Throughout the paper, L will denote the complete lattice with the zero 0
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and the unity 1. A sublattice K of L is called a {0, 1}-sublattice if 0, 1 ∈ K.
It is called a complete sublattice if it contains the meet and the join of any its
non-empty subset. A mapping ϕ of L into some complete lattice L′ is called
a lattice isomorphism if it is one-to-one, onto and (a ∧ b)ϕ = aϕ ∧ bϕ and
(a ∨ b)ϕ = aϕ ∨ bϕ, for all a, b ∈ L. If, in addition,

(∧

i∈I ai
)

ϕ =
∧

i∈I(aiϕ)
and

(∨

i∈I ai
)

ϕ =
∨

i∈I(aiϕ), for each non-empty subset {ai}i∈I of L, then ϕ
is called a complete lattice isomorphism. Note that every order isomorphism
of L onto L′ is a complete lattice isomorphism.

A mapping ϕ of L into itself is called extensive if a ≤ aϕ, for every a ∈ L,
and idempotent if ϕ2 = ϕ, that is (aϕ)ϕ = aϕ, for every a ∈ L. If ϕ is
extensive, isotone and idempotent, then it is called a closure operator on L.
An element a ∈ L is called closed with respect to ϕ, or ϕ-closed , if aϕ = a.
The set of all closure operators on L will be treated as a poset with respect
to the partial order defined by ϕ ≤ ψ if and only if aϕ ≤ aψ, for every a ∈ L.

A subset C of L is called a closure system in L if 1 ∈ C and
∧

i∈I ai ∈ C,
for each non-empty subset {ai}i∈I of C. The intersection of an arbitrary
non-empty family of closure systems in L is also a closure system in L, so
closure systems in L form a complete lattice. As known, there is a natural
correspondence between closure operators on L and closure systems in L.
Namely, for a closure operator ϕ on L, the set Cϕ of all ϕ-closed elements of
L is a closure system on L. Conversely, if C is a closure system in L, then
the mapping ϕ of L into itself defined by aϕ =

∧

{x ∈ C | a ≤ x}, a ∈ L, is a
closure operator on L. Furthermore, the mappings ϕ 7→ Cϕ and C 7→ ϕC are
mutually inverse dual order isomorphisms of the poset of closure operators
on L onto the complete lattice of closure systems in L. Therefore, the poset
of closure operators on L is a complete lattice.

A closure operator ϕ is called an algebraic closure operator if
(∨

i∈I ai
)

ϕ =
∨

i∈I(aiϕ), for every non-empty directed subset {ai}i∈I of L. The corre-
sponding closure system is called an algebraic closure system. In other words,
a closure system C is algebraic if and only if

∨

H ∈ C, for every non-empty
directed subset H of C. If

(∨

i∈I ai
)

ϕ =
∨

i∈I(aiϕ) for every non-empty
subset {ai}i∈I (not necessarily directed), then ϕ is called a complete closure
operator and related closure system is called a complete closure system in
L. This means that C is a complete closure system in L if and only if it is
a complete sublattice of L.

An element a ∈ L is called an atom of L, if 0 < a and there exists no
x ∈ L such that 0 < x < a. We say that L is atomic if for each a ∈ L,
a 6= 0, there exists an atom p of L such that p ≤ a, and that L is atomistic
if every non-zero element of L can be represented as the join of some family
of atoms of L. Clearly, any atomistic lattice is atomic. A complete Boolean
algebra is atomic if and only if it is atomistic.
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An element a ∈ L is called neutral if (a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a) = (a ∨
x) ∧ (x ∨ y) ∧ (y ∨ a), for all x, y ∈ L. The set of all neutral complemented
elements of L is called a center of L, and if L is distributive, then it consists
simply of all complemented elements of L.

For a non-empty set X, P(X) will denote the Boolean algebra of subsets
of X, B(X) will denote the Boolean algebra of binary relations on X, and
E(X) will denote the lattice of equivalence relations on X. The dual lattice
of E(X) is called the lattice of partitions of X and is denoted by Part(X).
The relation G on P(X) is defined by: for H, G ⊆ X, H G G if and only if
H ∩ G 6= ∅. For ξ ∈ B(X), ξ−1 will denote the relation on X defined by:
(a, b) ∈ ξ−1 if and only if (b, a) ∈ ξ. The equality relation and the universal
relation on X will be denoted by ∆X and ∇X , respectively. We say that an
equivalence relation % on X saturates a subset H of X, or that H is saturated
by %, if H is the union of some family of %-classes.

Let C be a closure system in P(X). Then for every a ∈ X there exists
the smallest element of C containing a (this is exactly the intersection of all
elements of C containing a), that will be called the principal element of C
generated by a.

The operators R : ξ 7→ ξR, S : ξ 7→ ξS and T : ξ 7→ ξT on B(X)
defined by ξR = ξ ∪ ∆X , ξS = ξ ∪ ξ−1 and ξT =

⋃

n∈N ξn are closure
operators on B(X), where N is the set of positive integers. They are called a
reflexive, symmetric and transitive closure operators on B(X), respectively.
The operator E : ξ 7→ ξE defined by E = RST is also a closure operator and
for each ξ ∈ B(X), ξE is the smallest equivalence relation on X containing
ξ. We say that E is a equivalence closure operator on B(X).

