POWER SEMIGROUPS THAT ARE ARCHIMEDEAN

Stojan Bogdanović and Miroslav Ćirić

ABSTRACT. Power semigroups of various semigroups were studied by a number of authors. Here we give structural characterizations for semigroups whose power semigroups are Archimedean and we generalize some results from [1], [8], [10] and [11].

Throughout this paper, \mathbf{Z}^+ will denote the set of all positive integers. For an element *a* of a semigroup *S*, $\langle a \rangle$ will denote the *cyclic subsemigroup* of *S* generated by *a*. For a semigroup *S*, let $\mathbf{P}(S) = \{A \mid \emptyset \neq A \subseteq S\}$. If the multiplication on $\mathbf{P}(S)$ is defined by $AB = \{ab \mid a \in A, b \in B\}$, then $\mathbf{P}(S)$ is a semigroup which will be called the *power semigroup* of *S*, [11].

A semigroup S is intra- π -regular if for each $a \in S$ there exists $n \in \mathbb{Z}^+$ such that $a^n \in Sa^{2n}S$. A semigroup S is left π -regular if for each $a \in S$ there exists $n \in \mathbb{Z}^+$ such that $a^n \in Sa^{n+1}$, and it is left regular if for any $a \in S$, $a \in Sa^2$. Right π -regular and right regular semigroups are defined dually.

A semigroup S is Archimedean if for any $a, b \in S$ there exists $n \in \mathbb{Z}^+$ such that $a^n \in SbS$. A semigroup S is left Archimedean (weakly left Archimedean) if for any $a, b \in S$ there exists $n \in \mathbb{Z}^+$ such that $a^n \in Sb$ ($a^n \in Sba$), [4]. Right Archimedean and weakly right Archimedean semigroups are defined dually. A semigroup S is t-Archimedean (weakly t-Archimedean) if it is both left and right Archimedean (weakly left and weakly right Archimedean). A semigroup S is power joined if for any $a, b \in S$ there exists $m, n \in \mathbb{Z}^+$ such that $a^m = b^n$. A semigroup S is left completely Archimedean if it is Archimedean and left π -regular. Right completely Archimedean if it is both left and right completely Archimedean. A semigroup S is left completely simple if it is simple and left regular. Right completely simple semigroups

1991 Mathematics Subject Classification. Primary 20 M 10.

Received 12.03.1995

Supported by Grant 0401B of RFNS through Math. Inst. SANU

are defined dually. A semigroup S is *completely simple* if it is both left and right completely simple.

Further, $S = S^0$ will means that S is a semigroup with zero 0. A semigroup $S = S^0$ is a *nil-semigroup* if for any $a \in S$ there exists $n \in \mathbb{Z}^+$ such that $a^n = 0$. For $n \in \mathbb{Z}^+$, a semigroup $S = S^0$ is *n-nilpotent* if $S^n = \{0\}$, and $S = S^0$ is *nilpotent* if it is *n*-nilpotent, for some $n \in \mathbb{Z}^+$. An ideal extension S of a semigroup T will be called a *nil-extension* (*nilpotent extension*, *n-nilpotent extension*) if S/T is a nil-semigroup (nilpotent semigroup, *n*-nilpotent semigroup).

Let T be a subsemigroup of a semigroup S. A mapping φ of S onto T will be called a right retraction if $a\varphi = a$, for each $a \in S$, and $(ab)\varphi = a(b\varphi)$, for all $a, b \in S$. Left retractions are defined dually. A mapping φ of S onto T is a retraction if it is a homomorphism and $a\varphi = a$, for each $a \in T$. If T is an ideal of S, then φ is a retraction of S onto T if and only if it is both left and right retractive extension of S onto T. An ideal extension S of a semigroup T is a (left, right) retractive extension of T if there exists a (left, right) retraction of S onto T. A (left, right) retractive extension by an n-nilpotent semigroup will be called a (left, right) n-inflation, 2-inflations will be called simply inflations, and (left, right) inflationary extensions.

A semigroup S is a *singular band* if it is either a left zero band or a right zero band.

For undefined notions and notations we refer to [2], [3] and [7].

