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Introduction and preliminaries

Here we adapt the point of view, mostly propagated by T.Tamura, M.Petrich,
M.S.Putcha, L.N.Xevrin and the authors, that a semigroup should be studied
through its greatest semilattice decomposition. The idea consists of decompos-
ing the given semigroup into subsemigroups (components), possibly of considerably
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simpler structure, studying these in detail, and finally studying their mutual re-
lationships within the entire semigroup. Recall that semilattice decompositions of
semigroups were first defined and studied by A.H.Clifford [56].

T.Tamura and N.Kimura [161] showed that every commutative semigroup is a
semilattice of Archimedean semigroups. This well known result has since been gen-
eralized by many authors. The first characterization of semilattices of Archimedean
semigroups is due to M.S.Putcha [113] (see also T.Tamura [158]). Some other char-
acterizations of these semigroups are given by M.Ćirić and S.Bogdanović [44].

R.Arens and I.Kaplansky [2] and I.Kaplansky [81] investigated, as generalizations
of algebraic algebras and rings with minimum conditions, following two types of
rings: One are π-regular rings and the other are right π-regular rings (for definitions
see below).

We present here a summary of the main results on the decompositions of (com-
pletely) π-regular semigroups into semilattices of Archimedean semigroups. These
decompositions were first studied by M.S.Putcha [113]. This very important matter
is after treated by L.N.Xevrin [146,147,148] (see also [130]) and intensively by
J.L.Galbiati and M.L.Veronesi [69,70,71,72,73] and after all in a series of papers by
the authors of this work.

Throughout this paper, Z+ will denote the set of all positive integers and
L, R, J , D and H will denote known Green’s relations. By Reg(S) (Gr(S), E(S),
Intra(S)) we denote the set of all regular (completely regular, idempotent, intra-
regular) elements of a semigroup S. If e is an idempotent of a semigroup S,
then by Ge we denote the maximal subgroup of S with e as its identity. It is
known that Gr(S) = ∪{Ge | e ∈ E(S)}. A nonzero idempotent e of a semigroup
S is primitive if for every nonzero f ∈ E(S), f = ef = fe ⇒ f = e, i.e. if e
is minimal in the set of all nonzero idempotents of S relative to the partial order
on this set.

By a radical of the subset A of a semigroup S we mean the set
√

A defined
by

√
A = {a ∈ S | (∃n ∈ Z+) an ∈ A}. By S = S0 we denote that S is a

semigroup with the zero 0 and in this case S∗ = S−{0}. If S = S0, then element
from the set Nil(S) =

√

{0} are nilpotent elements (nilpotents). A semigroup
S = S0 is a nil-semigroup if S = Nil(S). A semigroup S = S0 is n-nilpotent
if Sn = {0}, n ∈ Z+. An ideal extension S of T is a nil-extension if S/T is
a nil-semigroup (i.e. S =

√
T ). An ideal extension S of a semigroup K is a

n-nilpotent extension if S/K is a n-nilpotent semigroup.
Let a, b ∈ S. Then a | b if b ∈ S1aS1, a |

l
b if b ∈ S1a, a |

r
b if b ∈ aS1,

a |
t
b if a |

l
b and a |

r
b, a −→ b if a | bn for some n ∈ Z+, a h−→ b if a |

h
bn,

for some n ∈ Z+, where h is l, r or t, a p b if am = bn for some m,n ∈ Z+,

a b if a −→ b −→ a, a h b if a h−→ b h−→ a, where h is l, r or t.

A semigroup S is: Archimedean if S =
√

SaS, left Archimedean if S =
√

Sa,
right Archimedean if S =

√
aS, t-Archimedean if it is left Archimedean and

right Archimedean, power joined if p = S × S, completely Archimedean if it
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is Archimedean and has a primitive idempotent, intra-π-regular if (∀a ∈ S)(∃n ∈
Z+) an ∈ Sa2nS, left π-regular if (∀a ∈ S)(∃n ∈ Z+) an ∈ San+1, π-regular if
(∀a ∈ S)(∃n ∈ Z+) an ∈ anSan, completely π-regular if (∀a ∈ S)(∃n ∈ Z+)(∃x ∈
S) an = anxan, anx = xan (equivalently if S =

√

Gr(S)). On a completely
π-regular semigroup can be introduced two unary operations x 7→ x and x 7→ x0

by: x = (xex)−1, where ex ∈ E(S) such that xn ∈ Gex for some n ∈ Z+ and
−1 is the inversion in Gex , and x0 = xx, [143].

We will use the following notations for some classes of semigroups:
notation class of semigroups notation class of semigroups

A Archimedean CA completely Archimedean
LA left Archimedean LG left groups
T A t-Archimedean G groups
B bands N nil-semigroups
S semilattices Nk (k + 1)-nilpotent

πR π-regular UG unions of groups
CπR completely π-regular CS completely simple
M×G rectangular groups

Let X1 and X2 be classes of semigroups. By X1 ◦X2 we denote the Maljcev’s
product of classes X1 and X2, i.e. the class of all semigroups S on which
there exists a congruence ρ such that S/ρ is in X2 and every ρ-class which is a
subsemigroup is in X1 [90]. The related decomposition is an X1◦X2-decomposition.
It is clear that X ◦ B (X ◦ S) is the class of all bands (semilattices) of semigroups
from the class X . If X2 is a subclass of the class N , then X1 ◦ X2 is a class
of all semigroups which are ideal extensions of semigroups from X1 by semigroups
from X2. Also, in such a case, by X1 ~ X2 we denote a class of all semigroups
which are retract extensions of semigroups from X1 by semigroups from X2.

In this paper we will use several semigroups given by the following presentations:
B2 =

〈

a, b | a2 = b2 = 0, aba = a, bab = b
〉

,
A2 =

〈

a, e | a2 = 0, e2 = e, aea = a, eae = e
〉

,
Nm =

〈

a | am+1 = am+2, am 6= am+1
〉

,
L3,1 =

〈

a, f | a2 = a3, f2 = f, a2f = a2, fa = f
〉

.
LZ(n) =

〈

a, e | an+1 = a, e2 = e, ea = ane = e
〉

,
C1,1 =

〈

a, e | a2 = a3, e2 = e, ae = a, ea = a
〉

,
C1,2 =

〈

a, e | a2 = a3, e2 = e, ae = a, ea = a2
〉

,
V =

〈

e, f | e2 = e, f2 = f, fe = 0
〉

,

m, n ∈ Z+, n ≥ 2, and R3,1 (RZ(n), C2,1) will be the dual semigroup of
L3,1 (LZ(n), C1,2). By L2 ( R2 ) we denote the twoelement left zero (right
zero) semigroup. Semigroups B2 and A2 are not semilattices of Archimedean
semigroups. L3,1 is a nil-extension of a union of groups, but it is not a retractive
nil-extension of a union of groups. The semigroup LZ(n) has 2n elements,
it is a chain of the cyclic group 〈a〉 = {a, a2, . . . , an} and the left zero band
{e, ae, . . . , an−1e}, it is a union of groups and it is not a band of groups. Semigroups
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C1,1, C1,2 and C2,1 are examples for semigroups which are not nil-extensions of
a union of groups, and the semigroup Nm is an example for a semigroup which is
an (m + 1)-nilpotent semigroup and it is not a m-nilpotent semigroup.

Let R be the ring Z of integers or the ring Zp of residues of modp, p ≥ 2,
and let I = {0, 1} ⊆ R. Define a multiplication on the set R× I × I by

(m; i, λ)(n; j, µ) = (m + n− (i− j)(λ− µ); i, µ),
m, n ∈ R, i, j, λ, µ ∈ I. Then R× I× I is a semigroup, and we will use notations:
E(∞) = Z× I× I, E(p) = Zp× I× I. The semigroup E(∞) (E(p)) is isomorphic
to the Rees matrix semigroup over the additive group of the ring Z (Zp) with the

sandwich matrix
(

0 0
0 1

)

, and it is not a rectangular group.
Let S be a semigroup and let a, b ∈ S. By a sequence between a and b we mean

a (possibly empty) finite sequence (xi)n
i=1 in S such that a x1, xi xi+1(i =

1, . . . , n − 1), xn b. We call n the length of (xi)n
i=1. By n = 0 (or (xi)n

i=1
empty) we mean a b. We say (xi)n

i=1 is minimal if it is nonempty and there is
no sequence of smaller length (including the empty sequence) between a and b.
By a sequence from a to b we mean a (possibly empty) finite sequence (xi)n

i=1
in S such that a −→ x1, xi −→ xi+1(i = 1, . . . , n − 1), xn −→ b. Again n is
the length of (xi)n

i=1 and by n = 0 (or (xi)n
i=1 empty) we mean a −→ b. We

say (xi)n
i=1 is minimal if it is nonempty and there is no sequence of smaller length

(including the empty sequence) from a to b. The rank ρ1(S) of a semigroup S
is a zero if there is no minimal sequence between any two points. Otherwise ρ1(S)
is the supremum of the lengths of the minimal sequences between points in S. The
semirank ρ2(S) of a semigroup S is a zero if there is no minimal sequence from
a point to another in S. Otherwise ρ2(S) is the supremum of the lengths of the
minimal sequences from one point to another in S, [116].

A subset A of a semigroup S is consistent if xy ∈ A ⇒ x, y ∈ A, x, y ∈ S.
A subsemigroup A of a semigroup S is a filter if A is consistent. By N(a) we
denote the least filter of S containing an element a of S (i.e. the intersection of
all filters of S containing a).

For undefined notions and notations we refer to [57], [58], [102] and [103].

Chapter 1. Semilattices of Archimedean semigroups

1.1. The general case

Theorem 1.1. The following conditions on a semigroup S are equivalent:
(i) S ∈ A ◦ B;

(ii) S ∈ A ◦ S;
(iii) (∀a, b ∈ S) a | b ⇒ a2 −→ b;
(iv) (∀a, b ∈ S) a2 −→ ab;
(v) (∀a, b ∈ S)(∀k ∈ Z+) ak −→ ab;

(vi)
√

A is an ideal of S, for every ideal A of S;
(vii)

√
SaS is an ideal of S, for every a ∈ S;

(viii) in every homomorphic image with zero of S, the set of all nilpotent elements
is an ideal;
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(ix) N(x) = {y ∈ S | y → x}, for all x ∈ S;
(x) (∀a, b, c ∈ S) a −→ b ∧ b −→ c ⇒ a −→ c;

(xi) (∀a, b, c ∈ S) a −→ c ∧ b −→ c ⇒ ab −→ c;
(xii) ρ1(S) = 0;

(xiii) ρ2(S) = 0;
(xiv) (∀a, b ∈ S)

√
SabS =

√
SaS ∩

√
SbS.

The equivalences (i) ⇔ (ii) ⇔ (iii) are from M.S.Putcha [113], (ii) ⇔
(xii) ⇔ (xiii) is, also, due by M.S.Putcha [116]. The equivalences (ii) ⇔
(iv) ⇔ (v) ⇔ (vi) are from M.Ćirić and S.Bogdanović [44], the conditions (vii)
and (viii) are from S.Bogdanović and M.Ćirić [24] and the conditions (x) and
(xi) are from T.Tamura [158]. For some related results we refer to P.Protić [123].
For some more general results we refer to M.Ćirić and S.Bogdanović [48].

