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In this paper we consider rings whose multiplicative semigroups are nil-extensions

of a unions of groups, and we prove that such a ring is a complete direct sum of a nil-ring

and a Clifford’s ring (i.e. a ring with Clifford’s multiplicative semigroup). Some interesting
corollaries whenever ring is periodic are also obtained.

1. Introduction and preliminaries

Throughout this paper Z+ will denote the set of all positive integers. A
semigroup S is π-regular if for every a ∈ S there exists n ∈ Z+ such that
an ∈ anSan. A semigroup S is Archimedean if for all a, b ∈ S there exists
n ∈ Z+ such that an ∈ SbS. A semigroup S is completely Archimedean if S is
Archimedean and has a primitive idempotent.

By E(S) we denote the set of all idempotents of a semigroup (ring) S. If
e is an idempotent of a semigroup S, then Ge will denote the maximal subgroup
of S with e as its identity and Te will denote the set Te = {x ∈ S | (∃n ∈
Z+) xn ∈ Ge}. The same notation we will use in rings (i.e. in multiplicative
semigroups of rings).

An element a of a semigroup (ring) S with the zero 0 is nilpotent if there
exists n ∈ Z+ such that an = 0. A semigroup (ring) S is a nil-semigroup (nil-
ring) if all of its elements are nilpotents. If n ∈ Z+, then a semigroup (ring)
S is n-nilpotent if Sn = {0}. An ideal extension S of a semigroup K is a nil-
extension (n-nilpotent extension) of K if S/K is a nil-semigroup (n-nilpotent
semigroup). A subsemigroup K of a semigroup S is a retract of S if there
exists a homomorphism ϕ of S onto K such that aϕ = a, for all a ∈ K. Such
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a homomorphism will be called a retraction. An ideal extension S of K is a
retract extension (or retractive extension) of K if K is a retract of S.

By UG ◦ N we denote the class of all semigroups that are nil-extensions
of a union of groups. A semigroup identity u = v is a UG ◦N -identity if every
semigroup that satisfies u = v is in UG◦N , i.e. if the semigroup variety [u = v]
is a subclass of UG ◦N . All of UG ◦N -identities were described by Theorem 1
[6].

If R is a ring, MR will denote the multiplicative semigroup of R. A
semigroup S is a Clifford’s semigroup if it is regular and idempotents of S are
central (or, equivalently, if S is a semilattice of groups). A ring R is a Clifford’s
ring if MR is a Clifford’s semigroup. A ring R is a J-ring if it satisfies the
Jacobson’s property, i.e. if for every a ∈ R there exists n∈ Z+, n ≥ 2, such that
an = a.

It is known [8] that a ring R is a p-ring , where p is a prime, iff R is
isomorphic to a subdirect product of fields of order p. A. Abian and W. A. Mc
Worter [1] proved that a commutative ring R whose characteristic is p and
xyp = xpy holds for all x, y ∈ R is isomorphic to a direct sum of a p-ring and a
nil-ring. M. Petrich [9] described rings in which the identities axy = axay and
xya = xaya hold. These rings are direct sums of a Boolean ring and a 3- nilpo-
tent ring. Here we describe rings in which MR is a nil-extension of a union
of groups and rings that satisfies UG ◦N -identities, which generalize results of
[1], [9] and [5].

For undefined notions and notations we refer to [2], [7] and [5].
In the next considerations the following results will be used.

Lemma 1. [3] Let ρ be a congruence on a π-regular semigroup S.
Then every ρ-class of S that is a regular element in S/ρ contains a regular
element from S and every ρ-class of S that is an idempotent in S/ρ contains an
idempotent from S.

Lemma 2. [4] Let S be a nil-extension of a union of groups K. Then
every retraction ϕ of S onto K has the following representation:

xϕ = xe if x ∈ Te, e ∈ E(S).

Veronesi’s theorem. [10] A semigroup S is a semilattice of completely
Archimedean semigroups if and only if S is π-regular and every regular element
of S is completely regular.
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Proposition 1. [5] If R is a ring such that MR is a semilattice of
completely Archimedean semigroups, then R is an extension of a nil-ring by a
Clifford’s ring.

