CHAINS OF ARCHIMEDEAN SEMIGROUPS (SEMIPRIMARY SEMIGROUPS)

STOJAN BOGDANOVIC AND MIROSLAV CIRIC

Institute of Mathematics, Knez Mihailova 35, Beograd, Yogoslavia

(Received 7 April 1993; accepted 13 August 1993)

We describe chains of Archimedean (right Archimedean, t-Archimedean) semigroups by radicals of ideals (right ideals, bi-ideals) and we prove that these semigroups are exactly semiprimary semigroups.

1. INTRODUCTION AND PRELIMINARIES

By \mathbb{Z}^+ we denote the set of all positive integers. If $a, b \in S$, then $a \mid b$ iff b = xay for some $x, y \in S^{-1}$, $a \mid b$ iff xa = b for some $x \in S^{-1}$, $a \mid b$ iff xa = b for some $x \in S^1$, $a \mid b$ iff $a \mid b$ and $a \mid b$, $a \rightarrow b$ iff $a \mid b^i$ for some $i \in \mathbb{Z}^+$ and $a \rightarrow b$ iff $a \mid b^i$ for some $i \in \mathbb{Z}^+$ and $a \rightarrow b$ iff $a \mid b^i$ for some $i \in \mathbb{Z}^+$ where $a \rightarrow b$ iff $a \mid b^i$ for some $a \rightarrow b$ iff a

(right Archimedean), t-Archimedean iff for all $a, b \in S$, $a \to b$ ($a \xrightarrow{r} b$, $a \xrightarrow{t} b$). By the radical of the subset A of a semigroup S we mean the set \sqrt{A} defined by

$$\sqrt{A} = \{ x \in S \mid (\exists n \in \mathbb{Z}^+) \ x^n \in A \}.$$

A subset A of a semigroup S is completely prime iff

$$(\forall a, b \in S) \ ab \in A \Rightarrow a \in A \lor b \in A.$$

A subsemigroup B of a semigroup S is a bi-ideal of S if $BSB \subseteq B$.

For undefined notions and notations we refer to Gilmer and Mott⁷ and Satyanarayana¹².

Semilattices of Archimedean semigroups well known as Putcha semigroups, were first completely described by Putcha¹¹ and afterwards by the authors^{4, 6}. In this paper we consider chains of Archimedean semigroups and their relationship with semiprimary semigroups.

In our investigations the following result will be very useful

Theorem A⁶ — The following conditions on a semigroup S are equivalent:

- (i) S is a semilattice of Archimedian semigroups;
- (ii) $(\forall a, b \in S) a^2 \rightarrow ab$;
- (iii) \sqrt{A} if an ideal, for every ideal A of S.

Satyanarayana^{12, 13} studied primary semigroups and rings. For the related results see also Aubert¹, Gilmer and Mott⁷, Lal⁸ and Zariski and Samuel¹⁴. Bogdanovic² introduced the following notion: A subset A of a semigroup S is semiprimary iff

$$(\forall x, y \in S) (\exists n \in \mathbb{Z}^+) xy \in A \Rightarrow x \in A \lor y^n \in A.$$

S is a semiprimary semigroup if all of its ideals are semiprimary. A simple characterization of semiprimary semigroups is given by the following

Lemma A^2 — A semigroup S is semiprimary if and only if

$$(\forall a, b \in S) \ ab \rightarrow a \lor ab \rightarrow b.\Box$$

2. THE MAIN RESULTS

In this paper we prove that semiprimary semigroups are exactly chains of Archimedean semigroups.

Theorem 1 — The following conditions on a semigroup S are equivalent:

- (i) S is a chain of Archimedean semigroups;
- (ii) S is semiprimary;
- (iii) \sqrt{A} is a completely prime ideal, for every ideal A of S;
- (iv) \sqrt{A} is a completely prime subset of S, for every ideal A of S;
- (v) S is a semilattice of Archimedean semigroups and completely prime ideals of S are totally ordered.

PROOF: (i) \Rightarrow (ii). Let S be a chain Y of Archimedean semigroups S_{α} , $\alpha \in Y$. Let $x \in S_{\alpha}$, $y \in S_{\beta}$, $\alpha, \beta \in Y$. Then $x, xy \in S_{\alpha}$ or $y, xy \in S_{\beta}$, whence

$$x^n \in S_\alpha xy S_\alpha \subseteq SxyS$$
 or $y^n \in S_\beta xy S_\beta \subseteq SxyS$

for some $n \in \mathbb{Z}^+$. By Lemma A we have that the assertion holds.