For undefined notions and notations concerning partial orders (quasi-
orders) and lattices we refer to the books of P. Crawley and R. P. Dilworth
[9], B. A. Davey and H. A. Priestley [10] and G. Grätzer [12], and for that
concerning semigroups and automata we refer to the books of S. Bogdanović
and M. Ćirić [1], M. Petrich [17] and F. Gécseg and I. Peák [11].

2. Double ideals

A subset H of a quasi-ordered set Q is called an ideal of Q if for a, x ∈ Q,
a ∈ H and x 4 a implies x ∈ H, and it is a filter or a dual ideal of Q if
for a, x ∈ Q, a ∈ H and a 4 x implies x ∈ H. If H is both an ideal and a
filter of Q, it will be called a double ideal of Q. The empty subset of Q is
defined to be a double ideal of Q. Every ideal (resp. filter, double ideal) of
Q different than ∅ and Q is called a proper ideal (resp. proper filter , proper
double ideal) of Q.

As known, the set I(Q) of all ideals of Q and the set F (Q) of all filters
of Q are complete {0, 1}-sublattices of the lattice (Boolean algebra) P(Q) of
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all subsets of Q. They will be called the lattice of ideals and the lattice of
filters of Q, respectively. For the set D(Q) of all double ideals of Q we have
the following:

Theorem 2.1. Let Q be a quasi-ordered set. Then D(Q) is the center both
of I(Q) and F (Q), it is a complete {0, 1}-sublattice of I(Q) and F (Q) and
it is a complete atomic Boolean algebra.

Furthermore, each complete atomic Boolean algebra can be represented as
the Boolean algebra of double ideals of some quasi-ordered set.

Proof. Since I(Q) and F (Q) are complete {0, 1}-sublattices of P(Q), then
D(Q) is also a complete {0, 1}-sublattice of Q. On the other hand, a subset
of Q is an ideal if and only if its complement in P(Q) is a filter, so a subset
of Q is a double ideal if and only if its complement in P(Q) is a double ideal.
Therefore, D(Q) is a Boolean algebra. Since it is a complete Boolean sub-
algebra of P(Q), then it is completely distributive and atomic, by Theorem
4.6 of [9].

Further, let B be an arbitrary complete atomic Boolean algebra and let
A be the set of all atoms of B. Associate to each a ∈ A a quasi-ordered set
Qa without proper double ideals. For example, we can assume an arbitrary
directed quasi-ordered set or a lattice. Let Q =

⋃

a∈A Qa and define a
relation 4 on Q by: x 4 y in Q if and only if x, y ∈ Qa for some a ∈ A
and x 4 y in Qa. Then 4 is a quasi-order on Q and for so defined quasi-
ordered set Q we have that D(Q) is a complete atomic Boolean algebra
whose atoms are exactly Qa, a ∈ A. Therefore, B and D(Q) are complete
atomic Boolean algebras whose sets of atoms have the same cardinality, so
they are isomorphic. This completes the proof of the theorem. �

Let Q be a quasi-ordered set. As we have seen, I(Q), F (Q) and D(Q) are
complete closure systems on P(Q), and we can consider the closure operators
I : H 7→ I(H), F : H 7→ F (H) and D : H 7→ D(H) (H ⊆ Q) associated to
them. In other words, I(H), F (H) and D(H) are respectively the smallest
elements of I(Q), F (Q) and D(Q) containing H, that is, the intersections
of all elements of I(Q), F (Q) and D(Q) containing H. For a ∈ Q, I(a),
F (a) and D(a) will denote the principal elements of I(Q), F (Q) and D(Q)
generated by a, called the principal ideal , principal filter and principal double
ideal of Q generated by a, respectively. The following theorem characterizes
the atoms in D(Q) as its principal elements:

Theorem 2.2. Let Q be a quasi-ordered set. Then the atoms in D(Q) are
exactly the principal double ideals of Q.

Proof. Let D be an arbitrary atom of D(Q) and let a ∈ D. Then D(a) ⊆ D,
and since D is an atom and D(a) is non-empty, then D(a) = D. Therefore,
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every atom of D(Q) is a principal duoble ideal.
Conversely, let D(a) be the principal double ideal of Q generated by

a ∈ Q. Assume a double ideal D of Q such that D ⊆ D(a). If a ∈ D, then
D(a) ⊆ D and we have D = D(a). Otherwise, if a /∈ D, that is a ∈ D(a)\D,
then D(a)\D = D(a)∩D′ (where D′ denotes the complement of D in P(Q))
is a double ideal of Q containing a, whence we have D(a) = D(a) \D, and
hence D = ∅. Therefore, we have proved that D(a) is an atom of D(Q).
This completes the proof of the theorem. �

There are considerably simple characterizations of principal ideals and
principal filters of quasi-ordered sets. Namely, for a quasi-ordered set Q and
a ∈ Q we have I(a) = {x ∈ Q |x 4 a} and F (a) = {x ∈ Q |x 4 a}.* Using
these characterizations we give the following characterization for principal
double ideals of quasi-ordered sets:

Theorem 2.3. Let Q be a quasi-ordered set and let a ∈ Q. Define sequences
{In(a)}n∈N and {Fn(a)}n∈N of subsets of Q by:

I1(a) = I(F (a)), In+1(a) = I(F (In(a))), for n ∈ N,

F1(a) = F (I(a)), Fn+1(a) = F (I(Fn(a))), for n ∈ N.

Then {In(a)}n∈N and {Fn(a)}n∈N are increasing sequences of sets and

D(a) =
⋃

n∈N
In(a) =

⋃

n∈N
Fn(a).

