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Introduction

It is well-known that quasi-orders have significant applications in many ar-
eas of mathematics. In Theory of semigroups their role is especially emphasized
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in studying of semilattice decompositions of semigroups. Such a role is predomi-
nantly based on the well-known theorem proved in the book of G. Birkhoff [1]. By
this theorem, to any quasi-order on a nonempty set A, in a very natural way, it can
be associated an equivalence relation, called a natural equivalence of this quasi-
order. Moreover, on the corresponding factor set of A this quasi-order induces a
partial order. Applied to theory of semilattice decompositions of semigroups this
leads to the following problem: Under which conditions on a quasi-order on a
semigroup, its natural equivalence is a semilattice congruence on this semigroup?
Such a problem was first treated and successfully solved by T. Tamura in [55],
1974. In the quoted paper T. Tamura used several very interesting concepts con-
cerning quasi-orders on semigroups. At first, he used the concept of positivity,
introduced by B. M. Schein in [42]. Also, T. Tamura introduced in [55] the no-
tions of a lower-potent quasi-order and the notion of a half-congruence, and using
this he established a bijective and isotone mapping between the poset of posi-
tive lower-potent half-congruences and the poset of semilattice congruences on a
semigroup.

A further progress in studying semilattice decompositions through quasi-or-
ders was made by M. Ćirić and S. Bogdanović in [14]. They first made certain
modifications of above quoted Tamura’s theorem. At first, in the proof of another
theorem from the same paper of T. Tamura, they observed that the notion ”lower-
potent half-congruence” in the Tamura’s theorem can be replaced by the notion
”quasi-order satisfying the cm-property”, which has shown oneself to be very use-
ful for the further development of the theory. Note that the notion of a quasi-order
on a semigroup satisfying the cm-property was also introduced by T. Tamura, in
[51]. Another modification of the Tamura’s theorem consists in its translation to
the language of lattices and lattice isomorphisms.

The paper of the authors [14] has been based on the idea of studying quasi-
orders through its left and right cosets. Following this idea, the authors in [14]
and [7] has connected positive quasi-orders satisfying the cm-property with some
sublattices of the lattice of consistent subsets, and on the other hand with some
sublattices of the lattices of ideals of a semigroup. Using these connections, sev-
eral characterizations of the lattice of semilattice decompositions and of semilat-
tice homomorphic images of a semigroup have been given. Especially interesting
are the ones by means of sublattices of the lattice of ideals.

All above quoted results will be presented in Section 3. Before that, in Sec-
tion 1 we will introduce notions and notations which will be used in the further
text, and in Section 2 we give definitions of several types of quasi-orders and we
describe its main features.

Applications of quasi-orders in semilattice decompositions of semigroups are
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not exhausted by the above given applications. M. S. Putcha in [34] used the di-
vision relation on a semigroup (this is the smallest positive quasi-order on a semi-
group) in studying decompositions into a semilattice of Archimedean semigroups.
After that, by the division relation T. Tamura in [52] has generated the smallest
positive lower-potent half-congruence on a semigroup, whose natural equivalence
is the smallest semilattice congruence on a semigroup. This and some other re-
sults concerning the generation of positive lower-potent half-congruences and of
semilattice congruences on a semigroup, obtained in papers of T. Tamura, M. S.
Putcha and S. Bogdanović and M. Ćirić, will be presented in Section 4.

Section 5 is devoted to the notion of an Archimedean semigroup, to its sev-
eral generalizations and to semilattices of these ”generalized Archimedean semi-
groups”. Presented definitions and results are from the papers of M. Ćirić and
S. Bogdanović, T. Tamura and M. S. Putcha.

In Section 6 we present some results concerning the role of quasi-orders in
studying of chain and ordinal decompositions of semigroups, obtained by the
authors in [14] and [16].

Finally, in the last section we talk about the quasi-semilattice decompositions
of semigroups with zero. Such decompositions were introduced and studied by
M. Ćirić and S. Bogdanović in [17]. These decompositions are carried by a par-
tially ordered set and we will see that these are generalizations of semilattice de-
compositions. We will present characterizations of the lattice of quasi-semilattice
decompositions of a semigroup with zero in through quasi-orders and through
some sublattices of the lattice of ideals. These characterizations are similar to
the related characterizations of the lattice of semilattice decompositions.

1. Preliminaries

Throughout this paper, Z+ will denote the set of all positive integers. Further,
S = S0 means that S is a semigroup with zero 0. If S = S0, we will write 0 instead
{0}, and if A is a subset of S, then A• = A− 0, A0 = A ∪ 0 and A′ = (S −A)0.
By S1 we denote the semigroup obtained from a semigroup S by adjoining an
identity. If A is a subset of a semigroup S, then by a radical of A we mean the set√

A = {x ∈ S | (∃n ∈ Z+)xn ∈ A}.
Let ξ be a binary relation on a set A. For n ∈ Z+, ξn will denote the n-th

power of ξ in the semigroup of binary relations on A, ξ∞ will denote the transitive
closure of ξ and ξ−1 will denote the relation defined by: a ξ−1 b ⇐⇒ b ξ a. For
a ∈ A, the set aξ = {x ∈ A | a ξ x} will be called the left coset of A determined by
a, and the set ξa = {x ∈ A | x ξ a} will be called the right coset of A determined by
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a. Similarly, for X ⊆ A, the sets

Xξ =
⋃

a∈X

aξ and ξX =
⋃

a∈X

ξa

will be called the left coset and the right coset of A determined by X, respectively.
By a quasi-order we mean a reflexive and transitive binary relation. By ∆A and
∇A we denote the identity and the universal relation on A, respectively. If it is
clear on which set these relations are considered, then we write simply ∆ and ∇.

A relation ξ on a semigroup S = S0 is called left 0-restricted if 0ξ = 0. A right
0-restricted relation on S is defined dually. We say that ξ is 0-restricted if it is
both left and right 0-restricted, i.e. if 0ξ = ξ0 = 0.

Let K be a subset of a lattice L (not necessary complete). If K contains the
meet of any its nonempty subset having the meet in L, then K is called a complete
meet-subsemilattice of L. A complete join-subsemilattice is defined dually. If K is
both complete meet-subsemilattice and complete join-subsemilattice of L, then
it is called a complete sublattice of L. If L is a lattice with unity, then any
sublattice of L containing its unity is called a 1-sublattice of L. Dually we define
a 0-sublattice of a lattice with zero, and we define a sublattice of a lattice L with
zero and unity to be a 0,1-sublattice if it is both 0-sublattice and 1-sublattice of
L. If any element of L is the meet of some nonempty subset of K, then K is
called meet-dense in L.

A mapping ϕ of a poset P into a poset Q is isotone (antitone) if for x, y ∈ P ,
x ≤ y implies xϕ ≤ yϕ (x ≤ y implies yϕ ≤ xϕ), and ϕ is an order isomorphism
(dual order isomorphism) if it is an isotone (antitone) bijection with isotone (anti-
tone) inverse. Note that a poset isomorphic or dually isomorphic to a (complete)
lattice is also a (complete) lattice, and by Lemma II 3.2 [1] and its dual, any
(dual) order isomorphism between lattices is a (dual) lattice isomorphism.

A mapping ϕ of a lattice L into itself is: extensive, if x ≤ xϕ, for any x ∈ L,
contractive, if xϕ ≤ x, for any x ∈ L, and idempotent , if (xϕ)ϕ = xϕ, for any
x ∈ L. An extensive, idempotent and isotone mapping of a lattice L into itself is
called a closure operation on L, and all elements x ∈ L for which xϕ = x are called
closed elements of L (with respect to ϕ). Similarly, a contractive, idempotent
and isotone mapping of a lattice L into itself is called an interior operation on
L, and all elements x ∈ L for which xϕ = x are called open elements of L (with
respect to ϕ).