Corollary 1.1. [115] Let S ∈ A◦S. If S = S0, then Nil(S) is an ideal of S.

Theorem 1.2. [24] The following conditions on a semigroup S are equivalent:
(i) (∀a, b ∈ S) a |

r
b ⇒ a2 r−→ b;

(ii) (∀a, b ∈ S)(∀k ∈ Z+) ak r−→ ab;
(iii) (∀a, b ∈ S) a2 r−→ ab;
(iv)

√
aS is a right ideal of S, for every a ∈ S;

(v)
√

R is a right ideal of S, for every right ideal R of S.

Theorem 1.3. The following conditions on a semigroup S are equivalent:
(i) S ∈ LA ◦ S;

(ii) (∀a, b ∈ S) a | b ⇒ a l−→ b;

(iii) (∀a, b ∈ S) a l−→ ab;
(iv)

√
L is a (right) ideal of S, for every left ideal L of S;

(v)
√

Sa is a (right) ideal of S, for all a ∈ S;

(vi) N(x) = {y ∈ S | y l−→ x}, for all x ∈ S;
(vii) (∀a, b ∈ S)

√
Sab =

√
Sa ∩

√
Sb.

The equivalence (i) ⇔ (ii) is from M.S.Putcha [115]. The conditions (iii)
and (vi) are from S.Bogdanović [14] and (iv) and (v) are given by S.Bogdanović
and M.Ćirić [24].

Theorem 1.4. The following conditions on a semigroup S are equivalent:
(i) S ∈ T A ◦ S;

(ii) (∀a, b ∈ S) a | b ⇒ a t−→ b;

(iii) (∀a, b ∈ S) b r−→ ab ∧ a l−→ ab;
(iv)

√
B is an ideal of S, for every bi-ideal B of S;

(v)
√

aSa is an ideal of S, for all a ∈ S;

(vi) N(x) = {y ∈ S | y l−→ x ∧ y r−→ x}, for all x ∈ S.
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The equivalence (i) ⇔ (ii) is from M.S.Putcha [115], (iii) ⇒ (vi) is from
M.Petrich [101] and (i) ⇔ (iii) ⇔ (vi) is from S.Bogdanović [14]. The condi-
tion (iv) is from S.Bogdanović and M.Ćirić [24]. Weakly commutative semigroups
(semigroups satisfying the condition (iii)) are treated also by B.Pondeliček [110].

Theorem 1.5. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of simple semigroups;

(ii) S ∈ A ◦ S and S is intra π-regular;
(iii) S is intra π-regular and (∀a ∈ S)(∀b ∈ Intra(S)) a | b ⇒ a2 −→ b;
(iv) (∀a, b ∈ S)(∃n ∈ Z+) a4n | (ab)n;
(v) (∀a, b ∈ S)(∃n ∈ Z+)(∀k ∈ Z+) ak | (ab)n.

The equivalences (i) ⇔ (ii) ⇔ (iii) are given by M.S.Putcha [113].

Theorem 1.6. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of left simple semigroups;

(ii) S is intra π-regular and (∀a ∈ S)(∀b ∈ Intra(S)) a |
r

b ⇒ a l−→ b;

(iii) (∀a, b ∈ S)(∃n ∈ Z+) a2n+1 l−→ (ab)n;

(iv) (∀a, b ∈ S)(∃n ∈ Z+)(∀k ∈ Z+) ak l−→ (ab)n;
(v) S ∈ LA ◦ S and S is left π-regular.

The equivalence (i) ⇔ (ii) is given by M.S.Putcha [113].

Theorem 1.7. [113] A semigroup S is a semilattice of nil-extensions of bi-simple
regular semigroups if and only if S is π-regular and for all a ∈ S, e ∈ E(S),
a | e ⇒ a2 | e and aJ e ⇒ aDe.

Theorem 1.8. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a simple semigroup:

(ii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ Sb2nS;
(iii) S is an Archimedean intra π-regular semigroup;
(iv) S is an Archimedean semigroup with an intra-regular element.

The equivalences (i) ⇔ (iii) ⇔ (iv) are from M.S.Putcha [113].

Theorem 1.9. [39] A semigroup S is Archimedean and contains an idempotent
if and only if S is a nil-extension of a simple semigroup with an idempotent.

Theorem 1.10. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a left simple semigroup;

(ii) S is left Archimedean and left π-regular;
(iii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ Sbn+1.

A subset A of a semigroup S is semiprimary if
(∀x, y ∈ S)(∃n ∈ Z+) xy ∈ A ⇒ xn ∈ A ∨ yn ∈ A.

A semigroup S is semiprimary if all of its ideals are semiprimary [9]. A subset
A of a semigroup S is completely prime if xy ∈ A ⇒ x ∈ A ∨ y ∈ A, x, y ∈ S.
An ideal A of a semigroup S is a completely prime ideal of S if it is completely
prime subset of S.
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Theorem 1.11. [29] The following conditions on a semigroup S are equivalent:
(i) S is a chain of Archimedean semigroups;

(ii) S is semiprimary;
(iii)

√
A is a completely prime ideal of S, for every ideal A of S;

(iii)
√

A is a completely prime subset of S, for every ideal A of S;
(iii) S is a semilattice of Archimedean semigroups and completely prime ideals of

S are totally ordered.

Proposition 1.1. [29] Every right ideal of a semigroup S is semiprimary if and
only if (∀a, b ∈ S) ab r−→ a ∨ ab r−→ b.

Theorem 1.12. [29] The following conditions on a semigroup S are equivalent:
(i) S is a chain of right Archimedean semigroups;

(ii)
√

R is a completely prime ideal of S, for every right ideal R of S;
(iii) S is a semilattice of right Archimedean semigroups and every right ideal of

S is semiprimary;
(iv) S is a semilattice of right Archimedean semigroups and

(∀a, b ∈ S) a r−→ b ∨ b r−→ a.

Theorem 1.13. [29] The following conditions on a semigroup S are equivalent:
(i) S is a chain of t-Archimedean semigroups;

(ii)
√

B is a completely prime ideal of S, for every bi-ideal B of S;
(iii) S is a semilattice of t-Archimedean semigroups and every

(∀a, b ∈ S) a r−→ b ∨ b r−→ a.

Theorem 1.14. [29] The radical of every subsemigroup of a semigroup S is
completely prime if and only if (∀a, b ∈ S)(∃n ∈ Z+) an ∈ 〈ab〉 ∨ bn ∈ 〈ab〉.

1.2. Bands of left Archimedean semigroups

By Theorem 1.1. we have that bands of Archimedean semigroups are semilattices
of Archimedean semigroups, but the class of bands of left (or right or twosided)
Archimedean semigroups is not equal to the class of semilattices of left (or right or
twosided) Archimedean semigroups.

Theorem 1.15. [114] S ∈ LA ◦ B if and only if xay l xa2y, for all a ∈
S, x, y ∈ S1.

Theorem 1.16. [114] S ∈ T A ◦ B if and only if xay t xa2y, for all a ∈
S, x, y ∈ S1.

A band E is normal (left normal) if it satisfies the identity axya = ayxa
(axy = ayx).

Theorem 1.17. [26] A semigroup S is a normal band of t-Archimedean semi-
groups if and only if ac t−→ abc, for all a, b, c ∈ S.
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Theorem 1.18. [26] The following conditions on a semigroup S are equivalent:
(i) S is a left normal band on t-Archimedean semigroups;

(ii) (∀a, b, c ∈ S) ac r−→ abc ∧ a l−→ abc;

(iii) (∀a, b, c ∈ S) ac r−→ abc ∧ b l−→ abc.

Theorem 1.19. [10] The following conditions on a semigroup S are equivalent:
(i) S is a band of power joined semigroups;

(ii) (∀a, b ∈ S) ab p a2b p ab2;
(iii) (∀a, b ∈ S)(∀m,n ∈ Z+) ab p ambn.

Bands of power joined semigroups are studied by T.Nordahl [98] in the medial
case (xaby = xbay). For the related results in the periodic case see M.Yamada
[175].

Theorem 1.20. [10] The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of power joined semigroups;

(ii) (∀a, b ∈ S) ba p a2b p ab2;
(iii) (∀a, b ∈ S)(∀m,n ∈ Z+) ba p ambn.

Theorem 1.21. [10] S is a rectangular band of power joined semigroups if and
only if abc p ac, for all a, b, c ∈ S.

Corollary 1.2. [10] A semigroup S is a left zero band of power joined semigroups
if and only if ab p a, for all a, b ∈ S.

Theorem 1.22. [13] S is a band of periodic power joined semigroups if and only
if for every a, b ∈ S and n ∈ Z+ there exists r ∈ Z+ such that (ab)r = (anbn)r.

Lemma 1.1. [34] S is a union of nil-semigroups if and only if for every a ∈ S
there exists r ∈ Z+ such that ar = ar+1.

Theorem 1.23. The following conditions on a semigroup S are equivalent:
(i) S is a band of nil-semigroups;

(ii) S is a union of nil-semigroups and S is a band of power joined semigroups;
(iii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)3n+1 = (a2b)2n+1 = (ab2)2n+1.

For the related results see also D.W.Miller [93].

Theorem 1.24. A semigroup S is a semilattice of nil-semigroups if and only if
(∀a, b ∈ S)(∃n ∈ Z+) (ba)3n+1 = (a2b)2n+1 = (ab2)2n+1.

Chapter 2. Semilattices of Completely Archimedean semigroups

2.1. The general case

In a π-regular semigroup S we consider the equivalence relations L∗, R∗, J ∗
and H∗ defined by:
aL∗b ⇔ Sap = Sbq, aR∗b ⇔ apS = bqS, aJ ∗b ⇔ SapS = SbqS, H∗ = L∗ ∩R∗,
where p, q are the smallest positive integers such that ap, bq ∈ Reg(S) (J.L.Galbi-
ati and M.L.Veronesi [70] ). If e ∈ E(S), then by Ge we denote the maximal
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subgroup of S with e as its identity and Te =
√

Ge. On a semigroup S we
denote the relation τ by a τ b ⇔ (∃e ∈ E(S)) a, b ∈ Te. The relation τ ia
an equivalence on S if and only if S is completely π-regular. A semigroup S is
a π-group if S is a nil-extension of a group.

Every (Rees) factor semigroup of any subsemigroup of S is a (Rees) factor of
S. If such a (Rees) factor is completely π-regular we call it q-(Rees)-factor, [147].
In [143] q-factors are called epifactors .

Theorem 2.1. The following conditions on a semigroup S are equivalent:
(i) S ∈ CA ◦ S;

(ii) S ∈ πR and every H∗-class of S contains an idempotent;
(iii) S ∈ πR and every H∗-class of S is a π-group;
(iv) S ∈ CπR and τ = H∗;
(v) S ∈ πR and Gr(S) = Reg(S);

(vi) S ∈ A ◦ S ∩ CπR;
(vii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nbS(ab)n;

(viii) S ∈ CπR and a | e ⇒ a2 | e, for every a ∈ S, e ∈ E(S);
(ix) S ∈ CπR and every J -class of S with an idempotent is a subsemigroup;
(x) S ∈ CπR and in every Rees q-factor of S the set of all nilpotent elements

is an ideal;
(xi) S ∈ CπR and S has not q-factor which is A2 or B2;

(xii) S ∈ CπR and S has not Rees q-factor which is A2 or B2;
(xiii) S ∈ CπR and every regular D-class of S is a subsemigroup of S;
(xiv) S ∈ CπR and (∀a ∈ S)(∀b ∈ Intra(S)) a | b ⇒ a2 → b.

