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Abstract. The authors in [6] established a bijective and isotone correspondence
between positive quasi-orders on a semigroup S and complete 1-sublattices of
the lattice of ideals of S. Here we use this correspondence to characterize cer-
tain kinds of semigroups through the properties of their ideals. We introduce
and study Γπ-semigroups, where π is a positive quasi-order, whose special cases
include Γ -semigroups, introduced by M. S. Putcha in [9], semigroups decom-
posable into a chain of semilattice indecomposable semigroups, π-archimedean
semigroups, introduced by M. S. Putcha in [7] and T. Tamura in [13], semilattice
indecomposable semigroups, archimedean semigroups and many other important
kinds of semigroups.
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M. S. Putcha in [9] defined and studied Γ -semigroups. Special cases of them
include archimedean semigroups, full transformation semigroups and others. One
of the purposes of this paper is to give an interesting characterization of Γ -
semigroups by means of their ideals, as well as a similar characterization by
means of their completely semiprime ideals of semigroups decomposable into a
chain of semilattice indecomposable semigroups. But we also consider some gen-
eralizations of these semigroups. They are defined using the concept of a positive
quasi-order that was shown oneself to be very useful in many investigations car-
ried out by T. Tamura, M. S. Putcha and the authors in the papers quoted
in the list of references, especially in studying of semilattice decompositions of
semigroups.

Starting from a positive quasi-order π on a semigroup, we introduce the no-
tion of a Γπ-semigroup as a common generalization of Γ -semigroups and of semi-
groups decomposable into a chain of semilattice indecomposable semigroups. By
Theorem 1 we give a characterization of Γπ-semigroups through the properties of
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pairs of π-closed ideals. As immediate consequences we obtain the corresponding
characterizations of Γ -semigroups and of chains of semilattice indecomposable
semigroups.

Another interesting type of semigroups that we investigate here are π-archimedean
semigroups which are also defined by means of a positive quasi-order π. These
semigroups were first defined and studied by M. S. Putcha in [7] and T. Tamura
in [13]. We characterize them by Theorem 2, using a similar methodology. As
consequences we obtain characterizations of ordinary archimedean semigroups
and of semilattice indecomposable semigroups.

Throughout the paper, N will denote the set of all nonzero natural numbers.
For a semigroup S, S1 denotes the semigroup obtained from S by adjoining the
unity.

If ξ is a binary relation on a set A, then for any a ∈ A we set

aξ = {x ∈ A | a ξ x} and ξa = {x ∈ A |x ξ a},

and for any X ⊆ A we set

Xξ =
⋃

x∈X

xξ and ξX =
⋃

x∈X

ξx.

Let ξ be a binary relation on a semigroup S. We say that ξ is positive if a ξ ab
and b ξ ab, for all a, b ∈ S. If for any a ∈ S and any n ∈ N we have that an ξ a,
then it is called lower-potent . A relation ξ is called linear if for any a, b ∈ S
either a ξ b or b ξ a. By a quasi-order we mean a reflexive and transitive binary
relation. The partially ordered set of all quasi-orders on a set A is a complete
lattice and it is denoted by Q(A).

For a quasi-order π on a semigroup S, the relation π̂ on S defined by

a π̂ b ⇔ (∃n ∈ N) a π bn

is the smallest lower-potent relation on S containing π, and it is called the lower-
potent closure of π. The lower-potent closure of a quasi-order is not necessary a
quasi-order.

The division relation | on a semigroup S is defined by

a | b ⇔ (∃x, y ∈ S1) b = xay.

It is the smallest positive quasi-order on S, and moreover, the set of all positive
quasi-orders on S is the principal dual ideal of the lattice Q(S) generated by
the division relation on S (see [6] and [7]). In the general case, the division
relation is not lower-potent and its lower-potent closure is denoted by−→ (see [11]
and [9]). On the other hand, −→ is not necessary transitive and its transitive
closure is the smallest positive lower-potent quasi-order on S and its natural
equivalence is the smallest semilattice congruence on S (see [12]). As in the
case of positive quasi-orders, the set of all positive lower-potent quasi-orders on
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S is the principal dual ideal of Q(S) generated by the transitive closure of −→
(see [6]).

