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Rings whose multiplicative semigroups are
nil-extensions of a union of groups !

M. Cirié 2 AND S. BoGgDANIVIG?

Abstract. In this paper we consider one type of extension of rings called a
strong extension of rings. Using this concept we describe rings whose multiplica-
tive semigroups are nil-extensions of a union of groups. Moreover, we consider
semigroups and rings in which the following two identities hold: a - (], ;) =

[Ti<: (az) and ([Ti2; ) - a = [Ti%, (zia).
AMS Subject Classifications. 16A30; 20M10.

1. Introduction and preliminaries

In this section we introduce basic notions, notations and results.

A ring R is an ezxtension of a ring A by a ring B if R has an ideal T
isomorphic to A and the factor ring R/I is isomorphic to B. Usually, we
identify A with I and B with R/I. A ring A is a direct summand of a ring R
if R is isomorphic to a direct sum A& B, for some ring B. Two extensions R
and R’ of a ring A by a ring B are equivalent if there exists an isomorphism
@ of R onto R’ such that ¢(a) = a for all a € A and such that the following
diagram commutes:

R > R
v\, Ve
B

where v and v’ are natural homomorphisms of R and R’ onto B, respectively.
The extension problem of rings is as follows: construct all (nonequivalent)
extensions of a ring A by a ring B. A solution to this problem has been
given by C.J. Everett [7], by the next theorem.
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EVERETT’S THEOREM [7]. Let A and B be disjoint rings. Let 6 be a
function of B onto a set of permutable bitranslations of A, in notation

:a— 60°€ QA), a€B,

and let[, ],{,) : Bx B — A be functions such that for all a,b,c € B the

following conditions hold:

(E1) 6%+ 6% — gott = Mia,b] 5

(EQ) o - 0” - 0“” = "(a,b);

(E3) (ab,c)+ (a,b)6° = (a,bc) + 6*(b,c);

(E4) [0,0] =0;

(E5) [0.8] = [b.a];

(E6) [a,b] +[a +b,c] = [a,b+ ] + [b,c];

(ET) [a,0]6° +(a + b,c) = [ac,be] + (a,c) + (b,c);

(E8) 0°[b,c]+ (a,b+ c) = [ab,ac] + (a,b) + (a,c).
Define an addition and multiplication on R = A X B by

(E9) (a,a)+(B,b) = (a+ B+ [a,b],a+b),

(E10) (a,a)-(B,b) = (aB + (a,b) + 6°3 + ab®,ab).

Then (R, +,") ts a ring isomorphic to an extension of A by B.
Conversely, every eztension of A by B can be so constructed.

DEFINITION 1. A ring constructed as in the Everett’s theorem we call
an Everett’s sum of rings A and B by the triplet of functions (6;],],(,)) and
we denote it by E(A, B;0;[,];(,)). The representation of a ring R as an
Everett’s sum of some rings we call an Fuverett’s representation of R.

Many informations about the Everett’s theorem we can find in (7], [10],
(11], [14] and [17]. There we can see that an Everett’s representation
E(A, B;0;[,);(,)) of some ring R is determined by the choice of a set of
representatives of the cosets of A in R. Namely, if for every coset a € B we
choose a representative, in notation a’ , then the set {a’la € B} determines
the triplet (8;[,];(,)) in the following way:

(i) a0*=a-d', Ca=d-a, a€ A, a€B;

(ii) [a,b)=a'+ b —(a+b), a,b€ B;

(iii) (a,b) = a'- b — (a-b), a,b€ B.

By = (mod I) we denote the congruence on a ring R induced by its ideal
I.. By U(R) we denote the annihilator of a ring R, i.e. the set

U(R)={a € R|aR = Ra =0}.

