
LATEX Tools for Web Publishing, Screen
Presentations, and Electronic Examinations

Miroslav Ćirić∗

Abstract – TEX is generally considered to be the

best way to typeset complex mathematical formu-

las, but, especially in the form of LATEX and other

template packages, is now also being used for many

other typesetting tasks. The purpose of this paper

is to present the usage of TEX in preparation of

high-quality PDF documents for web publishing,

screen presentations and electronic exercises and

examinations.

Keywords – TEX, LATEX, PDF, AcroTEX.

1. A Brief Introduction to TEX

Most people place text on a computer and arrange mate-
rial on a page with a word processor. Word processors
are easy to begin with. To get a blank line between two
paragraphs we enter it in, to make a reference to the bib-
liography we type it into the text in style that we need,
etc. Seems simple. We know what we want and we just
do it. But, a word processor will suit our needs only if our
documents are brief, short to medium sized, structurally
simple, and entered by hand. As the document gets to be
a bigger and tougher job, laying it out ourselves becomes
a problem. For example, in a document with hundreds of
bibliographic entries we can not be sure that all the en-
tries are formatted in the same way. Even bigger problem
appears when you have to typeset technical material con-
taining a lot of mathematical symbols and complex math-
ematical formulas. In such cases, the best solution is to
use TEX.

TEX is a system for computer typesetting created by
Donald Knuth in 1978 (see [6]). It sets normal text beau-
tifully, with line breaking algorithms that are noticeably
better than those used by common word processors, but
it really excels when it comes to setting extremely compli-
cated material, containing a lot of mathematical symbols
and complex mathematical formulas, such as is common
in science, engineering and mathematics. TEX automati-
cally classifies each mathematical symbol as a variable, or
a relation, etc., and sets them with appropriate amounts
of surrounding space. It also sizes subscripts, superscripts,
and many other things. Being written by one of the world’s

∗Department of Mathematics and Informatics, Faculty of Sciences

and Mathematics, Vǐsegradska 33, P. O. Box 224, 18000 Nǐs, Serbia

and Montenegro, E-mail: ciricm@bankerinter.net

leading experts in the design of algorithms, TEX possesses
more sophisticated algorithms for making paragraphs and
for hyphenating than those used by common word proces-
sors, it is fast and less memory consuming.

There are also many other advantages of TEX. It arose
in the world of science and engineering where there is a
tradition of cooperating closely with fellow workers. A bi-
nary input format, especially a proprietary one, is bad for
these purposes, due to problems with compatibility and
portability from one to another computing platform, the
fact that binary files are usually big and not easy for trans-
fer, etc. On the other hand, the TEX’s input is a plain text
so TEX’s source files are very compact, relatively small and
easy to transfer, and are portable to any computing plat-
form. They are also easy to produce automatically, for
example, when you want to write a report from material
in a database. There are even ways to run TEX directly
from XML input, which many people think is the stan-
dard output format of the future. TEX runs anywhere, on
Windows, Macintosh, Unix (Linux) or almost any other
system. It is a free and open software, the license of TEX
allows free distribution and modification but demands that
any changed version not be called TEX, TeX, or anything
confusingly similar, providing rights similar to those of a
trademark.

The TEX output can be anything. TEX’s results can be
converted to a printer language such as PostScript, a web
language such as PDF or HTML, or, probably, to whatever
that will appear in the future. And, the typesetting (line
breaks, etc.) will be the same no matter where our output
appears. TEX became the standard, and many publish-
ers of technical material are set up to work with it. Most
computer algebra systems, such as Maple and Mathemat-
ica, give output in TEX. And no doubt technical software
developed in the future will support TEX, too.

TEX is stable, but not rigid. It is extendible, innovations
can be easily added on. The most significant extension of
TEX is LATEX, whose major features include a strong focus
on document structure and the logical markup of text, au-
tomatic numbering and cross-referencing, and much more.
LATEX was originally written in 1984 by Leslie Lamport
(see [8]) and has become the dominant method for using
TEX. The current version is LATEX2ε developed by the
LATEX3 team1.

1http://www.latex-project.org/latex3.html

161

LATEX is based on the idea that authors should be able to
concentrate on writing within the logical structure of their
document, rather than spending their time on the details
of formatting. It encourages the separation of formatting
from content, whilst still allowing manual typesetting ad-
justments where needed. By keeping the formatting de-
tails in a separate file from the text and making the type
style, size, and vertical spacing uniform throughout the
document, LATEX is often regarded as much superior to
word processors and most other desktop publishing sys-
tems. LATEX also provides great flexibility in formatting
while maintaining the identity of structure, which purely
structural systems like SGML and XML do not directly
address. LATEX is itself extendible. It can be arbitrar-
ily extended by using the underlying macro language for
developing custom formats, so there are a thousands of
“style files” which do everything from adapting the basics
to the needs of American Mathematical Society, to making
cross-references into hyper-references, etc.

