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Trapped automata

By ZARKO POPOVIC (Ni§), STOJAN BOGDANOVIC (Nis),
TATJANA PETKOVIC (Ni§, Turku) and MIROSLAV CIRIC (Nig)

Abstract. Certain generalized varieties of automata and the pseudovarieties con-
sisting of their finite members, were introduced by PETKOVI¢, CIRIG and BOGDANOVIG
in [16], where the structural properties of automata from these generalized varieties and
of their transition semigroups were studied. The main purpose of this paper is to give
algorithms for testing the membership of a finite automaton to the pseudovarieties of
finite trapped, locally trap-directable and trap-directable automata, and also, to de-
termine, for each of these pseudovarieties, the least congruence on a finite automaton
whose related factor automaton belongs to it. The related problems concerning finite
directable automata were considered by IMREH and STEINBY in [12], whereas DEMEL,
DeEMLOVA and KOUBEK in [8] treated similar problems on algebras.

1. Introduction and preliminaries

Automata considered throughout this paper will be automata with-
out outputs in the sense of the definition from the book by GECSEG and
PEAK [9]. Tt is well known that automata without outputs, with the input
alphabet X, can be considered as unary algebras of type indexed by X,
so the notions such as a congruence, homomorphism, generating set etc.,
will have their usual algebraic meanings (see, for example, [4]). In order
to simplify notation, an automaton with the state set A will be also de-
noted by the same letter A. For any considered automaton A, its input
alphabet will be denoted by X, and the free monoid over X, the input
monoid of A, is denoted by X*. Under action of an input word v € X*,
the automaton A goes from a state a into the state that will be denoted

Mathematics Subject Classification: 68Q45, 68Q70.
Key words and phrases: Pseudovarieties of automata, trapped automata, trap-directable
automata.


ime
661-677


2 Zarko Popovié, Stojan Bogdanovié, Tatjana Petkovi¢ and Miroslav Ciri¢

by au. For k € N’, where N’ denotes the set of all non-negative integers,
we write X<F = {u € X* | |u| < k}, where |u| is the length of the word .

For a subset H of A, by S(H) we denote the subautomaton of A
generated by H, and by D(H) we denote the dual subautomaton of A
generated by H. In other words, S(H) ={b€ A|(Ja € H)(Fu € X*) au =
b}, and D(H) = {b € A|(Ja € H)(3u € X*) bu = a}. Especially, for
a € A, the monogenic subautomaton and the monogenic dual subautomaton
generated by a are denoted by S(a) and D(a), respectively.

A state a € A is called a trap of A if au = a for every word u € X*.
The set of all traps of A is denoted by Tr(A). A state a € A is reversible if
for every word u € X* there exists a word v € X* such that auv = a. The
set of all reversible states of A, called the reversible part of A, is denoted
by R(A). An automaton A is reversible if every its state is reversible. If for
every a,b € A there exists u € X* such that b = au, then the automaton
A is called strongly connected. On the other hand, A is called connected if
for every a,b € A there exists u,v € X* such that au = bv, whereas A is
said to be trap-connected if it is connected and has a trap, or equivalently,
if it has a trap ag and for every a € A there exists a word © € X™* such
that au = ag. Two states a,b € A are mergeable if there exists a word
u € X* such that au = bu.

Let u € X*. An automaton A is called u-trapped if au € Tr(A) for
every a € A, and in this case u is called a trapping word of A. If au = bu
for every a,b € A, then A is called u-directable, u is called a directing word
of A and the set of all directing words of A is denoted by DW (A). If A
is u-directable and has a trap, or equivalently, if it is u-trapped and has a
unique trap, then it is called u-trap-directable. An automaton A is called
trapped (resp. directable, trap-directable) if there exists a word v € X*
such that A is u-trapped (vesp. wu-directable, u-trap-directable). A word
u € X* is called a locally trap-directing word of an automaton A if every
monogenic subautomaton of A is u-trap-directable, i.e., if apug = au holds
for every a € A and every p,q € X*. An automaton having a locally trap-
directable word is called a locally trap-directable automaton. Trapped,
trap-directable and locally trap-directable automata were introduced in
[16], whereas directable automata were first studied in [5]. More infor-
mation about these classes of automata can be find in the survey paper
[2].