In the Section 2 we consider the special type of ring extensions, called
the strong extensions of rings. Using the construction of a strong extension
of a ring and the Putcha’s result [16], we describe rings whose multiplicative



On a class of rings 219

semigroups are nil-extensions of a union of groups (Theorem 1) and a nil-
extensions of a band (Theorem 2). Moreover, we give a method for the
construction of nilpotent rings (Theorem 3).
M. Petrich [13], described semigroups and rings satisfying the following
identities:
ary = azay, ITya = zaya,

are called distributive semigroups and rings. In the Section 3 of this paper
we generalize Petrich’s results. Namely, we describe n—distributive semi-
groups and rings (n > 2), i.e. semigroups and rings satisfying the following
identities:

ar\r2...rp, = ar104%2...a%Ty,

T1T2...T,Q = T104T24...Tpa.

By Z* we denote the set of all positive integers. A semigroup S is m—
reqular if for every a € S there exists n € Z1 such that a® € a"Sa™. A
semigroup S is completely m-regular if for every a € S there exist n € Zt
and z € S such that a™ = a"za™ and ez = za™. These semigroups were
studied by Azumaya [1], Drazin [6] and Munn [12]. In [1] these semigroups
were called strongly T-reqular, but we use the name completely T-regular,
by analogy with completely regular semigroups. By Reg(S) (Gr(S), E(S))
we denote the set of all regular (completely regular, idempotent) elements of
a semigroup (ring) S. A semigroup S is archimedean if for all a,b € S there
exists n € Z% such that a™ € §b5. A semigroup S is completely archimedean
if § is archimedean and completely m—regular. A semigroup S is orthodoz if
S is regular and its idempotents form a subsemigroup of §. A semigroup S
is medial if abcd = acbd for all a,b,c,d € S.

An element @ of a semigroup (ring) S with zero 0 is nilpotent if there
exists n € Z* such that a® = 0. A semigroup (ring) S with zero is a nil-
semigroup (nil-ring) if every element of S is nilpotent. A semigroup (ring)
S with zero 0 is n-nilpotent if S™ = 0. By nil-eztension of a semigroup
we mean an ideal extension by a nil-semigroup. An ideal extension S of a
semigroup 7T is a retract-eztension (or retractive extension) if there exists
a homomorphism ¢ of S onto T such that ¢(t) = ¢t for all t € T. Such a
homomorphism we call a retraction. A semigroup S is an n-inflation of a
semigroup T if T is an ideal of §, S"*! C T and there exists a retraction of §
onto T (i.e. this is a retractive extension by a (n + 1)-nilpotent semigroup).

For undefined notions and notations we refer to (2], [9], [14] or [15].

In next considerations, the following results will be used:

JACOBSON’s THEOREM [8]. Suppose that for every element a of a ring R
there exists n € Z such that a™ = a. Then R is commutative.
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BoGgpANOVIC LEMMA [3]. Let p be a congruence on a w-regular semi-
group S. Then every p—class which is a regular element in S/p contains a
reqular element from S, and every p-class which is an idempotent in S/p
contains an idempotent from S.

BoGpANOVIE-MILIC’S THEOREM [4]. A semigroup S is an n-inflation
of a union of groups if and only if

aS™ b = a2 5" b?
for every a,b€ S.

PUTCHA’S THEOREM [16]. Let R be a ring whose multiplicative semigroup
is completely m—regular. Then the following conditions are equivalent:

(i) (R,-) is a semilattice of archimedean semigroups;

(ii) the set of all rilpotents of R is an ideal of the semigroup (R,-);

(iii) the set of all nilpotents of R is an ideal of R.

MUNN’s LEMMA [2]. Let ¢ be an element of a semigroup S such that z™
lies in a subgroup G of S. If e is an identity of GG, then

(i) ex = ze € G;

(ii) 2™ € G, for every m € Z*, m > n.

2. Strong extensions of rings

In this section we consider Everett’s sums for which 8 is a zero homomor-
phism and, using this, we consider rings whose multiplicative semigroups are
nil-extensions of a union of groups.

ProrosiTioN 1. If R is a ring whose multiplicative semigroup is a
semilattice of completely archimedean semigroups, then R is an extension
of a nil-ring by a ring whose multiplicative semigroup is a semilattice of
groups.

Proof. By Putcha’s theorem it follows that the set N of all nilpotent
elements of R is an ideal of R. Let £ € R. Then there exist ¢ € R and
n € Z1 such that z™ € G.. Now we obtain that
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(z — ex)"*! (z —ex)*(z — ex)"*!