(ii) \Rightarrow (iii). Let S be a semiprimary semigroup. Let $a, b \in S$. Then by Lemma A there exists $n \in \mathbb{Z}^+$ such that

$$(ba)^n \in S(ba) (ab) S$$
 or $(ab)^n \in S(ba) (ab) S$

whence

$$(ab)^{n+1} \in Sa^2S \qquad \dots (1)$$

so by Theorem A it follows that \sqrt{A} is an ideal, for every ideal A of S. Let $ab \in \sqrt{A}$. Then from

$$a^n \in SabS \subseteq \sqrt{A}$$
 or $b^n \in SabS \subseteq \sqrt{A}$

for some $n \in \mathbb{Z}^+$, it follows that $a \in \sqrt{A}$ or $b \in \sqrt{A}$. Therefore, \sqrt{A} is a completely prime ideal.

- (iii) ⇒ (iv). This implication follows immediately.
- (iv) \Rightarrow (ii). Let \sqrt{A} be a completely prime subset of S, for every ideal A of S. Then \sqrt{SabS} is a completely prime subset of S, for every a, $b \in S$. Since $a^2b^2 \in SabS \in \sqrt{SabS}$, we then have that

$$a^2 \in \sqrt{SabS}$$
 or $b^2 \in \sqrt{SabS}$

i.e.

$$a^{2k} \in SabS$$
 or $b^{2k} \in SabS$

for some $k \in \mathbb{Z}^+$, whence by Lemma A it follows that S is a semiprimary semigroup.

(ii) \Rightarrow (i). Let S be a semiprimary semigroup. Then we have that the condition (1) holds and by Theorem A, S is a semilattice Y of Archimedean semigroups S_{α} , $\alpha \in Y$. Let $\alpha, \beta \in Y$. Assume that $a \in S_{\alpha}$, $b \in S_{\beta}$. Then by Lemma A there exists $n \in \mathbb{Z}^+$ such that

$$a^n \in SabS$$
 or $b^n \in SabS$

whence $\alpha \leq \beta$ or $\beta \leq \alpha$. Thus Y is a chain.

- (iii) \Rightarrow (v). Let P_1 and P_2 be completely prime ideals of S. Suppose that $P_1 \not\subseteq P_2$ and $P_2 \not\subseteq P_1$. Then there exists $a \in P_1 P_2$ and $b \in P_2 P_1$, whence $ab \in P_1 \cap P_2 = \sqrt{P_1 \cap P_2}$, and by (iii), $a \in P_1 \cap P_2$ or $b \in P_1 \cap P_2$, which is not possible. Thereofore, completely prime ideals of S are totally ordered. That S is a semilattice of Archimdean semigroups follows by Theorem A.
- (v) \Rightarrow (iii). By Theorem A we have that \sqrt{A} is an ideal, for every ideal A of S. By Theorem II 3.7 of Petrich⁹ we have that $\sqrt{A} = \bigcap P_i$, $A \subseteq P_i$, where P_i are completely prime ideals. Assume that $a \notin \bigcap P_i$, $b \notin \bigcap P_i$. Then there exist P_j, P_k such that $a \notin P_j$ and $b \notin P_k$. By hypothesis, $P_j \subseteq P_k$ or $P_k \subseteq P_j$. Assume that $P_j \subseteq P_k$ (the case $P_k \subseteq P_j$. can be similarly treated). Then $a \notin P_j$ and $b \notin P_j$ and $ab \notin P_j$, since P_j is completely prime. Thus $ab \notin \bigcup P_i$ and by contradiction we have the assertion \square

Proposition 1 — Every right ideal of a semigroup S is semiprimary if and only if

$$(\forall a, b \in S) \ ab \xrightarrow{r} a \lor ab \xrightarrow{r} b. \tag{2}$$

PROOF: Let every right ideal of a simgroup S be semiprimary. Let $a, b \in S$. Then abS is semiprimary and $ab^2 \in abS$, whence $ab \rightarrow a$ or $ab \rightarrow b$. Thus the condition (2) holds.

