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POWER SEMIGROUPS THAT ARE ARCHIMEDEAN

Stojan Bogdanović and Miroslav Ćirić

ABSTRACT. Power semigroups of various semigroups were studied by a number of au-
thors. Here we give structural characterizations for semigroups whose power semigroups
are Archimedean and we generalize some results from [1], [8], [10] and [11].

Throughout this paper, Z+ will denote the set of all positive integers. For
an element a of a semigroup S, 〈a〉 wil denote the cyclic subsemigroup of S
generated by a. For a semigroup S, let P(S) = {A | ∅ 6= A ⊆ S}. If the
multiplication on P(S) is defined by AB = {ab | a ∈ A, b ∈ B}, then P(S)
is a semigroup which will be called the power semigroup of S, [11].

A semigroup S is intra-π-regular if for each a ∈ S there exists n ∈ Z+

such that an ∈ Sa2nS. A semigroup S is left π-regular if for each a ∈ S
there exists n ∈ Z+ such that an ∈ San+1, and it is left regular if for any
a ∈ S, a ∈ Sa2. Right π-regular and right regular semigroups are defined
dually.

A semigroup S is Archimedean if for any a, b ∈ S there exists n ∈ Z+ such
that an ∈ SbS. A semigroup S is left Archimedean (weakly left Archimedean)
if for any a, b ∈ S there exists n ∈ Z+ such that an ∈ Sb ( an ∈ Sba ), [4].
Right Archimedean and weakly right Archimedean semigroups are defined
dually. A semigroup S is t-Archimedean (weakly t-Archimedean) if it is both
left and right Archimedean (weakly left and weakly right Archimedean). A
semigroup S is power joined if for any a, b ∈ S there exists m,n ∈ Z+

such that am = bn. A semigroup S is left completely Archimedean if it is
Archimedean and left π-regular. Right completely Archimedean semigroups
are defined dually. A semigroup S is completely Archimedean if it is both
left and right completely Archimedean. A semigroup S is left completely
simple if it is simple and left regular. Right completely simple semigroups
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are defined dually. A semigroup S is completely simple if it is both left and
right completely simple.

Further, S = S0 will means that S is a semigroup with zero 0. A semi-
group S = S0 is a nil-semigroup if for any a ∈ S there exists n ∈ Z+ such
that an = 0. For n ∈ Z+, a semigroup S = S0 is n-nilpotent if Sn = {0},
and S = S0 is nilpotent if it is n-nilpotent, for some n ∈ Z+. An ideal
extension S of a semigroup T will be called a nil-extension (nilpotent exten-
sion, n-nilpotent extension) if S/T is a nil-semigroup (nilpotent semigroup,
n-nilpotent semigroup).

Let T be a subsemigroup of a semigroup S. A mapping ϕ of S onto T will
be called a right retraction if aϕ = a, for each a ∈ S, and (ab)ϕ = a(bϕ), for
all a, b ∈ S. Left retractions are defined dually. A mapping ϕ of S onto T
is a retraction if it is a homomorphism and aϕ = a, for each a ∈ T . If T is
an ideal of S, then ϕ is a retraction of S onto T if and only if it is both left
and right retraction of S onto T . An ideal extension S of a semigroup T is a
(left, right) retractive extension of T if there exists a (left, right) retraction
of S onto T . A (left, right) retractive extension by an n-nilpotent semigroup
will be called a (left, right) n-inflation, 2-inflations will be called simply
inflations, and (left, right) retractive extensions by nilpotent semigroups
will be called (left, right) inflationary extensions.

A semigroup S is a singular band if it is either a left zero band or a right
zero band.

For undefined notions and notations we refer to [2], [3] and [7].

Theorem 1. The following conditions on a semigroup S are equivalent:

(i) P(S) is Archimedean;
(ii) P(S) is a nil-extension of a simple semigroup;
(iii) P(S) is Archimedean with an idempotent.

