POWER SEMIGROUPS THAT ARE ARCHIMEDEAN

Stojan Bogdanović and Miroslav Ćirić

Abstract. Power semigroups of various semigroups were studied by a number of authors. Here we give structural characterizations for semigroups whose power semigroups are Archimedean and we generalize some results from [1], [8], [10] and [11].

Throughout this paper, \mathbf{Z}^{+}will denote the set of all positive integers. For an element a of a semigroup $S,\langle a\rangle$ wil denote the cyclic subsemigroup of S generated by a. For a semigroup S, let $\mathbf{P}(S)=\{A \mid \emptyset \neq A \subseteq S\}$. If the multiplication on $\mathbf{P}(S)$ is defined by $A B=\{a b \mid a \in A, b \in B\}$, then $\mathbf{P}(S)$ is a semigroup which will be called the power semigroup of $S,[11]$.

A semigroup S is intra- π-regular if for each $a \in S$ there exists $n \in \mathbf{Z}^{+}$ such that $a^{n} \in S a^{2 n} S$. A semigroup S is left π-regular if for each $a \in S$ there exists $n \in \mathbf{Z}^{+}$such that $a^{n} \in S a^{n+1}$, and it is left regular if for any $a \in S, a \in S a^{2}$. Right π-regular and right regular semigroups are defined dually.

A semigroup S is Archimedean if for any $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that $a^{n} \in S b S$. A semigroup S is left Archimedean (weakly left Archimedean) if for any $a, b \in S$ there exists $n \in \mathbf{Z}^{+}$such that $a^{n} \in S b\left(a^{n} \in S b a\right)$, [4]. Right Archimedean and weakly right Archimedean semigroups are defined dually. A semigroup S is t-Archimedean (weakly t-Archimedean) if it is both left and right Archimedean (weakly left and weakly right Archimedean). A semigroup S is power joined if for any $a, b \in S$ there exists $m, n \in \mathbf{Z}^{+}$ such that $a^{m}=b^{n}$. A semigroup S is left completely Archimedean if it is Archimedean and left π-regular. Right completely Archimedean semigroups are defined dually. A semigroup S is completely Archimedean if it is both left and right completely Archimedean. A semigroup S is left completely simple if it is simple and left regular. Right completely simple semigroups

[^0]are defined dually. A semigroup S is completely simple if it is both left and right completely simple.

Further, $S=S^{0}$ will means that S is a semigroup with zero 0. A semigroup $S=S^{0}$ is a nil-semigroup if for any $a \in S$ there exists $n \in \mathbf{Z}^{+}$such that $a^{n}=0$. For $n \in \mathbf{Z}^{+}$, a semigroup $S=S^{0}$ is n-nilpotent if $S^{n}=\{0\}$, and $S=S^{0}$ is nilpotent if it is n-nilpotent, for some $n \in \mathbf{Z}^{+}$. An ideal extension S of a semigroup T will be called a nil-extension (nilpotent extension, n-nilpotent extension) if S / T is a nil-semigroup (nilpotent semigroup, n-nilpotent semigroup).

Let T be a subsemigroup of a semigroup S. A mapping φ of S onto T will be called a right retraction if $a \varphi=a$, for each $a \in S$, and $(a b) \varphi=a(b \varphi)$, for all $a, b \in S$. Left retractions are defined dually. A mapping φ of S onto T is a retraction if it is a homomorphism and $a \varphi=a$, for each $a \in T$. If T is an ideal of S, then φ is a retraction of S onto T if and only if it is both left and right retraction of S onto T. An ideal extension S of a semigroup T is a (left, right) retractive extension of T if there exists a (left, right) retraction of S onto T. A (left, right) retractive extension by an n-nilpotent semigroup will be called a (left, right) n-inflation, 2 -inflations will be called simply inflations, and (left, right) retractive extensions by nilpotent semigroups will be called (left, right) inflationary extensions.

A semigroup S is a singular band if it is either a left zero band or a right zero band.

For undefined notions and notations we refer to [2], [3] and [7].
Theorem 1. The following conditions on a semigroup S are equivalent:
(i) $\mathbf{P}(S)$ is Archimedean;
(ii) $\mathbf{P}(S)$ is a nil-extension of a simple semigroup;
(iii) $\mathbf{P}(S)$ is Archimedean with an idempotent.