For a nonempty set A, P(A) will denote the lattice of subsets of A. Let A be a
nonempty set and let L be a sublattice of P(A) containing its unity and having the
property that any nonempty intersection of elements of L is also in A. Then for
any a ∈ A there exists the smallest element of L containing a (it is the intersection
of all elements of L containing a), which will be called the principal element of L



Quasi-orders and semilattice decompositions of semigroups (a survey) 31

generated by a. The set of all principal elements of L is called the principal part
of L.

Let A be a subset of a semigroup S. If for any x ∈ S and any n ∈ Z+, xn ∈ A
implies x ∈ A, or equivalently, if

√
A ⊆ A, then A is called a completely semiprime

subset of S. If for all x, y ∈ S, xy ∈ A implies the either x ∈ A or y ∈ A, then
A is called a completely prime subset of A. We say that A is a consistent subset
of S if for all x, y ∈ S, xy ∈ A implies x ∈ A and y ∈ A. It is easy to verify
that the set of all consistent subsets of S is a complete 0,1-sublattice of P(S). A
consistent subsemigroup of a semigroup S will be called a filter of S. The empty
set will be also defined to be a filter. By F(S) we denote the lattice of filters
of S, which is a complete meet-subsemilattice of P(S), and therefore a complete
lattice, but it is not necessary a sublattice of P(S). It is well known that a subset
A of a semigroup S is a filter of S if and only its complement is either empty or
a completely prime ideal of S.

Let S be a semigroup. By Id(S) we denote the lattice of ideals of S. This
lattice is a sublattice of P(S) and also a complete join-subsemilattice of P(S),
but it is not necessary a complete meet-subsemilattice, since the empty set is
not included in Id(S) and the intersection of an infinite family of ideals may
be empty. The principal element of Id(S), called the principal ideal , generated
by a ∈ S is denoted by J(a). By Idcs(S) we denote the lattice of completely
semprime ideals of S. This lattice is a complete 1-subsemilattice of Id(S).

The division relation | on a semigroup S is defined by

a | b ⇐⇒ (∃x, y ∈ S1) b = xay.

On S we also define the relation −→ by

a −→ b ⇐⇒ (∃n ∈ Z+) a | bn.

An element a ∈ S is called intra-regular if a2 | a.
If S = S0, then an element a ∈ S is called a nilpotent element or a nilpotent if

an = 0, for some n ∈ Z+. A semigroup with zero whose all elements are nilpotent
is called a nil-semigroup.

A semigroup S is called semilattice indecomposable if the universal relation on
S is the unique semilattice congruence on S.

For undefined notions and notations we refer to the following books: G.
Birkhoff [1], S. Bogdanović [2], S. Bogdanović and M. Ćirić [4], S. Burris and
H. P. Sankappanavar [9], A. H. Clifford and G. B. Preston [18], [19], G. Grätzer
[20], J. M. Howie [21], E. S. Lyapin [26], M. Petrich [32], [33], L. N. Shevrin [44]
and G. Szász [47].
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2. Lattices of quasi-orders

In this section we will present some properties of the lattice of quasi-orders on
a semigroup and of its certain subsets and sublattices. Namely, we will consider
several types of quasi-orders significant from the aspect of its usage in studying
of semilattice decompositions of semigroups and quasi-semilattice-decompositions
of semigroups with zero.

The set Q(A) of quasi-orders on an nonempty set A, partially ordered by
inclusion of relations, is a complete lattice, in which the meet and the join of a
subset X of Q(A) are defined as follows. The meet of X equals the set-theoretical
intersection of all elements of X. If B(A) denote the semigroup of all binary
relations on A (with respect to usual product of relations), then the join of
X equals the set-theoretical union of all elements of the subsemigroup of B(A)
generated by X.

An important complete sublattice of Q(A) is the lattice E(A) of all equivalence
relations on A. If A is any algebra, then the set Con(A) of all congruence relations
on A is a complete sublattice both of Q(A) and E(A).

Among the other special types of quasi-orders on a semigroup, we will first
talk about the positive quasi-orders. We say that a relation ξ on a semigroup S
is positive if a ξ ab and b ξ ab, for all a, b ∈ S. This concept has been introduced
by B. M. Schein in [42]. After that, positive quasi-orders have been studied from
different points of view by many authors, mainly by T. Tamura [51]–[55], M. S.
Putcha [35], [37]–[40], and the authors [7], [8], [11], [14], [17]. One remark on
positive quasi-orders given by M. S. Putcha in [35], can be formulated in the
following way:

Theorem 2.1. The set of positive quasi-orders on a semigroup S is the principal
dual ideal of Q(S) generated by the division relation | on S.

Another important concept is the lower-potency, introduced by T. Tamura in
[55]. A relation ξ on a semigroup S will be called lower-potent if an ξ a, for any
a ∈ S and any n ∈ Z+. When ξ is a quasi-order, then it is lower-potent if and
only if a2 ξ a, for any a ∈ S. The place of such quasi-orders inside the lattice
Q(S) is described by:

Theorem 2.1. The set of lower-potent quasi-orders on a semigroup S is the
principal dual ideal of Q(S) generated by the relation √ on S defined by

a√ b ⇐⇒ a ∈
√

b.

The following theorem, taken from the proof of Theorem 2 from [14], can be
also obtained as a combination of the previous two theorems.
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Theorem 2.3. The set of lower-potent positive quasi-orders on a semigroup S
is the principal dual ideal of Q(S) generated by −→∞ .

Relations satisfying the cm-property were introduced by T. Tamura in [51],
by the following definition: A relation ξ on a semigroup S satisfies the common
multiple property , or shortly the cm-property , if for all a, b, c ∈ S, a ξ c and b ξ c
implies ab ξ c. It can be easily proved that the quasi-orders on S with this property
form a complete meet subsemilattice of Q(S), and hence a complete lattice, but
it is not known does they form a (complete) sublattice of Q(S). However, the
following theorem holds:

Theorem 2.4. (S. Bogdanović and M. Ćirić [7]) The poset of quasi-orders on
a semigroup S satisfying the cm-property is a complete lattice. The smallest
element of this lattice is the relation √ .

T. Tamura in [55] also defined half-congruences as compatible quasi-orders.
The standard proof of the fact that the congruences on any algebra form a com-
plete sublattice of the lattice of equivalence relations can be easily translated to
half-congruences and the following theorem can be obtained:

Theorem 2.5. The set of half-congruences on a semigroup S is a complete sub-
lattice of Q(S).

By combination of the previous results concerning positive and lower-potent
quasi-orders on a semigroup, the following theorem has been obtained:

Theorem 2.6. (S. Bogdanović and M. Ćirić [7]) The set of lower-potent positive
half-congruences on a semigroup S is the principal dual ideal of the lattice of
half-congruences on S generated by −→∞ .

It is important to note that, whenever it is needed, instead of the lower-
potent positive half-congruences we can use positive quasi-orders satisfying the
cm-property. This follows by the following theorem, which is taken from the
proof of Theorem 4.9 of [55].

Theorem 2.7. A positive quasi-order ξ on a semigroup S satisfies the cm-
property if and only if it is a lower-potent half-congruence.

