A note on radicals of Green's relations*

STOJAN BOGDANOVIƆ AND MIROSLAV ĆIRIĆ ‡

Abstract. In this paper we characterize regularity of semigroups by radicals of Green's relations.

Mathematics Subject Classification. 20M10

A semigroup S is left(right, intra-) regular if $a \in Sa^2(a \in a^2S, a \in Sa^2S)$ for all $a \in S$. Various characterizations of the regularity of semigroups by the Green's relations were investigated by A.H. Clifford and G.B. Preston [5], J.T. Sedlock [12], B. Ponděliček [11] and W.D. Miller [8]. For other characterizations of the semigroups considered, in these papers given in terms of two-sided, one-sided, bi- and quasi-ideals, we refer to the survey paper of S. Lajos [7]. In the present paper some new characterizations of the regularity, using the radicals of the Green's relations, will be given.

A semigroup S is left (right) simple if $a \in Sb$ ($a \in bS$) for all $a,b \in S$. A semigroup S is right completely simple if $a \in abS$ for all $a,b \in S$, [3]. Throughout this paper Z^+ will denote the set of all positive integers. A semigroup S is left Archimedean if for all $a,b \in S$ there exists $n \in Z^+$ such that $a^n \in Sb$, it is left (right) weakly commutative if for all $a,b \in S$ there exists $n \in Z^+$ such that $(ab)^n \in bS((ab)^n \in Sa)$, and it is weakly commutative if it is both left and right weakly commutative [11]. For a relation ρ on a

^{*}Received: February 20, 1997

Supported by Grant 04M03B of RFNS through Math. Inst. SANU.

University of Nis, Faculty of Economics, Trg JNA 11, 18000 Nis, Yugoslavia

E-mail address: sbogdan@archimed.filfak.ni.ac.yu

University of Niš, Faculty of Philosophy, Ćirila I Metodila 2, 1800 Niš, Yugoslavia E-mail address: mciric@archimed.filfak.ni.ac.vu

semigroup S, the radical of ρ , in notation $\sqrt{\rho}$, is a relation introduced by L.N. Shevrin in [13] as follows:

$$(a,b) \in \sqrt{\rho} \iff (\exists m,n \in \mathbb{Z}^+)(a^m,b^n) \in \rho.$$

By $\mathcal{J}, \mathcal{R}, \mathcal{L}$ and \mathcal{H} we denote the well known Green's relations.

For undefined notions and notations we refer to [5] and [9].

We start with the following:

THEOREM 1. The following conditions on a semigroup S are equivalent:

- (i) S is intra-regular;
- (ii) $\sqrt{\mathcal{I}} = \mathcal{I}$;
- (iii) $\sqrt{\mathcal{L}} \subseteq \mathcal{J}$;
- (iv) $\sqrt{\mathcal{H}} \subseteq \mathcal{J}$.
- *Proof.* (i) \Longrightarrow (ii) Let $a,b \in S$ and $(a,b) \in \sqrt{\mathcal{J}}$. Then there exist $m,n \in \mathbb{Z}^+$ such that $a^m \mathcal{J} b^n$. Since $a \mathcal{J} a^2$, for all $a \in S$, (see [5]), we then have that $a \mathcal{J} a^m \mathcal{J} b^n \mathcal{J} b$. So $a \mathcal{J} b$, whence $\sqrt{\mathcal{J}} \subseteq \mathcal{J}$ and since the opposite inclusion always holds, we have (ii).
- (ii) \Longrightarrow (i) Since $(a, a^2) \in \sqrt{\mathcal{L}}$ for all $a \in S$, we have by [5] that S is intra-regular. The rest of the proof is similar to the previous one and will be omitted.

In a similar way we can prove the following theorem.

THEOREM 2. A semigroup S is left (right) regular if and only if $\sqrt{\mathcal{L}} = \mathcal{L}$ ($\sqrt{\mathcal{R}} = \mathcal{R}$).

Using the previous theorem and Theorem 4.3 [5] we obtain the following result.

THEOREM 3. The following conditions on a semigroup S are equivalent:

- (i) S is a union of groups;
- (ii) $\sqrt{\mathcal{L}} = \mathcal{L} \& \sqrt{\mathcal{R}} = \mathcal{R}$:
- (iii) $\sqrt{\mathcal{H}} = \mathcal{H}$.