2. The main results

Lemma 3. If R is a ring such that MR is a nil-extension of a Clifford’s
semigroup K, then K is a subring of R.

P r o o f. Clearly, K is closed under multiplication. Assume that x, y ∈ K.
Then x ∈ Ge, y ∈ Gf , for some e, f ∈ E(R). Assume that x−y ∈ Tg, for some
g ∈ E(R). Since K is an ideal of MR, then

u(x− y) = u[(x− y)ϕ],

for u ∈ {e, f, ef}, and (x− y)ϕ = (x− y)g, by Lemma 2. Thus

u(x− y) = u(x− y)g,

for u ∈ {e, f, ef}, so

x− ey = xg − eyg, fx− y = fxg − yg, fx− ey = fxg − eyg,

since E(R) is a semilattice. Therefore

x− y = xg − eyg + ey + fxg − yg − fx

= xg − yg + ey − fx + fx− ey

= xg − yg = (x− y)g ∈ K.

Thus, K is a subring of R. �

Theorem 1. The following conditions on a ring R are equivalent:

(i) MR is a nil-extension of a union of groups;

(ii) MR is a nil-extension of a Clifford’s semigroup;

(iii) R is a direct sum of a nil-ring and a Clifford’s ring;

(iv) MR is a direct product of a nil-semigroup and a Clifford’s semigroup.

P r o o f. (i) ⇒ (ii). This follows by Theorem 1 [5].
(ii) ⇒ (iii). Let MR be a nil-extension of a Clifford’s semigroup K.

By Theorem 2.3 [4] we obtain that there exists a retraction ϕ of (R, ·) onto
(K, ·). By Veronesi’s theorem and by Proposition 1 it follows that the set N
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of all nilpotents of R is a ring ideal of R and that the multiplicative semigroup
of the factor ring B = R/N is a Clifford’s semigroup. Let ν be the natural
homomorphism of R onto B. Since MR is π-regular, then by Lemma 1 it
follows that for every coset a ∈ B we can choose a representative, in notation
a′, such that a′ ∈ K (i.e. we can choose a′ ∈ K such that (a′)ν = a). By
Everett’s theorem (see [5]) we obtain that R is isomorphic to the Everett’s
sum E(N ; B; θ; [, ]; 〈, 〉), where the triplet (θ; [, ]; 〈, 〉) is determined by

(1) αθa = α · a′, θaα = a′ · α, α ∈ N, a ∈ B,

(2) [a, b] = a′ + b′ − (a + b)′, a, b ∈ B,

(3) 〈a, b〉 = a′ · b′ − (a · b)′, a, b ∈ B,

and the addition and the multiplication on N ×B are defined by

(α, a) + (β, b) = (α + β + [a, b], a + b),

(α, a) · (β, b) = (α · β + 〈a, b〉+ θaβ + αθb, a · b).

By Proposition 1 and Lemma 3 it follows that N and K are ideals of R, so for
all a, b ∈ B, α ∈ N , we have that

αθa = α · a′ ∈ N ∩K = {0}, θaα = a′ · α ∈ N ∩K = {0},
[a, b] = a′ + b′ − (a + b)′ ∈ N ∩K = {0},
〈a, b〉 = a′ · b′ − (a · b)′ ∈ N ∩K = {0},

so θ, [, ] and 〈, 〉 are zero functions. Thus, R is a direct sum of rings N and B.
(iii) ⇒ (iv) ⇒ (i). This follows immediately. �

Corollary 1. The following conditions on a ring R are equivalent:

(i) MR is a nil-extension of a union of periodic groups;

(ii) MR is a nil-extension of a semilattice of periodic groups;

(iii) R is a direct sum of a nil-ring and a J-ring;

(iv) MR is a direct product of a nil-semigroup and a semilattice of periodic
groups.

P r o o f. (i) ⇒ (ii). This follows immediately.
(ii) ⇒ (iii). Let (ii) hold. Then by Theorem 1 we obtain that R is a

direct sum of a nil-ring N and a Clifford’s ring B. Clearly, MB is a union of
periodic groups, so B is a J-ring.
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(iii) ⇒ (iv). Let R be a direct sum of a nil-ring N and a J-ring B. Then
by the Jacobson’s ”an = a theorem” it follows that B is commutative and it is
clear thatMB is a union of periodic groups, soMB is a semilattice of periodic
groups.