Let S be a semigroup. An ideal I of S is called completely semiprime if for
any a ∈ S by a2 ∈ I it follows a ∈ I. The complete lattice of all ideals of S
is denoted by Id(S), and the set of all completely semiprime ideals of S, which
is a complete 1-sublattice of Id(S), is denoted by Idcs(S). Recall that by a
complete 1-sublattice of a complete lattice L we mean any complete sublattice of
L containing its unity. If S has the zero 0 and if for any a ∈ S there exists n ∈ N
such that an = 0, then S is called a nil-semigroup.

Let π be a positive quasi-order on a semigroup S. An ideal I of S is called
π-closed if Iπ = I, i.e. if a ∈ I implies aπ ⊆ I, for any a ∈ S. In other words, I
is a π-closed ideal of S if and only if it is an ideal of S and a dual ideal (filter)
of the quasi-ordered set (S, π). The set of all π-closed ideals of S is denoted by
Idπ(S). As was proved in [6], Idπ(S) is a complete 1-sublattice of Id(S) and
the mapping defined by the rule π 7→ Idπ(S) is a dual isomorphism of the lattice
of all positive quasi-orders on S onto the lattice of all complete 1-sublattices of
Id(S). It was also proved in [6] that the rule π 7→ Idπ(S) determines also a dual
isomorphism of the lattice of positive lower-potent quasi-orders on S onto the
lattice of all complete 1-sublattices of Idcs(S). Hence, if π is the division relation
on S, then Idπ(S) = Id(S), and if π is the transitive closure of −→, i.e. the
smallest positive lower-potent quasi-order on S, then Idπ(S) = Idcs(S).

M. S. Pucha defined in [9] a semigroup S to be a Γ -semigroup if the relation
−→ is linear, i.e. if for any a, b ∈ S either a | bn for some n ∈ N, or b | am for
some m ∈ N. Here we generalize this notion replacing the division relation in the
Putcha’s definition by an arbitrary positive quasi-order. Namely, if π is a positive
quasi-order on a semigroup S, then we call S a Γπ-semigroup if the lower-potent
closure π̂ of π is linear, that is if for any a, b ∈ S either a π bn, for some n ∈ N,
or b π am, for some m ∈ N.

The following theorem gives a characterization of Γπ-semigroups.

Theorem 1. Let π be a positive quasi-order on a semigroup S. Then S is a
Γπ-semigroup if and only if for any I, J ∈ Idπ(S) at least one of semigroups
I/(I ∩ J) and J/(I ∩ J) is a nil-semigroup.

Proof. Let S be a Γπ-semigroup and let I, J ∈ Idπ(S). Suppose that neither
I/(I ∩J) nor J/(I ∩J) is a nil-semigroup. This means that there exists a ∈ I \J
and b ∈ J \ I such that am /∈ J and bn /∈ I, for all m,n ∈ N. By the hypothesis
we have that a π̂ b or b π̂ a in S, that is a π bn, for some n ∈ N, or b π am, for some
m ∈ N. This means that

bn ∈ aπ ⊆ I or am ∈ bπ ⊆ J,

so we get a contradiction. Thus, we conclude that at least one of I/(I ∩ J) and
J/(I ∩ J) must be a nil-semigroup.

Conversely, suppose that for any I, J ∈ Idπ(S) at least one of semigroups
I/(I ∩ J) and J/(I ∩ J) is a nil-semigroup. Assume arbitrary a, b ∈ S and set
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I = aπ and J = bπ. Then I, J ∈ Idπ(S) and at least one of semigroups I/(I ∩J)
and J/(I ∩ J) is a nil-semigroup. If J/(I ∩ J) is a nil-semigroup then we have
that

bn ∈ I ∩ J ⊆ I = aπ i.e. a π bn

for some n ∈ N, so a π̂ b. Similarly, if I/(I ∩ J) is a nil-semigroup, then b π̂ a.
Therefore, we have proved that S is a Γπ-semigroup.

The next two corollaries concern two particular cases of Γπ-semigroups.

Corollary 2. A semigroup S is a Γ -semigroup if and only if for any I, J ∈
Id(S) at least one of semigroups I/(I ∩ J) and J/(I ∩ J) is a nil-semigroup.