The equivalences (i) ⇔ (vi) ⇔ (viii) ⇔ (ix) ⇔ (xiv) are from
M.S.Putcha [113]. The equivalence (i) ⇔ (v) is given by L.N.Xevrin [146],
and independently this equivalence is proved by M.L.Veronesi [172]. The conditions
(ii), (iii), (iv) are from [172], (x)− (xii) are from [148] and (xiii) is from [146].
The condition (vii) is from [16].

A completely simple semigroup in which E2(S) = E(S) is a rectangular group.

Theorem 2.2. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of rectangular groups;

(ii) S ∈ CA ◦ S and (∀e, f ∈ E(S))(∃n ∈ Z+) (ef)n = (ef)n+1;
(iii) S ∈ πR and a = axa implies a = ax2a2;
(iv) S ∈ CA ◦ S and every inverse of an idempotent is an idempotent;
(v) S ∈ πR and for all a, b ∈ S, ab, ba ∈ E(S) implies ab = (ab)(ba)(ab);

(vi) S ∈ CA◦S and there are no E(∞) and E(p), p ≥ 2, among subsemigroups
of S;

(vii) S ∈ CπR and there are no A2, B2, E(∞) and E(p), p ≥ 2, among
subsemigroups of homomorphic images of S;

(viii) S ∈ CπR and there are no A2, B2 and E(p), p ≥ 2, among q-factors of
S;

(ix) S ∈ CπR with (xy)0 = (xy)0(yx)0(xy)0.
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The equivalence (i) ⇔ (v) is due to M.S.Putcha [113]. The conditions
(ii), (iii), (iv) are from S.Bogdanović [14] and the remaining cases are from S.Bogda-
nović and M.Ćirić [33].

A semigroup S is a left (right) group if for every a, b ∈ S there exists only one
x ∈ S such that xa = b (xa = b), (A.H.Clifford and G.B.Preston [57] ). S is an
LR-semigroup if for every a, b ∈ S there exists n ∈ Z+ such that (ab)n ∈ Sa∪bS,
[20].

Theorem 2.3. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of left and right groups;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nS(ba)n ∪ (ba)nS(ab)n;
(iii) S ∈ πR and S is an LR-semigroup;
(iv) S ∈ CA◦S and (∀e, f ∈ E(S))(∃n ∈ Z+) (ef)n = (efe)n ∨ (ef)n = (fef)n;
(v) S ∈ πR and a = axa implies ax = ax2a or ax = xa2x;

(vi) S ∈ πR (or S ∈ CπR) and e ∈ E(S) implies E(S) ∩ SeS ⊆ eS ∪ Se.

The equivalence (i) ⇔ (vi) is from M.S.Putcha [113]. The conditions
(i)− (iv) are from S.Bogdanović and M.Ćirić [20]. An open problem is to describe
LR-semigroups in the general case.

Theorem 2.4. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of left groups;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nS(ba)n;
(iii) S ∈ πR and (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ Sa;
(iv) S ∈ CA ◦ S and (∀e, f ∈ E(S))(∃n ∈ Z+) (ef)n = (efe)n;
(v) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nSa2n;

(vi) S ∈ CA ◦ S and every R∗-class contains only one idempotent;
(vii) S ∈ CA ◦ S and for every e, f ∈ E(S) there exists n ∈ Z+ such that

(ef)nL(fe)n;
(viii) S ∈ CA ◦ S and for all a, x, y ∈ S, a = axa = aya implies ax = ay;
(ix) S ∈ πR (or S ∈ CπR) and e ∈ E(S) implies E(S) ∩ SeS ⊆ Se;
(x) S ∈ πR and a = axa implies ax = xa2x;

(xi) S ∈ CπR with (xy)0 = (xy)0(yx)0.

The equivalence (i) ⇔ (ix) is from M.S.Putcha [113]. The conditions
(i), (iii), (iv), (x) are from S.Bogdanović [14], the conditions (i) and (v) are from
[17], (vi)− (viii) are from [15] and (xi) is from [33].

An anti commutative band is a rectangular band.

Theorem 2.5. [17] The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of rectangular bands;

(ii) S ∈ πR and E(S) = Reg(S);
(iii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)2n+1 = (ab)nba2(ab)n.

A band S is singular either S is a left or a right zero band.
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Theorem 2.6. [20] The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of singular bands;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n = (ab)na ∨ (ab)n = b(ab)n;
(iii) S ∈ πR, E(S) = Reg(S) and S is a LR-semigroup;
(iv) S ∈ πR and a = axa implies a = ax or a = xa.

2.2. Bands of π-groups

A subsemigroup K of a semigroup S is a retract of S if there exists a
homomorphism ϕ of S onto K such that ϕ(a) = a for all a ∈ K. An ideal
extension S of K is a retract extension (or retractive extension) of K if K is
a retract of S.

Theorem 2.7. [26] Let S be a π-regular semigroup and let (∀a, b ∈ S)(∃n ∈
Z+) (ab)n ∈ a2Sb2. Then S is a semilattice of retractive nil-extensions of com-
pletely simple semigroups.

Theorem 2.8. [26] Let S be a π-regular semigroup and let (∀a, b ∈ S)(∃n ∈
Z+) (ab)n ∈ a2Sa. Then S is a semilattice of retractive nil-extensions of left
groups.

The converses of Theorems 2.7. and 2.8. are open problems.

Lemma 2.1. [19] The following conditions on a semigroup S are equivalent:
(i) S is π-regular and Reg2(S) = Reg(S);

(ii) S is π-regular and 〈E(S)〉 is a regular subsemigroup of S;
(iii) (∀a, b ∈ S)(∃m, n ∈ Z+) ambn ∈ ambnSambn.

Proposition 2.1. [26] Let S be a band of π-groups and let Reg(S) be a
subsemigroup of S. Then Reg(S) is a band of groups and it is a retract of S.

Conversely, if S contain a retract K which is a band of groups and if S =
√

K,
then S is a band of π-groups.

Theorem 2.9. The following conditions on a semigroup S are equivalent:
(i) S is a band of π-groups;

(ii) S ∈ CA ◦ S and H∗ is a congruence on S;
(iii) S is π-regular and (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ a2bSab2;
(iv) S is completely π-regular and ab τ a2b τ ab2;
(v) S ∈ T A ◦ B ∩ CπR;

(vi) S ∈ CπR and xay t xa2y, for all a ∈ S, x, y ∈ S1;
(vii) S ∈ CπR with (xy)0 = (x2y)0 = (xy2)0.

The equivalence (i) ⇔ (ii) is from J.L.Galbiati and M.L.Veronesi [69]. The
condition (iv) is given by B.Madison, T.K.Mukherjee and M.K.Sen [88], see also
[89]. The conditions (v) and (vi) are from M.S.Putcha [113], for (vi) see also
[114]. The condition (iii) is from S.Bogdanović and M.Ćirić [26].

A band S is left regular if ax = axa for all a, x ∈ S.
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Theorem 2.10. [26] The following conditions on a semigroup S are equivalent:
(i) S is a left regular band of π-groups;

(ii) S is completely π-regular and for all a, b ∈ S, ab τ a2b τ aba;
(iii) S is π-regular and (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ a2bSa;
(iv) S ∈ CπR with (xy)0 = (x2y)0 = (xyx)0.

Theorem 2.11. [26] The following conditions on a semigroup S are equivalent:
(i) S is a normal band of π-groups;

(ii) S is completely π-regular and for all a, b, c, d ∈ S, abcd τ acbd;
(iii) S is π-regular and (∀a, b, c ∈ S)(∃n ∈ Z+) (abc)n ∈ acSac;
(iv) S ∈ CπR with (xyzu)0 = (xzyu)0.

Theorem 2.12. [26] The following conditions on a semigroup S are equivalent:
(i) S is a left normal band of π-groups;

(ii) S is completely π-regular and for all a, b, c ∈ S, abc τ acb;
(iii) S is π-regular and (∀a, b, c ∈ S)(∃n ∈ Z+) (abc)n ∈ acSa;
(iv) S ∈ CπR with (xyz)0 = (xzy)0.

A semigroup S is a GV -inverse semigroup if S ∈ CA ◦ S and every regular
element of S possesses a unique inverse, [71].

Theorem 2.13. The following conditions on a semigroup S are equivalent:
(i) S is GV -inverse;

(ii) S is a semilattice of π-groups;
(iii) S ∈ CA ◦ S and for every e, f ∈ E(S) there exists n ∈ Z+ such that

(ef)n = (fe)n;
(iv) S ∈ πR and Reg(aS) = Reg(Sa), for all a ∈ S;
(v) S ∈ πR and a = axa implies ax = xa;

(vi) S ∈ πR and L∗ = R∗;
(vii) S ∈ πR and (ab)n, (ba)n ∈ E(S) implies (ab)n = (ba)n, a, b ∈ S, n ∈ Z+;

(viii) S ∈ πR and H∗ = J ∗;
(ix) S ∈ πR∩ T A ◦ S;
(x) S is the disjoint union of π-groups and for every e, f ∈ E(S) there exists

n ∈ Z+ such that (ef)n = (fe)n;
(xi) S is completely π-regular and ab τ ba for all a, b ∈ S;

(xii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ b2nSa2n;
(xiii) S ∈ CπR with (xy)0 = (yx)0.

The equivalences (i) ⇔ (ii) ⇔ (viii) ⇔ (x) are from M.L.Veronesi [172],
the conditions (iv) and (vi) are from [71], (vii) is from [113], (xii) is from [17]
and (v) and (ix) are from [14].

Theorem 2.14. [33] A semigroup S is a band of π-groups and E2(S) = E(S)
if and only if S ∈ CπR and (xy)0 = x0y0.
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Theorem 2.15. The following conditions on a semigroup S are equivalent:
(i) S ∈ CπR with xy = y x;

(ii) S ∈ CπR and there are no semigroups A2, B2, L2, R2 and V among
epifactors of S;

(iii) S is a semilattice of π-groups and E2(S) = E(S);
(iv) S is a semilattice of π-groups and Gr(S) is a subsemigroup of S;
(v) S ∈ CπR with (xy)0 = y0x0;

(vi) S is a semilattice of π-groups and ef = fe for all e, f ∈ E(S).

The equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) are from L.N.Xevrin [143].

Lemma 2.2. Let S ∈ CπR. Then E2(S) = E(S) if and only if (x0y0)0 = x0y0

in S.

Theorem 2.16. A semigroup S is a semilattice of nil-extensions of rectangular
groups and E2(S) = E(S) if and only if S ∈ CπR with (xy)0 = (xy)0(yx)0(xy)0

and (xy)0 = x0y0.

Theorem 2.17. [113] S is commutative and S is a GV -inverse semigroup if
and only if S is π-regular (completely π-regular) and for all a, b ∈ S,

a b ⇒ ab = ba.

Theorem 2.18. [79] If S is completely π-regular and J ⊆ τ , then S is a
semilattice of π-groups.