(iv) ⇒ (i). This follows immediately. �

Corollary 2. [5] The following conditions on a ring R are equivalent:

(i) MR is a nil-extension of a band;

(ii) MR is a nil-extension of a semilattice;

(iii) R is a direct sum of a nil-ring and a Boolean ring;

(iv) MR is a direct product of a nil-semigroup and a semilattice. �

Corollary 3. Let R be a ring. Then MR is an n-nilpotent extension of
a union of groups if and only if R is a direct sum of an n-nilpotent ring and a
Clifford’s ring. �

Let

(4) u = v

be a semigroup identity that contain letters x1, x2, . . . , xn. For i∈{1, 2, . . . , n}
by |xi|u (|xi|v) we denote the number of appearances of the letter xi in the word
u (v), and by pi we denote the number pi = ||xi|u − |xi|v|. The identity (4) is
periodic if some of numbers p1, p2, . . . , pn is greater than 0 [6]. In this case the
number

p = gcd(p1, p2, . . . , pn)

is theperiod of an identity(4). Every semigroup that satisfies a periodic identity
is periodic. By Theorem 1 [6] it follows that every UG ◦N -identity is periodic.

Lemma 4. (i) Every group that satisfies the identity of the period p
satisfies the identity x = xp+1.

(ii) Every commutative semigroup that satisfies the identity x = xp+1

satisfies every identity of the period p.

P r o o f. (i). This follows immediately.
(ii). Let S be a commutative semigroup that satisfies the identity x =

xp+1, let u = v be an identity as in (4) of the period p. Then it is clear that S is
a union of groups, so S satisfies all of identities xli = xri , where li = |xi|u and
ri = |xi|v, i ∈ {1, 2, . . . , n}, whence S satisfies the identity

xl1
1 xl2

2 · · ·xln
n = xr1

1 xr2
2 · · ·xrn

n ,
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so by the commutativity in S it follows that S satisfies u = v. �

Theorem 2. A ring R satisfies the UG ◦ N -identity (4) of the period
p if and only if R is a direct sum of a nil-ring that satisfies (4) and a nil-ring
that satisfies the identity x = xp+1.

P r o o f. Let R satisfy (4). Then MR is a nil-extension of a union of
groups, and by Theorem 1 [6] it follows that subgroups of MR are periodic.
Thus, by Corollary 1 we obtain that R is a direct sum of a nil-ring N and a
J-ring B. Clearly N and B satisfy (4). Since MB is a union of groups and
since (4) implies the identity x = xp+1 in subgroups of MB, we then have that
B satisfies the identity x = xp+1.

Conversely, let R be a direct sum of a nil-ring N that satisfies (4) and
of a ring B that satisfies the identity x = xp+1. By the Jacobson’s ”an = a
theorem” it follows that B is commutative, so by Lemma 4, B satisfies (4).
Therefore, R satisfies (4). �

By A+
2 we denote the free semigroup over an alphabet A2 = {x, y}. By

the next result we describe one class of identities that implies commutativity in
rings.

Corollary 3. Every ring that satisfies the identity

xy = w,

where w ∈ A+
2 is a word such that w /∈ {xym | m ∈ Z+} ∪ {xmy | m ∈ Z+}, is

commutative.

P r o o f. This follows since every nil-ring that satisfies the identity xy = w
is a null ring and since this identity is either the identity xy = yx or it is a
UG ◦ N -identity (by Theorem 1 [6]). �

Example. Identities of the form xy = xmy or xy = xym, m ∈ Z+, does
not imply commutativity in rings. For example, the ring

R =
{[

a b
0 0

] ∣

∣

∣

∣

a, b ∈ Z2

}

is not commutative and it satisfies all of identities xy = xmy, m ∈ Z+.
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[3] S. B o g d a n o v i ć. Right π-inverse semigroups. Zbornik radova PMF Novi
Sad, Ser. Mat., 14, 1984, 187–195.
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