Theorem 1. The following conditions on a semigroup S are equivalent:

- (i) $\mathbf{P}(S)$ is Archimedean;
- (ii) $\mathbf{P}(S)$ is a nil-extension of a simple semigroup;

(iii) $\mathbf{P}(S)$ is Archimedean with an idempotent.

Proof. (i) \Rightarrow (iii). Asymme $a \in S$. For $\{a\}, \langle a \rangle \in \mathbf{P}(S)$ there exists $B, C \in \mathbf{P}(S)$ and $n \in \mathbf{Z}^+$ such that $\{a\}^n = B\langle a \rangle C$, so for $b \in B, c \in C$ and $a^{2n} \in \langle a \rangle$ we have

$$a^n = ba^{2n}c \in Sa^{2n}S.$$

Therefore, S is intra- π -regular semigroup. Since S is also Archimedean, then by Theorem VI 1.1 [2], S is a nil-extension of a simple semigroup K. Thus, $\mathbf{P}(S)$ is an Archimedean semigroup with an idempotent K.

- (iii) \Rightarrow (ii). This follows by Theorem 3.2 [6].
- (ii) \Rightarrow (i). This follows by Theorem VI1.1 [2]. \Box

Corollary 1. If $\mathbf{P}(S)$ is Archimedean, then S is a nilpotent extension of a simple semigroup.

Proof. By the proof of (i) \Rightarrow (iii) in Theorem 1, S is a nil-extension of a simple semigroup K. Since $\mathbf{P}(S)$ is Archimedean, there exists $n \in \mathbf{Z}^+$, $A, B \in \mathbf{P}(S)$ such that $S^n = AKB$, whence $S^n = AKB \subseteq K = K^n \subseteq S^n$. Therefore, $S^n = K$, so S is a nilpotent extension of a simple semigroup. \Box

Theorem 2. The following conditions on a semigroup S are equivalent:

- (i) $\mathbf{P}(S)$ is left completely Archimedean;
- (ii) $\mathbf{P}(S)$ is completely Archimedean;
- (iii) $\mathbf{P}(S)$ is a nil-extension of a rectangular band;
- (iv) S is a nilpotent extension of a rectangular band.

Proof. (i) \Rightarrow (ii). By Theorem 1, $\mathbf{P}(S)$ has an idempotent, so by Corollary 4 [4], $\mathbf{P}(S)$ is completely Archimedean.

(ii) \Rightarrow (iv). Let $a \in S$. By Theorem 1, $S^n = K$ is a simple semigroup, for some $n \in \mathbb{Z}^+$. Also, by Theorem VI 2.2.1 [2], there exists $m \in \mathbb{Z}^+$, $C \in \mathbb{P}(S)$ such that $\{a\}^m = \{a\}^m \langle a \rangle C\{a\}^m$. Now, for any $c \in C$ we have

$$a^m = a^m a c a^m = a^m a^2 c a^m = a a^m a c a^m = a a^m = a^{m+1},$$

and by this it follows that K is a rectangular band.

(iv) \Rightarrow (iii). Let $S^n = K$ be a rectangular band, for some $n \in \mathbb{Z}^+$. By Lemma 4 [8], $\mathbf{P}(K)$ is an ideal of $\mathbf{P}(S)$, and by Theorem 4 [10], $\mathbf{P}(K)$ is an inflation of a rectangular band T. Since $T^2 = T$, T is an ideal of $\mathbf{P}(K)$ and $\mathbf{P}(K)$ is an ideal of $\mathbf{P}(S)$, then T is an ideal of $\mathbf{P}(S)$. Also, for $A \in \mathbf{P}(S)$, $A^n \subseteq S^n = K$, so $A^n \in \mathbf{P}(K)$, whence $A^{2n} \in T$. Thus, $\mathbf{P}(S)$ is a nil-extension of a rectangular band T.

(iii) \Rightarrow (i). This follows immediately. \Box

Corollary 1. The following conditions on a semigroup S are equivalent:

- (i) $\mathbf{P}(S)$ is an inflation of a rectangular band;
- (ii) S is an inflation of a rectangular band;
- (iii) $(\forall x, y, z \in S) xz = xyz.$

Proof. (ii) \Leftrightarrow (iii). This follows by Corollary 3.5 [5].

