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A note on π-regular rings*
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Abstract. In this paper the following result is obtained: If R is a π-regular
ring, then (R, ·) is a semilattice of Archimedean semigroups if and only if the nilpo-
tents of R form an ideal of R.

Mathematics Subject Cladssification: 16A30.

Throughout this paper, Z+ will denote the set of all positive integers. A
semigroup (ring) S is π-regular if for every a ∈ S there exists n ∈ Z+ such
that an ∈ anSan. A semigroup S is Archimedean if for all a, b ∈ S there
exists n ∈ Z+ such that an ∈ SbS. A semigroup S is completely Archimedean
if S is Archimedean and has a primitive idempotent.

Let a and b be arbitrary elements of a semigroup S. Then a −→ b ⇐⇒
(∃i ∈ Z+) bi ∈ SaS, a −→n+1 b ⇐⇒ (∃x ∈ S) a −→n x −→ b, [7].
Let Σn(a) = {x ∈ S | a −→n x}, n ∈ Z+. On S we define σn by
a σn b ⇐⇒ Σn(a) = Σn(b), [7]. We call a semigroup S σn-simple if and
only if σn = S × S. It is clear that S is a σ1-simple semigroup if and only if
it is Archimedean.

An element a of a semigroup (ring) S with zero 0 is called nilpotent
if there exists n ∈ Z+ such that an = 0. A semigroup (ring) S is a nil-
semigroup (nil-ring) if all of its elements are nilpotents. By E(S) (Reg(R),
Nil(R)) we denote the set of all idempotent (regular, nilpotent) elements of
a semigroup (ring) S.
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If R is a ring, MR will denote the multiplicative semigroup of R. A
semigroup S is called Clifford’s semigroup if it is regular and idempotents
of S are central (or, equivalently, if S is a semilattice of groups). A ring
R is said to be a Clifford’s ring if MR is a Clifford’s semigroup. For some
characterizations of these rings see S. Lajos [8]. An element a of a ring R is
r.q.r. (right quasi regular) if there exists b ∈ R such that a + b− ab = 0. A
right ideal I of a ring R is r.q.r. if all of its elements are r.q.r.

For undefined notions and notations we refer to [1] and [9].
M.S. Putcha [10] considered rings R whose power of each element of R

lies in a subgroup of R (strongly π-regular rings) and showed that in such
a ring (R, ·) is a semilattice of Archimedean semigroups if and only if the
nilpotents of R form an ideal of R. It can be posed the following more
extensive problem.

Problem. Let R be a ring such that (R, ·) is a semilattice of σn-simple
semigroups. Do Σn(0) necessarily form a (ring) ideal of R? In the case
that Σn(0) is a ring ideal of R, is then (R, ·) a semilattice of σn-simple
semigroups?

A partial answer is given by the theorem below. In fact, the purpose of
the present note is to extend the result of M.S. Putcha, [10], to π-regular
rings.

For some related results we refer to [3], [5] and [6].

Theorem 1. The following conditions on a ring R are equivalent:
(i) R is π-regular and Nil(R) is an ideal of MR;
(ii) R is π-regular and Nil(R) is an ideal of R;
(iii) R is π-regular and an ideal extension of a nil-ring by a Clifford’s

ring;
(iv) MR is a semilattice of completely Archimedean semigroups;
(v) R is π-regular and MR is a semilattice of Archimedean semigroups.

Proof. (i)=⇒(ii). Let J be the Jacobson’s radical of R, let a ∈ Nil(R)
and let x ∈ R. Then ax ∈ Nil(R), so ax is r.q.r. Thus, aR is r.q.r. so a ∈ J .
Hence, Nil(R) ⊆ J .

Conversely, let a ∈ J . Then there exists n ∈ Z+ and x ∈ S such that
an = anxan, whence anxR ⊆ aR. Since aR is r.q.r., then anxR is r.q.r., so
anx ∈ J , i.e. anx ∈ J ∩ E(R) = {0}. Therefore, an = 0 so a ∈ Nil(R).

Hence, J = Nil(R), whence Nil(R) is a ring ideal of R.
(ii)=⇒(iii). Let N = Nil(R) and let ϕ : R → R/N be the natural

homomorphism. Assume u ∈ R/N . Then there exists a ∈ R such that
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u = ϕ(a) and there exists n ∈ Z+ and x ∈ R such that an = anxan, whence

(a− axan)n = an − anxan = 0,

Thus a ≡ axan(modN). Since axan = (axan)(xan−1)(axan), we then have
that axan ∈ Reg(S), whence u = ϕ(a) = ϕ(axan) ∈ Reg(R/N). Therefore,
R/N is a regular ring.

Assume a ∈ E(R/N), b ∈ R/N . Then by Corollary 2. [2] it follows that
a = ϕ(e) and b = ϕ(x) for some e ∈ E(R) and x ∈ R. Since

(ex− exe)2 = (xe− exe)2 = 0,

then ex ≡ exe(modN) ≡ xe(modN), whence

ab = ϕ(ex) = ϕ(xe) = ba.

Thus, idempotents of R/N are central, so R/N is a Clifford’s ring.
(iii)=⇒(iv). Let R be π-regular and let R be an ideal extension of a

nil-ring N by a Clifford’s ring Q. Let ϕ : R → Q be the natural homomor-
phism. Since MQ is a Clifford’s semigroup, then MQ is a semilattice Y of
groups Gα, α ∈ Y . Let

Rα = ϕ−1(Gα) , α ∈ Y .

Then it is easy to show thatMR is a semilattice Y of semigroups Rα, α ∈ Y .
Also, it is clear that Rα are π-regular semigroups for all α ∈ Y . Let α ∈ Y
and let e, f ∈ E(Rα) such that ef = fe = f . Then

(e− f)2 = (e− f)(e− f) = e− ef − fe + f = e− f.

On the other hand, since Gα is a group and ϕ(e), ϕ(f) ∈ E(Gα), then
ϕ(e) = ϕ(f), whence e − f ∈ N . Thus e − f ∈ E(R) ∩N = {0}, so e = f .
Hence, Rα is a π-regular semigroup whose idempotents are primitive so by
Theorem 1. [4] we obtain that Rα is an ideal extension of a completely simple
semigroup by a nil-semigroup, i.e. that Rα is a completely Archimedean
semigroup. Therefore, (iv) holds.

(iv)=⇒(v) and (v)=⇒(i). This follows immediately. �

Remark. By Theorem 1, for a semigroup S which is a multiplicative semi-
group of some ring, we obtain the following assertion: S is a semilattice of
completely Archimedean semigroups if and only if it is π-regular and a semi-
lattice of Archimedean semigroups. For other semigroups this must not hold.
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Namely, bicyclic semigroups are regular and simple and are not completely
simple, i.e. these semigroups are π-regular and semilattices of Archimedean
semigroups and are not semilattices of completely Archimedean semigroups.
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[7] M. ĆIRIĆ and S. BOGDANOVIĆ, Semilattice decompositions of semigroups,
(to appear).

[8] S. LAJOS, A remark on Abelian regular rings, Notes on semigroups IX,
Budapest, 4, 1983, 1-6.

[9] N.H. MCCOY, Theory of rings, Mc Millan, New York 1970 (7th printing).

[10] M.S. PUTCHA, Rings which are semilattices of Archimedean semigroups,
Semigroup Forum, 23 (1981), 1-5.