(z? — zex — exz + exex)(z — ex)™!

ll

n-1

= (22— zex - ex? + ex?)(z — ex) (by Munn’s lemma)

(z? — zex)(z — ez)"" ! = 2(z — ex)(z — ex)"!
z(z —ex)"=...=2"(z — ex)
= zlz-2z"z=0, (since z"e = z™)
SO
(1) z=ex (mod N).

Let v be a natural homomorphism of R onto @ = R/N and let a € Q. Then
a = v(z) for some 2 € R and there exists e € F(R) such that z" € G, for
some n € Z*. Moreover, by (1) it follows that

a=v(z)=v(ex).

Since ez is a completely regular element and v is a homomorphism, then we
have that a is completely regular. Therefore, the multiplicative semigroup
of the ring @ is completely regular. :

Let 2 € R and e € E(R). Then

(ex — exe)? = (ze — exe)? =0,

so
ez = exe (mod N) and ze = exe (mod N).

Hence

(2) ex = ze (mod N)

forallz € R, e € E(R). Now, let a € E(Q) and let b € . By Bogdanovié’s
lemma it follows that a = v(e) for some e € E(R). Let b = v(z), ¢ € R.
Then

ab vie)v(z) = v(ex) = v(ze) (by (2))
= v(x)v(e)=ba.

Therefore, idempotents from ¢ are central, so (Q,-) is a semilattice of

groups. O
COROLLARY 1. Let R be a ring. Then (R,-) is a completely regular

semigroup (union of groups) if and only if (R,-) is a semilattice of groups.
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. Now we will consider a special case of Everett’s sums in which @ is a zero
homomorphism.

DEFINITION 2. An Everett’s sum E(A, B;6;[,];(,)) of rings A and B
is a strong Everett’s sum of rings A and B if 6 is a zero homomorphism of
B into Q(A), i.e. if :

8% = To

for all @ € B. In this case, we denote it by E(A, B;[,];(,)), and this repre-
sentation we call a strong Everett’s representation.

A ring R is a strong eztension of a ring A by a ring B if there exists
some strong Everett’s representation E(A, B;[,];(,)) of a ring R.

If R = E(A, B;[,];(,)) is a strong Everett’s sum of rings A and B, then
we have that:
(SE1) T(a,b] = 705
(SE2) m(apy = mo;
(SE3) (ab,c) = (a,bc);
(SE4) [0,0] = 0;
(SES) [a,b] = [b,a];
(SES) [a,b] + [a + b,c] = [a,b + c] + [b,¢];
(SET) (a + b,c) = [ac,be] + (a,c) + (b, ¢);
(SE8) (a,b + c) = [ab,ac] + (a,d) + (a,c),
for all a,b,¢c € B, and the multiplication on R is given by:
(SElO) (ava) ) (ﬂvb) = (aﬂ + (avb)vab) :

Moreover, it is easy to verify that
(SE10°) T (era) = (ITq o+ (TThy @iy TTmig ), TIy @) for all
(ei,8)€ER,i=1,2,...,n;n €Z*,1 <k <n-—1(by (SE2) and (SE3)).

THEOREM 1. The following conditions on a ring R are equivalent:

(i) (R,-) is a nil-extension of a union of groups ;

(ii) (R,-) is a nil-eztension of a semilattice of groups ;

(i) (R,-) is a retractive nil-extension of a semilattice of groups ;

(iv) R is a strong eztension of a nil-ring by a ring whose multiplicative
semigroup is a semilattice of groups.