For a subautomaton B of an automaton A the Rees congruence op is
defined by: (a,b) € pp & a =0b or a,b € B. The factor automaton
A/op is denoted by A/B and the automaton A is said to be an extension
of B by an automaton C' (with a trap), where A/B = C.
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An automaton A is the direct sum of its subautomata A,, @ € Y, in
notation A = Y7 -y Aqa, if A =,cy Ao and A,N = Ag = @, for every
a, B €Y such that « # f. Automata A,, a € Y, are direct summands of
A, and they determine a congruence on A called a direct sum congruence
and the corresponding decomposition is called a direct sum decomposition.
By the greatest direct sum decomposition of A we mean the decomposition
which corresponds to the least direct sum congruence on A. More on direct
sum decompositions can be find in [7].

In the algorithms that follow here we consider finite automata, i.e.
automata with finite state sets and input sets. The set state of cardinality
n is denoted by {1,2,...,n}. The automaton A is given by its transition
table T' = (T'[i, z])icAgex, where T[i,z] = j if iz = j, for 4,5 € A and
x € X. A list is defined as a linearly ordered sets of data. For a list L,
1 — L means that an element ¢ is put on L, whereas ¢ < L means that the
first element 4 of L is deleted from L. The empty list is denoted by &.

For undefined notions and notation we refer to [9] and [4].

As was proved by STARKE in [17], a finite automaton is directable if
and only if any two its states are mergeable. As an immediate consequence
of this statement we obtain the following result which will be very useful
in our further considerations.

Lemma 1. A finite automaton is trap-connected if and only if it is
trap-directable.

2. Tests for trappedness, trap-directability, and local
trap-directability

As a tool which can save operating time of an algorithm which tests
a finite automaton for directability, IMREH and STEINBY used in [12] the
notion of an inverse transition table of an automaton. Here we introduce
and use a related notion — the inverse vector of an automaton.

In the algorithms that follow we shall assume that A is a finite automa-
ton with m input letters and n states, which are denoted by 1,2,...,n,
ie. A=1{1,2,...,n}. If the automaton A is given by its transition table
T = (T[i,z])ica,zex, then the inverse vector I = (I[i])ica of A is formed
in the following way: for every state i € A, the set I[i] consists of all states
j € A for which there exists an input letter z € X which leads from the
state j into the state i, i.e.

Ili|={j € A| 3z € X)T[j,z] = i}.
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Any j € I[i] is called an immediate predecessor of the state i, whereas i is
called an immediate successor of j.

We give the following simple algorithm which generates the inverse
vector of a given finite automaton.

Algorithm: The inverse vector
Input: the set A of states of an automaton A,
the set X of input letters of A,
the transition table T of A.
Output: The inverse vector I = (I[i])ica-
Procedure:
Step 1. Initialization:
for i € A do I[i] .= @.
Step 2. for i € A do
for z € X do
i — I[T[i, z]].

It is easy to check that this algorithm operates in time O(mn).

Let us pass to the trappedness problem. The minimal length of trap-
ping words of a trapped automaton can be estimated using the estimation
for the minimal length of directing words of directed automata. For a di-
rectable automaton A the number d(A) is defined by d(A) = min{|u| |u €
DW (A)}, and for n € N, the number d(n) is defined as

d(n) = max{d(A) | A is a directable automaton with |A| =n}.

The well-known Cerny’s conjecture says that d(n) < (n — 1)?. In the case
of trapped automata we have the following estimation:

Lemma 2. Let A be a trapped automaton with n states and t traps.
Then the minimal length of trapping words of A is less or equal than
din—t+1).