Proof. Seeing that D is the join of I and F in the lattice of closure operators
on P(Q), the proof of the theorem can be derived from some more general
results of T. Tamura given in [18], which concern the joins of algebraic clo-
sure operators on complete lattices (he called them join-conservative closure
operators). But, such a proof requires many new notions, notations and
auxiliary results, so we have decided to give an immediate, simpler proof.

Since I, F and D are closure operators on P(Q), we have the following:
First, In(a) ⊆ F (In(a)) ⊆ I(F (In(a))) = In+1(a), for every n ∈ N, so the
sequence {In(a)}n∈N is increasing. Further, if In(a) ⊆ D(a), for some n ∈ N,
then F (In(a)) ⊆ F (D(a)) = D(a) and In+1(a) = I(F (In(a))) ⊆ I(D(a)) =
D(a). Therefore, by induction we obtain In(a) ⊆ D(a), for each a ∈ Q,
whence

⋃

n∈N In(a) ⊆ D(a). Set D =
⋃

n∈N In(a). To prove D = D(a), it
remains to prove that D is a double ideal of Q. Indeed, D is an ideal of

*Note that the notations (a], instead of I(a), and [a), instead of F (a), are used more
frequently.
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Q, since it is the union of ideals In(a), n ∈ N. On the other hand, assume
d ∈ D and x ∈ Q such that d 4 x. Then d ∈ In(a), for some n ∈ N, and
x ∈ F (d) ⊆ F (In(a)) ⊆ I(F (In(a))) = In+1(a) ⊆ D, so D is also a filter
of Q. Therefore, we have proved that D = D(a). Similarly we prove the
remaining assertions. �

The above theorem gives two nice procedures for finding the atoms of the
Boolean algebra of double ideals of a quasi-ordered. In the case when this
quasi-ordered set is finite, we have two finite algorithms for finding these
atoms, as follows by the following:

Corollary 2.1. Let Q be a finite quasi-ordered set. Then there exist n =
min{k ∈ N | (∀a ∈ Q) Ik(a) = Ik+1(a)} and m = min{k ∈ N | (∀a ∈
Q) Fk(a) = Fk+1(a)} for which also holds n,m ≤ |Q| and D(a) = In(a) =
Fm(a), for each a ∈ Q.

3. Direct sum decompositions

Let Q be a quasi-ordered set. We say that Q is a direct sum of its subsets
Qα, α ∈ Y , in notation Q =

∑

α∈Y Qα, if Q =
⋃

α∈Y Qα and Qα ‖ Qβ , for
α 6= β. Clearly, the condition Qα ‖ Qβ implies Qα∩Qβ = ∅. Each of the sets
Qα, α ∈ Y , will be called a direct summand of Q, the corresponding partition
of Q will be called a direct sum decomposition of Q, and the corresponding
equivalence relation on Q will be called a direct sum equivalence on Q. A
quasi-ordered set Q will be called direct sum indecomposable if the universal
relation ∇Q is the unique direct sum equivalence on Q.

The main goal of this section is to give some general properties of direct
sum decompositions of a quasi-ordered set. First we prove the following
interesting lemma concerning direct sum equivalences on Q:

Lemma 3.1. The set of all direct sum equivalences on a quasi-ordered set
Q is a principal dual ideal of the lattice E(Q) of equivalence relations on Q.

Proof. It is easy to see that an equivalence relation θ on Q is a direct sum
equivalence on Q if and only if the quasi-order 4 is contained in θ. Therefore,
the set of all direct sum equivalences on Q is the principal dual ideal of E(Q)
generated by the smallest equivalence relation on Q containing 4, that is by
the equivalence closure of 4. �

In terms of direct sum decompositions, the above lemma can be stated as
follows:

Lemma 3.2. The set of all direct sum decompositions of a quasi-ordered
set Q is a principal ideal of the partition lattice Part(Q).
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The smallest direct sum equivalence on a quasi-ordered set Q will be de-
noted by σQ , or simply by σ, if we know on which quasi-ordered set it is
considered. As we have seen in Lemma 3.1, we can construct σ as the equiv-
alence closure of the quasi-order 4. But, it is often more convenient to use
another method for construction of σ developed by M. Ćirić, S. Bogdanović
and T. Petković in [7]. This method, that we use in the next theorem,
involves a usage of principal ideals and filters of a quasi-ordered set.

Theorem 3.1. Let Q be a quasi-ordered set and a, b ∈ Q. Then the follow-
ing conditions are equivelent:

(i) (a, b) ∈ σ;
(ii) there exists a finite sequence {xi}n

i=1 ⊆ Q, n ∈ N ∪ {0} such that:

(1) I(a) G I(x1) G I(x2) G · · · G I(xn) G I(b);

(iii) there exists a finite sequence {xi}n
i=1 ⊆ Q, n ∈ N ∪ {0} such that:

(2) F (a) G F (x1) G F (x2) G · · · G F (xn) G F (b).

Remark 3.1. If n = 0 in (ii) or (iii) of the above theorem, this means that
the sequence {xi}n

i=1 is empty, and then (1) becomes I(a) G I(b) and (2)
becomes F (a) G F (b).

Note also that I(a) G I(b) if and only if a and b have a common lower
bound, and F (a) G F (b) if and only if a and b have a common upper bound.
By this and the above theorem it follows that directed quasi-ordered sets
and lattices are direct sum indecomposable, that was used in the proof of
Theorem 2.1.