Proof. (i) == (iv). Let (R,-) be a nil-extension of a union of groups
T. Then it is clear that (R,-) is a semilattice of completely archimedean
semigroups, so by Proposition 1, it follows that R is an extension of a
nil ring N by a ring @ whose multiplicative semigroup is a semilattice of
groups. By Everett’s theorem it follows that R is isomorphic to Everett’s
sum E(A,B;8;[,];(,)) of some rings A and B, where A is isomorphic to N,
B is isomorphic to @ and the triplet (8;[,];(,)) is determined by (1)-(3).
Let a € B. By the proof of Proposition 1 it follows that we can choose the
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representation a’ of the coset a such that @’ € T. Let us denote by Sy the
archimedean component of a semigroup (R,-) containing the zero 0. Since
(S0 NT,-)is a completely simple semigroup with zero, then it is clear that
SoNT = {0}. Moreover, it is clear that So = N. Consider an arbitrary

element a € N. Then we have '

a-a,d - a€eSnT,

ie.,

a-a'=d -a=0,
so by (1) we obtain that # is a zero homomorphism. Therefore, R is a strong
extension of a ring N by a ring Q. \‘

(iv) = (ii). Let R = E(A,B;[,];{,)) be a strong Everett’s sum of
rings A and B, where A is a nil ring and B is a ring whose multiplicative
semigroup is a semilattice of groups. Consider an arbitrary element z =
(a,a) € R. Then there exists n € Z%, e € E(B) and b € B such that
o" =0, a=ea=ae and ab = ba = e. Then

" = (a" + (a,a"'l),an) = ((a,a""l),an) ,
50

o ((evehye) = ((@,a™1),a")- (e e)ye)
= ({a"e),a") = ((a,a"e),a")

= z*  (by(SE3)).

n n

Hence, z™-((e,€),e) = z". In a similar way we prove that ({e,e),e).z" = z".

Moreover,
2 (0,6") = ((a,a),a")-(0,")
= ((a"57),a"b") = ((ea”, b%),¢)
= ((e,a""),¢) = ({ese)re).

Hence, z™ - (0,b™) = ({e,€),e). In a similar way we prove that (0,b")-z™ =
({e,€),¢€). Since ({e,e),e)? = ({e,€),e), then we obtain that 2" € Gr(R), so
(R,-) is a completely r-regular semigroup.

Let (a,a) € Gr(R). Then there exists (3,b) € R such that

(a7a) '(:B7b) '(07‘1) = (a7a) and (a7a) '(:B7b) /= (:B7b) '(a’a)7

(aBa 4+ (ab,a),aba) = (a,a) and (af + {a,b),ab) = (Ba + (b,a),ba).
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Therefore, afa+ (ab,a) = a, aba = a, ¢+ (a,b) = fa + (b,a) and ab = ba,
s0

afa = af(afa + (ab,a) = (af)’e,
whence we obtain that

afa = (af)fa =0, (forall k€ Z1)

since (afB)F = 0 for some k € Z*. Hence a = (ab,a) = (e,a), where a lies in
a maximal subgroup of B with the identity e. Therefore,

Gr(R) = {({e,a),a)la € B, e€ E(B) suchthat a€G.}.
Also, it is clear that
E(R) = {((ee),)le € E(B)}.
Let ({e,a),a) € Gr(R) and (B3,b) € R. Then
({e,a),a) - (8,b) = ({a,b),abd).
Assume that b € G for some f € E(B). Then ab € Gy, so
(a,b) = (ea,b) = (e,ab) = (e,efab) = (eef,ab) = (ef,ab),

(by (SE3)). Therefore,
Gr(R)-RC Gr(R).

In a similar way we prove that
R-Gr(R)C Gr(R),

so (Gr(R),-) is an ideal of the semigroup (R, ).
Let ({e,e),e) € E(R) and let ({f,b),b) € Gr(R) (f € E(B), b € Gy).
Since idempotents from B are central, then we obtain that

(e,b) = (ee,b) = (e, eb) = (e,be) = (eb,e) = (be,e) = (b,ee) = (b,e),

({ese),€) - ((f,0),b) = ({e,b),eb) = ({b,€),be) = ((/,0),8) - ({e,€),€).

Therefore, idempotents from Gr(R) are central, so (Gr(R),-) is a semilattice
of groups, i.e., (R,-) is a nil-extension of a semilattice of groups.

(ii) == (i). This follows immediately.

(ii) <= (iii). This follows by Theorem 2.3 [5]. O
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COROLLARY 2. Let R be a ring. Then (R,-) is an n-inflation of
a union of groups if and only if R is a strong ezxtension of an (n + 1)-
nilpotent ring by a ring whose multiplicative semigroup is a semilattice of
groups.