The proof of this lemma follows immediately by Theorem 3 of [16]
which characterizes trapped automata as extensions of discrete automata,
by trap-directable automata. If we assume that Cerny’s conjecture holds,
which is the best we can hope for, then for an automaton with n states
and ¢ traps we have to check the existence of a trapping word in the set
X <=0)*, But, this algorithm is not so fast, and in the sequel we are
looking for some better algorithm for testing trappedness.

Let a sequence {Py}ren of subsets and a subset P of an automaton A
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be defined as follows:
P.={acA|(Que X=F) au e Tr(Ad)}, for k€N,

P=|JP.={acA|(FueX*) aueTr(A)}
keN

We prove the following

Theorem 1. Let A be a finite automaton with n states and a nonempty
set of traps. Then the following conditions hold:
(a) {Px}ren Is an increasing sequence of sets;
(b) the sets Py can be computed as follows:

(1) Py=Tr(A),

(2) Poy1 =Py U{a € A|(Fz € X) ax € P}, for every k € N;
(¢c) if Py = Pyyq, for some k € N, then P, = Py, = P, for every m € N;
(d) there exists k € [0,n — 1] such that

Tr(A):PogPlgng:PkH::P,

(e) P =D(Tr(A));
(f) A is trapped if and only if A = P.

PROOF. (a) This claim is obvious.

(b) It is clear that Py = T'r(A). We shall prove the second equality.
By (a) we have that Py C Py;. Consider an arbitrary a € Pyy1\ P;. Since
a € Py, 1, then there exists a word u € X<F*! such that au € Tr(A). Let
u = zu' for some x € X and v/ € X<k, Then (az)u’ = au € Tr(A), what
implies az € Py. Therefore, P11 C PyU{a € A| (3z € X) ax € Py}.

To prove the opposite inclusion, consider a € A such that ax € P, for
some z € X. Then there exists a word u € X=F such that (az)u € Tr(A),
and for a word v = zu € X<F*! we have that av € Tr(A), so a € Pyy1.

(c) This follows immediately by the equality (2) of (b).

(d) This statement is an immediate consequence of (a), (c¢) and the
fact that the automaton A has n states.

(e) If a € P, then there exists k£ € N such that a € Py, i.e. au € Tr(A),
for some word u € X=F, and hence, a € D(Tr(A)). On the other hand,
if a € D(Tr(A)), then there exists u € X* such that au € Tr(A), what
yields a € P, C P, where k = |u.

(f) Let A be a trapped automaton, let u be a trapping word of A and
let |u] = k. Then A C Py C P, so we have proved that A = P. Conversely,
if A= P, then for any a € A there exists u € X* such that au € Tr(A),
so the Rees factor automaton A/Tr(A) is trap-connected, and according
to Lemma 1, A/T'r(A) is trap-directable. Therefore, A is an extension of
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a discrete automaton by a trap-directable automaton, and by Theorem 3
of [16], we have that A is a trapped automaton. O

Using the above theorem we give an algorithm which tests finite au-
tomata for trappedness. Namely, we form an increasing sequence of sets,
where the least one is Tr(A) and the largest one is P, which is the union
of all Py, k € N°. The set P is the dual subautomaton generated by Tr(A)
and by (f) of Theorem 1 we have that automaton A is trapped if and only
if A=P.

Algorithm: Test for trappedness
Input: The set A of states of an automaton A;
The set X of input letters of A;
The transition table T' of A.
Output: YES, if A is trapped, or NO, if A4 is not trapped.
Auziliary data structures::
The list L;
The Boolean vector V' = (V[i])er;
The Boolean variable t.
Procedure:
Step 1. Initialization:
for i € A do Vi] := 0;
L.=o.
Step 2. Formation of the inverse vector I = (I[i]);ca-
Step 3. Formation of the list of traps:
fori € A do
t:=0;
for z € X do
if T[i,z] # i then t := 1;
ift=0theni— L, V[i]:=1.
Step 4. while L # & do
1+ L;
for j € I[i] do
if V[j] =0 then j — L, V[j]:= 1.
Step 5. for i € A do
if V[i] = 0 then STOP and NO;
YES.