Proof of Theorem 3.1. Note first that M. Ćirić, S. Bogdanović and T. Petko-
vić defined in [7] two operators U : ξ 7→ ξU and L : ξ 7→ ξL on the Boolean
algebra B(Q) of all binary relations on Q by: ξU = ξξ−1 and ξL = ξ−1ξ,
ξ ∈ B(Q). Equivalently, for ξ ∈ B(Q) we have

(a, b) ∈ ξU ⇔ (∃c ∈ Q) a ξ c & b ξ c;

(a, b) ∈ ξL ⇔ (∃c ∈ Q) c ξ a & c ξ b.

In the same paper it was proved that ξE = ξRUT = ξRLT , for each ξ ∈
B(Q), which yields ξE = ξUT = ξLT , when ξ is reflexive.

Set now ξ =4. Then σ = ξE = ξUT = ξLT , (a, b) ∈ ξL ⇔ I(a) G I(b)
and (a, b) ∈ ξU ⇔ F (a) G F (b), whence it follows that the conditions (i),
(ii) and (iii) are equivalent. �

Now we give a characterization of the lattice of direct sum decompositions
of a quasi-ordered set in terms of double ideals:
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Theorem 3.2. The lattice of direct sum decompositions of a quasi-ordered
set Q is isomorphic to the lattice of complete Boolean subalgebras of the
lattice D(Q) of double ideals of Q.

Proof. Let B be an arbitrary complete Boolean subalgebra of D(Q). Then
it is atomic, by Theorem 4.6 of [9]. We will first prove that the atoms of
B are exactly the principal elements of B. For a ∈ Q, let B(a) denote the
principal element of B generated by a. Assume B ∈ B such that B ⊆ B(a).
If a ∈ B, then B(a) ⊆ B, and hence B = B(a). Otherwise, if a /∈ B, then
a ∈ B(a) \B = B(a) ∩B′, where B′ denotes the complement of B in P(Q).
But, B(a) and B′ belong to B, so B(a)\B also belongs to B and it contains
a, whence B(a) \B = B(a), that is B = ∅. Thus, we have proved that each
principal element of B is an atom in B. Conversely, let B be an arbitrary
atom in B. Assume an arbitrary a ∈ B. Then B(a) ⊆ B and B(a) 6= ∅, so
we have B(a) = B. Hence, each atom of B is a principal element of B.

We also have that the set of all atoms of B is the set of all summands
of some direct sum decomposition of Q. Let D(B) denote this decomposi-
tion. The corresponding direct sum congruence σB on Q is then defined by:
(a, b) ∈ σB ⇔ B(a) = B(b), for a, b ∈ Q.

Let D be an arbitrary direct sum decomposition of Q. Then its summands
are double ideals of Q and they are exactly the atoms of a complete Boolean
subalgebra B(D) of D(Q) defined in the following way: B(D) consists of
the empty set and all subsets of Q that are unions (finite or infinite) of some
family of summands of D. In other words, B(D) consists of the empty set
and all subsets of H that are saturated by the direct sum equivalence on Q
which corresponds to D.

It is easy to see that B(D(B)) = B, for each complete Boolean subalgebra
B of D(Q), and D(B(D)) = D, for each direct sum decomposition D of Q.
Therefore, the mappings B 7→ D(B) and D 7→ B(D) are mutually inverse
bijections of the lattice of complete Boolean subalgebras of D(Q) onto the
lattice of direct sum decompositions of Q, and vice versa. Therefore, it
remains to prove that they are order isomorphisms, i.e. that both of these
mappings are isotone.

Let B and B′ be two complete Boolean subalgebras of D(Q) such that
B ⊆ B′. Assume an arbitrary summand D of D(B′). Then D = B′(a), i.e.
it is the principal element of B′ generated by some element a ∈ Q. But,
B ⊆ B′ implies D = B′(a) ⊆ B(a), where B(a) is the principal element
of B generated by a, and hence a summand in D(B). Therefore, we have
proved D(B) ≤ D(B′).

Assume now two direct sum decompositions D and D′ of Q such that
D ≤ D′. Then every summand of D′ is contained in some summand of D,
i.e. every atom of B(D′) is contained in some atom of B(D), so clearly
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B(D) ⊆ B(D′), which was to be proved. This completes the proof of the
theorem. �

Finally, we prove the following representation theorem:

Theorem 3.3. Every quasi-ordered set Q can be represented as a direct sum
of direct sum indecomposable quasi-ordered sets.

This decomposition is the greatest direct sum decomposition of Q and its
summands are the principal double ideals of Q.

Proof. Let Q be an arbitrary quasi-ordered set. By Theorems 3.2 and 2.2
we have that there exists a greatest direct sum decomposition of Q and its
summands are exactly the principal double ideals of Q, i.e. the atoms in
D(Q). To prove the assertion of the theorem it remains to prove that each
principal double ideal D of Q is direct sum indecomposable, or equivalently,
that D does not have a proper double ideal. Let E be an arbitrary double
ideal of D. By the hypothesis, D = D(a), for some a ∈ Q, and as in
the proofs of Theorems 2.2 and 3.2 we have the following: If a ∈ E, then
D(a) ⊆ E, so D = E. Otherwise, if a /∈ E, then D \ E is a double ideal of
Q containing a, whence we have D(a) ⊆ D \ E and hence D \ E = D, i.e.
E = ∅. Therefore, we have proved that D does not have a proper double
ideal. This completes the proof of the theorem. �

4. The lattice of ideals

There are numerous papers in which direct product decompositions of
some lattices have been studied through the properties of their centers. For
example, we refer to the recent papers of S. Bogdanović and M. Ćirić [3] and
[4], M. Ćirić and S. Bogdanović [5] and [6], M. Ćirić, S. Bogdanović and T.
Petković [7] and [8], L. Libkin [13] and [14], and L. Libkin and I. Muchnik
[15]. Here we use a similar approach in investigation of the lattice of ideal of
a quasi-ordered set. Namely, we connect direct product decompositions of
the lattice of ideals of a quasi-ordered set Q with direct sum decompositions
of Q.