The second part of this section is devoted to quasi-orders on a semigroup with
zero. In studying of semigroups with zero it is often of interest to use relations
and subsets with some ”restrictions” and ”weakenings” on the zero. For a relation
ξ on a semigroup S = S0, the authors in [11] have defined the operations:

•ξ = ξ − (0× S•), ξ• = ξ − (S• × 0), •ξ• = ξ − (0× S• ∪ S• × 0)
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and
ξ0 = ξ ∪ (S• × 0),

and they have introduced the notations:

γl = •∇, γr = ∇• and γ = •∇•,
where ∇ denotes the universal relation on S. For any semigroup S = S0, the
mappings

ξ 7→ •ξ, ξ 7→ ξ• and ξ 7→ •ξ•

are interior operations on the lattice Q(S), and the related sets of open elements
are the sets of left 0-restricted, right 0-restricted and 0-restricted quasi-orders on
S, respectively. Moreover, the following theorem has been proved:

Theorem 2.8. (M. Ćirić and S. Bogdanović [11]) The sets of left 0-restricted
quasi-orders, right 0-restricted quasi-orders and 0-restricted quasi-orders on a
semigroup S = S0 are the principal ideals of Q(S) generated by γl, γr and γ,
respectively.

On the other hand, it has been proved in [11] that the mapping ξ 7→ ξ0 is a
closure operation on the lattice of left 0-restricted quasi-orders on S.

Jointly with positive relations, in studying of semigroups with zero we also
use 0-positive relations defined in the following way: a relation ξ on a semigroup
S = S0 is called 0-positive if for all a, b ∈ S, ab 6= 0 implies a ξ ab and b ξ ab.
Some properties of the set of 0-positive quasi-orders inside the lattice Q(S) have
been described in [11], by the following theorem:

Theorem 2.9. (M. Ćirić and S. Bogdanović [11]) The sets of 0-positive quasi-
orders on a semigroup S = S0 is the principal dual ideal of Q(S) generated by
the relation ‖ on S defined by

a ‖ b ⇐⇒ a = b = 0 or
(

(∃x, y ∈ S1) b = xay 6= 0
)

.

Combining Theorems 2.8 and 2.9, it has been proved in [11] that the set of
left 0-restricted positive quasi-orders on a semigroup S = S0 and the set of
0-restricted 0-positive quasi-orders on S equal the intervals [|, γl] and [‖, γ] of
Q(S), respectively, so these are complete sublattices of Q(S). Moreover, it has
been observed that the mappings ξ 7→ ξ• and η 7→ η0 are mutually inverse
isomorphisms between these lattices, whence the following theorem has been
obtained:

Theorem 2.10. (M. Ćirić and S. Bogdanović [11]) The lattice of left 0-restric-
ted positive quasi-orders on a semigroup S = S0 is isomorphic to the lattice of
0-restricted 0-positive quasi-orders on S.
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Except the lower-potent relations, on semigroups with zero we consider also
0-lower-potent relations defined as follows: a relation ξ on a semigroup S =
S0 is called 0-lower-potent if for any a ∈ S and any n ∈ Z+, an 6= 0 implies
an ξ a. The sets of left 0-restricted positive 0-lower-potent quasi-orders and of
0-restricted 0-positive 0-lower-potent quasi-orders have been also studied in [11]
and the following two results have been obtained:

Theorem 2.11. (M. Ćirić and S. Bogdanović [11]) The set of left 0-restricted
positive 0-lower-potent quasi-orders on a semigroup S = S0 is the principal dual
ideal of Q(S) generated by the relation   on S defined by

a   b ⇐⇒ b = 0 or
(

(∃n ∈ Z+)(∃x, y ∈ S1) bn = xay 6= 0
)

.

Theorem 2.12. (M. Ćirić and S. Bogdanović [11]) The set of 0-restricted 0-
positive 0-lower-potent quasi-orders on a semigroup S = S0 is the principal dual
ideal of Q(S) generated by the relation � on S defined by

a � b ⇐⇒ a = b = 0 or
(

(∃n ∈ Z+)(∃x, y ∈ S1) bn = xay 6= 0
)

.

Seeing that the mapping ξ 7→ ξ• preserves the 0-lower-potentcy, then the
following also holds:

Theorem 2.13. (M. Ćirić and S. Bogdanović [11]) The lattice of left 0-restricted
positive 0-lower-potent quasi-orders on a semigroup S = S0 is isomorphic to the
lattice of 0-restricted 0-positive 0-lower-potent quasi-orders on S.

The cm-property has been also modified for semigroups with zero in the fol-
lowing way: we say that a relation ξ on a semigroup S = S0 satisfies the 0-cm-
property if for all a, b, c ∈ S, a ξ c, b ξ c and ab 6= 0 implies ab ξ c. The authors in
[11] proved the following:

Theorem 2.14. (M. Ćirić and S. Bogdanović [11]) The poset of left 0-restricted
positive quasi-orders on a semigroup S = S0 satisfying the 0-cm-property and the
poset of 0-restricted 0-positive quasi-orders on S satisfying the 0-cm-property are
isomorphic complete lattices.

The sense of such defined concepts will be explained later, in Section 7.
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3. Semilattice decompositions viewed from quasi-orders

In studying of semilattice decompositions of semigroups, which has been
started by T. Tamura in [55], a starting point has been the following result given
by G. Birkhoff in his book [1].

Theorem 3.1. (G. Birkhoff [1]) Let ξ be a quasi-order on a set X. Then

1. ˜ξ = ξ ∩ ξ−1 is an equivalence relation on X.
2. If E and F are two ˜ξ-classes, then a ξ b either for no a ∈ E, b ∈ F , or for

all a ∈ E, b ∈ F .
3. The quotient set X/˜ξ is a poset if E ≤ F is defined to mean that a ξ b for

some (hence all) a ∈ E, b ∈ F .

In other words, the previous theorem says that to any quasi-order ξ on a set X
in a natural way it can be associated an equivalence relation ˜ξ, called the natural
equivalence of ξ. On the other hand, to ξ it can be also naturally associated a
partially ordered set X/˜ξ with the partial order ≤ which will be further denoted
by ξ/˜ξ. It can be also showed that the mapping ξ 7→ ˜ξ is an interior operation
on the lattice Q(X), whose related set of open elements is exactly the set of all
equivalence relations on S.

If we consider a quasi-order ξ on a semigroup S, then several important ques-
tions concerning ξ and its natural equivalence naturally arise. The first of them
is: Under what conditions ˜ξ is a congruence on S? One answer on this question
has been given in above mentioned paper of T. Tamura:

Theorem 3.2. (T. Tamura [55]) If ξ is a half-congruence on a semigroup S,
then ˜ξ is a congruence on S and S/˜ξ is a partially ordered semigroup with respect
to ξ/˜ξ.

Conversely, if ϕ : S → S′ is a homomorphism of a semigroup S onto a partially
ordered semigroup (S′, ξ′), and if we define a relation ξ on S by:

a ξ b ⇐⇒ (aϕ) ξ′ (bϕ),

then ξ is a half-congruence on S and (S/˜ξ, ξ/˜ξ) and (S′, ξ′) are isomorphic par-
tially ordered semigroups.

Another interesting question treated in the same paper of T. Tamura has been
the following: Under what conditions on ξ, ˜ξ becomes a semilattice congruence?
One answer to this question has been given by T. Tamura in [55], by means of the
concepts of positivity and lower-potency, that have been treated in the preceding
section. Namely, T. Tamura has proved the following theorem
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Theorem 3.3. (T. Tamura [55]) If ξ is a lower-potent positive half-congruence
on a semigroup S, then ˜ξ is a semilattice congruence on S. Every semilattice
congruence is obtained in this manner, and the correspondence ξ 7→ ˜ξ is one-to-
one and isotone.