Let us describe how the algorithm works. The main role of the vector V
is to indicate whether a state i belongs to the set P (V[i] = 1) or not
(V[i] = 0). The algorithm starts with the empty list L, and in Step 3
all traps are included on L and registered as members of P. Further, if
a state ¢ has been registered as a member of P and put on L, then it is
kept on L until it is replaced on L by all its immediate predecessors which
have not been yet on the list, when these predecessors are also registered
to belong to P. Since we simultaneously set ¢+ — L and V[i] := 1, then
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we have that i has not been yet on L if and only if V[i] = 0. The Step
4 finishes when the list L is emptied, and then we have that 7+ € P if and
only if V[i] = 1. Therefore, by Theorem 1 it follows that A is trapped if
and only if V[i] =1 for every 7 € A. It can be verified that the algorithm
operates in time O(mn).

By a slight modification of the previous algorithm we obtain an algo-
rithm which tests finite automata for trap-directability. Namely, after we
form the set of traps, it should be checked whether this set contains only
one element. If so, then we proceed by testing for trappedness, otherwise
we immediately conclude that the automaton A is not trap-directable.

Concerning an algorithm which tests finite automata for local trap-
directability, its theoretical base is given by the following theorem.

Theorem 2. A finite automaton A is locally trap-directable if and only
if the following conditions are satisfied:
(a) Tr(A) # &;
(b) D(a) N D(b) = @, for all a,b € Tr(A) such that a # b;
(c) A=U{D(a) | a € Tr(A)}]

PROOF. Let A be locally trap-directable. It is clear that (a) holds.
Consider a,b € Tr(A) such that a # b. If c € D(a)ND(b), then a,b € S(c),
which is impossible because by the hypothesis it follows that S(c) is a trap-
directable automaton and it can not have two different traps. Therefore,
we conclude that D(a) N D(b) = @.

To prove (c), consider an arbitrary state b € A. By the hypothesis,
the monogenic subautomaton S(b) of A is trap-directable, and if a is the
unique trap of S(b), then b € D(a). Thus, (c) holds.

Conversely, let (a), (b) and (c) hold and consider an arbitrary state
c € A. By (c) it follows that ¢ € D(a) for some a € Tr(A), and if
cu € D(b) for some u € X* and b € Tr(A), b # a, then we have that
¢ € D(cu) C D(b), which contradicts the statement (b). Thus, we conclude
that cu € D(a), for each u € X*, which means that S(c) C D(a). Now
it is clear that S(c) is a trap-connected automaton with the trap a, and
by Lemma 1, S(c) is trap-directable. Hence, A is a locally trap-directable
automaton. O

In other words, the previous theorem says that an automaton A is
locally trap-directable if and only if every dual subautomaton of A gener-
ated by a trap is a subautomaton of A and A is the direct sum of these
subautomata. According to this result we can give the following algorithm
which tests local trap-directability.

Algorithm: Test for local trap-directability
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Input: The set A of states of an automaton A;
The set X of input letters of A;
The transition table T of A.
Output: YES, if A is locally trap-directable, or NO, if A is not locally trap-
directable.
Auziliary data structures::
Lists T'r and L;
Boolean vectors V = (V[i]);er and U = (U[i])ier-
Procedure:
Step 1. Initialization:
for i € A do VTi] := 0;
Tr =2, L:=@.
Step 2. Formation of the inverse vector I = (I[i])ica.
Step 3. Formation of the list of traps:
for i € Ado
for z € X do
if T[i,z] =i then i — Tr.
Step 4. while Tr # @ do
i< Tr,i— L, V[i]:=1;
for j € A do UJj] :=0;
Step 4.1.  while L # & do
J L
for | € I[j] do
if U[l] =0 then
if V[l]] = 1 then STOP and NO
elsel = L, U[l]:=1,V[l] :=1.
Step 5. for i € A do
if V[i] = 0 then STOP and NO;
YES.