DEFINITION 3. Let A be a subring of a ring R. A homomorphism
¢ : R — A is a retraction of a ring R onto a ring A if ¢(a) = a for all
a € A. A subring A of a ring R is a retract of R if there exists a retraction
of R onto A. If A is a retract and an ideal of R, then we say that A is a
retractive ideal of R and R is a rectract (or rectractive) eztension of the ring
A.

PROPOSITION 2. A ring R is a retract extension of a ring A if and only
if A is a direct summand of R.

Proof. Let R be a retract extension of a ring A with the retraction ¢.
Let B = R/A and let v be a natural homomorphism of R onto B. Let
R’ = A® B. Define a mapping ¥ : R — R’ by:

P(a) = (¢(a), v(a—p(a)), a€R.
Let a,b € R. Then
Wa+b) = (pla+b), vlatb—p(a+h)
(¢(a) + @(b), v(a+b~p(a) - @(b)))
= (pla) + 9(b), v(a— (@) +v(b - @(8)))

(¢(a), v(a = ¢(a))) + (p(b), v(b— #(b)))
P(a) + 9(b).

Since

ab — ap(b) — p(a)b + p(a)p(b)
= ab - ¢(a)p(b) — p(a)p(b) + ¢(a)p(b)
ab — p(a)p(b) = ab - (ad),

(a— p(a))(b - ¢(b))

then we obtain that

¥(ab) (¢(ab), v(ab— ¢(abd)))

(p(a)p(b), v((a— ¢(a)(b - ¢(b)))
(p(a)p(b), v((a— @(a)r(b— ¢(b)))
(p(a), v((a— ¢(a))-(p(b), v(b— ©(b)))

P(a) - p(b).
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Therefore, ¥ is a homomorphism.
Let ¢(a) = ¢¥(b), a,b€ R. Then v(a - ¢(a)) = v(b— ¢(b)) and ¢(a) =

¢(b), so (a — ¢(a)) = (b— ¢(b)) (mod A),ie., (a—¢(a))— (b~ ¢(b)) € A.
Therefore,

(a—¢(a)) = (b - ¢(b))

e((a - p(a)) — (b~ (b))
¢(a) — p(a) — ¢(b) + ¢(b) = 0.

Since ¢(a) = ¢(b), then we have
0=a—-¢(a)—b+yp(b)=a-b,

so a = b. Therefore, 1 is one-to—one.

Let (z,y) € R. Then y € B, so there exists b € R such that y = v(b).
Since (b — ¢(b)) = b(modA), then v(b— ¢(b)) = y. Let a = z + (b — (b)).
Then ¢(a) = ¢(z + b~ ¢(b)) = ¢(z) + ¢(b) — ¢(b) = ¢(z) = z, since z € A.
Moreover,

a—p(a)=z+b-p(b)—z=>b-¢b),

v(a - g(a)) = v(b- (b)) =y.

Therefore, (z,y) = (¢(a), v(a — ¢(a))) = ¢¥(a), so ¢ is onto. Hence, 9 is
an isomorphism of R onto R' = A® B, so A is a direct summand of R.

Conversely, let R = A@ B. Then A can be identified to the ideal
{(a,0) | @ € A} of a ring R, so R is an extension of A. If we defire the
mapping ¢ : R — A by

¢((a,a)) = (,0), (a,a) € R,

then it is easy to see that ¢ is a retraction of R onto A. a

THEOREM 2. The following conditions on a ring R are equivalent:

(i) (R,-) is a nil-eztension of a band;

(ii) (R,-) is a nil-eztension of a semilattice;

(iti) (R,-) is a retractive nil-extension of a semilattice;

(iv) R is a strong eztension of a nil-ring by a Boolean ring;

(v) R is a direct sum of a nil-ring and a Boolean ring.

Proof . (i) <= (ii) <= (iii). This follows by Theorem 1.