Theorem 4.1. The lattice I(Q) of ideals of a quasi-ordered set Q is a direct
product of lattices Lα, α ∈ Y , if and only if Q is a direct sum of quasi-ordered
sets Qα, α ∈ Y , and Lα ∼= I(Qα), for each α ∈ Y .

Proof. Let I(Q) be a direct product of lattices Lα, α ∈ Y . For each α ∈
Y , Lα is a homomorphic image of I(Q), with respect to the projection
homomorphism πα of I(Q) onto Lα, so Lα has a zero 0α and a unity 1α.
Let Qα ∈ I(Q) be an element satisfying the following condition:

Qαπβ =
{

1α for β = α

0α for β 6= α
, (β ∈ Y ).
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Then Lα is isomorphic to the principal ideal of I(Q) generated by Qα. On
the other hand, the principal ideal of I(Q) generated by Qα is isomorphic
to I(Qα), since for every subset I of Qα, I is an ideal of Qα if an only if it is
an ideal of Q. Hence, Lα ∼= I(Qα), for each α ∈ Y . We obtain immediately
that Q is a direct sum of its subsets Qα, α ∈ Y .

To prove the converse, assume that Q is a direct sum of its subsets Qα, α ∈
Y . For α ∈ Y let Lα denote the principal ideal of I(Q) generated by Qα, let
L =

∏

α∈Y Lα, and for α ∈ Y , let πα denote the projection homomorphism
of L onto Lα. Then the mapping φ : I(Q) → L defined by

(Iφ)πα = I ∩Qα (I ∈ I(Q), α ∈ Y ),

is an isomorphism, seeing that I(Q) is infinitely distributive for meets. Fi-
nally, Lα = I(Qα), for each α ∈ Y . This completes the proof of the theo-
rem. �

Using the above theorem and Theorem 3.3 we obtain the following:

Corollary 4.1. Let Q be an arbitrary quasi-ordered set. Then the lattice
I(Q) can be represented as a direct product of directly indecomposable lat-
tices, I(Q) ∼=

∏

α∈Y I(Qα), where Q =
∑

α∈Y Qα is a representation of Q
as the direct sum of direct sum indecomposable quasi-ordered sets.

Finally, we give the following characterizations of direct sum indecompos-
able quasi-ordered sets:

Theorem 4.2. The following conditions on a quasi-ordered set Q are equiv-
alent:

(i) I(Q) is a direct product indecomposable lattice;
(ii) Q is a direct sum indecomposable quasi-ordered set;
(iii) Q has no proper double ideals;
(iv) D(Q) is a two-element Boolean algebra;
(v) for all a, b ∈ Q there exists a sequence c1, c2, . . . , cn ∈ A such that

I(a) G I(c1) G I(c2) G · · · G I(cn) G I(b);

(vi) for all a, b ∈ Q there exists a sequence c1, c2, . . . , cn ∈ A such that

F (a) G F (c1) G F (c2) G · · · G F (cn) G F (b).

Proof. (i) ⇔ (ii). This follows by Theorem 4.1.
(ii) ⇔ (iii) ⇔ (iv). This is a consequence of Theorems 3.2 and 2.1.
(ii) ⇔ (v) ⇔ (vi). This follows by Theorem 3.1. �
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As we noted earlier, all the results proved here for quasi-ordered sets, can
be easily translated to the case of partially ordered sets. Therefore, Theorem
4.1 holds also for the lattice of ideals of a poset. On the other hand, it is
known which lattices can be represented as the lattices of ideals of some
poset. In addition, such lattices were studied in Chapter 10 of the book of
P. Crawley and R. P. Dilworth [9]. We intend to apply the above results to
these lattices.

Recall first some definitions and notations. An element a of a complete
lattice L is called compact if for arbitrary subset H of L, c ≤

∨

H implies
c ≤

∨

H0, for some finite subset H0 of H. A lattice L is defined to be
compactly generated or algebraic if L is complete and every non-zero element
of L is the join of some family of compact elements of L. A lattice L is called
dually algebraic if its dual lattice is algebraic. An element a ∈ L is called
completely join-irreducible if a 6= 0 and for every subset K of L, a =

∨

K
implies a ∈ K. The set of all completely join-irreducible elements of L will
be denoted by J(L). Let us observe that if L is an algebraic lattice, then
any completely join-irreducible element is compact.

The following theorem, taken from the book of P. Crawley and R. P.
Dilworth [9], characterizes the lattices that can be represented as the lattice
of ideals of a poset:

Theorem 4.3. The following conditions on a lattice L are equivalent:
(i) L is distributive, algebraic and dually algebraic;
(ii) L is distributive, algebraic and every non-zero element of L is the

join of some family of completely join-irreducible elements of L;
(iii) L is isomorphic to the lattice I(P ) of ideals of some poset P ;
(iv) L is a complete sublattice of some complete atomic Boolean algebra.