In contrast to the test for trappedness, in which all dual subautomata
generated by traps are built simultaneously, here we build any of them
separately and we check whether they are mutually disjoint. Namely, when
we form the list T'r of all traps (Step 3), we do not include the whole list
Tr on the list L, but only one trap. Another trap is not put on L until
L is emptied. Step 4 has to register the states which belong to the set
P = J{D(i)|i € Tr(A)}, by means of the vector V, whereas for a trap
i, the role of Step 4.1 is to register the members of D(i), using the vector
U which we reset any time before we repeat Step 4.1. In Step 4.1 we
also use V' to check whether D(i) is disjoint with the previously formed
principal dual subautomata. If it is not disjoint with some of them, then
the algorithm is stopped immediately and the answer is NOT. The answer
is YES if and only if the algorithm is finished regularly and at the end we
have that V[i] = 1 for every i € A.
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3. The least trapping, trap-directing and locally trap-directing
congruence

A congruence relation 8 on an automaton A is called trapping, trap-
directing or locally trap-directing if the related factor automaton A/ is
trapped, trap-directable or locally trap-directable, respectively. In this
section we shall construct the least trapping, trap-directing and locally
trap-directing congruence on an arbitrary finite automaton A.

By Theorem 3 of [14], every finite automaton can be uniquely rep-
resented as an extension of a reversible automaton by a trap-directable
automaton. On the other hand, by the well-known result given by THIER-
RIN in [18] and GLUSHKOV in [11], it follows that a reversible automaton
can be uniquely represented as the direct sum of its strongly connected
subautomata. These representations will be very useful in the next theo-
rem.

Theorem 3. Let a finite automaton A be represented as an extension
of a reversible automaton B by a trap-directable automaton C, and let B
be represented as the direct sum of its strongly connected subautomata
B,, a € Y. Then the relation T on A defined by

(a,b) eT < a=b or a,be B,, for some a €Y,

is the least trapping congruence on A.

PRrROOF. Let o be the least direct sum congruence on B, i.e. the con-
gruence whose classes are B, @ € Y. Then 7 can be written as 7 = cUA 4,
where A 4 denotes the equality relation on A, and by Theorem 4.1 of [1] it
follows that 7 is a congruence relation on A.

Let u be a directing word of C = A/B. Consider arbitrary a € A
and v € X*. Then au € B, that is au € B,, for some « € Y, whence it
follows that auv € B, so (auv,au) € 7. This means that A/7 is a trapped
automaton, i.e. 7 is a trapping congruence on A.

Let 6 be an arbitrary trapping congruence on A. Then there exists
v € X* such that (avw,av) € 0, for all a € A and w € X*. Consider
(a,b) € T such that a # b. Then a,b € B,, for some o € Y, and since B,
is strongly connected, then avp = a and avg = b, for some words p,q € X*.
Now we have that

a=avp, (avp,av) €, (av,avq) €6 and avqg="h,

whence (a,b) € . Therefore, we have proved that 7 C 6, so T is the least
trapping congruence on A. O
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According to the previous theorem, in order to construct the least
trapping congruence on some finite automaton, i.e. to determine its classes,
we have to find all its strongly connected subautomata. Each of them is
one non-trivial class and the elements that are not included in any of these
subautomata represent one-element classes. Before giving an algorithm for
determining the strongly connected subautomata of a finite automaton we
have one auxiliary result.

Lemma 3. Let A be an automaton and let a be its arbitrary state.
Then:
(a) a € R(A) if and only if S(a) C D(a);
(b) ifa € R(A) then S(a) C R(A) and (D(a) \ S(a)) NR(A) = @.

PROOF. (a) This assertion was proved in Lemma 1 of [14].

(b) Let « € R(A). By Lemma 2 of [14], R(A) is a subautomaton of
A, whence S(a) C R(A). Suppose now that b € (D(a) \ S(a)) N R(A). By
b € D(a) we have that bu = a, for some u € X*, whereas b € R(A) implies
that there exists v € X* such that buv = b. But then b = buv = awv, i.e.
b € S(a), so we have obtained a contradiction. Thus, (D(a)\S(a))NR(A) =
. O

Now we can expose the algorithm for determining the strongly con-
nected components of a finite automaton. Note that an algorithm for find-
ing the strongly connected components of a graph can not be used here
because the notions of strong connectivity in Graph Theory and Automata
Theory do not coincide.