Proof. (i) ⇒ (iii). Asumme a ∈ S. For {a}, 〈a〉 ∈ P(S) there exists
B, C ∈ P(S) and n ∈ Z+ such that {a}n = B〈a〉C, so for b ∈ B, c ∈ C
and a2n ∈ 〈a〉 we have

an = ba2nc ∈ Sa2nS.

Therefore, S is intra-π-regular semigroup. Since S is also Archimedean, then
by Theorem VI 1.1 [2], S is a nil-extension of a simple semigroup K. Thus,
P(S) is an Archimedean semigroup with an idempotent K.

(iii) ⇒ (ii). This follows by Theorem 3.2 [6].
(ii) ⇒ (i). This follows by Theorem VI 1.1 [2]. �

Corollary 1. If P(S) is Archimedean, then S is a nilpotent extension of a
simple semigroup.
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Proof. By the proof of (i) ⇒ (iii) in Theorem 1, S is a nil-extension of
a simple semigroup K. Since P(S) is Archimedean, there exists n ∈ Z+,
A, B ∈ P(S) such that Sn = AKB, whence Sn = AKB ⊆ K = Kn ⊆ Sn.
Therefore, Sn = K, so S is a nilpotent extension of a simple semigroup. �

Theorem 2. The following conditions on a semigroup S are equivalent:

(i) P(S) is left completely Archimedean;
(ii) P(S) is completely Archimedean;
(iii) P(S) is a nil-extension of a rectangular band;
(iv) S is a nilpotent extension of a rectangular band.

Proof. (i) ⇒ (ii). By Theorem 1, P(S) has an idempotent, so by Corollary
4 [4], P(S) is completely Archimedean.

(ii) ⇒ (iv). Let a ∈ S. By Theorem 1, Sn = K is a simple semigroup, for
some n ∈ Z+. Also, by Theorem VI 2.2.1 [2], there exists m ∈ Z+, C ∈ P(S)
such that {a}m = {a}m〈a〉C{a}m. Now, for any c ∈ C we have

am = amacam = ama2cam = aamacam = aam = am+1,

and by this it follows that K is a rectangular band.
(iv) ⇒ (iii). Let Sn = K be a rectangular band, for some n ∈ Z+.

By Lemma 4 [8], P(K) is an ideal of P(S), and by Theorem 4 [10], P(K)
is an inflation of a rectangular band T . Since T 2 = T , T is an ideal of
P(K) and P(K) is an ideal of P(S), then T is an ideal of P(S). Also, for
A ∈ P(S), An ⊆ Sn = K, so An ∈ P(K), whence A2n ∈ T . Thus, P(S) is a
nil-extension of a rectangular band T .

(iii) ⇒ (i). This follows immediately. �

Corollary 1. The following conditions on a semigroup S are equivalent:

(i) P(S) is an inflation of a rectangular band;
(ii) S is an inflation of a rectangular band;
(iii) (∀x, y, z ∈ S) xz = xyz.

Proof. (ii) ⇔ (iii). This follows by Corollary 3.5 [5].
(iii) ⇒ (i). For A,B, C ∈ P(S), by (iii) we obtain that AC = ABC, so

by (ii) ⇔ (iii) we obtain (i).
(i) ⇒ (ii). This follows immediately. �

Theorem 3. The following conditions on a semigroup S are equivalent:

(i) P(S) is weakly left Archimedean;
(ii) P(S) is a right zero band of nil-extensions of left zero bands;
(iii) S is a right inflationary extension of a rectangular band.
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Proof. (i) ⇒ (ii). By Theorem 1, P(S) has an idempotent, so by Theorem
7 [4] we obtain (ii).

(ii) ⇒ (i). This follows immediately.
(i) ⇒ (iii). By Theorem 2, S is a nilpotent extension of a rectangular

band K. On the other hand, it is not hard to check that S is weakly left
Archimedean, so by Theorem 7 [4], S is a right retractive nil-extension of a
rectangular band T . Clearly, K = T , so (iii) holds.