The poset P from the above theorem is in fact the poset J(L) of all com-
pletely join-irreducible elements of L. This and Theorem 4.1 motivate us
to establish the following connection between the direct product decompo-
sitions of L and direct sum decompositions of the poset J(L).

Theorem 4.4. Let L be a distributive algebraic lattice in which every ele-
ment is the join of some family of completely join-irreducible elements and
let P = J(L). Then P is a direct sum of posets Pα, α ∈ Y , if and only if L
is a direct product of lattices Lα, α ∈ Y , and J(Lα) ∼= Pα, for every α ∈ Y .

Proof. Let P be a direct sum of posets Pα, α ∈ Y . First we prove that
α, β ∈ Y , α 6= β, pα ∈ Pα and pβ ∈ Pβ implies pα ∧ pβ = 0. Indeed,
if pα ∧ pβ 6= 0, then pα ∧ pβ =

∨

H, for some H ⊆ P . If h ∈ H, then
h ≤ pα ∧ pβ , whence h ≤ pα and h ≤ pβ . But, this yields h ∈ Pα and
h ∈ Pβ , which is not possible. Therefore, we have proved that pα ∧ pβ = 0.
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For α ∈ Y let Lα be the set of all elements of L which can be represented
as the join of some subset of Pα ∪ {0}. By Theorem 4.3, L is completely
distributive so Lα is a complete sublattice of L. Clearly, Pα ⊆ J(Lα). To
prove the opposite inclusion assume an arbitrary a ∈ J(Lα) and suppose that
a =

∨

H, for some H ⊆ L. By the assumptions of the theorem, without
loss of generality we can assume that H ⊆ P . But now a ≤ b, for every
b ∈ H, whence H ⊆ Pα ⊆ Lα. Since a ∈ J(Lα), then a ∈ H, which was to
be proved. Therefore, J(Lα) ∼= Pα.

Further, for α, β ∈ Y , α 6= β, xα ∈ Lα and xβ ∈ Lβ we have xα ∧ xβ = 0.
Indeed, if xα 6= 0 and xβ 6= 0, then xα =

∨

H and xβ =
∨

G, for some
H ⊆ Pα and G ⊆ Pβ . Since L is infinitely distributive (by Theorems 4.6 of
[9] and Theorem 4.3), then xα∧xβ = (

∨

H)∧(
∨

G) =
∨

h∈H

∨

g∈G(h∧g) = 0.
For x ∈ L, x 6= 0, and α ∈ Y let P x

α = {a ∈ Pα | a ≤ x} and xα =
∨

P x
α ,

and for x = 0 let xα = 0, for every α ∈ Y . If x 6= 0, then x =
∨

H, for some
H ⊆ P . If we set Hα = H ∩ Pα, for α ∈ Y , then Hα ⊆ P x

α , for each α ∈ Y ,
whence x =

∨

H =
∨

α∈Y

(∨

Hα
)

≤
∨

α∈Y

(∨

P x
α

)

=
∨

α∈Y xα ≤ x. Thus,
x =

∨

α∈Y xα.
Define a mapping ϕ of L into the direct product of Lα, α ∈ Y , by: xϕ =

(xα)α∈Y . To prove that ϕ is onto assume (yα)α∈Y with yα ∈ Lα, for each
α ∈ Y . Let x =

∨

α∈Y yα. Since xα ∧ yβ = 0, whenever α 6= β, for an
arbitrary α ∈ Y we have that yα = yα ∧ x = yα ∧

(∨

β∈Y xβ
)

=
∨

β∈Y (yα ∧
xβ) = yα ∧ xα =

∨

β∈Y (yβ ∧ xα) =
(∨

β∈Y yβ
)

∧ xα = x ∧ xα = xα. Hence,
yα = xα, for each α ∈ Y , so xϕ = (yα)α∈Y , which was to be proved.

Assume arbitrary x, y ∈ L. If x ≤ y, then P x
α ⊆ P x

β and xα ≤ yα, for
every α ∈ Y , so xϕ ≤ yϕ. On the other hand, if xϕ ≤ yϕ, i.e. xα ≤ yα, for
each α ∈ Y , then x =

∨

α∈Y xα ≤
∨

α∈Y yα = y. Therefore, ϕ is an order
isomorphism, so it is a complete lattice isomorphism of L onto the direct
product of lattices Lα, α ∈ Y .

Conversely, let L be the direct product of lattices Lα, α ∈ Y . For each
α ∈ Y , Lα is isomophic to the complete sublattice of L consisting of all
elements x ∈ L for which xπβ = 0, whenever β 6= α, β ∈ Y (here πβ denotes
the projection homomorphism of L onto Lβ . We will identify these two
lattices, and we then have that

⋂

α∈Y Lα = {0}, a∧ b = 0, whenever a ∈ Lα,
b ∈ Lβ and α 6= β, α, β ∈ Y , and every x ∈ L has a unique representation
x =

∨

α∈Y xα, with xα ∈ Lα, for each α ∈ Y .
For α ∈ Y let Pα = J(Lα). Assume first an arbitrary a ∈ P . Then

a =
∨

α∈Y aα, with aα ∈ Lα, for each α ∈ Y , and since a ∈ P = J(L),
then a = aα, so a ∈ Lα, for some α ∈ Y . Furthermore, a ∈ J(L) yields
a ∈ J(Lα) = Pα. Therefore, we have proved P ⊆