Another significant extension of TEX is AMS-TEX, pro-
duced by the American Mathematical Society (AMS) to
meet the standards of the AMS for publication. It pro-
vides many additional mathematical constructs and fonts
with many more mathematical symbols than the fonts that
come with TEX. AMS-LATEX is a common extension of
LATEX and AMS-TEX obtained by combining the features
of AMS-TEX with the ones of LATEX. It provides all of the
functionality of LATEX (as its extension) and the function-
ality of AMS-TEX in LATEX syntax and access to additional
mathematical constructs and mathematical symbols not
present in LATEX. In LATEX 2ε this is achieved in a simpler
way, using amsmath, amsfonts and amscls document class
packages.

2. DVI, PostScript and PDF

The TEX system has precise knowledge of the sizes of
all characters and symbols, and using this information, it
computes the optimal arrangement of letters per line and
lines per page. It then produces a DVI file (for ”device
independent”), as its primary output format, containing
the final locations of all characters. This DVI file can
be printed directly given an appropriate printer driver or
viewed on the screen using some of many existing viewers.
DVI was intentionally designed to be as compact as pos-
sible and uses variable-length data structures for maximal
efficiency. With many years of experience of interpreting
DVI, authors of DVI previewers have achieved extremely
high rates of interpretation and display, and some combine
high-speed interpretation and display with very effective
anti-aliasing/grey-scaling. But, the widespread use of ex-
otic fonts, and use of TEX’s \special primitive to convey
additional information to the DVI driver, has resulted in a
device-independent format which all too often has device-
dependent data embedded within it. As a result, DVI is
acceptable only within the narrow TEX community, and
for portability DVI files have to be converted to another

format before being sent to those outside of the TEX com-
munity. PostScript is supposed to be this format, but
Portable Document Format (PDF) turned out to be an
even better candidate for such purposes.

PDF is a file format developed by Adobe Systems for
representing documents in a manner that is independent
of the original application software, hardware, and oper-
ating system used to create those documents. A PDF
file can describe documents containing any combination
of text, graphics, and images in a device independent and
resolution independent format. PDF is derived directly
from Adobe’s PostScript language, and it is primarily the
combination of three technologies: (1) a cut-down form
of PostScript for generating the layout and graphics, (2)
a font-embedding/replacement system to allow fonts to
travel with the documents, and (3) a structured storage
system to bundle these elements into a single file, with
data compression where appropriate. Whilst PostScript is
intended primarily as a page-description language which
will normally be interpreted within dedicated printer logic,
PDF is aimed far more at on-screen display, document
exchange, and hypertextual applications. A PDF doc-
ument is usually smaller than the equivalent PostScript
document, has better-defined structure, allows both intra-
and inter-document links, various dynamic effects for page
transitions and working with forms, but lacks the pro-
cedural elements which allow a PostScript file to per-
form (sometimes quite significant) computation within the
printer engine.

As well as defining the language/format PDF, Adobe
have also produced a suite of tools for creating, viewing,
printing, indexing, searching and modifying PDF docu-
ments. This suite, called Adobe Acrobat, is available for
a wide range of platforms, and the Acrobat Reader is in
fact available entirely free of charge. Acrobat Reader has
a font-substitution strategy that ensures the document
will be readable even if the end-user does not have the
”proper” fonts installed, and it integrates perfectly with
modern web browsers, which allows both local and remote
PDF documents to be viewed within the same window as
analogous HTML documents. Modern web search engines
search, classify and catalogue PDF documents in an en-
tirely transparent manner.

There are several methods for producing PDF docu-
ments when the source document is written in TEX or
LATEX. The first one consists of the three steps: (1) com-
piling TEX source file to DVI file which contains \special
commands for PDF support, (2) converting DVI file to
PostScript by some DVI-to-PostScript driver, such as dvips

or dvipsone, and (3) translating PostScript file to PDF
by some PostScript-to-PDF translator, such as Acrobat
Distiller or Ghostscript. Another way is to use some of
DVI-to-PDF drivers – dvipdf made by Sergey Lesenko, or
dvipdfm by Mark A. Wicks, which can simplify this process
by eliminating the need for PostScript generation. And the
third way is to use pdfTEX or pdfLATEX created by Hàn
Thê Thành, which can produce PDF output directly from

162

a TEX or LATEX source, without generating DVI.

tex dvi

pspdf

TEX, LATEX

dvips

dvipsone

Acrobat Distiller

Gostscript

PDFTEX

PDFLATEX
dv

ipd
f

dv
ipd

fm

Fig 1. From TEX to PDF

Figure 1 illustrates the ways of creating a PDF docu-
ment from a TEX source.