Proof. (i) \Rightarrow (iii). Asumme $a \in S$. For $\{a\},\langle a\rangle \in \mathbf{P}(S)$ there exists $B, C \in \mathbf{P}(S)$ and $n \in \mathbf{Z}^{+}$such that $\{a\}^{n}=B\langle a\rangle C$, so for $b \in B, c \in C$ and $a^{2 n} \in\langle a\rangle$ we have

$$
a^{n}=b a^{2 n} c \in S a^{2 n} S
$$

Therefore, S is intra- π-regular semigroup. Since S is also Archimedean, then by Theorem VI 1.1 [2], S is a nil-extension of a simple semigroup K. Thus, $\mathbf{P}(S)$ is an Archimedean semigroup with an idempotent K.
(iii) \Rightarrow (ii). This follows by Theorem $3.2[6]$.
(ii) \Rightarrow (i). This follows by Theorem VI1.1 [2].

Corollary 1. If $\mathbf{P}(S)$ is Archimedean, then S is a nilpotent extension of a simple semigroup.

Proof. By the proof of (i) \Rightarrow (iii) in Theorem $1, S$ is a nil-extension of a simple semigroup K. Since $\mathbf{P}(S)$ is Archimedean, there exists $n \in \mathbf{Z}^{+}$, $A, B \in \mathbf{P}(S)$ such that $S^{n}=A K B$, whence $S^{n}=A K B \subseteq K=K^{n} \subseteq S^{n}$. Therefore, $S^{n}=K$, so S is a nilpotent extension of a simple semigroup.

Theorem 2. The following conditions on a semigroup S are equivalent:
(i) $\mathbf{P}(S)$ is left completely Archimedean;
(ii) $\mathbf{P}(S)$ is completely Archimedean;
(iii) $\mathbf{P}(S)$ is a nil-extension of a rectangular band;
(iv) S is a nilpotent extension of a rectangular band.

Proof. (i) \Rightarrow (ii). By Theorem 1, $\mathbf{P}(S)$ has an idempotent, so by Corollary 4 [4], $\mathbf{P}(S)$ is completely Archimedean.
(ii) \Rightarrow (iv). Let $a \in S$. By Theorem $1, S^{n}=K$ is a simple semigroup, for some $n \in \mathbf{Z}^{+}$. Also, by Theorem VI 2.2.1 [2], there exists $m \in \mathbf{Z}^{+}, C \in \mathbf{P}(S)$ such that $\{a\}^{m}=\{a\}^{m}\langle a\rangle C\{a\}^{m}$. Now, for any $c \in C$ we have

$$
a^{m}=a^{m} a c a^{m}=a^{m} a^{2} c a^{m}=a a^{m} a c a^{m}=a a^{m}=a^{m+1},
$$

and by this it follows that K is a rectangular band.
(iv) \Rightarrow (iii). Let $S^{n}=K$ be a rectangular band, for some $n \in \mathbf{Z}^{+}$. By Lemma $4[8], \mathbf{P}(K)$ is an ideal of $\mathbf{P}(S)$, and by Theorem $4[10], \mathbf{P}(K)$ is an inflation of a rectangular band T. Since $T^{2}=T, T$ is an ideal of $\mathbf{P}(K)$ and $\mathbf{P}(K)$ is an ideal of $\mathbf{P}(S)$, then T is an ideal of $\mathbf{P}(S)$. Also, for $A \in \mathbf{P}(S), A^{n} \subseteq S^{n}=K$, so $A^{n} \in \mathbf{P}(K)$, whence $A^{2 n} \in T$. Thus, $\mathbf{P}(S)$ is a nil-extension of a rectangular band T.
(iii) \Rightarrow (i). This follows immediately.

Corollary 1. The following conditions on a semigroup S are equivalent:
(i) $\mathbf{P}(S)$ is an inflation of a rectangular band;
(ii) S is an inflation of a rectangular band;
(iii) $(\forall x, y, z \in S) x z=x y z$.