2.3. Chains of completely Archimedean semigroups

Theorem 2.19. [14] S is a chain of completely Archimedean semigroups if and
only if S ∈ CA ◦ S and for every e, f ∈ E(S), e ∈ efS or f ∈ feS.

Theorem 2.20. [14, 20] The following conditions on a semigroup S are equiva-
lent:

(i) S is a chain of nil-extensions of rectangular groups;
(ii) S is completely π-regular and E(S) is a chain of rectangular bands;

(iii) S ∈ CA ◦ S and E(S) is a chain of rectangular bands;
(iv) S ∈ CA ◦ S and e = efe or f = fef for all e, f ∈ E(S);
(v) S ∈ CπR with x0 = x0y0x0 ∨ y0 = y0x0y0.

Corollary 2.1. [14] S is a chain of π-groups if and only if S is completely
π-regular and E(S) is a chain.

Corollary 2.2. [20] S is a chain of nil-extensions of periodic rectangular groups
if and only if S is periodic and E(S) is a chain of rectangular bands.

Theorem 2.21. [20] The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of rectangular bands;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) a2n = anban ∨ b2n = bnabn;
(iii) S ∈ πR and Reg(S) is a chain of rectangular bands.
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Theorem 2.22. [20] The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of left and right groups;

(ii) for every a, b ∈ S there exists n ∈ Z+ such that
an ∈ a2nS(ab)n ∪ (ba)nSa2n or bn ∈ b2nS(ba)n ∪ (ab)nSb2n ;

(iii) S is completely π-regular and for every e, f ∈ E(S), ef ∈ {e, f} or
fe ∈ {e, f}.

Theorem 2.23. [14, 20] The following conditions on a semigroup S are equiva-
lent:

(i) S is a chain of nil-extensions of left groups;
(ii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ a2nS(ab)n ∪ (ba)nSa2n;

(iii) S is completely π-regular and for every e, f ∈ E(S), ef = e or fe = f ;
(iv) S ∈ CπR with x0 = x0y0 ∨ y0 = y0x0.

Theorem 2.24. [20] The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of singular bands;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) an = anb ∨ an = ban ∨ bn = bna ∨ bn = abn;
(iii) S ∈ πR, Reg(S) = E(S) and E(S) is a chain of singular bands.

Corollary 2.3. [20] The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of left zero bands;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) an = anb ∨ bn = bna;
(iii) S ∈ πR, and for all a, b ∈ Reg(S), ab = a or ba = b.

In connection with a study of a lattice of subsemigroups of some semigroup the
important place is captured by U -semigroups. A semigroup S is a U-semigroup
if the union of every two subsemigroups of S is a subsemigroup of S, which
is equivalent with xy ∈ 〈x〉 ∪ 〈y〉 for all x, y ∈ S. A more detailed de-
scription can be find in M.Petrich [103]. These semigroups have been considered
more recently, predominantly in special cases. Here we present some general re-
sults of Rédei’s bands of π-groups. Several special cases of this the reader can
find in E.G.Xutov [150], N.Kimura, T.Tamura and R.Merkel [82], E.S.L�pin
i A.E.Evseev [87], A.E.Evseev [64], B.Trpenovski [141], S.Bogdanović, P.Kržov-
ski, P.Protić and B.Trpenovski [34], J.Pelikán [100], B.Pondeliček [111], L.Rédei
[125], S.Bogdanović and B.Stamenković [35], B.Trpenovski and N.Celakoski [142],
S.Bogdanović and M.Ćirić [20] and M.Ćirić and S.Bogdanović [41].

A semigroup S is a Rédei’s band if xy = x or xy = y for all x, y ∈ S, [125].

Theorem 2.25. [26] The following conditions on a semigroup S are equivalent:
(ii) S is a Rédei’s band of π-groups;
(ii) S has a retract K which is a Rédei’s band of groups and

√
K = S;

(iii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ (ab)nS(ab)n ∨ bn ∈ (ab)nS(ab)n.

Corollary 2.4. [26] A semigroup S is a Rédei’s band of groups if and only if
(∀a, b ∈ S) a ∈ abSab ∨ b ∈ abSab .

Let n ∈ Z+. A semigroup S is a generalized Un+1-semigroup or simply
GUn+1-semigroup if S satisfies the following condition:
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(∀x1, x2, . . . , xn+1)(∃m) (x1x2 · · ·xn+1)m ∈ 〈x1〉 ∪ 〈x2〉 ∪ . . . ∪ 〈xn+1〉 .
A GU2-semigroup we call GU -semigroup. A chain Y of semigroups Sα, α ∈ Y ,
is a GUn+1-chain of semigroups if for all α1, α2, . . . αn+1 ∈ Y such that αi 6= αj

for some i, j ∈ {1, 2, . . . , n + 1}, and for all xk ∈ Sαk , k ∈ {1, 2, . . . , n + 1} there
exists m ∈ Z+ such that (x1x2 · · ·xn+1)m ∈ 〈x1〉 ∪ 〈x2〉 ∪ . . . ∪ 〈xn+1〉, [18,43].

Theorem 2.26. [43] The following conditions on a semigroup S are equivalent:
(i) S is a Rédei’s band of periodic π-groups;

(ii) S is a π-regular GUn+1-semigroup;
(iii) S is a periodic GUn+1-semigroup;
(iv) S is a GUn+1-chain of retractive nil-extensions of periodic left and right

groups;
(v) S is a π-regular GU-semigroup;

(vi) S is a periodic GU-semigroup;
(vii) S contains a retract K which is a regular GU-semigroup and

√
K = S;

Theorem 2.27. [43] The following conditions on a semigroup S are equivalent:
(i) S is a left zero band of periodic π-groups;

(ii) S is a π-regular GU-semigroup and E(S) is a left zero band;
(iii) S is a retractive nil-extension of a periodic left group.

A semigroup S is a Un+1-semigroup if
(∀x1, x2, . . . , xn+1 ∈ S) x1x2 · · ·xn ∈ 〈x1〉 ∪ 〈x2〉 ∪ · · · ∪ 〈xn+1〉 ,

n ∈ Z+. A band I of semigroups Si, i ∈ I, is a Un+1-band of semigroups if
x1x2 · · ·xn+1 ∈ 〈x1〉 ∪ 〈x2〉 ∪ · · · ∪ 〈xn+1〉, for all x1 ∈ Si1 , x2 ∈ Si2 , . . . , xn+1 ∈
Sin+1 , such that ik 6= il for some k, l ∈ {1, 2, . . . , n}. One defines analogously
Un+1-semilattice and Un+1-chain of semigroups .

Theorem 2.28. [21] The following conditions on a semigroup S are equivalent:
(i) S is a Un+1-semigroup;

(ii) S is a Un+1-chain of retract extensions of U-groups and singular bands by
Un+1-nil-semigroups;

(iii) S is a Un+1-bands of ideal extensions of U-groups by Un+1-nil-semigroups.

Theorem 2.29. [21] A semigroup S is a Un+1-semigroup and Reg(S) is an
ideal of S if and only if for every x1, x2, . . . , xn+1 ∈ S,

(1) x1x2 · · ·xn+1 ∈
n+1
∪

i=1

{

xk
i | k ≥ 2

}

.

Corollary 2.5. [21] A semigroup S is a retract extension of a regular U-
semigroup by a Un+1-nil-semigroup if and only if S satisfies (1).

Chapter 3. Nil-extensions of (completely) regular semigroups

3.1. The general case

Here we will consider π-regular semigroups S in which Reg(S) is an ideal,
predominantly π-regular semigroups in which Reg(S) = Gr(S) is an ideal (see
also Theorem 2.1.(v)).



16 S. Bogdanović and M. Ćirić

Theorem 3.1. [23] A semigroup S is a nil-extension of a regular semigroup if and
only if for every x, a, y ∈ S there exists n ∈ Z+ such that xany ∈ xanySxany.

Theorem 3.2. [23] A semigroup S is a nil-extension of a union of groups if and
only if for every x, a, y ∈ S there exists n ∈ Z+ such that xany ∈ xanyxSxany.

Theorem 3.3. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of left and right groups;

(ii) (∀x, a, y ∈ S)(∃n ∈ Z+) xany ∈ xanySyanx ∪ yanxSxany;
(iii) for all a, b ∈ S and x, y ∈ S1 there exists n ∈ Z+ such that

x(ab)ny ∈ x(ab)nySy(ba)nx ∪ x(ba)nySx(ab)ny;
(iv) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

xany ∈ xanySyx ∪ yxSxany.

The equivalence (i) ⇔ (iii) is from S.Bogdanović and M.Ćirić [23].

Theorem 3.4. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of left groups;

(ii) (∀x, a, y ∈ S)(∃n ∈ Z+) xany ∈ xanySyanx;
(iii) (∀a, b ∈ S)(∀x, y ∈ S1)(∃n ∈ Z+) x(ab)ny ∈ x(ab)nySy(ba)nx;
(iv) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

xany ∈ xSx.

The equivalences (i) ⇔ (iii) and (i) ⇔ (iv) are from S.Bogdanović and
M.Ćirić [23] and [28], respectively.

Theorem 3.5. [23] The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of groups;

(ii) S is a retractive nil-extension of a semilattice of groups;
(iii) (∀x, a, y ∈ S)(∃n ∈ Z+) xany ∈ xanySyanx ∩ yanxSxany;
(iv) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

xany ∈ xSx ∩ ySy.

Corollary 3.1. [23] A semigroup S is a nil-extension of a group (π-group) if
and only if for all a, b ∈ S there exists n ∈ Z+ such that an ∈ bnSbn.

Several other characterizations for π-groups the reader can found in P.Chu,
Y.Guo and X.Ren [41].

Corollary 3.2. [23] A semigroup S is a nil-extension of a periodic group if and
only if for all a, b ∈ S there exists n ∈ Z+ such that an = bn.

Lemma 3.1. [37] If S is a π-regular semigroup all of whose idempotents are
primitive, then S is completely π-regular with the maximal subgroups given by

Ge = eSe, e ∈ E(S).

A simple semigroup with a primitive idempotent is completely simple.

Theorem 3.6. [94] A simple semigroup S is completely simple if and only if S
is completely π-regular.

A semigroup S is weakly cancellative if for any a, b ∈ S, ax = bx and xa = xb
for some x ∈ S imply a = b, [102].
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Theorem 3.7. The following conditions of a semigroup S are equivalent:
(i) S is completely Archimedean;

(ii) S is a nil-extension of a completely simple semigroup;
(iii) S is Archimedean and completely π-regular;
(iv) S is π-regular and all idempotents of S are primitive;
(v) S is Archimedean and contains at least one minimal left and at least one

minimal right ideal;
(vi) S is Archimedean, π-regular and Reg(S) is weakly cancellative subsemigroup

of S;
(vii) S is π-regular and Reg(S) is an ideal of S, in which a = axa implies

x = xax;
(viii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ anbSan.

The equivalences (i) ⇔ (iv) ⇔ (viii) are from S.Bogdanović and S.Milić [37]
and (i) ⇔ (iii) ⇔ (v) are from J.L.Galbiati and M.L.Veronesi [72].

Corollary 3.3. The following conditions on a semigroup S are equivalent:
(i) S is Archimedean and periodic;

(ii) S is π-regular and for every x, y ∈ S, xy = yx implies xn = yn for some
n ∈ Z+;

(iii) S is a nil-extension of a completely simple periodic semigroup.