3. Web Publishing

Many people in the scientific community use PDF as a way
of distributing their own works, scientific papers or lecture
notes, over the Web. The material is converted from the
format of the authoring application to PDF and uploaded
to the Internet. Interested individuals who want to review
the material using the Acrobat Reader can be assured that
they will see the document as originally designed by the
author. These documents, however, are simply an electro-
nic image of the printed work, they usually contain no color
and no interactive elements. In this context, it is really the
author’s intention that people should download and print
the document to read it. PDF, however, is capable of much
more than this very straight forward, yet important use.

Any publication needs an audience and quality writing
to be successful. Additionally, a technical tutorial has to
have several attributes to be successful on the Web: a good
screen design, an attractive use of color, usage of hypertext
links for cross-referencing etc. True electronic materials
are meant to be read on-screen, not printed and then read,
but it is very tiring to read from a computer monitor for
long periods of time, so it is very important to have good
screen design. There are three major points concerning
screen design: (1) design the text region so that a single
page fits on a screen monitor, (2) make the dimensions of
the page roughly 3 by 2 (width by height), and (3) crop the
pages to trim off all unnecessary white space around the
margins. Having the whole page fit on the screen allows
the reader to avoid constant vertical scrolling, that can
be distracting and fatiguing when reading large amounts
of material. Rather than scrolling, it is much easier to
simply paginate, go to the next page to continue reading.
The dimensions of 3 by 2 and cropping of white space from
around the page will allow the user to magnify the page
and the font size to help the eyes read a large amount of
text on a screen for long periods of time.

To enhance the look of the document, we may occasion-
ally include a little color. We may add color to a partic-
ular word or phrase, put a colored frame or box around
an important point, paint the background a color other

than the usual white. Color support in LATEX is provided
through David Carlisle’s color package. The command
\pagecolor, defined by the color package, sets the back-
ground color for the current and following pages, \color
is a declaration to switch to setting text and other ob-
jects in the given color, \textcolor sets the text of its
argument in the specified color, \colorbox sets its ar-
gument in a box with the given color as a background,
and \fcolorbox is like \colorbox, with a frame of the
first specified color around a box with the second specified
color as a background. Colors are specified either by a
defined name, or by the form [model]{specs}. The color

package supports the rgb (red, green, blue), cmyk (cyan,
magenta, yellow, black), gray, and named models of color.
The named model accesses colors by internal names that
were originally built into the dvips driver, but which may
be used by some other drivers, too. Note that background
effects can be also created using raw postscript commands
(with \special command).

For LATEX users, the easiest way of acquiring hypertext
links (and also form features) in their Web publications
is to use the hyperref package written by Sebastian Rahtz
and later maintained by Heiko Oberdiek. This package ex-
tends the functionality of all the LATEX cross-referencing
commands (including the table of contents, bibliographies
etc) to produce \special commands which a driver can
turn into hypertext links. It also provides new commands
to allow the user to write ad hoc hypertext links, including
those to external documents and URLs. When using the
hyperref package, the standard LATEX labels are turned into
destination pdfmarks and the cross-references are made
into hypertext links understood by the Acrobat Reader.
A marker being a target of a hypertext jump can be cre-
ated using either the \label command from the standard
labeling system of LATEX, which can appear after a section,
subsection, equation, figure, or an enumerated item, or the
\hypertarget command from the hyperref package, which
can be used in other situations. The hyperref package pro-
vides all kinds of jumps (within the document, to another
document or to a full URL), automatically adds bookmark
code to an auxiliary file for \sections, \subsections,
etc. Nice looking icon buttons linked to jumps can be cre-
ated either using \colorbox or \fcolorbox from the color

package, or using the standard LATEX graphics packages to
include eps pictures. A description of hyperref and all its
options may also be found in [5].

