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A NOTE ON CONGRUENCES ON ALGEBRAS

Stojan Bogdanović and Miroslav Ćirić

Abstract. The purpose of this paper is to characterize algebraic classes
closed under subdirect products and under homomorphisms by means of the
properties of related posets of congruences. By the obtained results we de-
duce a recent result of the authors which gives a consequent characterization
of varieties of algebras.

Throughout this paper all algebras and classes of algebras will be of a
fixed type. By an algebraic class we mean a class of algebras closed under
isomorphisms. The lattice of congruences on an algebra A is denoted by
ConA. For a set A, ∆A will denote the equality relation on A.

We say that a poset P is dually directed if any two-element subset (and
any hence finite subset) of P has a lower bound in P . A subset K of a lattice
L will be called a meet (join)-subsemilattice of L if a ∧ b ∈ K (a ∨ b ∈ K),
for all a, b ∈ K, and it will be called a dual order-ideal of L if [a) ⊆ K, for
any a ∈ K, where [a) = {x ∈ L | a ≤ x} is the principal dual ideal of L
generated by a. A subset K of a complete lattice L will be called a complete
meet (join)-subsemilattice of L if

∧

X ∈ K (
∨

X ∈ K), for any nonempty
subset X of K, and it will be called a complete sublattice of L if it is both
complete meet- and join-subsemilattice of L.

For undefined notions and notations we refer to [2], [3], [8] and [11].

In investigations in various algebraic theories we often work with a set of
congruences of a given type on an algebra. Formally, a type T congruences
can be defined as a mapping which to any algebra A associates some subset
(possibly empty) ConTA of ConA, and the elements of ConTA are called the
congruences of type T, or shortly, T-congruences on A. The most frequently,
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types of congruences are determined by the membership of the related factors
to a given class of algebras. More precisely, for a non-empty algebraic class
C of algebras, a congruence θ on an algebra A we call a C-congruence if A/θ
belongs to C, and the set of all C-congruences on A we denote by ConCA.

The set ConTA is a poset with respect to the usual ordering of relations, so
we meet many questions concerning the order-theoretic properties of ConTA.
For example, we meet questions such as: Does ConTA has a smallest or
greatest element? Is ConTA a (complete) lattice? Is ConTA a (complete)
sublattice of ConA?

The problems of this type were considered by T. Tamura and N. Kimura
in [19], 1954, where they proved that the poset of semilattice congruences on
an arbitrary semigroup S is a complete lattice. A more general result was
obtained in another their paper [20], 1955, where they proved that for an
arbitrary variety C of semigroups, the poset ConCS is a complete lattice, for
any semigroup S. Various similar problems, concerning smallest or minimal
congruences of certain types, were also discussed by T. Tamura in [13]–[18],
and in another papers of this author.

The conditions on an algebraic class C of algebras under which there exists
the smallest C-congruence were noted (without proof) by N. Kimura in [9],
1958, and this result is given by the equivalence of the conditions (iii) and
(iv) of the next theorem. As was also noted by N. Kimura, the same result
was also given by E. J. Tully. Except the mentioned result, in the following
theorem we also give two another equivalents of this result:

Theorem 1. The following conditions for an algebraic class C of algebras
are equivalent:

(i) ConCA is a complete meet-subsemilattice of ConA, for any algebra
A for which ConCA is non-empty;

(ii) ConCA is a complete meet-semilattice, for any algebra A for which
ConCA is non-empty;

(iii) ConCA has a smallest element, for any algebra A for which ConCA
is non-empty;

(iv) C is closed under subdirect products.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii). This is obvious.
(iii) ⇒ (iv). Assume a family {Ai | i ∈ I} of algebras from C. Let A

be an arbitrary subdirect product of this family and let {θi | i ∈} be the
corresponding family of factor congruences on A. Then θi ∈ ConCA, for any
i ∈ I, and ∩i∈Iθi = ∆A. On the other hand, by the hypothesis we have that
there exists a smallest element µ of ConCA, so by ∩i∈Iθi = ∆A it follows
µ = ∆A. Therefore, ∆A ∈ ConCA, and this means that A ∈ C, which was
to be proved. Hence, C is closed under subdirect products.
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(iv) ⇒ (i). Assume an algebra A for which ConCA is non-empty, and
assume an arbitrary family {θi | i ∈ I} of elements of ConCA. Let θ = ∩i∈Iθi.
For ϑi = θi/θ, i ∈ I, by the Second Isomorphism Theorem we have ϑi ∈
ConA/θ and (A/θ)/ϑi ∼= A/θi, for any i ∈ I. Now, by the Correspondence
Theorem we have ∩i∈Iϑi = ∆A/θ, whence it follows that A/θ is a subdirect
product of algebras A/θi, i ∈ I. But, A/θi ∈ C, for any i ∈ I, so by the
hypothesis we obtain that A/θ ∈ C, i.e. θ ∈ ConCA, which was to be proved.
Therefore, (i) holds. �

By a similar methodology the following can be proved:

Corollary 1. The following conditions for an algebraic class C of algebras
are equivalent:

(i) ConCA is a meet-subsemilattice of ConA, for any algebra A for which
ConCA is non-empty;

(ii) ConCA is a meet-semilattice, for any algebra A for which ConCA is
non-empty;

(iii) ConCA is dually directed, for any algebra A for which ConCA is
non-empty;

(iv) C is closed under finite subdirect products.