(iii) ⇒ (i). Let S be a right inflationary extension of a rectangular band
K and let ϕ be a right retraction of S onto K. By the proof of Theorem 2,
P(S) is a nil-extension of P(K) and P(K) is an inflation of a rectangular
band T . Further, T is a right zero band Y of left zero bands Tα, α ∈ Y ,
so P(K) is a right zero band Y of semigroups Pα, α ∈ Y , where for each
α ∈ Y , Pα is an inflation of Tα. Assume A,B ∈ P(S). Then An, Bn ∈ T , for
some n ∈ Z+, and An ∈ Tα, Bn ∈ Tβ , for some α, β ∈ Y . Now, Aϕ ∈ P(K),
i.e. Aϕ ∈ Pγ , for some γ ∈ Y , so

An = An+1 = An+1ϕ = (AnA)ϕ = An(Aϕ) ∈ PαPγ ⊆ Pγ ,

and by An ∈ Tα we obtain γ = α, i.e. Aϕ ∈ Pα, whence

BnA = (BnA)ϕ = Bn(Aϕ) ∈ TβPα ⊆ T ∩ Pα = Tα.

Therefore, An, BnA ∈ T , whence An = AnBnA, since Tα is a left zero band.
Hence, P(S) is weakly left Archimedean. �

Corollary 3. The following conditions on a semigroup S are equivalent:
(i) P(S) is weakly t-Archimedean;
(ii) P(S) is a matrix of nil-semigroups;
(iii) S is an inflationary extension of a rectangular band.

Proof. This follows by Theorems 1 and 3 and Corollary 5 [4]. �

Theorem 4. The following conditions on a semigroup S are equivalent:
(i) P(S) is left Archimedean;
(ii) P(S) is a nil-extension of a left zero band;
(iii) S is a nilpotent extension of a left zero band.

Proof. (i) ⇒ (ii). By Theorem 1, P(S) has an idempotent, so by Theorem
VI 3.2.1 [2], P(S) is a nil-extension of a left group. On the other hand, by
Theorem 2, P(S) is a nil-extension of a rectangular band, and so P(S) is a
nil-extension of a left zero band.

(ii) ⇒ (iii). Let P(S) be a nil-extension of a left zero band T . By Theorem
2, S is an n-nilpotent extension of a rectangular band K, for some n ∈ Z+.
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For a, b ∈ K, {a}, {b} ∈ T , whence {a} · {b} = {a}, i.e. ab = a. Thus, K is
a left zero band.

(iii) ⇒ (ii). Let S be an n-nilpotent extension of a left zero band K,
for some n ∈ Z+. By Theorem 2, P(S) is a nil-extension of a rectangular
band T . Let A,B ∈ T . Then A = An ⊆ Sn = K and also B ⊆ K, whence
AB = A. Therefore, T is a left zero band.

(ii) ⇒ (i). This follows immediately. �

Corollary 4. The following conditions on a semigroup S are equivalent:

(i) P(S) is left completely simple;
(ii) P(S) is completely simple;
(iii) P(S) is a rectangular band;
(iv) P(S) is a singular band;
(v) S is a singular band.

Proof. (i) ⇒ (ii) ⇒ (iii). This follows by Theorem 2.
(iii) ⇒ (v). By (iii), each subset of S is its subsemigroup, so by the

well-known result of L. Rédei [9], S is an ordinal sum of singular bands (for
the definition of an ordinal sum see [7]). By Theorem 2, S is semilattice
indecomposable, whence S is a singular band.

(v) ⇒ (iv) and (iv) ⇒ (i). This follows immediately. �

Corollary 5. The following conditions on a semigroup S are equivalent:

(i) P(S) is t-Archimedean;
(ii) P(S) is power joined;
(iii) P(S) is a nil-extension of a group;
(iv) P(S) is a nil-semigroup;
(v) P(S) is nilpotent;
(vi) S is nilpotent.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iv) ⇔ (v) was proved by S. Bog-
danović [1], and in the commutative case, (i) ⇔ (vi) was proved by M. S.
Putcha [8]. �
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