(ii) = (iv). Let (R, -) be a nil- extension of a semilattice £. By Theorem
1, it follows that R is a strong extension of a nil-ring A by a ring B such
that (B,-) is a semilattice of groups, where A is isomorphic to the ring N
of all nilpotents of R. Since Reg(R) = E = E(R), then by Proposition 1
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(2), we obtain that every (= (modN))-class contains an idempotent, so we
obtain that every (= (modX ))-class is an idempotent in R/N. Therefore,
B is a Boolean ring.

(iv) => (v). Let R be a strong extension of a nil-tring A by a Boolean
ring B. Since B is a Boolean ring, then 2z = 0 for all z € B. By the proof
of Theorem 1 we have

Reg(R) = E(R)= {({e,e),e)le € B}.
Let e, f € B. By (SE7) we obtain
0.=(0,f) =(ete f)=lefiefl+(e,f) + (e, f).
Also, by (SE6) we have

le+ef,ef + fl+eef] = [eef +ef + fl+[ef,ef + f]
e, 1+ [ef,ef + f]

i

and

lefiefl+ef +ef, f]
lef,ef] +10,f] = [ef,ef].

lef,ef + f1+[ef, f]

Moreover

(fre) = (ffee)
= (efe, f)
ie., (e, f) = (f,e) = (ef,ef).
Now by this and by (SE7)
(e+ fret fy=lle+ Nle,(e+ N)f] +{e+ fe) +(e+ [, f)
le + fe,ef + f]+ e, fe] + {e,e) + (f,€) + [ef, f]+ (e, f} + (f, )
le. f1+ [ef,ef + fl+ [ef, fl+ (e, f) + e, /) + (e, e} + ([, f)
le, 1+ [ef,ef] + (e, ) + (e f) + (e, €} + ([, f)
(e, f1+(e.e) + (£, /).

Therefore,

(f: feee) = (f,eef) = (fe,ef) = (ef,ef)
(ef, ) = (e, ff) = (e, [},

((e,e),e) - ({f, £ f) = ({e, ), ef) = ({ef,ef), ef)
and

(e,e} + (f, f) +[e; fl.e + f)
((e+ fiet+ e+ f),

({e;e)e)+ ({f, f) )
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so the mapping ¢ : R — E(R) defined by
o((a,e)) = ((e’e)’e)’ (a,e) € R,

is a retraction of R onto E(R). Hence, by Proposition 1 we have that E(R)
is a direct summand of R, and it is clear that E(R) is a Boolean ring. So,
R is a direct sum of a nil-ring and a Boolean ring.

(v) = (i). This follows immediately. a

Theorem 2 implies the following question:

PROBLEM. Is every strong extension of a ring A by a ring B equzvalent
to their direct sum A @ B?

We have not the general solution for this problem, but we have solutions
for some special cases, as in Theorem 2 and as in following lemma.

LEMMA 1. FEvery strong eztension of a ring A by a ring B with identity
is equivalent to their direct sum A @ B.

Proof. Let R = E(A,B;[,];(,)) be a strong Everett’s sum of rings A
and B, and let 1 be the identity of the ring B. Then by (SE3) and (SE7) (if

we put ¢ = 1) we obtain
(ad,1) = (a,b),

and

(a +b,1) = [a,b] + (a,1) +(b,1),
whence it follows that the mapping ¢ defined by
¢:(a,a) — (a+ (a,1),a)

is an isomorphism of A @ B onto R. v ' a

Ezample 1. Let n € Z*. Then the ring R of all n X n upper triangu-
lar matrices over a field F is a semilattice of archimedean semigroups (see
Example 9 [16]). Nilpotents from R are matrices of the form

0 a2 a3 ... Qin
0 0 a3 ... Qa2
0 0 0 ... asp
0 0 o ... 0

and the set N of all nilpotents from R is an ideal of R and it is an n—nilpotent
ring. The ring R/N is isomorphic to F™. By Lemnma 1 it follows that R is
not a strong extension of a ring N by a ring F™.