A Web document really needs more than simply hyper-
text links to cross-reference concepts, it needs user par-
ticipation to get them involved with the material. This
can be achieved by bringing in Acrobat Form elements
and JavaScript. The hyperref package and the AcroTEX
eDucation Bundle, that will be discussed in details in Sec-
tion 5, define commands for creating all types of Acro-
bat Form elements except signature fields. They provide
support to button fields – push-buttons, check boxes and
radio-buttons, choice fields – list boxes, pop-up boxes and
combo boxes, and text fields – text boxes and multiline

163

text fields. A form field may simply gather data from
the user, and additionally, it may perform one or more
actions. Actions include execute JavaScript code, going
to a particular page in a document, open a file, execute a
menu item, reset a form, play media or a sound, and so on.
JavaScript can be attached to a PDF document in many
ways, for example, to a form button. Any JavaScripts
that are repeatedly used, are general (not form specific),
or are rather lengthy, can be placed at what Acrobat
calls the document-level JavaScripts (DLJS). A button ac-
tion, then, can simply call these DLJS to perform various
calculations or tasks. For inserting simple JavaScripts,
AcroTEX defines the command \JS, and for more com-
plex or lengthy JavaScripts, additional package insdljs is
provided. It enables complex JavaScripts to be written
right in the LATEX source file, and then inserted into the
section of the PDF document where the document-level
JavaScripts reside. When the document is LATEXed, the
script is written verbatim to an FDF (Forms Data Format)
file. The AcroTEX also adds an open action, so that when
the newly created PDF document is opened for the first
time in Acrobat, the FDF file is imported and executed.
After the JavaScript has executed, the next thing to do
is to save the document. The FDF that is imported is
not saved with the document, and will not be imported
again into the document, thereafter. The document is
then ready for distribution. The document author can
create the PDF document using the Acrobat Distiller, pdf-

tex or dvipdfm, and the Acrobat Viewer (not the Acrobat
Reader) is needed to import and execute the JavaScript.

To create a quality PDF document from a TEX source it
is also necessary to use Type 1 fonts. The traditional font
used by many freeware TEX systems is the bitmap or pk

font. These fonts look choppy and jagged when incorpo-
rated into a PDF document and viewed on screen (though
they do print decently). But, quality Type 1 Computer
Modern fonts have been made available by a consortium
of Bluesky Research, Y&Y, AMS, SIAM, IBM, and Else-
vier. The freeware, shareware, and commercial TEX sys-
tems now come with Type 1 fonts. For an author wanting
to publish on the Web using PDF, every effort must be
made to reconfigure their TEX system to use these quality
fonts.

4. Screen Presentations

Preparing a presentation usually means creating some sort
of slides. The more multimedia projectors get common
in working environments, the more comes to mind creat-
ing such presentation material as a screen version, which
can be viewed using a multimedia projector or at least a
computer screen. As a side effect such presentations can
usually easily be presented on a web site.

Most people usually prepare their presentations using
Microsoft’s PowerPoint, a commercial software product to
be used on a PC with the Windows operating systems,

or MagicPoint, a free software for Unix. PowerPoint, for
example, offers a wide range of special effects that can be
selected from menus. It is easy to create backgrounds,
include graphics, prepare animations, to fade in and out
parts of the text dynamically, to highlight parts depend-
ing on the current state of the presentation, etc. How-
ever, scientific texts require an easy and efficient inclusion
of specialized symbols and mathematical formulas. Both
PowerPoint and MagicPoint cannot help with that. If there
are only a very small number of formulas in a text, one
may be able to include them as special graphics. But in
a mathematically oriented text this strategy will be much
too complicated. In recent years, a few LATEX packages
and supporting utilities have been developed to help create
scientific presentations. The slides are prepared in LATEX,
then converted to PDF and the slides are presented using
Acrobat Reader.

Using PDF has proved to be popular due to its ability
to present the highest quality of mathematical typeset-
ting, as well as its ability to perform a number of ”transi-
tion” and other effects that can be used to give a snappy,
professional-looking presentation. In order to make the
process of replacing a page with the next more attractive,
PDF enables to choose among several page transitions:
Split – two lines sweep across the screen to reveal the
new page similar to opening a curtain, Blinds – similar to
Split, but with several lines resembling ”venetian blinds”,
Box – a box enlarges from the center of the old page to
reveal the new one, Wipe – a single line ”wipes” across
the old page to reveal the new one, Dissolve – the old
page ”dissolves” to reveal the new one, Glitter – similar
to Dissolve, except the effect sweeps from one edge to
another, and Replace – the old page is simply replaced
with the new one without any special effect (this is the
default). For some of the transitions additional param-
eters may be given to specify duration of the transition
effect in seconds, direction of the movement, whether the
effect is performed from the center out or the edges in,
etc. The page transitions are always activated when open-
ing the page, irrespective of the previous page. Therefore
it does not matter whether the page is displayed through
manual navigation, by page number, or a link. Gener-
ally, a page transition will be defined for the current page,
but, it is also possible to define transitions for another
page. A PDF document may also specify several viewer
preferences which apply when opening the file in Acrobat
Reader. Given suitable hardware and software, Acrobat is
capable of playing sound and video files. External sound
files and video clips both are stored with the /Movie key
in the PDF. Both types of data are treated as external
data. Actually, embedding the movie or sound data in
the PDF file is not possible, only linking. Not all file for-
mats are supported on all platforms. A list of supported
sound and video formats can be found in the Acrobat doc-
umentation. A way for playing sound and video files, as
well as for launching external programs, depend heavily
on the operating system platform on which the document