Proof. (ii) \Leftrightarrow (iii). This follows by Corollary 3.5 [5].
(iii) \Rightarrow (i). For $A, B, C \in \mathbf{P}(S)$, by (iii) we obtain that $A C=A B C$, so by (ii) \Leftrightarrow (iii) we obtain (i).
(i) \Rightarrow (ii). This follows immediately.

Theorem 3. The following conditions on a semigroup S are equivalent:
(i) $\mathbf{P}(S)$ is weakly left Archimedean;
(ii) $\mathbf{P}(S)$ is a right zero band of nil-extensions of left zero bands;
(iii) S is a right inflationary extension of a rectangular band.

Proof. (i) \Rightarrow (ii). By Theorem 1, $\mathbf{P}(S)$ has an idempotent, so by Theorem 7 [4] we obtain (ii).
(ii) \Rightarrow (i). This follows immediately.
(i) \Rightarrow (iii). By Theorem 2, S is a nilpotent extension of a rectangular band K. On the other hand, it is not hard to check that S is weakly left Archimedean, so by Theorem 7 [4], S is a right retractive nil-extension of a rectangular band T. Clearly, $K=T$, so (iii) holds.
(iii) \Rightarrow (i). Let S be a right inflationary extension of a rectangular band K and let φ be a right retraction of S onto K. By the proof of Theorem 2, $\mathbf{P}(S)$ is a nil-extension of $\mathbf{P}(K)$ and $\mathbf{P}(K)$ is an inflation of a rectangular band T. Further, T is a right zero band Y of left zero bands $T_{\alpha}, \alpha \in Y$, so $\mathbf{P}(K)$ is a right zero band Y of semigroups $P_{\alpha}, \alpha \in Y$, where for each $\alpha \in Y, P_{\alpha}$ is an inflation of T_{α}. Assume $A, B \in \mathbf{P}(S)$. Then $A^{n}, B^{n} \in T$, for some $n \in \mathbf{Z}^{+}$, and $A^{n} \in T_{\alpha}, B^{n} \in T_{\beta}$, for some $\alpha, \beta \in Y$. Now, $A \varphi \in \mathbf{P}(K)$, i.e. $A \varphi \in P_{\gamma}$, for some $\gamma \in Y$, so

$$
A^{n}=A^{n+1}=A^{n+1} \varphi=\left(A^{n} A\right) \varphi=A^{n}(A \varphi) \in P_{\alpha} P_{\gamma} \subseteq P_{\gamma},
$$

and by $A^{n} \in T_{\alpha}$ we obtain $\gamma=\alpha$, i.e. $A \varphi \in P_{\alpha}$, whence

$$
B^{n} A=\left(B^{n} A\right) \varphi=B^{n}(A \varphi) \in T_{\beta} P_{\alpha} \subseteq T \cap P_{\alpha}=T_{\alpha} .
$$

Therefore, $A^{n}, B^{n} A \in T$, whence $A^{n}=A^{n} B^{n} A$, since T_{α} is a left zero band. Hence, $\mathbf{P}(S)$ is weakly left Archimedean.

Corollary 3. The following conditions on a semigroup S are equivalent:
(i) $\mathbf{P}(S)$ is weakly t-Archimedean;
(ii) $\mathbf{P}(S)$ is a matrix of nil-semigroups;
(iii) S is an inflationary extension of a rectangular band.

Proof. This follows by Theorems 1 and 3 and Corollary 5 [4].
Theorem 4. The following conditions on a semigroup S are equivalent:
(i) $\mathbf{P}(S)$ is left Archimedean;
(ii) $\mathbf{P}(S)$ is a nil-extension of a left zero band;
(iii) S is a nilpotent extension of a left zero band.

Proof. (i) \Rightarrow (ii). By Theorem 1, $\mathbf{P}(S)$ has an idempotent, so by Theorem VI 3.2.1 [2], $\mathbf{P}(S)$ is a nil-extension of a left group. On the other hand, by Theorem 2, $\mathbf{P}(S)$ is a nil-extension of a rectangular band, and so $\mathbf{P}(S)$ is a nil-extension of a left zero band.
(ii) \Rightarrow (iii). Let $\mathbf{P}(S)$ be a nil-extension of a left zero band T. By Theorem $2, S$ is an n-nilpotent extension of a rectangular band K, for some $n \in \mathbf{Z}^{+}$.