Theorem 3.8. [113] The following conditions of a semigroup S are equivalent:
(i) S is a nil-extension of a rectangular group;

(ii) S is a subdirect product of a group and a nil-extension of a rectangular band;
(iii) S is a subdirect product of a group, a nil-extension of a right zero semigroup

and a nil-extension of a left zero semigroup.

Theorem 3.9. [37] A semigroup S is a nil-extension of a rectangular band if
and only if for all a, b ∈ S there exists n ∈ Z+ such that an = anban.

Theorem 3.10. [37] The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a left group;

(ii) S is left Archimedean and contains an idempotent;
(iii) S is π-regular and E(S) is a left zero band;
(iv) for all a, b ∈ S there exists n ∈ Z+ such that an ∈ anSanb.

Theorem 3.11. [37] A semigroup S is a nil-extension of a left zero band if and
only if for all a, b ∈ S there exists n ∈ Z+ such that an = anb.

Corollary 3.4. [37] A semigroup S is a nil-semigroup if and only if for all
a, b ∈ S there exists n ∈ Z+ such that an = ban = anb.

Theorem 3.12. [37] Let S be a semigroup. If
(∀a ∈ S)(∃1x ∈ S)(∃n ∈ Z+) an = xan+1

then S is a nil-extension of a left group.
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Theorem 3.13. [37] Let S be a semigroup. If
(∀a ∈ S)(∃1x ∈ S)(∃n ∈ Z+) an = anxan

then S is a π-group.

The following theorem is proved by T.Tamura:

Theorem 3.14. A semigroup S is a π-group if and only if S is an Archimedean
semigroup with exactly one idempotent.

Theorem 3.15. A semigroup S is a nil-extension of a periodic left group if and
only if for all a, b ∈ S there exists n ∈ Z+ such that an = anbn.

3.2. Retractive nil-extensions of regular semigroups

A retract extensions can be more easily constructed than many other kinds of
extensions, it is of interest to know whether a given extension is a retract extension.
The purpose of this section is to present criterions for retractive nil-extensions, es-
pecially for the very important class of regular semigroups. Also, we summarize the
results of retractive nilpotent extensions of regular semigroups. The constructions
of retractive (nilpotent) extensions are given in [38].

Theorem 3.16. [27] A semigroup S is a retractive nil-extension of a regular
semigroup K if and only if S is a subdirect product of K and a nil-semigroup.

Corollary 3.5. [113] A semigroup S is a retractive nil-extension of a rectangular
group if and only if S is a subdirect product of a group, a left zero semigroup, a
right zero semigroup and a nil-semigroup.

A semigroup S is an n-inflation of K if it is a retractive extension of K by
a (n + 1)-nilpotent semigroup. A 1-inflation is an inflation.

Corollary 3.6. [27] A semigroup S is an n-inflation of a regular semigroup K
if and only if S is a subdirect product of K and a (n + 1)-nilpotent semigroup.

Lemma 3.2. [23] Let S be a nil-extension of a union of groups T . Then every
retraction ϕ of S onto T has the representation ϕ(a) = ea, a ∈ S, where
e ∈ E(S) such that a ∈

√
Ge.

Theorem 3.17. [19, 28] The following conditions on a semigroup S are equiva-
lent:

(i) S is a retractive nil-extension of a union of groups;
(ii) for every a, b, c ∈ S there exists n ∈ Z+ such that

c(ab)n ∈ c(ab)nSc(ab)n and (ab)nc ∈ e(ab)ncbS(ab)ncf ,
where e, f ∈ E(S) such that a ∈

√
Ge, c ∈

√

Gf .
(iii) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that

xany ∈ x2Sy2;
(iv) S is a subdirect product of a union of groups and a nil-semigroup.
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Corollary 3.7. [28, 38] The following conditions on a semigroup S are equivalent:
(i) S is an n-inflation of a union of groups;

(ii) xSn−1y = x2Sny2, for all x, y ∈ S;
(iii) S is a subdirect product of a union of groups and an (n + 1)-nilpotent semi-

group.

Theorem 3.18. [30] A semigroup S is a retractive nil-extension of a band of
groups if and only if S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+

such that xany ∈ x2aSay2.

Corollary 3.8. [30] Let n ∈ Z+, n ≥ 3. Then a semigroup S is an n-inflation
of a band of groups if and only if xaSn−3by ⊆ x2aSnby2, for all x, a, b, y ∈ S.

Corollary 3.9. [30] A semigroup S is a 2-inflation of a band of groups if and
only if xay ∈ x2aSay2, for all x, a, y ∈ S.

Corollary 3.10. [30] A semigroup S is an inflation of a band of groups if and
only if xy ∈ x2ySxy2, for all x, y ∈ S.

Theorem 3.19. [30] A semigroup S is a retractive nil-extension of a left regular
band of groups if and only if S is π-regular and for all x, a, y ∈ S there exists
n ∈ Z+ such that xany ∈ x2aSx.

Corollary 3.11. [30] Let n ∈ Z+, n ≥ 2. Then a semigroup S is an n-
inflation of a left regular band of groups if and only if xaSn−2y ⊆ x2aSnx, for all
x, a, y ∈ S.

Corollary 3.12. [30] A semigroup S is an inflation of a left regular band of
groups if and only if xy ∈ x2ySx, for all x, y ∈ S.

Theorem 3.20. [30] The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a normal band of groups;

(ii) S is π-regular and for all x, a, y ∈ S there exists n ∈ Z+ such that
xany ∈ xyaSaxy;

(iii) S ∈ CA ◦ S and for all x, a, y ∈ S there exists n ∈ Z+ such that
xany ∈ xySxy.

Corollary 3.13. [30] Let n ∈ Z+, n ≥ 2. Then a semigroup S is an n-inflation
of a normal band of groups if and only if xSn−1y ⊆ xySnxy, for all x, y ∈ S.

Theorem 3.21. [30] A semigroup S is a retractive nil-extension of a left normal
band of groups if and only if S is π-regular and for all x, a, y ∈ S there exists
n ∈ Z+ such that xany ∈ xySx.

Corollary 3.14. [30] Let n ∈ Z+, n ≥ 2. Then a semigroup S is an n-inflation
of a left normal band of groups if and only if xSn−1y ⊆ xySnx, for all x, y ∈ S.

Theorem 3.22. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a completely simple semigroup;

(ii) S is a rectangular band of π-groups;
(iii) S is completely Archimedean and for all a ∈ S, x, y ∈ S1 there exists

p, q, r, s ∈ Z+ such that
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(xay)pS = (xa2y)pS and S(xay)r = S(xa2y)s;
(iv) for all a, b, c ∈ S there exists n ∈ Z+ such that

anc ∈ eanbSancf and can ∈ fcanbSane ,
where a ∈

√
Ge, c ∈

√

Gf ;
(v) S is an Archimedean semigroup with an idempotent and for every a, b ∈ S

there exists n ∈ Z+ such that (ab)n ∈ a2Sb2;
(vi) S is a subdirect product of a completely simple semigroup and a nil-semigroup.

The equivalences (i) ⇔ (ii) ⇔ (iii) are proved by J.L.Galbiati and
M.L.Veronesi [69]. The condition (vi) is given by L.N.Xevrin [146] and this is
also a consequence of Theorem 3.16. The condition (iv) is from S.Bogdanović [19]
and (v) is from S.Bogdanović and M.Ćirić [28].

Corollary 3.15. A semigroup S is a retractive nil-extension of a periodic com-
pletely simple semigroup if and only if S is a rectangular band of nil-extensions of
periodic groups.

Corollary 3.16. A semigroup S is a retractive nil-extension of a rectangular
band if and only if S is a rectangular band of nil-semigroups.

Theorem 3.23. [28] A semigroup S is a retractive nil-extension of a semilattice
of left and right groups if and only if S is π-regular and for all x, a, y ∈ S there
exists n ∈ Z+ such that xany ∈ x2Sy2x ∪ yx2Sy2.

Corollary 3.17. [28] A semigroup S is an n-inflation of a semilattice of left and
right groups if and only if xSn−1y ⊆ x2Sny2x ∪ yx2Sny2 (xy ∈ x2Sy2x ∪ yx2Sy2,
if n = 1), for all x, y ∈ S.

Theorem 3.24. [28] A semigroup S is a retractive nil-extension of a semilattice
of left groups if and only if S is π-regular and for all x, a, y ∈ S there exists
n ∈ Z+ such that xany ∈ x2Sx.

Corollary 3.18. [28] A semigroup S is an n-inflation of a semilattice of left
groups if and only if xSn−1y ⊆ x2Snx (xy ∈ x2Sx, if n = 1), for all x, y ∈ S.

Theorem 3.25. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a left group;

(ii) S is a left zero band of π-groups;
(iii) S is left Archimedean with an idempotent and for all a ∈ S, x, y ∈ S1 there

exists p, q, r, s ∈ Z+ such that
(xay)pS = (xa2y)qS and S(xay)r = S(xa2y)s;

(iv) S is completely π-regular and for all a, b, c ∈ S there exists n ∈ Z+ such
that can ∈ gcanSanf , where f, g ∈ E(S) such that b ∈

√

Gf , c ∈
√

Gg;
(v) S is Archimedean π-regular and for all a, b ∈ S there exists n ∈ Z+ such

that (ab)n ∈ a2Sa.

The equivalences (i) ⇔ (ii) ⇔ (iii) are from J.L.Galbiati and M.L.Veronesi
[69]. The condition (iv) is from S.Bogdanović [19] and (v) is from S.Bogdanović
and M.Ćirić [28].
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3.3. Nil-extensions of bands

Theorem 3.26. [23, 126] The following conditions on a semigroup S are equiv-
alent:

(i) S is a nil-extension of a band;
(ii) (∀x, a, y ∈ S)(∃n ∈ Z+) xany = (xany)2;

(iii) S is periodic and E(S) is an ideal of S;
(iv) S is a semilattice of nil-extensions of rectangular bands and SeS = E(S)

for all e ∈ E(S).

A construction for semigroups from Theorem 3.26. is given by X.M.Ren and
Y.Q.Guo [126].

Theorem 3.27. [23] A semigroup S is a nil-extension of a semilattice of singular
bands if and only if for all a, b ∈ S and a, y ∈ S1 there exists n ∈ Z+ such that
x(ab)n = x(ab)nyxbay or x(ab)ny = xbayx(ab)ny.

Corollary 3.19. [23] A semigroup S is a nil-extension of a semilattice of left
zero bands if and only if for all a, b ∈ S and a, y ∈ S1 there exists n ∈ Z+ such
that x(ab)n = x(ab)nyxbay.

Corollary 3.20. [126] The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a left regular band;

(ii) S is a semilattice of nil-extensions of left zero bands, E(S) is a left ideal
of S and eae = ea = ea2 for all a ∈ S, e ∈ E(S);

(iii) S is periodic, E(S) is a left ideal of S and eae = ea = ea2 for all
a ∈ S, e ∈ E(S).

Theorem 3.28. [126] The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice;

(ii) S is a semilattice of nil-semigroups and ea = ae = a2e for all a ∈ S, e ∈
E(S);

(iii) S is periodic and ea = ae = a2e for all a ∈ S, e ∈ E(S).