(iii) \Rightarrow (i). For $A, B, C \in \mathbf{P}(S)$, by (iii) we obtain that AC = ABC, so by (ii) \Leftrightarrow (iii) we obtain (i).

(i) \Rightarrow (ii). This follows immediately. \Box

Theorem 3. The following conditions on a semigroup S are equivalent:

- (i) $\mathbf{P}(S)$ is weakly left Archimedean;
- (ii) $\mathbf{P}(S)$ is a right zero band of nil-extensions of left zero bands;
- (iii) S is a right inflationary extension of a rectangular band.

Proof. (i) \Rightarrow (ii). By Theorem 1, $\mathbf{P}(S)$ has an idempotent, so by Theorem 7 [4] we obtain (ii).

(ii) \Rightarrow (i). This follows immediately.

(i) \Rightarrow (iii). By Theorem 2, S is a nilpotent extension of a rectangular band K. On the other hand, it is not hard to check that S is weakly left Archimedean, so by Theorem 7 [4], S is a right retractive nil-extension of a rectangular band T. Clearly, K = T, so (iii) holds.

(iii) \Rightarrow (i). Let *S* be a right inflationary extension of a rectangular band *K* and let φ be a right retraction of *S* onto *K*. By the proof of Theorem 2, $\mathbf{P}(S)$ is a nil-extension of $\mathbf{P}(K)$ and $\mathbf{P}(K)$ is an inflation of a rectangular band *T*. Further, *T* is a right zero band *Y* of left zero bands T_{α} , $\alpha \in Y$, so $\mathbf{P}(K)$ is a right zero band *Y* of semigroups P_{α} , $\alpha \in Y$, where for each $\alpha \in Y$, P_{α} is an inflation of T_{α} . Assume $A, B \in \mathbf{P}(S)$. Then $A^n, B^n \in T$, for some $n \in \mathbf{Z}^+$, and $A^n \in T_{\alpha}$, $B^n \in T_{\beta}$, for some $\alpha, \beta \in Y$. Now, $A\varphi \in \mathbf{P}(K)$, i.e. $A\varphi \in P_{\gamma}$, for some $\gamma \in Y$, so

$$A^{n} = A^{n+1} = A^{n+1}\varphi = (A^{n}A)\varphi = A^{n}(A\varphi) \in P_{\alpha}P_{\gamma} \subseteq P_{\gamma},$$

and by $A^n \in T_\alpha$ we obtain $\gamma = \alpha$, i.e. $A\varphi \in P_\alpha$, whence

$$B^n A = (B^n A)\varphi = B^n (A\varphi) \in T_\beta P_\alpha \subseteq T \cap P_\alpha = T_\alpha$$

Therefore, $A^n, B^n A \in T$, whence $A^n = A^n B^n A$, since T_α is a left zero band. Hence, $\mathbf{P}(S)$ is weakly left Archimedean. \Box

Corollary 3. The following conditions on a semigroup S are equivalent:

- (i) $\mathbf{P}(S)$ is weakly t-Archimedean;
- (ii) $\mathbf{P}(S)$ is a matrix of nil-semigroups;
- (iii) S is an inflationary extension of a rectangular band.

Proof. This follows by Theorems 1 and 3 and Corollary 5 [4]. \Box

Theorem 4. The following conditions on a semigroup S are equivalent:

- (i) $\mathbf{P}(S)$ is left Archimedean;
- (ii) $\mathbf{P}(S)$ is a nil-extension of a left zero band;
- (iii) S is a nilpotent extension of a left zero band.

Proof. (i) \Rightarrow (ii). By Theorem 1, $\mathbf{P}(S)$ has an idempotent, so by Theorem VI 3.2.1 [2], $\mathbf{P}(S)$ is a nil-extension of a left group. On the other hand, by Theorem 2, $\mathbf{P}(S)$ is a nil-extension of a rectangular band, and so $\mathbf{P}(S)$ is a nil-extension of a left zero band.