Algorithm: Strongly connected subautomata
Input: The set A of states of an automaton A;
The set X of input letters of A;
The transition table T of A.
Output: The lists Ry, ..., Ry which represent all strongly connected subautomata
of A.
Auziliary data structures::
Lists C', S and D;
Boolean vectors s = (s[i])icr and d = (d[i])ier,
The number k.

Procedure:
Step 1. Initialization:
C:=9,k:=0.

Step 2. Formation of the inverse vector I = (I[i])ica-
Step 3. fori€ Adoi— C.
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Step 4. while C' # @ do
Step 4.1.  for j € A do s[j] := 0, d[j] :=0;
S:=0,D:=g,
i+ C,i—S,i— D;
sli] := 1, d[i] := 1;
Step 4.2.  while D # & do
J < D;
for | € I[j] do
if dll] =0 then | — D, d[l] := 1;
Step 4.3. while S # @ do
J< S
for z € X do
if s[T[j,z]] = 0 then
if d[T[j,z]] = 0 then goto Step 4.1
else s[T[j,z]] := 1, T[j,z] = S;
Step 4.4. k:=k+1,
for j € Ado
if s[j] =1 then j —» Ry, j + C;
else if d[j] =1 then j «+ C.
This algorithm works as follows. After initialization and formation of the
inverse vector, in Step 3 we put all states on the list C. When we start
to check whether a state 4 is reversible, we delete it from C' and put it on
the lists S and D (Step 4.1). These lists are used to generate S(i) and
D(i), and the states that belong to S(i) and D(i) are registered by means
of the vectors s and d, which we reset at the beginning of each cycle of
Step 4. The dual subautomaton D(3) is generated in Step 4.2, and in Step
4.3 we simultaneously generate the subautomaton S(7) and check whether
S(i) C D(i). If a state that belongs to S(¢)\ D(i) is found, this means that
1 is not reversible and we immediately stop the current cycle and start the
next cycle of Step 4. Otherwise, if S(i) C D(i), then 7 is reversible and
S(7) is the strongly connected subautomaton containing it, so we put all
states from S(7) on the list Ry and we delete them from C. On the other
hand, by Theorem 3 it follows that none of the states from D(7) \ S() lies
in a strongly connected subautomaton of A, so we do not need to check
these states and we delete them from the list C.

The next theorem describes the least trap-directing congruence on an
automaton.
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Theorem 4. Let a finite automaton A be represented as an extension
of a reversible automaton B by a trap-directable automaton C. Then the
Rees congruence o, on A is the least trap-directing congruence on A.

PROOF. It is evident that g, is a trap-directing congruence on A, so
it remains to prove that it is the least trap-directing congruence. Let 6
be an arbitrary trap-directing congruence on A. Then there exists a word
u € X* such that (auv,bu) € 0, for all a,b € A and v € X*. Consider
(a,b) € oy such that @ # b. Then a,b € B and since B is a reversible
automaton, then a = aup and b = bug, for some words p,q € X*. Now we
have that

a = aup, (eup,bu) €0, (bu,buq) €60 and buq="0,

which implies (a,b) € 6. Therefore, o, C 6, so we have proved that o is
the least trap-directing congruence on A. O

Corollary 1. Let A be a finite automaton and let R(A) be its reversible
part. Then A is trap-directable if and only if |R(A)| = 1.

It is evident that the algorithm for finding the least trap-directing con-
gruence on a finite automaton A can be obtained by a slight modification
of the previous algorithm concerning the least trapping congruence on A.
Namely, we do not need to separate the strongly connected components,
we just have to collect all reversible states on one list.