164

is viewed, so the document is no longer portable.

A live presentation also requires ability to uncover a
page step by step. It may be better in some cases, when
a reader can read ahead and catch the overall view in ad-
vance, but, on the other hand, one may have an unex-
pected or surprising development. If this is within the
range of the current slide, the remarkable item should nei-
ther go on the next slide nor be visible from the beginning.
Doing a presentation with Acrobat Reader one can give
the effect of dynamically building a page, because pages
are updated instantaneously. If one wishes to uncover a
page in several steps, one can make a sequence of pages
and add some more text on each of them. The only item
to keep in mind that one has to avoid updating the page
or slide number between the intermediate pages, if one has
numbers for general orientation or reference.

There is now a variety of specialized LATEX packages that
can aid the development of presentations in PDF format
rich in color and special effects. An exhaustive overview
of most of these packages is given in a paper by M. Wied-
mann [14], and here we will mention only the most pop-
ular among them. Generally, all these packages can be
divided into two classes. Slide Development Packages are
LATEX document classes and other accessories which de-
fine PDF specials producing PDF presentations with var-
ious dynamic effects: background colors and gradients,
transitions effects and step by step presentation of talk-
ing points. Slide Enhancement Tools are either programs
which are used to post-process presentations in PostScript
or PDF format made by other slide development packages,
in order to provide some additional special effects, or are
add-ons to other document classes which create special ef-
fects. Most of the slide development packages require color

and hyperref packages, to provide access to color, hyper-
links and other navigation tools.

Nice looking PDF documents can be prepared by means
of pdfscreen and pdfslide packages implemented by C. V.
Radhakrishnan. They are used for online readable doc-
uments (pdfscreen) and slide presentations (pdfscreen).
These packages are quite popular among the pdfLATEX
users, who prefer to create a PDF output directly from
a LATEX source. A characteristic of these packages is the
navigation panel that can be customized and positioned
at user’s will either to the left side or right side, an idea
which have been also followed by many other packages.
The background of the screen area can be overlayed with
a graphic file, and in the case of pdfscreen, alternatively, a
background color can be specified. Neither pdfscreen nor
pdfslide enable to uncover a page step by step, but this
can be achieved by post-processing presentations made by
these packages.

The most known post-processor is PPower4 (PDF Pre-
sentation Post Processor) developed by Klaus Gunter-
mann. The free post-processing software is written in Java
and it has been run successfully with Java 1.2.x and bet-
ter. PPower4 provides a small LATEX style file (pause.sty)
which let’s the user insert small colored spots (using the

command \pause) in the PDF file where a break should
be make during display. During postprocessing PPower4

removes these colored chunks and adjusts the page num-
ber. This makes an impression that the same page is dis-
played step by step. Additional style files are provided for
setting background colors (background.sty) and for simpli-
fying access to page transitions (pagetrans.tex). Another
slide enhancement tool that works well in conjunction with
pdfslide and pdfscreen, as well as with many other slide
development packages, is TeXPower, written by Stephan
Lehmke. It is a bundle of style and class files used as
an add-on to other document classes which just adds dy-
namic presentation effects and some other gimmicks specif-
ically interesting for dynamic presentations. TeXPower is
meant as an alternative to PPower4 for those who can
not use pdfLATEX (for instance, for PSTricks users), be-
cause it can also be used with tex→ dvi→ ps→ pdf work-
flow. No post-processing or additional tools are needed -
the standard LATEX distribution will do. However, using
pp4slide.sty with TeXPower and then postprocessing the
PDF presentation with PPower4, some additional effects
can be achieved.