In fact, the previous theorem gives somewhat more than was required in the
above question. First of all, Theorem 3.3 says that the correspondence ξ 7→ ˜ξ is
one-to-one, which does not hold when ξ is simply a half-congruence, An example
for this has been given by T. Tamura in [55]. On the other hand, Theorem 3.3 says
that the mapping ξ 7→ ˜ξ of the poset of lower-potent positive half-congruences into
the poset of semilattice congruences on S is also onto and isotone. But, Tamura
has not investigated the inverse of this mapping, although it can be easily proved
that this inverse is also isotone. Moreover, Tamura has not treated these posets as
complete lattices. Namely, recall that by Theorem 2.6 it follows that the poset of
lower-potent positive half-congruences on a semigroup S is a complete sublattice
of Q(S). On the other hand, by a general result obtained by T. Tamura and
N. Kimura in [56], the poset of semilattice congruences on S is also a complete
lattice. Moreover, by another general result given by M. Ćirić and S. Bogdanović
in [15], semilattice congruences on S form a principal dual ideal of Con (S).

If we take into consideration all the above mentioned facts, Theorem 3.3 can
be formulated in the following way:

Theorem 3.4. The lattice of semilattice congruences on a semigroup S is iso-
morphic to the lattice of lower-potent positive half-congruences on S.

On the other hand, in view of Theorem 2.7, Theorem 3.3 can be also given in
the following version:

Theorem 3.5. The lattice of semilattice congruences on a semigroup S is iso-
morphic to the lattice of positive quasi-orders satisfying the cm-property on S.

This version of Theorem 3.3 has been given by M. Ćirić and S. Bogdanović in
[14], where it has been shown that it has a great importance for further studying
of semilattice decompositions through quasi-orders.

A new way in studying of quasi-orders on a semigroup has been discovered
by the authors in [14]. In this paper, the authors started an investigation of
quasi-orders through its left and right cosets. In order to explain this approach
to studying of quasi-orders, we will start from a quasi-order ξ on a nonempty set
X. To this quasi-order we can associate the subset Kξ of P (X) defined by:

(3.1) Kξ = {A ∈ P (X) | Aξ = A}.
Significant properties of this set are the following: Kξ is a complete 0,1-sublattice
of P (X), whose principal elements are exactly the left cosets of ξ determined by
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the elements of X, and moreover, the mapping ξ 7→ Kξ is a dual isomorphism of
the lattice Q(X) onto the lattice of complete 0,1-sublattices of P (X). This will
be summarized as

Theorem 3.6. The lattice Q(X) of quasi-orders on a nonempty set X is dually
isomorphic to the lattice of complete 0,1-sublattices of P (X).

The inverse of the given dual isomorphism is defined in the following way: for
a given complete 0,1-sublattice K of P (X), a quasi-order ξK on S related to K
is defined by:

(3.2) a ξK b ⇐⇒ K(b) ⊆ K(a),

where for any a ∈ X, K(a) denotes the principal element of K generated by a,
and then the mapping K 7→ ξK is the inverse of ξ 7→ Kξ.

Another isomorphism between the lattice Q(X) and the lattice of complete
0,1-sublattices of P (X) can be obtained in the following way, by means of the
right cosets of quasi-orders. Namely, the mapping ξ 7→ K ′

ξ, where

(3.3) K ′
ξ = {A ∈ P (X) | ξA = A},

is also a dual isomorphism between of the first onto the second quoted lattice.
The inverse of this mapping is the mapping K 7→ ξ′K , where ξ′K is defined by

(3.4) a ξ′K b ⇐⇒ K(a) ⊆ K(b),

The principal elements of K ′
ξ are the right cosets determined by the elements of

X.
However, when we deal with some special quasi-orders, then using of left and

right cosets leads to different results. For example, positive quasi-orders have
been described in [14] in the following way:

Theorem 3.7. (M. Ćirić and S. Bogdanović [14]) The following conditions for
a quasi-order ξ on a semigroup S are equivalent:

(i) ξ is positive;
(ii) (∀a, b ∈ S) (ab)ξ ⊆ aξ ∩ bξ;
(iii) (∀a, b ∈ S) ξa ∪ ξb ⊆ ξ(ab);
(iv) aξ is an ideal of S, for each a ∈ S;
(v) ξa is a consistent subset of S, for each a ∈ S.

By this theorem, positive quasi-orders can be characterized in two different
ways. The first one is by means of consistent subsets of a semigroup:
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Theorem 3.8. (S. Bogdanović and M. Ćirić [7]) The lattice of positive quasi-
orders on a semigroup S is dually isomorphic to the lattice of complete 0,1-
sublattices of the lattice of consistent subsets of S.

Another characterization has been given in [14] by means of ideals:

Theorem 3.9. (M. Ćirić and S. Bogdanović [14]) The lattice of positive quasi-
orders on a semigroup S is dually isomorphic to the lattice of complete 1-sublat-
tices of Id(S).

By the same methodology, lower-potent positive quasi-orders have been de-
scribed by:

Theorem 3.10. (M. Ćirić and S. Bogdanović [14]) A quasi-order ξ on a semi-
group S is lower-potent and positive if and only if aξ is a completely semiprime
ideal of S, for any a ∈ S.

Applying this to Theorem 3.9 it has been obtained

Theorem 3.11. (M. Ćirić and S. Bogdanović [14]) The lattice of lower-potent
positive quasi-orders on a semigroup S is dually isomorphic to the lattice of com-
plete 1-sublattices of Idcs(S).

Finally, positive quasi-orders with the cm-property have been characterized in
the following way:

Theorem 3.12. (M. Ćirić and S. Bogdanović [14]) The following conditions for
a quasi-order ξ on a semigroup S are equivalent:

(i) ξ is positive and it satisfies the cm-property;
(ii) ξa is a filter of S, for each a ∈ S;
(iii) (∀a, b ∈ S) aξ ∩ bξ = (ab)ξ.

Using (i) ⇐⇒ (ii) of the previous theorem, the authors in [7] obtained the
following result:

Theorem 3.13. (S. Bogdanović and M. Ćirić [14]) The lattice of positive quasi-
orders on a semigroup S satisfying the cm-property is dually isomorphic to the
lattice of complete 0,1-sublattices of P(S) whose principal elements are filters of
S.

A more interesting characterization of the lattice of positive quasi-orders with
the cm-property has been obtained in [14] by means of (i) ⇐⇒ (iii) of Theorem
3.12. In order to present this result, we introduce several new notions. Given a
sublattice K of the lattice Idcs(S) of completely semiprime ideals of a semigroup
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S. If any element from K can be represented as an intersection of some family
of completely prime ideals from K, then we say that K satisfies the completely
prime ideal property , or shortly the cpi-property . In other words, K satisfies
the cpi-property if and only if the set of all completely prime ideals from K is
meet-dense in K. Using this concept, the authors in [14] obtained the following
result:

Theorem 3.14. (M. Ćirić and S. Bogdanović [14]) The lattice of positive quasi-
orders on a semigroup S satisfying the cm-property is dually isomorphic to the
lattice of complete 1-sublattices of Idcs(S) satisfying the cpi-property.

Theorem 3.12 also says that for any positive quasi-order ξ on a semigroup
S satisfying the cm-property, the principal part of the lattice Kξ is a meet-
subsemilattice of Kξ. Clearly, this semilattice is isomorphic to the semilattice
homomorphic image of S corresponding to the semilattice congruence ˜ξ. Using
these facts the authors in [14] gave the following characterization of all semilattice
homomorphic images of a semigroup:

Theorem 3.15. (M. Ćirić and S. Bogdanović [14]) A semilattice Y is a semilat-
tice homomorphic image of a semigroup S if and only if it is isomorphic to the
principal part of some complete 1-sublattice of Idcs(S) satisfying the cpi-property.