Conversely, let R be a right ideal of S. Assume that $ab \in R$. Then by hypothesis there exists $n \in \mathbb{Z}^=$ such that $a^n \in abS \subseteq RS \subseteq R$ or $b^n \in abS \subseteq RS \subseteq R$. Therefore, R is semiprimary. \square

Lemma 1 — Let R be a right ideal of a semigroup S. If \sqrt{R} is completely prime, then R is semiprimary.

PROOF: Let $a, b \in S$. then

$$ab \in R \subseteq \sqrt{R} \Rightarrow a \in \sqrt{R} \lor b \in \sqrt{R} \Rightarrow (\exists n \in \mathbb{Z}^+) \ a^n \in R \lor b^n \in R \square$$

By the next theorem chains of right Archimedean semigroups will be described by radicals of right idelas.

Theorem 2 — The following conditions are equivalent on a semigroup S:

- (i) S is a chain of right Archimedean semigroups;
- (ii) \sqrt{R} is a completely prime ideal, for every right ideal R of S;
- (iii) S is a semilattice of right Archimedean semigroups and every right ideal of S is semiprimary;
- (iv) S is a semilattice of right Archimedean semigroups and the condition (2) holds.

PROOF: (i) \Rightarrow (ii) — By Theorem 5 we have that \sqrt{R} is an ideal of S, for every right ideal R of S. Let $ab \in \sqrt{R}$. Since S is a chain of right Archimedean semigroups, we then have that $ab \xrightarrow{} a$ or $ab \xrightarrow{} b$, whence

$$a^n \in abS \subseteq \sqrt{R}$$
 or $b^n \in abS \subseteq \sqrt{R}$

for some $n \in \mathbb{Z}^+$, and therefore, $a \in \sqrt{R}$ or $b \in \sqrt{R}$, i.e. \sqrt{R} is completely prime.

- (ii) \Rightarrow (iii). That every right ideal of S is semiprimary follows by Lemma 1. That S is a semilattice of right Archimedean semigroups follows by Theorem 5 of Bogdanovic and Criric⁴.
- (iii) \Rightarrow (iv) It is clear that $a^n \in abS$ or $b^n \in abS$ for some $n \in \mathbb{Z}^+$. Assume that $a^n = abx$, for some $x \in S$. Then by Theorem 5 of Bogdanovic and Ciric⁴ we have that $(a^n)^k \in bS$ for some $k \in \mathbb{Z}^+$. Therefore, $b \xrightarrow{r} a$. Similarly we treat the case $b^n \in abS$. Thus the condition (2) holds.
- (iv) \Rightarrow (i) Let S be a semilattice Y of right Archimedean semigroups S_{α} , $\alpha \in Y$. Let α , $\beta \in Y$. Assume that $a \in S_{\alpha}$, $b \in S_{\beta}$. Then from $a^n \in bS$ or $b^n \in aS$ for some $n \in \mathbb{Z}^{|k|}$, it follows that $a^{n+1} \in abS$ or $b^{n+1} \in baS$, whence $\alpha \leq \beta$ or $\beta \leq \alpha$, i.e. Y is a chain. \square

Chains of t-Archimedean semigroups will be described via bi-ideals by the next theorem.

Theorem 3 — The following conditions are equivalent on a semigroup S:

- (i) S is a chain of t-Archimedean semigroups;
- (ii) \sqrt{B} is a completely prime ideal, for every bi-ideal B of S;
- (iii) S is a semilattice of t-Archimedean semigroups and the condition (2) holds.

PROOF: (i) \Rightarrow (ii) — By Theorem 9 of we have that \sqrt{B} is an ideal of S, for every bi-ideal B of S. Let $ab \in \sqrt{B}$. Since S is a chain of t-Archimedean semigroups, we have that $ab \stackrel{r}{\rightarrow} a$ or $ab \stackrel{r}{\rightarrow} b$, whence

$$a^n \in abS \subseteq \sqrt{B}$$
 or $b^n \in abS \subseteq \sqrt{B}$

for some $n \in \mathbb{Z}^+$. Thus $a \in \sqrt{B}$ or $b \in \sqrt{B}$, i.e. \sqrt{B} is completely prime.