Theorem 3.29. [23] A semigroup S is a nil-extension of a chain of rectangular
bands if and only if for all a, b ∈ S and x, y ∈ S1 there exists n ∈ Z+ such that
xany = (xanbany)2 or xbny = (xbnabny)2.

Corollary 3.21. [23] A semigroup S is a nil-extension of a chain of left zero
bands if and only if for all a, b ∈ S and x, y ∈ S1 there exists n ∈ Z+ such that
xanbny = (xany)2 or xbnany = (xbny)2.

Corollary 3.22. [23] A semigroup S is a nil-extension of a Rédei’s band if
and only if for all a, b ∈ S and x, y ∈ S1 there exists n ∈ Z+ such that
xanbny = (xany)2 or xanbny = (xbny)2.

Theorem 3.30. [23] A semigroup S is a retractive nil-extension of a band if
and only if for all a, b ∈ S and x, y ∈ S1 there exists n ∈ Z+ such that
x(ab)n+ky = (xan+kbn+ky)2, for all k ∈ Z+.
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Theorem 3.31. [23] A semigroup S is a retractive nil-extension of a rectangular
band if and only if for all a, b, c ∈ S there exists n ∈ Z+ such that (ac)n+k =
an+kbcn+k, for all k ∈ Z+.

Theorem 3.32. [23] A semigroup S is a retractive nil-extension of a left zero
band if and only if for all a, b ∈ S there exists n ∈ Z+ such that (ab)n = a2n+1.

Theorem 3.33. [23] A semigroup S is a retractive nil-extension of a semi-
lattice of singular bands if and only if for all a, b,∈ S and x, y ∈ S1 there
exists n ∈ Z+ such that x(ab)n+ky = xan+kbn+kyxbn+kan+ky or x(ab)n+ky =
xbn+kbn+kyxan+kbn+ky, for all k ∈ Z+.

Corollary 3.23. [23] A semigroup S is a retractive nil-extension of a semilattice
of left zero bands if and only if for all a, b,∈ S and x, y ∈ S1 there exists n ∈ Z+

such that x(ab)n+ky = xan+kbn+kyxbn+kan+ky, for all k ∈ Z+.

Theorem 3.34. [23] A semigroup S is a retractive nil-extension of a Rédei’s
band if and only if for all a, b,∈ S and x, y ∈ S1 there exists n ∈ Z+ such that
x(ab)ny = (xany)2 or x(ab)ny = (xbny)2.

3.4. Primitive π-regular semigroups

Various characterizations for primitive regular semigroups has been obtained
by T.E.Hall [78], G.Lallement and M.Petrich [86], G.B.Preston [112], O.Steinfeld
[135] and P.S.Venkatesan [170,171] (this appeared also in the book of A.H.Clifford
and G.B.Preston [58]). J.Fountain [68] considered primitive abundant semigroups.
In this section some characterizations of primitive π-regular semigroups are given,
which generalize the previous results for primitive regular semigroups.

An ideal I of a semigroup S = S0 is a nil-ideal of S if I is a nil-semigroup.
By R∗(S) we denote Clifford’s radical of a semigroup S = S0, i.e. the union of
all nil-ideals of S (it is the greatest nil-ideal of S).

Lemma 3.3. [31] Let S = S0 be a semigroup. If eS ( Se ) is a 0-minimal
right (left) ideal of S generated by a nonzero idempotent e, then e is primitive.

A nonzero idempotent e of a semigroup S = S0 which generates 0-minimal
left (right) ideal is called left (right) completely primitive. An idempotent e is
completely primitive if it is both left and right completely primitive. A semigroup
S is (left, right) completely primitive if all of its nonzero idempotents are (left,
right) completely primitive. In regular semigroups the notions ”primitive” and
”completely primitive” coincide.

Lemma 3.4. [31] Let S = S0 be a regular semigroup and let e ∈ E(S∗). Then
e is primitive if and only if eS ( Se ) is a 0-minimal left (right) ideal of S. �

Theorem 3.35. [31] The following conditions on a semigroup S = S0 are
equivalent:

(i) S is a nil-extension of a primitive regular semigroup;
(ii) S is a completely primitive π-regular semigroup;
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(iii) S is completely π-regular and SeS is a 0-minimal ideal of S for every
e ∈ E(S∗);

(iv) S is a primitive π-regular semigroup and R∗(SE(S)S) = {0}.

Theorem 3.36. [31] The following conditions on a semigroup S are equivalent:
(i) S is a primitive π-regular semigroup;

(ii) S is an ideal extension of a nil-semigroup by a completely primitive π-regular
semigroup;

(iii) S is a nil-extension of a semigroup which is an ideal extension of a nil-
semigroup by a primitive regular semigroup.

Corollary 3.24. [31] A semigroup S = S0 is a completely primitive π-inverse
semigroup if and only if S is a nil-extension of a primitive inverse semigroup.

Corollary 3.25. [31] The following conditions on a semigroup S are equivalent:
(i) S is a primitive π-inverse semigroup;

(ii) S is an ideal extension of a nil-semigroup by a completely primitive π-inverse
semigroup;

(iii) S is a nil-extension of a semigroup which is an ideal extension of a nil-
semigroup by a primitive inverse semigroup.

Chapter 4. Decompositions induced by identities

4.1. Basic definitions

By A+ we denote the free semigroup over an alphabet A and by A∗ we
denote the free monoid over an alphabet A. By |u| we denote the length
of a word u ∈ A+ and by |x|u we denote the number of appearances of the
letter x in u. A word v ∈ A+ is a subword (left cut, right cut) of a word
u ∈ A+ if v | u (v |

l
u, v |

r
u). If u ∈ A+, |u| ≥ 2, then by h(2)(u) (t(2)(u))

we denote the left (right) cut of u of the length 2. By h(u) (t(u)) we denote
the head (tail), by i(u) (f(u)) we denote the initial (final) part , by l(u) (r(u))
we denote the left (right) part, by u we denote the mirror image and by c(u)
we denote the content of the word u [103]. For a word u ∈ A+ by Π(u) we
denote the set Π(u) = { x ∈ A | |x|u = 1 }, by u = u(x1, . . . , xn) we denote that
c(u) = {x1, . . . , xn}. If u ∈ A+ and let x ∈ A, then by x ‖

l
u ( x ‖

r
u ) we

denote that u = xu′, u′ ∈ A+, x - u′ ( u = u′x, u′ ∈ A+, x - u′ ), where ”-” is
the complement of ”|”. Otherwise we write x ∦

l
u ( x ∦

r
u ). Since in this chapter

we consider free semigroups over finite alphabets, then we introduce the following
notations for finite alphabets: For n ∈ Z+, n ≥ 3, An = {x1, x2, . . . , xn}, and
A2 = {x, y}.

Let u ∈ A+
n and let S be a semigroup. By a value of the word u in the

valuation a = (a1, . . . , an) ∈ Sn we mean the element u(a) = F (u) ∈ S, where
F : A+

n → S is the homomorphism determined by F (xi) = ai, i ∈ {1, 2, . . . , n}.
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By [u = v] we denote the variety determined by the identity u = v. Identities
u = v and u′ = v′ over an alphabet A+

n are p-equivalent if u′ = v′ can be
obtained from u = v by some permutation of letters. It is clear that p-equivalent
identities determines the same variety. If X is a class of semigroups, then u = v
is an X -identity if [u = v] ⊆ X . If X1 and X2 are classes of semigroups, then
u = v is a X1 . X2-identity if [u = v] ∩ X1 ⊆ X2.

Throughout this chapter we will consider problems of recognition of identities
which induce several types of semigroup decompositions, i.e. problems of the fol-
lowing two types:

(P1) if X is a class of semigroups, find all X -identities;
(P2) if X1 and X2 are classes of semigroups, find all X1 .X2-identities;

4.2. Identities and semilattices of Archimedean semigroups

An identity u = v is homotype if c(u) = c(v) and it is heterotype if c(u) 6= c(v).
The homotype identities will be considered firstly, i.e. the identity of the form
(1) u(x1, x2, . . . , xn) = v(x1, x2, . . . , xn).

Lemma 4.1. [44] Let ϑ be an equivalence on A+
2 determined by the partition

Ca = {(xy)nx | n ∈ Z+ ∪ {0} }, Cb = {(yx)ny | n ∈ Z+ ∪ {0} },
Cab = {(xy)n | n ∈ Z+}, Cba = {(yx)n | n ∈ Z+},

C0 = A+
2 − (Ca ∪ Cb ∪ Cab ∪ Cba).

Then ϑ is a congruence and the factor A+
2 /ϑ is isomorphic to B2.

By the following theorem some characterizations of all identities which induce
decompositions into a semilattice of Archimedean semigroups are given.

Theorem 4.1. [44] The following conditions for an identity (1) are equivalent:
(i) (1) is an A ◦ S-identity;

(ii) (1) is not satisfied in the semigroup B2;
(iii) there exists a homomorphism T : A+

n → A+
2 such that (T (u), T (v)) /∈ ϑ;

(iv) there exists a homomorphism T : A+
n → A+

2 and a permutation π of a set
{u, v} such that one of the following conditions hold:
(A1) T (π(u)) ∈ Cab and T (π(v)) /∈ Cab;
(A2) T (π(u)) ∈ Ca and T (π(v)) /∈ Ca;

(v) there exists k ∈ Z+ and w ∈ C0 ⊂ A+
2 such that [u = v] ⊆ [(xy)k = w].

For one description of identities satisfied on B2 we refer to the paper of
G.I.Maxevicki$i [176].

Several special types of A◦S-identities are considered by T.Tamura and N.Kimu-
ra [161], J.L.Chrislock [39], T.Tamura and J.Shafer [164], T.Tamura and T.Nordahl
[163], T.Nordahl [97], M.V.Sapir i E.V.Suhanov [130]. By Theorem 4.1. it fol-
lows that permutation identities , i.e. identities of the form x1x2 . . . xn = xπ(1)xπ(2)
. . . xπ(n), where π is a nonidentical permutation of a set {1, 2, . . . , n}, and
quasi-permutation identities , i.e. identities of the form x1 . . . vxk−1yxk+1 . . . xn =
xπ(1) . . . xπ(l−1)y2xπ(l) . . . xπ(n), where π is a permutation of a set {1, 2, . . . , n},
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are A◦S-identities. For connections with semigroup varieties see L.N.Xevrin i
M.V.Volkov [151].

Theorem 4.2. [44] The identity (1) is a πR .CA◦S-identity if and only if (1)
is an A ◦ S-identity.

Theorem 4.3. [44] Let X be any variety of semigroups. The following conditions
are equivalent:

(i) X ⊆ A ◦ S;
(ii) X not contain the semigroup B2;

(iii) every regular semigroup from X is completely regular;
(iv) every completely 0-simple semigroup from X have not zero divisors;
(v) in every semigroup with zero from X the set of all nilpotents is a subsemi-

group;
(vi) in every semigroup with zero from X the set of all nilpotents is an ideal.

For other connections of these results with semigroup varieties we refer to M.V.
Sapir i E.V.Suhanov [130], M.Schutzenberger [131], L.N.Xevrin i M.V.Vol-
kov [151] and L.N.Xevrin i M.V.Suhanov [152].