Especially, the greatest semilattice homomorphic image of a semigroup S has
been described in an earlier paper [13] of the authors. In this paper, the principal
element of the lattice Idcs(S) generated by an element a of a semigroup S has
been called the principal radical of S generated by a, and it has been denoted by
Σ(a). Using this notion, the authors have proved the following theorem

Theorem 3.16. (M. Ćirić and S. Bogdanović [13]) If a, b is any pair of elements
of a semigroup S, then

Σ(a) ∩ Σ(b) = Σ(ab).

Furthermore, the set ΣS of all principal radicals of S, partially ordered by in-
clusion, is a semilattice and it is the greatest semilattice homomorphic image of
S.

Also, the following algorithm for computation of principal radicals of a semi-
group has been given:

Theorem 3.17. (M. Ćirić and S. Bogdanović [13]) The principal radical Σ(a) of
a semigroup S generated by an element a ∈ S can be computed using the following
formulas:

Σ1(a) =
√

SaS, Σn+1(a) =
√

SΣn(a)S, n ∈ Z+,
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and
Σ(a) =

⋃

n∈Z+

Σn(a).

Clearly, for all n ∈ Z+, a ∈ S, Σn(a) = {x ∈ S | a −→n x} and Σ(a) = {x ∈
S | a −→∞ x}.

Note finally that the concepts similar to the cpi-property play an important
role in certain other algebraic theories. For example, the theorem that asserts
similar property of the lattice of ideals of a distributive lattice is known as the
Prime Ideal Theorem. For related concepts in Ring theory, the reader is referred
to the paper of W. Krul [25] or the book of N. H. Mc Coy [28]. It is also known
that the lattice Idcs(S) of completely semiprime ideals of an arbitrary semigroup
S satisfies the cpi-property. This has been proved in some special cases by Š.
Schwarz [43] and K. Iséki [22], an in the general case by M. Petrich in [32] (see
also Y. S. Park, J. P. Kim and M. G. Sohn [29]). In the book [20] of G. Grätzer
it has been mentioned that the Prime Ideal Theorem for distributive lattices,
lattices and rings is a consequence of the Axiom of Choice. In the Petrich’s book
[32], the cpi-property for the lattice of completely semiprime ideals of a semigroup
has been also proved my means of the Axiom of Choice (or more precisely, by
the Zorn’s lemma arguments). Using Theorem 3.18, M. Ćirić and S. Bogdanović
in [13] shown that the same result can be obtained without use of argumens of
the Zorn’s lemma or the Axiom of Choice.

4. Semilattice congruences generation

One of the most important problems in the theory of semilattice decomposi-
tions of semigroups is given in the question: how to generate semilattice congru-
ences starting from other relations that can be more easily constructed? The most
significant result from this area is probably the result given by T. Tamura in [52],
which gives a way for construction of the smallest semilattice congruence starting
from the division relation on a semigroup. This result is given by the following

Theorem 4.1. (T. Tamura [52]) The smallest semilattice congruence on a semi-
group S equals the natural equivalence of the quasi-order −→∞ .

Seeing that −→∞ is the smallest lower-potent positive quasi-order on a
semigroup, the previous theorem can be formulated in the following way, as done
in [53]:

Theorem 4.2. The smallest semilattice congruence on a semigroup S equals the
natural equivalence of the smallest lower-potent positive quasi-order on S.
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In the same paper, T. Tamura generalized this result by the following theorem:

Theorem 4.3. (T. Tamura [54]) For any compatible relation ξ on a semigroup
S, the smallest semilattice congruence on S containing ξ equals the natural equiv-
alence of the smallest lower-potent positive quasi-order on S containing ξ.

The statement of Theorem 4.2 can be obtained from the previous theorem, in
the case when ξ is the identity relation on S.

Interesting characterizations of the smallest semilattice congruence on a semi-
group have been obtained by M. S. Putcha in [36]. In this paper he first proved
the following:

Theorem 4.4. (M. S. Putcha [36]) The smallest semilattice congruence on a
semigroup S equals the equivalence relation on S generated by the relation xy ≡
xyx ≡ yx, for all x, y ∈ S1.

Afterwards, using the previous theorem and the relation defined by the rule:
=−→ ∩(−→)−1, M. S. Putcha in [36] obtained also the following theorem:

Theorem 4.5. (M. S. Putcha [36]) The smallest semilattice congruence on a
semigroup S equals the relation ∞.

Each of Theorems 4.1 and 4.4 has been proved without using the other, but
T. Tamura in [54] shown that each one can be directly derived from the other.

Some new results concerning the question of lower-potent positive half-con-
gruences generating have been obtained in a recent paper of the authors. Recall
that the smallest lower-potent positive half-congruence on a semigroup is ob-
tained from the division relation using the construction of the relation −→ and
its transitive closure. A similar construction can be applied to any relation π on
a semigroup S. Namely, S we can define the relation π−→ on S by:

a π−→ b ⇐⇒ (∃n ∈ Z+) a π bn,

and to consider its transitive closure π−→ ∞. In order to simplify notations, the
relation π−→ ∞ will be denoted by π. The authors in [8] considered the following
problem: Under what conditions the relation π is a lower-potent positive half-
congruence on S? It is not hard to provide the lower-potency and the positivity
of π, since the following two theorems hold:

Theorem 4.6. The smallest lower-potent quasi-order on a semigroup S contain-
ing a relation ξ on S equals π, where π = ξ ∪∆.

Theorem 4.7. The smallest lower-potent positive quasi-order on a semigroup S
containing a relation ξ on S equals π, where π = ξ∪ |.
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Applying Theorem 4.7 on quasi-orders the following can be obtained:

Theorem 4.8. The mapping π 7→ π is a closure operation on the lattice Q(S) of
quasi-orders on a semigroup S. The corresponding set of closed elements is the
set of all lower-potent quasi-orders on S.

On the other hand, an immediate consequence of Theorem 4.6 is the following
theorem:

Theorem 4.9. Let π be a reflexive positive relation on a semigroup S. Then π
is the smallest lower-potent positive quasi-order on S containing π.

Hence, if we want to prove that π is a lower-potent positive half-congruence,
where π is a reflexive positive relation on a semigroup S, the main problem is to
prove the compatibility of π. A necessary and sufficient condition for π to π be
compatible has been established by the authors in [8] by the following theorem:

Theorem 4.10. (S. Bogdanović and M. Ćirić) [8] Let π be a reflexive positive
relation on a semigroup S. Then π is compatible if and only if for all a, b, c, d ∈ S
the following condition holds

(5) a π c & b π d =⇒ (∃u ∈ S) a | u & b | u & uπcd.

Especially, for positive quasi-orders the authors obtained:

Theorem 4.11. (S. Bogdanović and M. Ćirić) [8] Let π be a positive quasi-order
on a semigroup S. Then π is compatible if and only if for all a, b, c ∈ S the
following condition holds

(6) a π c & b π c =⇒ (∃u ∈ S) a | u & b | u & uπc.

A key role in the proofs of the preceding two theorems plays the following
theorem:

Theorem 4.12. Let ξ be a lower-potent positive quasi-order on a semigroup S
and a1, a2, . . . , an ∈ S. Then

a1a2 · · · an ξ aaϕa2ϕ · · · anϕ,

for any permutation ϕ of the set {1, 2, . . . , n}.