(ii) \Rightarrow (iii). Let $\mathbf{P}(S)$ be a nil-extension of a left zero band T. By Theorem 2, S is an *n*-nilpotent extension of a rectangular band K, for some $n \in \mathbf{Z}^+$.

For $a, b \in K$, $\{a\}, \{b\} \in T$, whence $\{a\} \cdot \{b\} = \{a\}$, i.e. ab = a. Thus, K is a left zero band.

(iii) \Rightarrow (ii). Let S be an n-nilpotent extension of a left zero band K, for some $n \in \mathbb{Z}^+$. By Theorem 2, $\mathbb{P}(S)$ is a nil-extension of a rectangular band T. Let $A, B \in T$. Then $A = A^n \subseteq S^n = K$ and also $B \subseteq K$, whence AB = A. Therefore, T is a left zero band.

(ii) \Rightarrow (i). This follows immediately. \Box

Corollary 4. The following conditions on a semigroup S are equivalent:

- (i) $\mathbf{P}(S)$ is left completely simple;
- (ii) $\mathbf{P}(S)$ is completely simple;

(iii) $\mathbf{P}(S)$ is a rectangular band;

(iv) $\mathbf{P}(S)$ is a singular band;

(v) S is a singular band.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii). This follows by Theorem 2.

(iii) \Rightarrow (v). By (iii), each subset of S is its subsemigroup, so by the well-known result of L. Rédei [9], S is an ordinal sum of singular bands (for the definition of an ordinal sum see [7]). By Theorem 2, S is semilattice indecomposable, whence S is a singular band.

 $(v) \Rightarrow (iv)$ and $(iv) \Rightarrow (i)$. This follows immediately. \Box

Corollary 5. The following conditions on a semigroup S are equivalent:

- (i) $\mathbf{P}(S)$ is t-Archimedean;
- (ii) $\mathbf{P}(S)$ is power joined;
- (iii) $\mathbf{P}(S)$ is a nil-extension of a group;
- (iv) $\mathbf{P}(S)$ is a nil-semigroup;
- (v) $\mathbf{P}(S)$ is nilpotent;
- (vi) S is nilpotent.

Proof. The equivalences (i) \Leftrightarrow (ii) \Leftrightarrow (iv) \Leftrightarrow (v) was proved by S. Bogdanović [1], and in the commutative case, (i) \Leftrightarrow (vi) was proved by M.S. Putcha [8]. \Box

References

- S. BOGDANOVIĆ, A note on power semigroups, Math. Japon. 6 (1983), no. 28, 725– 727.
- [2] S. BOGDANOVIĆ, Semigroups with a system of subsemigroups, Inst. of Math., Novi Sad, 1985.
- [3] S. BOGDANOVIĆ AND M. ĆIRIĆ, Semigroups, Prosveta, Niš, 1993. (in Serbian)
- [4] S. BOGDANOVIĆ AND M. ĆIRIĆ, Semilattices of left completely Archimedean semigroups, FILOMAT (Niš) (to appear).

- S. BOGDANOVIĆ AND S. MILIĆ, Inflations of semigroups, Publ. Inst. Math. 41 (55) (1987), 63–73.
- [6] J. L. CHRISLOCK, On medial semigroups, J. Algebra 12 (1969), 1–9.
- [7] M. PETRICH, Lectures in semigroups, Akad.-Verlag, Berlin, 1977.
- [8] M. S. PUTCHA, On the maximal semilattice decomposition of the power semigroup of a semigroup, Semigroup Forum 15 (1978), 263–267.
- [9] L. RÉDEI, Algebra I, Pergamon Press, Oxford, 1967, p. 81.
- [10] T. TAMURA, Power semigroups of rectangular groups, Math. Japon. 29 (1984), 671– 678.
- [11] T. TAMURA AND J. SHAFER, Power semigroups, Math. Japon. 12 (1967), 25–32.

University of Niš, Faculty of Economics, Trg JNA 11, 18000 Niš, Yugo-slavia

E-mail address: sbogdan@archimed.filfak.ni.ac.yu

University of Niš, Faculty of Philosophy, Ćirila i Metodija 2, 18000 Niš, Yugoslavia

E-mail address: mciric@archimed.filfak.ni.ac.yu