One of the most complete slide development packages is
Seminar, implemented by Timothy van Zandt, and main-
tained by Denis Girou. Among the others, it offers a va-
riety of background types (solid, gradient and composite
backgrounds, backgrounds with external images), all the
transition effects supported by PDF, overlays, which al-
low to compose animated graphics and may be used to
display a slide in several steps (cumulative overlays), and
for making appear and disappear some elements on a slide
(progressive overlays), various navigation bars and pan-
els, the possibility to launch external applications, play a
sound or show external movies inside a presentation, etc.
Almost all of these features are is based on the PSTricks –
a powerful LATEX package which enables to use the major
part of PostScript graphics and drawing capabilities in-
side LATEX. Being based on PSTricks, the Seminar package
needs a tex→ dvi→ ps→ pdf workflow. There is also a
lot of other slide development packages based on Seminar,
as, for example, Prosper.

Note that many of the mentioned packages are able to
generate both the screen and the paper version in a differ-
ent output format (PDF and PostScript ones)

5. Electronic Exercises and Quizzes

In recent years, many systems have been developed for
electronic testing in various areas. Most of them are based
on HTML, but in areas in which a lot of mathematical
symbols and formulas is used, LATEX based systems with
PDF output have shown oneself to be a better solution.
In this section we present two such systems.

The AcroTEX eDucation Bundle is a collection of LATEX
macro packages for creating online exercises and quizzes
in the Portable Document Format. It consists of the web

165

package, used to create an eye pleasing page layout suit-
able for the Web, classroom or conference presentations,
the exerquiz package, for creating interactive exercises and
quizzes, the insdljs package, which allows for the automat-
ics insertion of document-level JavaScript, and the dljslib

package, used as a library of JavaScript functions.

The exerquiz package defines three main environments:
exercise, shortquiz and quiz. The exercise environment, to-
gether with a solution environment nested inside it, pro-
vides macros for creating online exercises. With these en-
vironments, we can create questions (exercises) with solu-
tions. Solutions are written to an auxiliary file, then input
back in near the end of the document, and a hypertext
link is created to connect the exercise with the solution.
An exercise with multiple parts can also be defined, with
hypertext links to the solutions to the individual parts.
There is also an option for placing the solutions immedi-
ately after the statement of the problem. This may be
useful for an example environment, where we want the so-
lution to the example to follow the statement, rather than
being hypertext-linked to the solution. Using the forpaper

option, we can also make a paper version of the exercises.
This method of presenting exercises (and examples) allows
the student to attempt the problem before seeing the solu-
tion, gives a cleaner presentation of the topic, a presenta-
tion not cluttered with solutions to examples and exercises
that take away from the main stream of thought. Exer-
cises of this type can be part of a tutorial, or the teacher
could simply publish a homework set on the Web (at first,
without solutions included, later, with solutions) for the
students. The shortquiz environment is used for creating
interactive quizzes with immediate feedback . As soon as
the user enters an answer, that answer is immediately eval-
uated, the results of the evaluation are communicated to
the user. On the other hand, the quiz environment pro-
vides macros for creating quizzes with delayed feedback, in
which the answers are not evaluated until the student has
finished the quiz. Both of these two environments enable
to optionally include answers and solutions to the ques-
tions.

Two general types of questions can be posed by the
AcroTEX system: multiple choice questions and objec-
tive style (fill-in-the-blank) questions. The multiple choice
questions can appear in two basic styles: link-style and
form-style. The link-style uses links to record the choices
to the alternatives. This method takes up less space in the
PDF file than does the form-style, but the student cannot
see the choices made. From that reason, this method is
perhaps adequate only for two or three quick questions.
For a longer quiz format, one would like to use the form-
style – a question with a ”checkbox” format, which can be
obtained using the *-form of the quiz environment.

There are certain kinds of questions in mathematics and
related fields, that the teacher would like more than a mul-
tiple choice guess from the student. For example, teachers
would occasionally like to ask questions that would require
the student to fill in the answer, whether it be numerical

or symbolic. Such questions, called open ended or objec-
tive questions, increase the level of difficulty for the stu-
dent. No multiple guessing for this kind of question. The
exerquiz package distinguishes between two types of objec-
tive questions: a text fill-in question that requires to enter
a word or phrase as the answer, and a math fill-in question
that requires a mathematical expression as the answer. If
a text fill-in question is posed, the underlying JavaScript
compares the user’s response against acceptable alterna-
tives, as supplied by the author of the question. If there is
a match, the response is deemed correct. When the user’s
answer and the author’s answer are compared, four filter-
ing methods can be used: (1) by default, the author’s and
user’s answers are not filtered in any way (spaces, case, and
punctuation are preserved), (2) the author’s and user’s an-
swers are converted to lower case, any white space and non-
word characters are removed, (3) the author’s and user’s
answers are converted to lower case, any white space is
removed, (4) the author’s and user’s answers are stripped
of any white space. Moreover, two compare method can
be used: (1) by default, the author’s and user’s answers
are compared for an exact match (these answers are fil-
tered before they are compared), (2) the user’s response
is searched in an attempt to get a substring match with
the author’s alternatives (additional comparison methods
may be added).