Before we prove a theorem which characterizes the least locally trap-
directing congruence on an automaton, we give an auxiliary result which
can be verified easily.

Lemma 4. Let A = ) i Ay be a direct sum decomposition of an
automaton A, for each a € Y let 6, be a congruence relation on A, and
let 0 = U,cy a- Then 0 is a congruence relation on A.

Now we are ready to prove the following:

Theorem 5. Let A be a finite automaton, let A = Zle A; be the
greatest direct sum decomposition of A, for each i € [1,k| let p; be the
least trap-directing congruence on A;, and let o = Ule 0;. Then g is the
least locally trap-directing congruence on A.

ProoOF. By Lemma 4 it follows that o is a congruence relation on
A. Next we prove that A/p is a locally trap-directable automaton. For
any i € [1,k] let u; be an arbitrary trap-directing word of A;/p; and
let w = wjug...ug. Then u is a trap-directing word of A;/p;, for every
i € [1,k]. Let us prove that u is a locally trap-directing word of A/p.
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Consider arbitrary a € A and p,q € X*. Let i € [1,k] such that
a € A;. Since A;/p; is trap-directable with u as one of its trap-directing
words, then we have that (apugq,apu) € p; and (apu,au) € p;, whence
(apuq,au) € p;. Therefore, (apuq,au) € p, which means that A/p is a
locally trap-directable automaton with u as one of its locally trap-directing
words.

Let 6 be an arbitrary congruence relation on A such that A/0 is a
locally trap-directable automaton. This means that there exists a word
u € X* such that (apuq,au) € 0, or equivalently,

(1) (apu,au) € @ and (auq,au) € 6,

for all a € A and p,q € X*. For any i € [1,k] let 6; be the restriction of
0 onto A;, i.e. 0; = 0N (A; x A;). Then 6; is a congruence relation on A;
and we shall prove that it is a trap-directing congruence on A;.

Consider a,b € A; such that S(a) N S(b) # @, i.e. av = bw, for some
v,w € X*. Then by (1) it follows that (avu,au) € 6; and (bwu,bu) € 6;,
whence (au,bu) € 6;. Consider now arbitrary a,b € A;. By Theorem 3.2
of [7], there exist ¢, co,...,¢; € A; such that

S(a)NS(e1) # @, Se) NS(er) # 2, -+, Se;) NS(b) # 2,
and by the previously proved fact we obtain that
(au, cru) € b;, (cru,cou) € 0;, ... ,(cju,bu) € 6;,

so (au,bu) € 0;. On the other hand, (1) yields (aug,au) € 6;, for each
q € X*. Therefore, we conclude that (aug, bu) € 6;, for each ¢ € X*, which
means that ; is a trap-directing congruence on A;. By the hypothesis, p;
is the least trap-directing congruence on A;, so o; C ;. Therefore,

so we have that g is the least locally trap-directing congruence on A. [

According to the previous theorem, an algorithm for finding the least
locally trap-directing congruence on a finite automaton can be divided into
two parts. In the first one the considered automaton is decomposed into
the greatest direct sum decomposition, and in the second one the reversible
parts of all summands of this decomposition are found. Therefore, it re-
mains to give an algorithm for decomposition of a finite automaton into
the greatest direct sum decomposition.
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As was proved by CIRIG and BoGDANOVIE in [7], for a state a of
an automaton A, the summand containing a in the greatest direct sum
decomposition of A equals the principal filter F'(a) generated by a. It was
also proved in the same paper that F'(a) can be computed as follows

F(a’) = U Uk(a’)a

keNo

where {Uj(a)}rene is an increasing sequence of sets defined by
Up(a) = {a} and Ugii(a) = D(S(Ui(a))), for any k € N,

If A is a finite automaton with n states, then F(a) = Ujg(a), for some
k € [1,n], and in this case we can compute every summand in the greatest
direct sum decomposition starting from some states and applying alter-
nately the operators S : H — S(H) and D : H — D(H) finitely many
times. But, here we give another algorithm with synchronous application
of the operators S and D. For a subset H of an automaton A, we define
the set A(H) of adjacent states of H by

AH)=HU{be A|(Ja € H)(3z € X)azx =bor bz = a},

and we prove the following theorem.