Theorem 4.4. [44] The following conditions for an identity (1) are equivalent:
(i) (1) is a πR . (LG ◦ N ) ◦ S-identity;

(ii) (1) is not satisfied in semigroups B2 and R2;
(iii) (1) is an A ◦ S-identity and t(u) 6= t(v).

Corollary 4.1. [44] The following conditions for an identity (1) are equivalent:
(i) (1) is a πR . (G ◦ N ) ◦ S-identity;

(ii) (1) is not satisfied in semigroups B2, R2 and L2;
(iii) (1) is an A ◦ S-identity, h(u) 6= h(v) and t(u) 6= t(v).

Note that the description of LA ◦ S-identities and T A ◦ S-identities in general
case is an open problem. In the section 4.5. these identities over the twoelement al-
phabet will be described. Semigroups satisfying the identity x1 . . . xmxm+1 . . . xm+n

= xm+1 . . . xm+nx1 . . . xm, m,n ∈ Z+, called (m,n)-commutative semigroups are
considered by I.Babcsány [5], I.Babcsány and A.Nagy [6], S.Lajos [83,84,85] and
A.Nagy [95,96]. S.Lajos in [83] proved that these identities are T A ◦ S-identities.

Theorem 4.5. [44] The following conditions for an identity (1) are equivalent:
(i) (1) is a πR . (CS ~N ) ◦ S-identity;

(ii) (1) is not satisfied in semigroups B2, L3,1 and R3,1;
(iii) (1) is an A ◦ S-identity, h(2)(u) 6= h(2)(v) and t(2)(u) 6= t(2)(v).

Corollary 4.2. [44] The following conditions for an identity (1) are equivalent:
(i) (1) is a πR . (LG ~N ) ◦ S-identity;

(ii) (1) is not satisfied in semigroups B2, L3,1 and R2;
(iii) (1) is an A ◦ S-identity, h(2)(u) 6= h(2)(v) and t(u) 6= t(v).
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4.3. Identities and bands of π-groups

For an identity (1), by pi we denote the number
pi = ||xi|u − |xi|v| ,

i ∈ {1, 2, . . . , n}. An identity (1) is periodic if pi 6= 0 for some i ∈ {1, 2, . . . , n}.
In such a case the number p = gcd(p1, . . . , pn) is the period of the identity (1).
Otherwise we say that (1) is aperiodic and that it is of the period p = 0, [44].

Periodic identities have been considered with various names, but, following the
sense of the Proposition 4.1, we will use the previous name.

Proposition 4.1. [44] The following conditions on an identity (1) are equivalent:
(i) [u = v] consists of π-regular semigroups;

(ii) [u = v] consists of completely π-regular semigroups;
(iii) [u = v] consists of periodic semigroups;
(iv) (1) is a periodic identity.

Let (1) be an identity for which
i(u) = i(v) = xπ(1)xπ(2) . . . xπ(n)

for some permutation π of a set {1, 2, . . . , n}. For k ∈ {1, 2, . . . , n− 1} by uk

(vk) we denote the left cut of u (v) of the greatest length which contains exactly
k letters (i.e. which not contains the letter xπ(k+1)). It is clear that

uk = uk(xπ(1), . . . , xπ(k)) , vk = vk(xπ(1), . . . , xπ(k)) .

For k ∈ {1, 2, . . . , n− 1} and i ∈ {1, . . . , k} we will use the notation
lk,i = ||xπ(i)|uk − |xπ(i)|vk | .

An identity (1) is an identity with left distortion if i(u) 6= i(v). Otherwise,
(1) is without left distortion. Similarly we define identities with (without) right
distortion, [44].

We define the left characteristic l of an identity (1) in the following way:
(i) l = 1, if (1) is an identity with left distortion;

(ii) l is the greatest common divisor of integers
p, lk,i, 1 ≤ k ≤ n− 1, 1 ≤ i ≤ k,

if (1) is without left distortion and some of integers p and lk,i is different to 0;
(iii) l = 0, if (1) is without left distortion and all of numbers p and lk,i are

equal to 0, [44].
By right characteristic of an identity (1) we mean the left characteristic of the

identity u = v.

Theorem 4.6. [44] The following conditions for an identity (1) are equivalent:
(i) (1) is a πR . (G ◦ N ) ◦ B-identity;

(ii) (1) is not satisfied in semigroups B2, L3,1, R3,1, LZ(d) and RZ(d) for
d ∈ Z+, d ≥ 2;

(iii) (1) is a πR . (CS ~N ) ◦ S-identity of the left and the right characteristic
equal to 1.
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Using existing classifications of bands (see, for example, [103]), descriptions of
identities which induce decompositions of π-regular semigroups into some special
types of bands of π-groups can be obtained.

Theorem 4.7. [44] The following conditions for an identity (1) are equivalent:
(i) (1) is a UG . G ◦ B-identity;

(ii) (1) is not satisfied in semigroups LZ(d) and RZ(d) for d ∈ Z+, d ≥ 2;
(iii) (1) is an identity of left and right characteristic equal to 1.

The description of T A◦B-identities in general case is an open problem. Identities
of this type are considered only by M.S.Putcha [114], where M.S.Putcha proved
that the identity (xy)2 = x2y2 is T A ◦ B-identity.

The identities of the form (xy)n = xnyn, n ∈ Z+, n ≥ 2, are considered many
a times. By Theorem 4.6. we obtain that this identity is a πR.(G◦N )◦B- identity
if and only if n = 2.

For connections with semigroup varieties we refer to V.V.Rasin [124] and
L.N.Xevrin i E.V.Suhanov [152].

4.4. Identities and nil-extensions of unions of groups

Theorem 4.8. [45] The following conditions are equivalent for the identity (1):
(i) (1) is a UG ◦ N -identity;

(ii) (1) is not satisfied in semigroups C1,1, C1,2 and C2,1;
(iii) Π(u) 6= Π(v) and (1) is p-equivalent to some identity of one of the following

forms:
(A1) x1u′(x2, . . . , xn) = v′(x1, . . . , xn−1)xn ,

where x1 ∦
l
v′ and xn ∦

r
u′;

(A2) x1u′xn = v′ ,
where x1, xn - u′, x1 ∦

l
v′ and xn ∦

r
v′;

(A3) x1u′(x2, . . . , xn) = v′(x2, . . . , xn)x1 .

Corollary 4.3. [45] The following conditions are equivalent for the identity (1):
(i) (1) is a (LG ◦ S) ◦ N -identity;

(ii) (1) is not satisfied in semigroups C1,1, C1,2, C2,1 and R2;
(iii) (1) is a UG ◦ N -identity and t(u) 6= t(v).

Corollary 4.4. [45] The following conditions are equivalent for the identity (1):
(i) (1) is a (G ◦ S) ◦ N -identity;

(ii) (1) is a (G ◦ S) ~N -identity;
(iii) (1) is not satisfied in semigroups C1,1, C1,2, C2,1, R2 and L2;
(iv) (1) is a UG ◦ N -identity, t(u) 6= t(v) and h(u) 6= h(v).

Corollary 4.5. [45] The following conditions are equivalent for the identity (1):
(i) (1) is a (G ◦ B) ◦ N -identity;

(ii) (1) is not satisfied in semigroups C1,1, C1,2, C2,1, LZ(n) and RZ(n), for
n ∈ Z+, n ≥ 2;

(iii) (1) is a UG ◦ N -identity and UG . G ◦ B-identity.
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Theorem 4.9. [45] The following conditions are equivalent for the identity (1):
(i) (1) is a UG ~N -identity;

(ii) (1) is not satisfied in semigroups C1,1, C1,2, C2,1, L3,1 and R3,1;
(iii) (1) is a UG ◦ N -identity and

h(2)(u) 6= h(2)(v) and t(2)(u) 6= t(2)(v) .

Corollary 4.6. [45] The following conditions are equivalent for the identity (1):
(i) (1) is a (LG ◦ S) ~N -identity;

(ii) (1) is not satisfied in semigroups C1,1, C1,2, C2,1, L3,1 and R2;
(iii) (1) is a UG ◦ N -identity, h(2)(u) 6= h(2)(v) and t(u) 6= t(v).

Lemma 4.2. [130] Let Q be a nil-semigroup which satisfies the identity
x1x2 . . . xn = w ,

where |w| ≥ n + 1. Then Qn = {0}.

Let A+
N be the free semigroup over an alphabet AN = { xk | k ∈ Z+ } and

let
I = { u ∈ A+

N | (∃xi ∈ AN ) |xi|u ≥ 2 }.
Then I is an ideal of A+

N . By DN we will denote the factor semigroup (A+
N )/I.

It is clear that DN is isomorphic to the semigroup
({ u ∈ A+

N | Π(u) = c(u) } ∪ {0}, ·) ,
where the multiplication ” · ” is defined by

u · v =
{

uv if u, v 6= 0 and c(u) ∩ c(v) = ∅
0 otherwise

.

DN is a nil-semigroup and it is not nilpotent.

Theorem 4.10. [45] Let k ∈ Z+. Then the following conditions are equivalent
for the identity (1):

(i) (1) is a UG ◦ Nk-identity;
(ii) (1) is not satisfied in semigroups C1,1, C1,2, C2,1, DN and Nk+1;

(iii) n ≤ k + 1 and (1) is p-equivalent to some identity of the form
(15) x1x2 . . . xn = w ,
where |w| ≥ n + 1, x1 ∦

l
w and xn ∦

l
w.

Corollary 4.7. [45] Let k ∈ Z+. Then the following conditions are equivalent
for the identity (1):

(i) (1) is a UG ~Nk-identity;
(ii) (1) is not satisfied in semigroups C1,1, C1,2, C2,1, L3,1, R3,1, DN and

Nk+1;
(iii) (1) is p-equivalent to some identity of the form

x1x2 . . . xn = w ,
where |w| ≥ n + 1, h(2)(u) 6= x1x2 and and t(2)(v) 6= xn−1xn.
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Corollary 4.8. [52] A semigroup identity determines a variety of inflations of
unions of groups if and only if this identity has one of the following forms:

(i) x = w, where w is a word other than x;
(ii) xy = w, where w is a word other that yx and which neither begins nor

ends in xy.

Structure of semigroups satisfying some of UG ◦ N -identities are considered by
E.Tully (see [157]), T.Tamura [157], Lee Sin-Min [132], M.Petrich [104], J.Gerhard
[74], M.Ćirić and S.Bogdanović [42] and so on. Connections between some types of
UG ◦N -identities and semigroup varieties are considered by A.B.Tiwenko in [169].

4.5. Identities over the twoelement alphabet

In the next the following identity will be considered
(2) u(x, y) = v(x, y).

Theorem 4.11. [46] The identity (2) is a A ◦ S-identity if and only if it is
p-equivalent to one of the following identities:
(A1) xy = w, where w ∈ A+

2 − {xy};
(A2) (xy)k = w, where k ∈ Z+, k ≥ 2 and w ∈ A+

2 − {(xy)m | m ∈ Z+};
(A3) (xy)kx = w, where k ∈ Z+ and w ∈ A+

2 − {(xy)mx | m ∈ Z+};
(A4) xyk = w, where k ∈ Z+, k ≥ 2 and w ∈ A+

2 − {xym | m ∈ Z+};
(A5) xky = w, where k ∈ Z+, k ≥ 2 and w ∈ A+

2 − {xmy | m ∈ Z+}.