This theorem has been first explicitly formulated and proved by the authors
in [8], although a proof of this feature of lower-potent positive quasi-orders can
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be also found in the proof of Theorem 2.3 of [53]. Notice that this feature of
lower-potent positive quasi-orders is closely related to a property of completely
semiprime ideals of a semigroup given by Lemma II 3.5 from the book of M.
Petrich [32]. In fact, this is an immediate consequence of Theorem 3.10.

If in Theorem 4.11 we put π =|, then we immediately obtain Theorem 4.1,
since the relation | satisfies the condition (6). Therefore, Theorem 4.11 generalizes
Theorem 4.1. On the other hand, if a compatible relation ξ on a semigroup S is
given and if we put π = ξ∪ |, then π satisfies (5), so the assertion of Theorem 4.3
follows by Theorem 4.10.

This section will be finished by two theorems given by T. Tamura that charac-
terize the smallest lower-potent positive half-congruence and the smallest semi-
lattice congruence on a semigroup.

Theorem 4.13. (T. Tamura [54]) The smallest lower-potent positive half-congru-
ence on a semigroup S equals the transitive closure of the relation

∆ ∪ {(xa2y, xay) | a ∈ S, x, y ∈ S1} ∪ {(xay, xaby) | a, b ∈ S, x, y ∈ S1}∪
∪ {(xay, xbay) | a, b ∈ S, x, y ∈ S1}.

Theorem 4.14. (T. Tamura [53]) The smallest semilattice congruence on a
semigroup S containing a compatible relation ξ on S equals the symmetric tran-
sitive closure of the relation

ξ ∪∆ ∪ {(xa2y, xay) | a ∈ S, x, y ∈ S1} ∪ {(xaby, xbay) | a, b ∈ S, x, y ∈ S1}.

5. Archimedeaness and its generalizations

One of the most significant results of the theory of semilattice decompositions
of semigroups is the following theorem of T. Tamura, proved first in [50]:

Theorem 5.1. (T. Tamura [50]) In the greatest semilattice decomposition of a
semigroup, any component is a semilattice indecomposable semigroup.

This theorem has initiated intensive studying of semilattice indecomposable
semigroups. In the general case, these semigroups have been characterized by T.
Tamura and M. Petrich:

Theorem 5.2. The following conditions on a semigroup S are equivalent:
(i) S is semilattice indecomposable;
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(ii) (∀a, b ∈ S) a −→∞ b;
(iii) S has no proper completely semiprime ideals;
(iv) S has no proper completely prime ideals.

The equivalence of conditions (i) and (ii) has been established by T. Tamura
in [52], (i) ⇐⇒ (iii) has been proved by M. Petrich in [32], and (i) ⇐⇒ (iv) also
by M. Petrich in [31].

Among the various special types of semilattice indecomposable semigroups, an
outstanding place is taken by semigroups in which a −→ b, for all its elements
a and b, called Archimedean semigroups . Also, in the theory of semilattice de-
compositions, an outstanding place is taken by semigroups which are semilattices
of Archimedean semigroups. These semigroups have been first completely de-
scribed by M. S. Putcha in [34]. Various other characterizations of semilattices
of Archimedean semigroups have been given by many authors, and the most in-
teresting ones will be presented in the next theorem. But first we introduce the
following notion: we say that a relation ξ on a semigroup S is powerfull if for all
a, b ∈ S, a ξ b implies a2 ξ b.

Theorem 5.3. The following conditions on a semigroup S are equivalent:

(i) S is semilattice of Archimedean semigroups;
(ii) −→ is powerfull;
(iii) −→ satisfies the cm-property;
(iv) −→ is transitive;
(v) (∀a, b ∈ S) a2 −→ ab;
(vi) the radical of any ideal of S is also an ideal of S;
(vii) in any homomorphic image of S having a zero, the set of all nilpotents is

an ideal;
(viii) (∀a, b ∈ S) Σ1(ab) = Σ1(a) ∩ Σ1(b).

The equivalence of conditions (i) and (ii) has been established by M. S. Putcha
in [34], and of (ii), (iii) and (iv) by T. Tamura in [51]. M. Ćirić and S. Bogdanović
proved (i) ⇐⇒ (v) in [10], (i) ⇐⇒ (vii) in [3], and (i) ⇐⇒ (viii) in [13]. The
equivalence of conditions (i) and (vi) has been proved by F. Kmeť in [24], and
independently by M. Ćirić and S. Bogdanović in [10]. For more informations
on semilattices of Archimedean semigroups the reader is referred to the survey
paper of S. Bogdanović and M. Ćirić [5] or its book [4]. For corresponding results
concerning π-regular and completely π-regular semigroups we also refer to the
papers of L. N. Shevrin [45] and [46], and M. L. Veronesi [57].
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The concept of archimedeaness has been generalized many a times. One of its
generalizations is the notion of a σn-simple semigroup, defined for an arbitrary
n ∈ Z+ in the following way: the relation σn on a semigroup S is defined by

a σn b ⇐⇒ Σn(a) = Σn(b),

and we say that S is σn-simple if σn equals the universal relation on S, or
equivalently, if a −→n b, for all a, b ∈ S. Clearly, σn-simple semigroups are both
a generalization of Archimedean semigroups (which are obtained for n = 1) and
a specialization of semilattice indecomposable semigroups. Semilattices of σn-
simple semigroups have been investigated by M. Ćirić and S. Bogdanović in [13],
where they gave the following result:

Theorem 5.4. (M. Ćirić and S. Bogdanović [13]) Let n ∈ Z+. Then the following
conditions on a semigroup S are equivalent:

(i) S is a semilattice of σn-simple semigroups;
(ii) every σn-class of S is a subsemigroup;
(iii) (∀a ∈ S) a σn a2;
(iv) −→n is powerfull;
(v) −→n satisfies the cm-property;
(vi) −→n is transitive;
(vii) for any a ∈ S, Σn(a) is an ideal of S;
(viii) (∀a, b ∈ S) Σn(ab) = Σn(a) ∩ Σn(b);
(ix) σn =−→n ∩(−→n)−1 on S.

Another generalization of Archimedean semigroups has been given by T.
Tamura in [55]. Given a nonempty class C of semigroups closed under ideals
and filters, i.e. which contains all ideals and filters of any semigroup from C.
Further, given a mapping S 7→ πS which to any semigroup S ∈ C associates a
positive quasi-order πS on S which satisfies the following condition: if S, T ∈ C
and T ⊆ S, then

a πT b =⇒ a πS b.

In this case the set ΠC = {πS | S ∈ C} is called a positive quasi-order system on
C. For S ∈ C, by π∗S we denote the relation πS−→, and the set Π∗C = {π∗S | S ∈ C} is
called a root system of ΠC. Finally, a semigroup S ∈ C is called ΠC-Archimedean
if π∗S equals the universal relation on S.

In studying of semilattices of such semigroups, T. Tamura has considered root
systems Π∗C satisfying the condition that any π∗S , S ∈ C, has the cm-property.
He proved the following theorem:
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Theorem 5.5. (T. Tamura [55]) Let Π∗C be a root system and S ∈ C. Then π∗S
satisfies the cm-property if and only if π∗S is a half-congruence.

He also proved the following

Theorem 5.6. (T. Tamura [55]) Let Π∗C be a root system and S ∈ C. Then π∗S
is powerfull if and only if π∗S is transitive.

T. Tamura also introduced the following notions: for a root system Π∗C we say
that it is upper-supporting if the following condition holds: if a ∈ S and I = aπ∗S ,
then

x, y ∈ I & xπ∗S y =⇒ xπ∗I y.

Similarly, we say that Π∗C is lower-supporting if the following condition holds: if
a ∈ S and F = π∗Sa, then

x, y ∈ F & x π∗S y =⇒ xπ∗F y.