For $a, b \in K,\{a\},\{b\} \in T$, whence $\{a\} \cdot\{b\}=\{a\}$, i.e. $a b=a$. Thus, K is a left zero band.
(iii) \Rightarrow (ii). Let S be an n-nilpotent extension of a left zero band K, for some $n \in \mathbf{Z}^{+}$. By Theorem $2, \mathbf{P}(S)$ is a nil-extension of a rectangular band T. Let $A, B \in T$. Then $A=A^{n} \subseteq S^{n}=K$ and also $B \subseteq K$, whence $A B=A$. Therefore, T is a left zero band.
(ii) \Rightarrow (i). This follows immediately.

Corollary 4. The following conditions on a semigroup S are equivalent:
(i) $\mathbf{P}(S)$ is left completely simple;
(ii) $\mathbf{P}(S)$ is completely simple;
(iii) $\mathbf{P}(S)$ is a rectangular band;
(iv) $\mathbf{P}(S)$ is a singular band;
(v) S is a singular band.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii). This follows by Theorem 2 .
(iii) \Rightarrow (v). By (iii), each subset of S is its subsemigroup, so by the well-known result of L. Rédei [9], S is an ordinal sum of singular bands (for the definition of an ordinal sum see [7]). By Theorem $2, S$ is semilattice indecomposable, whence S is a singular band.
(v) \Rightarrow (iv) and (iv) \Rightarrow (i). This follows immediately.

Corollary 5. The following conditions on a semigroup S are equivalent:
(i) $\mathbf{P}(S)$ is t-Archimedean;
(ii) $\mathbf{P}(S)$ is power joined;
(iii) $\mathbf{P}(S)$ is a nil-extension of a group;
(iv) $\mathbf{P}(S)$ is a nil-semigroup;
(v) $\mathbf{P}(S)$ is nilpotent;
(vi) S is nilpotent.

Proof. The equivalences (i) \Leftrightarrow (ii) \Leftrightarrow (iv) \Leftrightarrow (v) was proved by S. Bogdanović [1], and in the commutative case, (i) \Leftrightarrow (vi) was proved by M.S. Putcha [8].

References

[1] S. Bogdanović, A note on power semigroups, Math. Japon. 6 (1983), no. 28, 725727.
[2] S. Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math., Novi Sad, 1985.
[3] S. Bogdanović and M. Ćirić, Semigroups, Prosveta, Niš, 1993. (in Serbian)
[4] S. Bogdanović and M. ĆIrić, Semilattices of left completely Archimedean semigroups, Filomat (Niš) (to appear).
[5] S. Bogdanović and S. Milić, Inflations of semigroups, Publ. Inst. Math. 41 (55) (1987), 63-73.
[6] J. L. Chrislock, On medial semigroups, J. Algebra 12 (1969), 1-9.
[7] M. Petrich, Lectures in semigroups, Akad.-Verlag, Berlin, 1977.
[8] M. S. Putcha, On the maximal semilattice decomposition of the power semigroup of a semigroup, Semigroup Forum 15 (1978), 263-267.
[9] L. Rédei, Algebra I, Pergamon Press, Oxford, 1967, p. 81.
[10] T. Tamura, Power semigroups of rectangular groups, Math. Japon. 29 (1984), 671678.
[11] T. Tamura and J. Shafer, Power semigroups, Math. Japon. 12 (1967), 25-32.
University of Niš, Faculty of Economics, Trg JNA 11, 18000 Niš, YugoSLAVIA

E-mail address: sbogdan@archimed.filfak.ni.ac.yu
University of Niš, Faculty of Philosophy, Ćirila i Metodija 2, 18000 Niš, Yugoslavia

E-mail address: mciric@archimed.filfak.ni.ac.yu

[^0]: Received 12.03.1995
 1991 Mathematics Subject Classification. Primary 20 M 10.
 Supported by Grant 0401B of RFNS through Math. Inst. SANU