⋃

α∈Y Pα. To prove the
opposite inclusion, assume arbitrary α ∈ Y and a ∈ Pα = J(Lα). Suppose
that a =

∨

H, for some H ⊆ L. For β ∈ Y let Hβ =
(

H ∪ {0}
)

∩ Lβ and
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aβ =
∨

Hβ . Now a =
∨

H =
∨

β∈Y

(∨

Hβ
)

=
∨

β∈Y aβ , with aβ ∈ Lβ , for
every β ∈ Y . But, the uniqueness of the representation of this form yields
aα = a and aβ = 0, whenever β 6= α, β ∈ Y . Therefore, a =

∨

Hα and
Hα ⊆ Lα, so a ∈ J(Lα) implies a ∈ Hα ⊆ H, which was to be proved. Thus
a ∈ P , and we have proved that P =

⋃

α∈Y Pα.
It remains to prove that Pα ‖ Pβ , whenever α 6= β, α, β ∈ Y . Indeed,

assume α, β ∈ Y such that α 6= β, and assume arbitrary a ∈ Pα and b ∈ Pβ .
Then a∧b = 0, so a ≤ b implies a = a∧b = 0, and b ≤ a implies b = b∧a = 0,
which is not possible, whence we conclude that a ‖ b. Therefore, we have
proved that P is a direct sum of posets Pα, α ∈ Y . This completes the proof
of the theorem. �

Theorem 4.4 and Corollary 4.1 give the following corollary:

Corollary 4.2. Let L be a distributive algebraic lattice in which every ele-
ment is the join of some family of completely join-irreducible elements and
let P = J(L). Then L can be represented as a direct product L ∼=

∏

α∈Y Lα

of directly indecomposable lattices Lα ∼= I(Pα), where where P =
∑

α∈Y Pα
is a representation of the poset P as the direct sum of direct sum indecom-
posable posets.

5. Some applications

In the last section of the paper we talk about some applications of the
results obtained in the previous sections. First we talk about certain appli-
cations in Semigroup Theory.

Let S be a semigroup and let S1 denote a semigroup obtained from S
by adjoining a new element to be an identity in S1. Define the following
relations on S:

a | b ⇔ b ∈ S1aS1; a |
l
b ⇔ b ∈ S1a;

a |
r

b ⇔ b ∈ aS1; a |
t
b ⇔ b ∈ aS1 ∩ S1a.

These relations are called the division, left division, right division and two-
sided division relations on S, respectively. All of these relations are quasi-
orders on S. Furthermore, the division relation is the join, and the two-sided
division relation is the meet of the left division and the right division relation
on S in the lattice of quasi-orders on S.

A congruence % on a semigroup S is called a right zero band (resp. left
zero band , matrix ) congruence on S if S/% is a right zero band (resp. left zero
band, rectangular band), that is if xy % y (resp. xy % x, xyx % x % x2), for all
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x, y ∈ S. The corresponding partition of S is called a right zero band (resp.
left zero band , matrix ) decomposition of S. The following theorem gives a
connection between these decompositions and direct sum decompositions of
the above defined quasi-ordered sets.

Theorem 5.1. Let S be a semigroup and let we also consider S as a quasi-
ordered set with respect to the left division (resp. right division, two-sided
division) relation on S. Then the lattice of direct sum decompositions of the
quasi-ordered set S is isomorphic to the lattice of right zero band (resp. left
zero band, matrix ) decompositions of the semigroup S.

Proof. We will prove only the assertion concerning the left division relation.
The remaining assertions can be proved similarly.

Let the quasi-ordered set S be a direct sum of its subsets Sα, α ∈ Y . If
α, β ∈ Y , a ∈ Sα and b ∈ Sβ , then b |

l
ab implies ab ∈ Sβ , so SαSβ ⊆ Sβ .

Therefore, the semigroup S is a right zero band of semigroups Sα, α ∈ Y .
Conversely, let the semigroup S be a right zero band of semigroups Sα,

α ∈ Y . Assume a, b ∈ S such that a |
l
b, that is b = xa, for some x ∈ S1. If

a ∈ Sα, for some α ∈ Y , then we have that b = xa ∈ Sα, too. Hence, the
quasi-ordered set S is a direct sum of its subsets Sα, α ∈ Y .

Therefore, we have proved that there exists a correspondence between the
direct sum decompositions of the quasi-ordered set S and right zero band de-
compositions of the semigroup S. It is easy to verify that this correspondence
is an order isomorphism, and hence, it is a complete lattice isomorphism. �

Using Theorem 5.1 and the results from the precedding sections we can
obtain the results proved by M. Petrich in [16], concerning right zero band,
left zero band and matrix decompositions. More information about these
decompositions can be also found in the Petrich’s book [17], and the survey
paper of M. Ćirić and S. Bogdanović [5].

Let us observe that the division relation on S does not appear in Theorem
5.1. The reason is the following: the quasi-ordered set which corresponds to
the division relation on a semigroup is directed, so it is direct sum indecom-
posable. A similar situation arises when a semigroup S has a zero. In this
case the quasi-ordered sets corresponding to all division quasi-orders on S
are direct sum indecomposable, seeing that they have top elements.