Using these notions, T. Tamura has proved the following theorem:

Theorem 5.7. (T. Tamura [55]) Let Π∗C be a root system such that π∗S is a half-
congruence on S for any S ∈ C. Then the following conditions are equivalent:

(i) Π∗C is upper-supporting and lower-supporting;
(ii) each ˜π∗S-class is a maximal ΠC-Archimedean subsemigroup of S, for any

S ∈ C;
(iii) for all S ∈ C, ˜π∗S is the greatest semilattice congruence on S having the

property that each its class is a ΠC-Archimedean semigroup.

In a similar way the archimedeaness has been generalized by M. S. Putcha in
[35]. Namely, he introduced the following definition: if π is a quasi-order on a
semigroup S, then S is called π-Archimedean if a π−→ b, for all a, b ∈ S. Also, an
element a ∈ S is called a π-idempotent if an π a π an, for any n ∈ Z+. Clearly, if
π is positive, then it is enough to require that a2 π a.

M. S. Putcha proved in [35] that such notions play a significant role in studying
of certain subdirect decompositions of semigroups:

Theorem 5.8. (M. S. Putcha [35]) A semigroup S does not have a zero and
is a subdirect product of countably many nil-semigroups if and only if there ex-
ists a positive quasi-order π on S such that S has no π-idempotents and is π-
Archimedean.

As a consequence of this theorem, M. S. Putcha obtained the following:
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Theorem 5.9. (M. S. Putcha [35]) Let S be a subsemigroup of an Archime-
dean semigroup without intra-regular elements. Then S is a subdirect product of
countably many nil-semigroups.

Parallelly with positive quasi-orders, M. S. Putcha has investigated positive
mappings into a poset, defined in the following way: a mapping ϕ : S → P ,
where S is a semigroup and P is a poset, is called positive if (ab)ϕ ≥ aϕ and
(ab)ϕ ≥ bϕ, for all a, b ∈ S. A connection between these mappings and positive
quasi-orders has been given by

Theorem 5.10. (M. S. Putcha [38]) If ϕ is a positive mapping of a semigroup
S into a poset P , then the relation π on S defined by

a π b ⇐⇒ aϕ ≤ bϕ

is a positive quasi-order on S.
Moreover, any positive quasi-order on S is obtained in this manner.

In fact, the previous theorem is a consequence of a Birkhoff’s theorem given
here as Theorem 3.1.

Using such connection between quasi-orders and mappings of a semigroup into
a poset, various notions concerning quasi-orders can be translated to the notions
concerning the corresponding mappings. So, for a mapping ϕ of a semigroup
S into a poset P we define the following notions: an element a ∈ S is called a
ϕ-idempotent if anϕ = aϕ, for any n ∈ Z+, S is called ϕ-Archimedean if for all
a, b ∈ S there exists n ∈ Z+ such that aϕ ≤ anϕ, and we say that ϕ is powerfull
if for all a, b ∈ S,

aϕ ≤ bϕ =⇒ (∃n ∈ Z+) a2ϕ ≤ bnϕ.

Using these notions, M. S. Putcha in [35] has proved the following:

Theorem 5.11. (M. S. Putcha [35]) Let S be a semigroup and ϕ a positive
powerfull mapping of S into a poset P . Let T be a subsemigroup of S contained
in a semilattice indecomposable subsemigroup of S. Then the following hold:

(1) T is ϕ-Archimedean.
(2) If T contains a ϕ-idempotent a, then ϕ attains a maximum on T at a.

Moreover the set I = {x ∈ T | xϕ = aϕ} is an ideal of T and T/I is a
nil-semigroup. Also, I consists exactly of all the ϕ-idempotents of T .

(3) If T does not contain a ϕ-idempotent, then ϕ does not attain a maximum
on T . Moreover, T can be expressed as a subdirect product of countably
many nil-semigroups.
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Using this, M. S. Putcha also proved

Theorem 5.12. (M. S. Putcha [35]) Let S be a semigroup. Then the following
are equivalent:

(i) there exists a positive powerfull mapping ϕ of S into a poset P and every
ϕ-idempotent is an ordinary idempotent;

(ii) S is a semilattice Y of semigroups Sα, α ∈ Y , such that each Sα is either
idempotent-free and a subdirect product of countably many nil-semigroups
or else is an ideal extension of a band by a nil-semigroup;

(iii) S is a semilattice Y of semilattice indecomposable semigroups Sα, α∈ Y ,
such that each Sα is either idempotent-free and a subdirect product of
countably many nil-semigroups or else is an ideal extension of a rectan-
gular band by a nil-semigroup.

6. Chain decompositions viewed from quasi-orders

Chain congruences and chain decompositions can be also studied through
quasi-orders. This has been shown by M. Ćirić and S. Bogdanović in [14]. A
central place in such a studying is taken by linear quasi-orders, used also by M.
S. Putcha in [38]. By a linear quasi-order on a set X we mean a quasi-order ξ for
which for all a, b ∈ X, a ξ b or b ξ a. Combining the linearity with the positivity
and the cm-property, we go to the quasi-orders characterized by the following
theorem

Theorem 6.1. (M. Ćirić and S. Bogdanović [14]) The following conditions for
a quasi-order ξ on a semigroup S are equivalent:

(i) ξ is positive, linear and it satisfies the cm-property;
(ii) ξ is positive and for all a, b ∈ S, ab ξ a or ab ξ b;
(iii) aξ is a completely prime ideal of S, for each a ∈ S;
(iv) (∀a, b ∈ S) ξa ∪ ξb = ξ(ab).

Using this theorem, the authors in [14] obtained the following:

Theorem 6.2. (M. Ćirić and S. Bogdanović [14]) The poset of positive linear
quasi-orders on a semigroup S satisfying the cm-property is isomorphic to the
poset of chain congruences on S.

In terms of lattices Kξ defined in Section 3, positive linear quasi-orders satis-
fying the cm-property can be also described as follows:

Theorem 6.3. (M. Ćirić and S. Bogdanović [14]) The following conditions for
a positive quasi-order ξ on a semigroup S are equivalent:
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(i) ξ is linear and it satisfies the cm-property;
(ii) ξ satisfies the cm-property and the poset of all completely prime ideals

from Kξ is a chain;
(iii) Kξ consists of completely prime ideals.

By the previous theorem and Theorem 3.11, the following results follow:

Theorem 6.4. (M. Ćirić and S. Bogdanović [14]) The poset linear positive quasi-
orders on a semigroups S satisfying the cm-property is dually isomorphic to the
poset of complete 1-sublattices of Idcs(S) consisting of completely prime ideals
of S.

Theorem 6.5. (M. Ćirić and S. Bogdanović [14]) The poset of chain decompo-
sitions of a semigroup S is isomorphic to the poset of complete 1-sublattices of
Idcs(S) consisting of completely prime ideals of S.

In view of Theorem 6.3, for any positive linear quasi-order ξ on a semigroup
S satisfying the cm-property, Kξ is a chain, and hence its principal elements also
form a chain. This gives the following characterization of chain homomorphic
images of a semigroup:

Theorem 6.6. (M. Ćirić and S. Bogdanović [14]) A chain Y is a chain homo-
morphic image of a semigroup S if and only if it is isomorphic to the principal part
of some complete 1-sublattice of Idcs(S) consisting of completely prime ideals.