Proof. If we assume π to be the division relation on S, that is the smallest positive
quasi-order on S, then Idπ(S) = Id(S), by Theorem 1 of [6], and π̂ equals the
relation −→, so Γπ-semigroups are exactly Γ-semigroups. The rest of the proof
is an immediate consequence of Theorem 1.

Corollary 3. A semigroup S is a chain of semilattice indecomposable semi-
groups if and only if for any I, J ∈ Idcs(S) at least one of semigroups I/(I ∩ J)
and J/(I ∩ J) is a nil-semigroup.

Proof. Let π denote the transitive closure of the relation −→. Then π is the
smallest positive lower-potent quasi-order on S so π̂ = π and Idπ(S) = Idcs(S),
by Theorem 2 of [6]. Now, by Theorem 7 of [5] we have that S is a Γπ-semigroup,
i.e. π is linear, if and only if S is a chain of semilattice indecomposable semi-
groups. On the other hand, by Theorem 1 it follows that S is a Γπ-semigroup
if and only if for any I, J ∈ Idcs(S) at least one of semigroups I/(I ∩ J) and
J/(I ∩ J) is a nil-semigroup. This completes the proof of the corollary.

In the second part of the paper we consider the case in which for I, J ∈ Idπ(S),
both of the semigroups I/(I ∩J) and J/(I ∩J) are nil-semigroups, and we prove
that semigroups having this property are exactly π-archimedean semigroups.

For a positive quasi-order π on a semigroup S, M. S. Putcha in [7] and T.
Tamura in [13] defiined S to be a π-archimedean semigroup if for any a, b ∈ S
there exists n ∈ N such that a π bn, i.e. if the lower-potent closure π̂ of π is the
universal relation on S. In the case when π is the division relation on S, then
S is an archimedean semigroup, i.e. a semigroup in which for any two elements
a and b there exists n ∈ N such that a | bn, i.e. −→ is the universal relation on
S. If π is the smallest positive lower-potent quasi-order on S, i.e. the transitive
closure of −→, then we obtain a semilattice indecomposable semigroup.

The following theorem characterizes π-archimedean semigroups.

Theorem 4. Let π be a positive quasi-order on a semigroup S. Then S is a
π-archimedean semigroup if and only if I/(I ∩ J) is a nil-semigroup for any
I, J ∈ Idπ(S).
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Proof. Let I/(I ∩J) be a nil-semigroup for any I, J ∈ Idπ(S). Assume arbitrary
a, b ∈ S and set I = bπ and J = aπ. Then I, J ∈ Idπ(S) so I/(I ∩ J) is a
nil-semigroup, whence we have that there exists n ∈ N such that

bn ∈ I ∩ J ⊆ J = aπ i.e. a π bn.

Therefore, a π̂ b, so we have proved that S is a π-archimedean semigroup.
Conversely, let S be a π-archimedean semigroup. Also, let I, J ∈ Idπ(S)

and fix a ∈ I ∩ J . Then for any b ∈ I we have that a π̂ b, i.e. a π bn, for some
n ∈ N. Thus

bn ∈ aπ ⊆ I ∩ J,

since I ∩ J ∈ Idπ(S) and a ∈ I ∩ J . Hence, we have proved that I/(I ∩ J) is a
nil-semigroup.

Two particular cases of π-archimedean semigroups are considered in the next
two corollaries.

Corollary 5. A semigroup S is archimedean if and only if I/(I ∩ J) is a nil-
semigroup for any I, J ∈ Id(S).

Proof. As in the proof of Corollary 1, if we assume π to be the division rela-
tion on S, then Idπ(S) = Id(S) and π-archimedean semigroups are exactly
archimedean semigroups.

Corollary 7. A semigroup S is semilattice indecomposable if and only if
I/(I ∩ J) is a nil-semigroup for any I, J ∈ Idcs(S).

Proof. As in the proof of Corollary 4, if π is the transitive closure of the re-
lation −→, then Idπ(S) = Idcs(S) and π-archimedean semigroups are in fact
semilattice indecomposable semigroups.
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