- (ii) \Rightarrow (iii) That S is a semilattice of t-Archimedean semigroups follows by Theorem 9 of Bogdanovic and Ciric⁴. The rest follows by Theorem 2.
- (iii) \Rightarrow (i). Let S be semilattice Y of t-Archimedean semigroups S_{α} , $\alpha \in Y$. Let $\alpha, \beta \in Y$. Assume $a \in S_{\alpha}$, $b \in S_{\beta}$. Then by (2) there exists $n \in \mathbb{Z}^+$ such that

$$b^n = ax$$
 or $a^n = by$

for some $x \in S_{\gamma}$, $y \in S_{\delta}$, $\gamma, \delta \in Y$, so

$$b^{n+1} = bax$$
 or $a^{n+1} = aby$.

From this it follows that $\beta = \beta \alpha \gamma$ or $\alpha = \alpha \beta \delta$, whence $\beta = \alpha \beta$ or $\alpha = \alpha \beta$, i.e. $\alpha \le \beta$ or $\beta \le \alpha$. Therefore, Y is a chain.

Finally we characterize semigroups in which radicals of all semigroups are completely prime.

Theorem 4 — The radical of every subsemigroup of semigroup S is completely prime if and only if

$$(\forall a, b \in S) (\exists n \ n \in \mathbb{Z}^+) \ a^n \in \langle ab \rangle \lor b^n \in \langle ab \rangle. \tag{3}$$

PROOF: Let \sqrt{A} be completely prime for every subsemigroup A of S. Then for all $a, b \in S$ we have that

$$ab \in \langle ab \rangle \subseteq \sqrt{\langle ab \rangle} \Rightarrow a \in \sqrt{\langle ab \rangle} \lor b \in \sqrt{\langle ab \rangle}.$$

Therefore, condition (3) holds.

Conversely, let A be a subsemigroups of S. Let $ab \in \sqrt{A}$. Then $(ab)^k \in A$, for some $k \in \mathbb{Z}^+$. Since

$$a^n = (ab)^r \vee b^n (ab)^t,$$

for some n, r, $t \in \mathbf{Z}^+$, we then have that

$$a^{nk} = (ab)^{rk} \in A \lor b^{nk} = (ab)^{tk} \in A$$

whence $a \in \sqrt{A}$ or $b \in \sqrt{A}$. Therefore, \sqrt{A} is completely prime \square

It is clear that condition (3) is equivalent to

$$(\forall a, b \in S) \ (\exists n \in \mathbb{Z}^+) \ (ab)^n \in \langle a \rangle \bigcup \langle b \rangle. \tag{4}$$

Semigroups which satisfy (4), called generalized U-semigroups or, shortly, GU-semigroups, are considered by the authors^{3, 5}. The structure of periodic GU-semigroups is completely described in Ciric and Bogdanovic⁵.

REFERENCES

- 1. K.E. Aubert, Math. Scand. 1 (1953), 39-54.
- 2. S. Bogdanovic, Publ. Inst. Math. 28 (42) (1980), 19-23.
- 3. S. Bogdanovic, Zbornik radova Fil. fak u Nišu, Ser. Mat. 2 (1988), 3-7.
- 4. S. Bogdanovic and M. Ciric, Zbornik radova Fil. fak. u Nišu, Set. Math. 6 (1992), 129-35.
- 5. M. Ciric and S. Bogdanovic, Zbornik radova Fil. fak. Niš Sar. Math. 3 (1989), 31-42.
- M. Ciric and S. Bogdanovic, Decompositions of semigroups induced by identities, Semigroup Forum (to appear).
- 7. R. W. Gilmer and J. L. Mott, Trans. Am. Math. Soc. 114 (1965), 40-52.
- 8. H. Lal, Commutative semiprimary semigroups, Czech. Math. J. 25 (1975), 1-3.
- 9. M. Petrich, Introduction to Semigroups, Merill, Ohio, 1973.
- 10. S. Porubsky, Czech. Math. J. 27 (1977), 467-72.
- 11. M.S. Putcha, Semigroup Forum 6 (1973), 12-34.
- 12. M. Satyanarayana, Czech. Math. J. 22 (1972), 509-16.
- 14. O. Zariski and P. Samuel, Commutative Algebra I, Princeton, N.J. Van Nostrand, 1958.