A math fill-in question can be posed that requires an an-
swer that is a function of one or more declared variables.
The algorithm used for determining the correctness of the
answer entered by the user is quite simple: The user’s an-
swer and the correct answer are evaluated (as functions) at
several randomly selected points in the domain of the cor-
rect answer, and then compared. If any of the comparisons
differ by more than a preselected amount (an ε value), the
user’s answer is declared incorrect. Otherwise, it is con-
sidered correct. When poses a question, the teacher has
to determine a correct answer, which must be a numeri-
cal value or a function, the number of samples points to
be used, (usually 3 or 4 is sufficient), precision required
(the ε value), and the interval from which to draw the
sample points. For example, for the question ”Determine
d

dx
sin2(x)”, the code is

\begin{oQuestion}{sin}

Determine $\dfrac d{dx} \sin^2(x) =

\RespBoxMath{2*sin(x)*cos(x)}{4}{.0001}{[0,1]}$

\end{oQuestion}

Therefore, the correct answer written in valid JavaScript
syntax is 2*sin(x)*cos(x) and evaluation of the user’s
answer is done by randomly selecting 4 points from the
interval [0, 1]. If the evaluation at any of the 4 points
differs from the evaluation of the correct answer at the
same point by more than ε = 0.0001, the user’s answer is
considered wrong. In that manner, sin(2*x) is a valid re-
sponse, too. Before the evaluation, the user’s response has
to be checked for syntax errors. The user must be careful
to enter his/her answer using the correct syntax and the

166

quiz author has to supply the user with all the necessary
instructions how to enter the answer in the correct syntax.

There are several enhancements to the multiple choice
and fill-in questions. For fill-in questions, if the document
author so wishes, answers can be provided using an ”Ans”
(Answer) button. For a shortquiz, the ”Ans” button is vis-
ible anytime and can be clicked at anytime. In the case of
a quiz, it is hidden, and after a quiz has been completed,
the hidden ”Ans” buttons appear. Click on the button
will get an answer to the problem. In addition to a cor-
rect answer, the quiz author can also include a complete
solution to the question. If the ”Ans” button has a green
border, that means that a question has a solution, and
shift-click on the button causes the viewer to jump to the
solution. Using the ”Ans” button, quizzes with immediate
feedback can be created to practice entering the responses
using the correct syntax. In this case, a counter that keeps
track of incorrect answers is also provided. Quizzes created
by the quiz environment can be corrected using the ”Cor-

rect” (Correction) button. JavaScript is used to correct
the quiz. After the quiz is completed and the ”Correct”
button is pressed, the corrections appear. In the case of
a multiple choice question, the correct answer has a green
filled circle or a green check. This circle is now outlined
by a green rectangle to indicate that this is a link to the
solution. Click on the green dot will perform the jump to
the solution. The ”Correct” button will not work until the
user has clicked on ”End Quiz”. The user can re-take the
quiz simply by clicking on ”Begin Quiz”, the form fields
and JavaScript variables will be cleared. A quiz can be
protected by the \NoPeeking command. If this command
is executed in the preamble of the document, or prior to
a quiz, then any quiz question with solution will be pro-
tected somewhat from prying eyes. In this case, an open
page action is placed on the first page of each solution. If
the user tries to view a quiz solution before doing the quiz,
the Acrobat Reader will automatically change the page to
the page containing the quiz and place an alert box on the
screen saying that viewing the solution before taking the
quiz is not permitted.