As in the case of posets, an element a of a quasi-ordered set Q is called
a greatest element of Q if x 4 a, for every x ∈ Q. But, a greatest element
of a quasi-ordered set is not necessary unique. If a quasi-ordered set Q has
a unique greatest element, it will be called a top element and it will be
denoted by >. For H ⊆ Q we write H∗ = H \ {>}. Clearly, a quasi-ordered
set having a top element is direct sum indecomposable. On the other hand,
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if Q is a direct sum of quasi-ordered sets Qα, α ∈ Y , each of whose has
a top element, then Q does not have a top element. As was notes by B.
A. Davey and H. A. Priestley in [10], there are two general ways to modify
this construction and stay within the class of quasi-ordered sets with a top
element. The first one is to add a new element to Q to be a top element.
The quasi-ordered set obtained in this manner is called a separated sum of
Qα, α ∈ Y . Another way is to identify the top elements of all Qα, α ∈ Y .
So constructed quasi-ordered set is called a coalesced sum of Qα, α ∈ Y .

In other words, a quasi-ordered set Q with the top element > is called a
coalesced sum of its subsets Qα, α ∈ Y , if Q =

⋃

α∈Y Qα, and Qα ∩Qβ = ∅
and Q∗

α ‖ Q∗
β , whenever α 6= β, α, β ∈ Y . The partition of Q whose

components are {>} and Q∗
α, α ∈ Y , is called a coalesced sum decomposition

of Q. It is not hard to prove the following proposition:

Proposition 5.1. Let Q be a quasi-ordered set with a top element. Then co-
alesced sum decompositions of Q form a complete lattice which is isomorphic
to the lattice of direct sum decompositions of the quasi-ordered set Q∗.

Now we are ready to consider certain decompositions of semigroups with
zero.Let S be a semigroup with zero 0. We say that S is a 0-sum of semi-
groups Sα, α ∈ Y , if S =

⋃

α∈Y Sα, and Sα ∩ Sβ = {0}, whenever α 6= β,
α, β ∈ Y . The partition D of S whose components are {0} and Sα \ {0},
α ∈ Y , is called a 0-sum decomposition of S. We distinguish several special
types of 0-sum decompositions. We say that D is an orthogonal sum decom-
position if SαSβ = SβSα = {0}, whenever α 6= β, α, β ∈ Y . If SαSβ ⊆ Sα,
then D is a left sum decomposition, and if SαSβ ⊆ Sβ , then it is called a right
sum decomposition of S. Finally, if Y ⊆ I×Λ, for some non-empty sets I and
Λ, and if S(i,λ)S(j,µ) ⊆ S(i,µ), whenever (i, µ) ∈ Y , and S(i,λ)S(j,µ) = {0},
otherwise, then we say that D is a matrix sum decomposition of S.

Similarly as Theorem 5.1 we prove the following theorem:

Theorem 5.2. Let S be a semigroup with zero and let we consider S as
a quasi-ordered set with respect to the division (resp. left division, right
division, two-sided division) relation on S. Then the lattice of direct sum
decompositions of the quasi-ordered set S is isomorphic to the lattice of or-
thogonal (resp. right, left, matrix ) sum decompositions of the semigroup S.

From the above theorem and the results from the previous sections we
obtain the results of S. Bogdanović and M. Ćirić from [3] and [4] concerning
certain general properties of orthogonal, left, right and matrix sum decom-
positions of semigroups with zero. More information about these decompo-
sitions can be found in the book of S. Bogdanović and M. Ćirić [1], and their
survey papers [2] and [5].
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Further we consider direct sum decompositions of automata. A general
theory of these decompositions was developed M. Ćirić and S. Bogdanović
in [6], and also by M. Ćirić, S. Bogdanović and T. Petković in [7] and [8].

By an automaton we mean an automaton without outputs (in terms from
the book of F. Gécseg and I. Péak [11]). Equivalently, we consider automata
as algebras whose all fundamental operations are unary. We say that an
automaton A is a direct sum of its subautomata Aα, α ∈ Y , if A =

⋃

α∈Y Aα

and Aα ∩ Aβ = ∅, whenever α 6= β, α, β ∈ Y . The corresponding partition
of A is called a direct sum decomposition of A.

Direct sum decompositions of an automaton A can be studied through
the quasi-order on A defined as follows: for two states a, b ∈ A we write a | b
if there exists an input word u that induces a transition from the state a into
the state b. Such defined relation is a quasi-order on A, and analogously to
the related relation in Semigroup Theory, it is called the division relation on
A. Without proof we give the following theorem:

Theorem 5.3. Let A be an automaton and let us also consider A as a
quasi-ordered set with respect to the division relation on A. Then the lattice
of direct sum decompositions of the quasi-ordered set A is isomorphic to the
lattice of direct sum decompositions of the automaton A.

Similar results can be also given for graphs. Namely, we define a graph G
to be a direct sum of its subsets Gα, α ∈ Y , if G =

⋃

α∈Y Gα, and arbitrary
vertices a ∈ Gα and b ∈ Gβ are not incident whenever α 6= β, α, β ∈ Y . The
corresponding partition of G is called a direct sum decomposition of G. A
relation π on G will be defined in the following way: for vertices a, b ∈ G,
(a, b) ∈ π if there exists a path from a to b. Then this relation is a quasi-order
on G and the following theorem holds:

Theorem 5.4. Let G be a graph and let us also consider G as a quasi-
ordered set, with respect to the relation π on G. Then the lattice of direct
sum decompositions of the quasi-ordered set G is isomorphic to the lattice of
direct sum decompositions of the graph G.

Note that the summands in the greatest direct sum decomposition of a
graph G are exactly the components of connectedeness of G.
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