Next we prove

Theorem 4. A semigroup S is a semilattice of left simple semigroups if and only if $\sqrt{\mathcal{L}} = \mathcal{J}$.

Proof. Assume that S is a semilattice Y of left simple semigroups S_{α} , $\alpha \in Y$. Let $a,b \in S$ and $a\mathcal{J}b$. Then there exists $\alpha \in Y$ such that $a,b \in S_{\alpha}$, whence $a\mathcal{L}b$. Thus $\mathcal{J} \subseteq \mathcal{L} \subseteq \sqrt{\mathcal{L}}$. By Theorem 4.2 [5] (see also Theorem 3 [3]) we have that S is left regular, and therefore S is intra-regular. By Theorem 1 we have that $\sqrt{\mathcal{L}} \subseteq \mathcal{J}$. Hence, $\sqrt{\mathcal{L}} = \mathcal{J}$.

Conversely, by Theorem 1 we have that S is intra-regular, whence by Theorem 4.4 [5], $ab\mathcal{J}ba$ for all $a,b\in S$. So $(ab,ba)\in \sqrt{\mathcal{L}}$ for all $a,b\in S$, i.e. there exists $n\in \mathbb{Z}^+$ such that $(ab)^n\in Sa$. Thus, S is right weakly commutative and by Proposition 1.1 [2], S is a semilattice Y of left Archimedean semigroups S_{α} , $\alpha\in Y$. For $a\in S_{\alpha}$, $\alpha\in Y$, there exist $x,y\in S_{\alpha}$ such that

$$a = xa^2y = x^n a(ay)^n \in x^n a S_{\alpha} a^2 \subseteq S_{\alpha} a^2,$$

for every $n \in \mathbb{Z}^+$. From this it follows that $a \in S_{\alpha}a^k$, for every $k \in \mathbb{Z}^+$, and since S_{α} is left Archimedean, we have that for every $a,b \in S_{\alpha}$ there exists $k \in \mathbb{Z}^+$ such that $a^k = zb$ for some $z \in S_{\alpha}$. Now, $a \in S_{\alpha}a^k \subseteq S_{\alpha}zb \subseteq S_{\alpha}b$. Thus, any S_{α} , $\alpha \in Y$, is left simple. Hence S is a semilattice of left simple semigroups.

By Theorem 1.1 [11], using Theorems 2, 3 and 4, we have the following:

Theorem 5. A semigroup S is a semilattice of left groups if and only if $\sqrt{\mathcal{L}} = \mathcal{L} = \mathcal{J} \& \sqrt{\mathcal{R}} = \mathcal{R}$.

Now we go to the main theorem of this paper.

THEOREM 6. The following conditions on a semigroup S are equivalent:

- (i) S is a semilattice of groups;
- (ii) $\sqrt{\mathcal{L}} = \mathcal{R}$;
- (iii) $\sqrt{\mathcal{R}} = \mathcal{L}$;
- (iv) $\sqrt{\mathcal{L}} = \sqrt{\mathcal{R}} = \mathcal{I}$:
- $(v) \quad \sqrt{\mathcal{H}} = \mathcal{J} .$

Proof. (i) \Longrightarrow (ii) By Theorem 3 we have that $\sqrt{\mathcal{L}} = \mathcal{L}$ and since $\mathcal{L} = \mathcal{R}$ (see Theorem 12 [11]), we have the assertion (ii).

(ii) \Longrightarrow (i) Since $(a, a^2) \in \sqrt{\mathcal{L}}$, for all $a \in S$, we then have that $a\mathcal{R}a^2$, for every $a \in S$. So, S is right regular ([5]). By Theorem 3 [3], S is a