Theorem 6. Let a be a state of an automaton A, Ag(a) = {a} and
Api1(a) = A(Ag(a)) for k € N°. Then {Ag(a)}reno is an increasing se-
quence of sets and F(a) = Jpcno Ar(a).

PROOF. First we prove that Ay(a) C Ug(a), for each k& € N°. This
inclusion is evident for £ = 0. Suppose that Ag(a) C Ug(a) for some k €
N, and consider an arbitrary ¢ € Ay, 1(a). There are three possibilities:
¢ € Ag(a), or ¢ = bz, for b € Ag(a) and x € X, or cx = b, for b € Ag(a)
and z € X. In the first case ¢ € Ay(a) C Ug(a) C Ugs1(a). In the second
case we have that b € Ui(a), so ¢ € S(Ug(a)) € D(S(Ug(a))) = Ugt1(a),
whereas in the third case it follows that b € Ug(a) C S(Ug(a)), whence
¢ € D(S(Ug(a))) = Ugy1(a). Hence, by induction we obtain that Ay(a) C
Uk(a), for every k € N°, which yields ;o Ak(a) € F(a).

To prove the opposite inclusion, it is enough to prove that U;(a) C
Ugeno Ak (a) for every i € N, Tt is clear that this is satisfied for ¢ = 0.
Suppose now that this inclusion holds for some i € N’ and consider an
arbitrary d € U;y1(a). Then du = ¢, for some ¢ € S(U;(a)) and u €
X*, and ¢ = bv, for some b € U;(a) and v € X*. Then u € X" and
v € X?, for some r,s € N’, whereas by the hypothesis it follows that b €
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Ay(a), for some t € N°, so we have that d € A, 4, 4(a). Thus, U;;1(a) C
Urero Ak (a), and by induction we obtain that U;(a) C Uyeno Ak (a), for
every ¢ € N, This finally yields F(a) C Uyeno Ak(a), which was to be
proved. [l

Now we are ready to give the following algorithm for decomposition
of a finite automaton into the greatest direct sum decomposition.
Algorithm: The greatest direct sum decomposition:

Input: The set A of states of an automaton A;
The set X of input letters of A;
The transition table T' of A.
Output: The lists F1, ..., F which represent the summands in the greatest direct
sum decomposition of A, i.e. the principal filters of A.
Auziliary data structures::
Lists C and L;
The Boolean vector V' = (V[i])ser;
The number k.
Procedure:
Step 1. Initialization:
C:=9,L=g2,k:=0;
for i € A do V[i] :==0.
Step 2. Formation of the inverse vector I = (I[i])ica.
Step 3. fori € Adoi— C.
Step 4. while C # @ do
Step 4.1. i+ C,
if V[i] =0 then
i—> L k:=k+1,i— F, V[i]:=1.
Step 4.2. while L # @ do
J L
for z € X do
if V[T[j,z]] = 0 then
Tlj,z] = L, T[j,z] = Fy, V[T[j,z]] :=1;
for | € I[j] do
if V[l] =0 then
l—>L,l - F, V[l] :=1.
In Step 3, all states are put on the list C'. The vector V is used to register
the states which have been included on some list Fj,. When we choose the
first state 7 from C, we delete it from C' and we check whether V[i] = 0.
If V[i] = 1, then this means that it has been put on some Fj, i.e. that
F(i) has been already generated. Otherwise, if V[i] = 0, then we start to
generate F'(i) = Fj, by putting 7 on the lists L and F}, which is immediately



16

Zarko Popovié, Stojan Bogdanovié, Tatjana Petkovi¢ and Miroslav Ciri¢

registered by V[i] := 1. The members of F (i) are determined in Step 4.2.
When we delete a state j from the list L we immediately put on L all its
immediate predecessors and successors which have not been yet considered
in the current cycle of Step 4.
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