THEOREM 3. Letn € Z*, n > 2. Then R is an (n + 1)~ nilpotent ring
if and only if R is a strong extension of a nil-ring by an n-nilpotent ring.
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Proof. Let R be an (n+ 1)-nilpotent ring, i.e., R**! = 0. Let A = U(R)
be an annihilator of a ring R. Then it is easy to verify that A is an ideal
of R. Therefore R is isomorphic to some Everett’s sum E(A, B;[,];(,)) of
aring A and aring B = R/A. Since A is an annihilator of R, then by (i)
we obtain that this sum must be chosen to be strong. So, R is a strong
extension of a nil-ring A by a ring B. Finally, let us prove that B is an
n—nilpotent ring. Indeed, for all x4, z9,...,2, € R we have

z129...2,RCR"*' =0 and Rzyz2...2, CR"1 =0,
S0
$1$2...$n€A,

thus B is n—nilpotent.

Conversely, let R = E(A, B;[,];(,)) be a strong Everett’s sum of a nil-
ring A and an n-nilpotent ring B. Let (a,,a,)‘ €ER,i=1,2...,n+1.
Then

n+1 n+1 n+1
H (a,,a,) = (H a; + (H aiyGn41), H a,)

= (0+(0,an+1 ,0)
= (0,0).

Therefore, R is an (n + 1)-nilpotent ring. m

3. Generalized distributivity in semigroups and rings

In this section we generalize Petrich’s results, [13].

DEFINITION 4. Let n € Z*, n > 2. A semigroup § is n—distributive if
n n n n
a- (H xi) = H(am,-) and (H :c,-) ‘a = H(:v,-a)
i=1 i=1 i=1 =1
for all a,z1,27,...,2, € 5. A ring R is n—distributive if its multiplicative
semigroup is n—distributive.

LEmMMmaA 2. Let S be an n-distributive semigroup. Then S is
(n + k(n — 1))-distributive for all k € Z%.

LEMMA 3. A group G is n—distributive if and only if G is commutative
and a™ = a for alla € G.
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Proof. Let G be an n—distributive group with the identity element e.
Then for all a € G we have

a =ae=ae" = (ae)" =a".

Let a,b € G. By Lemma 2 we can assume that n > 3. Then (ba)" = ba, so
(ba)™"! = e. Therefore ‘

ab = (ba)""labe = (ba)"~%(ba?)(be) = b(a""%a’e) = ba" = ba,

so G is commutative.
Conversely, let G be a commutative group and let a™ = a for all @ € G.
Let a,zy,22,...,2n41 € G. Then

n n n n

fI(z;a) = H(az,-) =a" (Hz;) =a- (Hx,-) = (H:v,-) -a,
=1 =1 =1 =1 i=1

so GG is n—distributive. : O

THEOREM 4. Let n € Z*, n > 2. Then the following conditions on a
semigroup S are equivalent:

(i) S is regular and n-distributive;

(ii) S is medial and a"™ = a for alla € §;

(iii) S is orthodoz and a normal band of n— distributive groups.

Proof. (i) = (ii). Let S be n- distributive regular semigroup. Let
a € S. Then a = aza for some z € §, so

a =aza =a(za)" = (aza)" =a".

Therefore, S is completely regular, i.e., S is a union of n—distributive groups.
Let a,b,c,d € S. Then a € G, for some e € E(S), so

abed = (de"—zb) cd = ac(ec)" %bed = a(ce)""?(cb)(cd)

= ace" 2bd = a(ee)""?(ec)(ebd) = ae(e™ % cbd)
= acbd.

Therefore, S is medial.

(ii) <= (iii). This follows by Exercise IV 3.10 {15}, Theorem IV 2.6 [15]
and by Lemma 3.

(ii) = (i). Let S be a medial semigroup and let o™ = @ for all @ € S.
Then it is not hard to see that

ar123...Tkb = az,(1)To(2) - - - To (k)0
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for every k € Z*, k > 2, a,b,71,29,...,2; € S and for every permutation o
of a set {1,2,...,k}. Therefore,

[Taz1) = a”- (H z,.) . (Hw)

=1 1=1 =1
and
n n n
H(:c,-a) = (H z;) ca” = (H :c;) -a,
=1 i=1 i=1
so S is n—distributive. . 0

THEOREM 5. Let n € Zt, n > 2. Then the following conditions on a
semigroup S are equivalent:

(i) S is an n—distributive semigroup;

(i) S is an n—inflation of a reqular n—distributive semigroup;

(iii) for all a,zq,23,...,20-1, b € S and for every permutation o of the
set {1,2,...,n — 1} we have

ar1T2...Tab = (az122...7,10)" =

i

aa:a(l)z,(g) cee :tt,(n_l)b .