In the AcroTEX system, document-level JavaScript is
also used to score and grade the student responses. Eval-
uation of the quizzes created by the exerquiz package is
originally done on the client-side, within the web browser
or Acrobat Reader. This makes the document entirely self-
contained, there is no CGI scripting involved. One of the
great advantages here is that the document can be down-
loaded, brought into the Acrobat Reader and reviewed
off-line (the performance of the document is much better
within the Acrobat Reader than within a web browser).
This kind of quiz is ideal for a do-it-yourself tutorial sys-
tem, read by a well-motivated student who has the disci-
pline to read the material and to take the quizzes in the
spirit in which they are given. However, some educators
may wish to use the quizzes created by the exerquiz pack-
age for classroom credit. It is necessary, therefore, for the
student to be able to submit quiz results to a web server

which, in turn, should store the results to a database. This
can be attained by means of an additional package eq2db

provided by D. P. Story, which redefines the ”End Quiz”
link or button appropriately so that when the user clicks
on it, the results will be sent to a server-side script, which
will save the quiz data to a database of some type or send
by e-mail to the instructor. The package consists of a
LATEX macro package and ASP scripts eqRecord.asp, for
saving the quiz data to a database, and eqEmail.asp, for
sending the quiz results to the instructor by e-mail.

Fig 2. An example of a quiz created by exerquiz package

Another system that produces quizzes in PDF format
is MacQTEX, developed by R. Moore and F. Griffin [10].
It is based on the exerquiz package, but there are some
interesting innovations. Access to the quizzes is through a
web page linked to a CGI script, which verifies the iden-
tity of a user and serves a quiz. Each quiz is different –
the parameters which determine any numbers used in the
questions are randomly generated using the Mathematica

software, so that a student may attempt the ”same” quiz
many times, but each time it will be slightly different.
When a quiz is downloaded from a web-site, student is
allowed to read and work with the document, using the
Acrobat Reader plug-in to his/her favorite web-browser.
After starting with the ”Begin Quiz” button, answers may
be selected and changed, and MacQTEX does not need to
communicate with the server until the quiz is completed,
as all the interactivity, answer checking and score eval-
uation takes place inside the PDF quiz document itself.
Upon pressing the ”End Quiz” button, results of the stu-
dent’s attempts are submitted to a server for recording,
provided that the network connection is still available.
The document-level JavaScript then provides a means for
the student to see which were the correct answers for each
question. The staff interface contains a suite of tools which
allows lecturers to monitor student progress and to create
new quizzes.

More information about all the topics mentioned in this
paper can be found in the bibliography listed below.

167

References

[1] Adobe Systems, Inc., PostScript Language Reference,
Third Edition, Addison-Wesley Publishing Company,
1999.

[2] P. W. Daly, Graphics and Colour with LATEX
(an extract from [7]), Max Planck Institute
for Aeronomy, Katlenburg-Lindau, 1998, http://

www.linmpi.mpg.de/~daly/latex/grf.pdf

[3] M. Goossens, F. Mittelbach and A. Samarin, The
LATEX Companion, Addison-Wesley Publishing Com-
pany, 1994.

[4] M. Goossens, S. Rahtz, E. M. Gurari, R. Moore and
R. S. Sutor, The LATEX Web Companion: Integrating
TEX, HTML and XML, Addison-Wesley Publishing
Company, 1999.

[5] M. Goossens, S. Rahtz and F. Mittelbach, The
LATEX Graphics Companion: Illustrating Documents
with TEX and Postscript , Addison-Wesley Publishing
Company, 1997.

[6] D. E. Knuth. Computers & Typesetting , Millennium
Boxed Set, Volumes A to E, Addison-Wesley Publish-
ing Company, 2000.

[7] H. Kopka and P. W. Daly, Guide to LATEX , Third
Edition, Addison-Wesley Publishing Company, 1999.

[8] L. Lamport, LATEX: A Document Preparation System,
Second Edition, Addison-Wesley Publishing Com-
pany, 1994.

[9] T. Merz, Web Publishing with Acrobat/PDF ,
Springer, New York, 1998.

[10] R. Moore and F. Griffin, MacQTEX: Self-testing
quizes, using PDF , MacQTEX Web Site, 2001,
http://rutherglen.ics.mq.edu.au/~macqtex

[11] D. P. Story, Using LATEX to Create Quality PDF
Documents for the World Wide Web, AcroTEX Web
Site, 1998, http://www.math.uakron.edu/~dpstory
/acrotex.html

[12] D. P. Story, The AcroTEX eDucation Bundle,
AcroTEX Web Site, 2003, http://www.math.uakron
.edu/~dpstory/acrotex.html

[13] Hàn Thê Thành, The pdfTEX Program, Cahiers
GUTenberg 28-29 (1998), 197–210.

[14] M. Wiedmann, Screen Presentation Tools: Tools for
Creating Screen or Online Presentations, Michael
Wiedmann’s Web Site, 2003, http://www.miwie.org
/presentations/

[15] T. van Zandt, PSTricks – PostScript macros for
generic TEX , User’s Guide, 1993, http://www.tug.
org/applications/PSTricks

168