Theorem 4.12. [46] The following conditions for the identity (2) are equivalent:
(i) (2) is a LA ◦ S-identity;

(ii) (2) is not satisfied in semigroups B2 and R2;
(iii) (2) is a A ◦ S-identity and t(u) 6= t(v).

Corollary 4.9. [46] The following conditions for the identity (2) are equivalent:
(i) (2) is a T A ◦ S-identity;

(ii) (2) is not satisfied in semigroups B2, R2 and L2;
(iii) (2) is a A ◦ S-identity, t(u) 6= t(v) and h(u) 6= h(v).

Theorem 4.13. [46] The identity (2) is a CS .M× G-identity if and only if
one of the following conditions holds:
(B1) h(u) 6= h(v) or t(u) 6= t(v);
(B2) (1) is p-equivalent to some identity of the form

xm1yn1xm2yn2 · · ·xmhynh = xk1yl1xk2yl2 · · ·xksyls

mi, ni, kj , lj ∈ Z+, with gcd(px, py, h− s) = 1, where px = Σ h
i=1mi − Σ s

j=1kj

and py = Σ h
i=1ni − Σ s

j=1lj.
(B3) (1) is p-equivalent to some identity of the form

xm1yn1xm2yn2 · · ·xmhynhxmh+1 = xk1yl1xk2yl2 · · ·xksylsxks+1

mi, ni, kj , lj ∈ Z+, with gcd(px, py, h− s) = 1, where px = Σh+1
i=1 mi − Σs+1

j=1kj

and py = Σ h
i=1ni − Σ s

j=1lj.
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Corollary 4.10. [46] The identity (2) is a πR . (M×G ◦N ) ◦S-identity if and
only if (2) is a A ◦ S-identity and a CS .M×G-identity.

Proposition 4.2. [46] The identity (2) is a UG ◦ N -identity if and only if it is
p-equivalent to an identity of one of the following forms:
(C1) xy = w, where w ∈ A+

2 and w /∈ {xym | m ∈ Z+}∪{xmy | m ∈ Z+}∪{yx};
(C2) xym = xny, where m,n ∈ Z+, m, n ≥ 2.

Proposition 4.3. [46] The identity (2) is a UG ~N -identity if and only if it is
p-equivalent to an identity of one of the following forms:
(D1) xy = w, where w ∈ A+

2 , |w| ≥ 3 and h(2)(w) 6= xy 6= t(2)(w);
(D2) xym = xny, where m,n ∈ Z+, m, n ≥ 2.

4.6. Problems of Tamura’s type

T.Tamura in [157] posed the problem of describing the structure of semigroups
satisfying the identity of the form xy = w(x, y), |w| ≥ 3, which we call Tamura’s
problems. Firstly, solutions of some types of Tamura’s problems will be presented.

A regular semigroup is orthodox if its idempotents form a subsemigroup. An
orthodox union of groups we call an orthogroup, a band of groups we call a cryp-
togroup and an orthodox band of groups we call an orthocryptogroup. If S is a
union of groups, then Green’s J -classes of S we call completely simple components
of S.

Theorem 4.14. [46] Let S be an orthogroup. Then S satisfies the identity
u = v over the alphabet An if and only if all of its subgroups satisfy u = v,
l(u)(a) L l(v)(a) and r(u)(a) R r(v)(a), for all a ∈ Sn.

Corollary 4.11. [46] Let S be an orthocryptogroup. Then S satisfies the
identity u = v if and only if all of its subgroups satisfy u = v and S/H satisfies
u = v.

Theorem 4.15. [46] Let S be an cryptogroup and let u = v be an identity over
the alphabet A2 such that h(u) = h(v) and t(u) = t(v). Then S satisfies
u = v if and only if all of its completely simple components satisfy u = v.

Let we consider the identity
(3) xy = xm1yn1xm2yn2 · · ·xmhynh ,
with h, mi, ni ∈ Z+, i ∈ {1, 2, . . . , h} and h = 1 ⇒ m1, n1 ≥ 2. Also,
px = Σ h

i=1mi − 1, py = Σ h
i=1ni − 1, p = gcd(px, py) (i.e. p is the period of the

identity (3) ).

Theorem 4.16. [46] A semigroup S satisfies the identity (2) with gcd(px, py,
h − 1) = 1 if and only if S2 is an orthogroup whose subgroups satisfy (2),
ab L am1b and ab R abnh , for all a, b ∈ S.

Corollary 4.12. [46] A semigroup S satisfies the identity (3) with m1, nh = 1
if and only if S2 is an orthogroup whose subgroups satisfy (3).
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Theorem 4.17. [46] A semigroup S satisfies the identity (3) with m1, nh ≥ 2
and gcd(px, py,m1 − 1) = gcd(px, py, nh − 1) = 1 if and only if S is an inflation
of a cryptogroup whose completely simple components satisfy (3).

Corollary 4.13. [46] (i) A semigroup S satisfies the identity (3) with p =
m1 = nh = 1 if and only if S2 is a band.

(ii) A semigroup S satisfies the identity (3) with p = 1 and m1, nh ≥ 2
if and only if S is an inflation of a band if and only if S satisfies the system of
identities xy = x2y = xy2 if and only if S satisfies the identity xy = x2y2.

(iii) A semigroup S satisfies the identity (3) with p = 1 and m1 ≥ 2, nh = 1
(m1 = 1, nh ≥ 2) if and only if S2 is a band and S satisfies the identity xy = x2y
(xy = xy2).

Corollary 4.14. [46] A semigroup S satisfies the identity (3) with m1, nh ≥ 2
and gcd(px, py,m1 − 1) = gcd(px, py, nh − 1) = gcd(px, py, h− 1) = 1 if and only
if S is an inflation of an orthocryptogroup whose subgroups satisfy (3).

Let we consider the identity
(4) xy = yn0xm1yn1xm2yn2 · · ·xmhynh ,
with h, n0, mi, ni ∈ Z+, i ∈ {1, 2, . . . , h}. Also, px = Σ h

i=1mi − 1, py =
Σ h

i=0ni − 1, p = gcd(px, py) (i.e. p is the period of the identity (4) ).

Theorem 4.18. [46] A semigroup S satisfies the identity (4) if and only if S2

is a semilattice of right groups whose subgroups satisfy (4) and ab R abnh , for
all a, b ∈ S.

Corollary 4.15. [17] A semigroup S satisfies the identity (4) with nh = 1 if
and only if S2 is a semilattice of right groups whose subgroups satisfy (4).

Corollary 4.16. [46] (i) A semigroup S satisfies the identity (4) with p =
nh = 1 if and only if S2 is a right regular band.

(ii) A semigroup S satisfies the identity (4) with p = 1 and nh ≥ 2 if and
only if S is an inflation of a right regular band.

Theorem 4.19. [46] A semigroup S satisfy the identity (4) with nh ≥ 2 and
gcd(px, py, nh − 1) = 1 if and only if S is an inflation of a right regular band of
groups whose subgroups satisfy (4).

Let we consider the identity
(5) xy = yn1xm1yn2xm2yn2 · · · ynhxmh ,
with h, mi, ni ∈ Z+, i ∈ {1, 2, . . . , h}, Σ h

i=1mi + Σ h
i=0ni ≥ 3.

Theorem 4.20. [157] A semigroup S satisfies the identity (5) if and only if S
is an inflation of a semilattice of groups satisfying (5).

Except Tamura’s problems, some other problems of this type will be also quoted.
Let we consider the identity

(6) xym = xny ,
with m,n ∈ Z+, m, n ≥ 2. By p = gcd(m− 1, n− 1) we will denote the period
of the identity (6).
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Theorem 4.21. [46] A semigroup S satisfies the identity (6) if and only if S is
a retractive extension of a semigroup which satisfies x = xp+1 by a nil-semigroup
which satisfies (6).

Let n ∈ Z+, n ≥ 2. A semigroup S is left (right) n-distributive if it satisfies the
identity a(x1x2 . . . xn) = (ax1)(ax2) . . . (axn) ((x1x2 . . . xn)a = (x1a)(x2a) . . . (xna)).
A semigroup S is n-distributive if it is both left and right n-distributive. A 2-
distributive (left 2-distributive, right 2-distributive) semigroup is distributive (left
distributive, right distributive).

Theorem 4.22. [42] A semigroup S is n-distributive if and only if S is an
n-inflation of an orthodox semigroup which is a normal band of commutative groups
satisfying xn = x.

Corollary 4.17. [104] A semigroup S is distributive if and only if S is a
2-inflation of a normal band.

Theorem 4.23. [92] The following conditions on a semigroup S are equivalent:
(i) S satisfies the identities xym = yxm = (xym)n, n > 1;

(ii) S contains a commutative Clifford’s subsemigroup M and satisfies
(A1) xk+1 = x for all x ∈ M , where k = gcd(m− 1, n− 1);
(A2) xym ∈ M for all x, y ∈ S;

(i) S is a semilattice Y of semigroups Sα, α ∈ Y , such that each Sα is
an ideal extension of a group Gα by Qα and the following conditions are
satisfied:
(B1) each Gα is commutative and satisfies xk = e for all x ∈ Gα, where
e is the identity element of Gα and k being defined in (A1);
(B2) Qα satisfies xym = 0 for all x, y ∈ Qα, where 0 is the zero element
of Qα;
(B3) if x ∈ Sα, y ∈ Sβ , α 6= β, then xym ∈ Gαβ.

Finally, we quote a result of J.Chrislock [40] which describe semigroups satisfying
a heterotype identity.

Theorem 4.24. The following conditions on a semigroup S are equivalent:
(i) S satisfies a heterotype identity;

(ii) S satisfies an identity of the form (xkykxk)k = xk, k ∈ Z+;
(i) there exists r ∈ Z+ such that S is an ideal extension of a completely

simple semigroup whose structure group satisfies xr = 1 by a semigroup that
satisfies yr = 0.
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[5] I.Babcsány, On (m, n)-commutative semigroups , PU.M.A. Ser. A, Vol. 2,
No. 3-4 (1991), 175–180.
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[8] S.Bogdanović, A note on strongly reversible semiprimary semigroups, Publ.
Inst. Math. 28 (42), 1980, 19–23.

[9] , r-semigrupe, Zbornik radova PMF Novi Sad, 10 (1980), 149–152.
[10] , Bands of power joined semigroups, Acta Sci. Math. 44 (1982), 3–4.
[11] , Some characterizations of bands of power joined semigroups, Algebraic

conference 1981, Novi sad, 121–125.
[12] , O slabo komutativnoj polugrupi, Mat. Vesnik 5 (18) (33), 1981, 145–148.
[13] , Bands of periodic power joined semigroups, Math. Sem. Notes Kobe

Univ. 10 (1982), 667–670.
[14] , Semigroups of Galbiati-Veronesi, Algebra and Logic, Zagreb, 1984, 9–20.
[15] , Right π-inverse semigroups, Zbornik radova PMF Novi Sad, 14, 2 (1984),

187–195.
[16] , Inflation of a union of groups, Mat. Vesnik, 37 (1985), 351–355.
[17] , Semigroups of Galbiati-Veronesi II, Facta Univ. Nǐs, Ser. Math. Inform.
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Yugoslavia
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