Using the right cosets of quasi-orders, another characterization of posets of
chain congruences has been obtained in [7]. Assume that K ′

ξ is a complete 1-
sublattice of P(S) corresponding to a positive linear quasi-order ξ with the cm-
property on a semigroup S, defined as in (3) of Section 3. By Theorem 3.8, K ′

ξ
consists of consistent subsets of S. Seeing that for any A ∈ K ′

ξ, A = ∪a∈Aξa, then
using Theorem 6.1 it is not hard to verify that A is a subsemigroup, and hence a
filter of S. In this manner, the authors in [7] have obtained the following theorem:

Theorem 6.7. (S. Bogdanović and M. Ćirić [7]) The poset of positive linear
quasi-orders on a semigroup S satisfying the cm-property is dually isomorphic to
the poset of complete 0,1-sublattices of P(S) consisting of filters of S.

Corresponding characterizations can be given for posets of chain congruences
and chain decompositions, and for chain homomorphic images of a semigroup.

The same methodology has been also applied in studying of so-called ordinal
decompositions of a semigroup. Recall that a semigroup S is called an ordinal
sum of semigroups Sα, α ∈ Y , if Y is a chain and for any a ∈ Sα, b ∈ Sβ , α < β
implies ab = ba = a. In such a case, the related chain congruence is called an
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ordinal sum congruence on S, the related partition is called an ordinal decompo-
sition of S, and the components Sα, α ∈ Y , are called ordinal components of S.
A semigroup S is called ordinally indecomposable if it has no an ordinal decompo-
sition with more than one component. Note that the sum of any two components
in an ordinal decomposition of a semigroup can be considered as the ordinal sum
of posets (see G. Birkhoff [1, p. 198]), with respect to its partial orders defined by:
a ≤ b ⇐⇒ a = b or ab = ba = a. Ordinal decompositions of semigroups were
first defined and studied by A. M. Kaufman [23], in connection with studying of
linearly ordered groups, where they have been called ”successively-annihilating
sums”. After that, they have been studied by a many authors, in connection with
various important problems of the theory of semigroups, and they were obtained
the name ”ordinal sums” (for more informations we refer to [12], [16], [23], [26],
[33] and [44]).

E. S. Lyapin proved in [26] that ordinal decompositions of any semigroup S
form a complete sublattice of the partition lattice of S, and the components of
the greatest ordinal decomposition of S are ordinally indecomposable. A char-
acterization of this lattice has been given by M. Ćirić and S. Bogdanović in [16],
using the following notion introduced in this paper: a strongly prime ideal of
a semigroup S is defined as an ideal P of S having the property that for all
x, y ∈ S, xy = p ∈ P implies that either x = p or y = p or else x, y ∈ P . The set
of all strongly prime ideals of a semigroup S, denoted by Idsp(S), is a complete
1-sublattice of the lattice Id(S) of ideals of S. In terms of this lattice, the lattice
ordinal decompositions of a semigroup has been described as follows:

Theorem 6.8. (M. Ćirić and S. Bogdanović [16]) The lattice of ordinal decom-
positions of a semigroup S is isomorphic to the lattice of complete 1-sublattices
of Idsp(S).

7. Quasi-semilattice decompositions of semigroups with zero viewed
from quasi-orders

Quasi-semilattice decompositions of semigroups with zero are an analogue of
semilattice decompositions. These decompositions were introduced in a recent
paper of the authors [17].

Given a partially ordered set Y . For α, β ∈ Y , let αβ denote the meet of
α and β, if it exists. A semigroup S = S0 is called a quasi-semilattice sum of
semigroups Sα, α ∈ Y , if

S =
⋃

α∈Y

Sα, Sα ∩ Sβ = 0, for α 6= β, α, β ∈ Y,
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and for all α, β ∈ Y the following holds:

SαSβ ⊆ Sαβ , if αβ exists

SαSβ = 0 otherwise.

The related partition of S whose components are 0 and the sets S•α, α ∈ Y , is
called a quasi-semilattice decomposition of S.

M. Ćirić and S. Bogdanović investigated quasi-semilattice decompositions
through quasi-orders and they proved the following:

Theorem 7.1. (M. Ćirić and S. Bogdanović [17]) The poset of quasi-semilatti-
ce decompositions of a semigroup S = S0 is a complete lattice and it is dually
isomorphic to the lattice of 0-restricted 0-positive quasi-orders on S satisfying the
0-cm-property.

In view of Theorem 2.14, another characterization of the lattice of quasi-
semilattice decompositions can be given as follows:

Theorem 7.2. (M. Ćirić and S. Bogdanović [17]) The lattice of quasi-semilattice
decompositions of a semigroup S = S0 is dually isomorphic to the lattice of left
0-restricted positive quasi-orders on S satisfying the 0-cm-property.

The idea of studying of positive quasi-orders on a semigroup through certain
sublattices of the lattice of its ideals, coming from [14], has been also used in
studying of quasi-orders on a semigroup with zero. The authors in [11] defined
a completely 0-semiprime ideal of a semigroup S = S0 as an ideal A of S for
which the set A• is completely semiprime. The set of all completely 0-semiprime
ideals of S = S0, denoted by Idc0s(S) is a complete sublattice of Id(S). A
connection similar to the one which was established in [14] between the lower-
potent positive quasi-orders and the lattice of completely semiprime ideals, has
been also established by the authors in [11] between the left 0-restricted 0-lower-
potent positive quasi-orders on a semigroup S = S0 and the lattice Idc0s(S).
Namely, the following theorem has been proved:

Theorem 7.3. (M. Ćirić and S. Bogdanović [11]) The lattice of left 0-restricted
0-lower-potent positive quasi-orders on a semigroup S = S0 is dually isomorphic
to the lattice of complete 0,1-sublattices of Idc0s(S).

Of course, the previous theorem can be also stated in terms of 0-restricted
0-lower-potent 0-positive quasi-orders.

The 0-cm-property has been connected with the following property of some
sublattices of Idc0s(S): We say that an ideal A of a semigroup S = S0 is com-
pletely 0-prime if the set A• is completely prime. We say also that a sublattice
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K of Idc0s(S) satisfies the c-0-pi-property (completely 0-prime ideal property) if
any element of K can be written as an intersection of some family of completely
0-prime ideals from K, or equivalently, if the set of completely 0-prime ideals
from K is meet dense in K. The authors in [11] proved a theorem similar to the
one concerning positive quasi-orders satisfying the cm-property:

Theorem 7.4. (M. Ćirić and S. Bogdanović [11]) For any semigroup S = S0,
the poset of complete 0,1-sublattices of Idc0s(S) satisfying the c-0-pi property is a
complete lattice and it is dually isomorphic to the lattice of 0-restricted 0-positive
quasi-orders on S satisfying the 0-cm-property.

The corresponding theorem has been stated also for left 0-restricted positive
quasi-orders satisfying the 0-cm-property.

In view of the preceding results, the lattice of quasi-semilattice decompositions
of a semigroup with zero has been alternatively characterized by

Theorem 7.5. (M. Ćirić and S. Bogdanović [17]) The lattice of quasi-semilattice
decompositions of a semigroup S = S0 is isomorphic to the lattice of complete
0,1-sublattices of Idc0s(S) satisfying the c-0-pi property.

At the beginning of this section we said that quasi-semilattice decompositions
of semigroups with zero are an analogue of semilattice decompositions. More-
over, quasi-semilattice decompositions can be also treated as a generalization of
semilattice decompositions. This is illustrated by the following theorem:

Theorem 7.6. (M. Ćirić and S. Bogdanović [17]) The lattice of semilattice de-
compositions of a semigroup S is isomorphic to the lattice of quasi-semilattice
decompositions of the semigroup T arising from S by adjoining the zero.

The previous theorem shows that many results concerning semilattice decom-
positions can be deduced from the ones concerning quasi-semilattice decomposi-
tions.
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