semilattice Y of right completely simple semigroups S_{α} , $\alpha \in Y$. Assume $a,b \in S_{\alpha}$, $\alpha \in Y$. Then by Theorem 2 [3], $a \in abS_{\alpha}$ and $ab \in aS_{\alpha}$. Thus $a\mathcal{R}ab$, whence $(a,ab) \in \sqrt{\mathcal{L}}$. So there exists $m \in \mathbf{Z}^+$ such that $(ab)^m \in Sa$, i.e. $(ab)^m = xa$ for some $x \in S_{\beta}$. From this it follows that $\alpha \leq \beta$, whence $(a)^{m+1} = abxa \in S_{\alpha}a$. By Proposition 1.1 [2] we have that S_{α} is a semilattice of left Archimedean semigroups, and since any S_{α} is semilattice-indecomposable, we have that S_{α} , $\alpha \in Y$ is left Archimedean. Since S_{α} is right completely simple, we have that for every $a,b \in S_{\alpha}$, a = abx for some $x \in S_{\alpha}$, whence $a = a(bx)^n$, for every $n \in \mathbf{Z}^+$. But, S_{α} is left Archimedean, so $(bx)^k \in S_{\alpha}b$. Now

$$a = a(bx)^n \in aS_{\alpha}b \subseteq S_{\alpha}b.$$

Hence, any S_{α} , $\alpha \in Y$, is a left simple subsemigroup of S. Therefore, by Theorem 4.2 [5], S is left regular, and by Theorem 2, $\mathcal{L} = \sqrt{\mathcal{L}} = \mathcal{R}$. Since S is left and right regular, by Theorem 4.3 [5], we have that S is a union of groups, so by $\mathcal{L} = \mathcal{R}$ and Theorem 12 [11] we obtain that S is a semilattice of groups.

- (v) \Longrightarrow (i) By Theorem 1, S is intra-regular and by Theorem 4.4 [5], $ab\mathcal{J}ba$ for all $a,b\in S$. Thus $(ab,ba)\in \sqrt{\mathcal{H}}$ i.e. there exist $m,n\in Z^+$ such that $(ab)^m\mathcal{H}(ba)^n$. Therefore, S is weakly commutative, and since S is intraregular, we then have by Theorem 1.1 [1], that S is a semilattice of groups.
- (i) \Longrightarrow (iii) The proof of this implication is similar to the proof of (i) \Longrightarrow (ii).
 - (i) \Longrightarrow (iv) Since $\mathcal{L} = \mathcal{R}$, then by Theorem 5 we have the assertion (iv).
 - (i) \Longrightarrow (v) By the previous equivalences we have that

$$\sqrt{\mathcal{H}} = \sqrt{\mathcal{L} \cap \mathcal{R}} = \sqrt{\mathcal{L}} \cap \sqrt{\mathcal{R}} = \mathcal{J} \cap \mathcal{J} = \mathcal{J}.$$

References

- [1] S. BOGDANOVIĆ, Qr-semigroups, Publ. Inst. of Math. 29(43) (1981), 15-21.
- [2] S. BOGDANOVIĆ, Semigroups of Galbiati-Veronesi, Algebra and Logic, Zagreb, 1984 (1985), Inst. of Math., Novi Sad, 9-20.

- [3] S. BOGDANOVIĆ and M. ĆIRIĆ, A note on left regular semigroups, Publ. Math. Debrecen, 48 (1996), 285-291.
- [4] S. BOGDANOVIĆ and M. ČIRIĆ, Radicals of Green's relations, (to appear).
- [5] A.H. CLIFFORD and G.B. PRESTON, The algebraic theory of semigroups, Vol 1, Amer. Math. Soc., Providence, R.I., 1961.
- [6] R. CROISOT, Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. Sci. Ecole Norm. Sup. No.3, 70 (1953), 361-379.
- [7] S. LAJOS, Bi-ideals in semigroups I (A survey), PU.M.A. Ser. A. 2 (1991), No. 3-4, 215-237.
- [8] D.W. MILLER, Some aspects of Green's relations on periodic semigroups, Czech. Math. J., 33(108) (1983), 537-544.
- [9] M. PETRICH, Introduction to semigroups, Columbus, Ohio, 1973.
- [10] M. Petrich, Semigroup certain of whose subsemigroups have identities, Czech. Math. J., 16(91) (1966), 186-198.
- [11] B. PONDĚLÍČEK, A certain equivalence on a semigroup, Czech. Math. J., 21(96) (1971), 109-117.
- [12] J.T. SEDLOCK, Green's relations on a periodic semigroup, Czech. Math. J., 19(94) (1969), 318-322.
- [13] L.N. SHEVRIN, Theory of epigroups I, Mat. Sbornik, 185 (1994), No. 8, 129-160.