Proof. (i) = (ii). Let S be an n-distributive semigroup and let
@,21,%2y...,Zn-1, b € S. Then

a- (nl:I 9:,-) b = (’i_:‘[(aa:;)) ab = az,y (nl:I(a:c,')) ab

=2
= a’zya (ﬁ(az;a)) b= a*bxqab (ﬁ(az;ab))
=2 1=2

n—2
= a’b(z,ab) (H(am;ab)) (azpn—1a)b

1=2
= a?(bz,ab) (Tf(baa:;ab)) (baz,_1a)b?.

1=2

Therefore,

aS™ b = a®5mb?,

so by Bogdanovié-Milié’s theorem we have that S is an n-inflation of a union
of groups T. It is clear that T is a regular n—distributive semigroup.
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(ii) = (i). Let S be an n-inflation of a regular n—distributive semigroup
T. Let ¢ be a retraction of § onto T" and let a,z1,22,...,2, € S. Then

Sn1 C T, so
a (1_1 ) 0 ( (1‘[ )) - (@) (1‘[ <P($i> - iﬁl(w(a)w(ﬂii))
¢ (ﬁ(az,)) = f[l(azf),
and similarly, ) _‘—

(]i[x,') -a = l:[(z,-a).

Therefore S is n—distributive.

(i) = (iii). Let S be an n-inflation of a regular n—distributive semi-
group T and let ¢ be a retraction of S onto T'. Let a,zy,27,...,27,-1, bE S.
Then $™*! = T, so by Theorem 4 we obtain that

azr122...Zn1b = (az123...2p1b)
and
az1zy...¢p1b = ¢(az122...2,1b)
= P(@p(@)e(z2) - p(2n1)p(b)
= p(a)p (%(1)) @ (%(2)) e (%(n-l)) ©(b)
= ¢ (aza(l)za(z) - za(n_l)b)
= GT,(1)%0(2) - - - To(n-1)]-
(iii) => (ii). Suppese that (iii) holds. Then it is clear that
az12z...Tn-1b = (az122 ... 2n1b)" = a"25()25(3) . - - T (n_1)b"
for all a,21,25,...,2,_1, b € §. Therefore,
aS™" b = a®S5™b?,

so by Bogdanovié-Milié’s theorem we have that S is an n-inflation of a union
of groups T. It is clear that a™ = a for every a € T. Moreover, it is not
hard to verify that T is medial. Therefore, by Theorem 4 we have that T is
a regular n-distributive semigroup. a

THEOREM 6. Let n € Z%¥, n > 2. Then a ring R is regular and
n—distributive if and only if a™ = a for every a € R.
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Proof. Let a™ = a for every a € R. Then it is clear that R is a regular
ring. Moreover, by Jacobson’s theorem we obtain that R is commutative, so
R is medial. Therefore, by Theorem 4 we have that R is n—distributive.

The converse follows by Theorem 4. ]

THEOREM 7. Letn € Zt, n > 2. Then R is an n— distributive ring if
and only if R is a strong eztension of an (n+ 1)- nilpotent ring by a regular
n—-distributive ring. A

Proof. Let R = E(A, B;[,];(,)) be a strong Everett’s sum of an (n+ 1)—
nilpotent ring A by a regular n—distributive ring B. Let (a,a),(;,a;) € R,
i=1,2,...,n. Since A C A"+l = 0, then by (SE10’) and by the commu-
tativity in B we have

(aa; + {(a,a;),aa;)

i
.::

l:I ((e,a)(ei, a:))

=1
n n—1 n
= Haa, + <H aai,aan> ,Haaz)
=1 =1 =1

i
~~
R

1>
~—

.
—®
~~

R
2
~—

SN——

Therefore, R is n—distributive.
The converse follows by Theorem 5, Theorem 4 and by Corollary 1. O
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