By the next theorem we characterize algebraic classes closed under ho-
momorphisms.

Theorem 2. The following conditions for an algebraic class C of algebras
are equivalent:

(i) ConCA is a dual order ideal of ConA, for any algebra A;
(ii) ConCA is a complete join-subsemilattice of ConA, for any algebra

A;
(iii) ConCA is a join-subsemilattice of ConA, for any algebra A;
(iv) C is closed under homomorphisms.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii). This is obvious.
(iii) ⇒ (iv). Let ConCA be a join-subsemilattice of ConA for any algebra

A. To prove that C is closed under homomorphisms, assume A ∈ C and
a homomorphism ϕ of A onto an algebra H. For i = 1, 2, let Ai = A,
ϕi = ϕ, let πi be the projection homomorphism of A1 × A2 onto Ai, let
P = {p ∈ A1 × A2 | pπ1ϕ1 = pπ2ϕ2}, let π′i be the restriction of πi to P , let
θi = ker πi and let θ = θ1 ∨ θ2 in ConP . Since P/θi ∼= Ai then θi ∈ ConCP ,
for i = 1, 2, and θ ∈ ConCP , by the hypothesis.

On the other hand, there exists a homomorphism ψ of P onto H such that
ψ = π′1ϕ1 = π′2ϕ2. Clearly θi ⊆ ker ψ, for i = 1, 2, so θ ⊆ ker ψ. Conversely,
if (p, q) ∈ ker ψ and r = (pπ′1, qπ

′
2), then r ∈ P , (p, r) ∈ θ1 and (r, q) ∈ θ2,
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whence (p, q) ∈ θ1θ2 ⊆ θ. Thus, ker ψ = θ, so P/θ ∼= H, and by θ ∈ ConCP
we obtain H ∈ C, which was to be proved.

(iv) ⇒ (i). Assume an arbitrary algebra A, θ ∈ ConCA and ϑ ∈ ConA
such that θ ⊆ ϑ. By the Second Isomorphism Theorem, A/ϑ is a homomor-
phic image of A/θ, and A/θ ∈ C, whence A/ϑ ∈ C, i.e. ϑ ∈ ConCA, which
verifies that ConCA is a dual order-ideal of ConA. �

Let us observe that the algebra P constructed in the proof of the previ-
ous theorem is obtained starting from algebras A1 and A2, and using their
common homomorphic image H and homomorphisms ϕ1 and ϕ2. Such a
construction is known as the pullback product of algebras A1 and A2 with
respect to H and homomorphisms ϕ1 and ϕ2. This concept was introduced
by L. Fuchs in [6], 1952, and after that it was studied by I. Fleischer in [7],
1955, and G. H. Wenzel in [21], 1968. As was proved by G. H. Wenzel, pull-
back products are exactly the subdirect products whose related systems of
factor congruences satisfy conditions which can be viewed as a generalization
of the conditions of the famous Chinese Remainder Theorem. In Theory of
semigroups, pullback products are known as spined products.

As an immediate consequence of Theorems 1 and 2 we obtain the following
theorem concerning varieties of algebras, proved by the authors in [5].

Theorem 3. The following conditions on an algebraic class C of algebras
are equivalent:

(i) ConCA is a complete sublattice of ConA, for any algebra A;
(ii) ConCA is a principal dual ideal of ConA, for any algebra A;
(iii) C is a variety.

Recall that the various other characterizations of varieties of algebras were
given by G. Birkhoff in [1], 1935, S. R. Kogalovskĭı in [10], 1965, and B. M.
Schein in [12], 1965.

The following theorem is a consequence of the previous one:

Theorem 4. A variety C of algebras is congruence-distributive (resp. con-
gruence-modular) if and only if the lattice ConCA is distributive (resp. mod-
ular), for any algebra A.

Proof. For an arbitrary algebra A, by the Correspondence Theorem and
Theorem 3 we have that ConCA ∼= ConA/µ, where µ denotes the smallest
C-congruence on A. Since A/µ ∈ C, then the congruence-distributivity (resp.
congruence-modularity) of C implies the distributivity (resp. modularity) of
ConA/µ, and hence of ConCA.

The converse is obvious. �
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A very interesting result concerning the lattice ConCA, for a variety C
of algebras and an algebra A, was given by M. Petrich in [11], 1973. He
proved that if D is the class of all subdirectly irreducible algebras from C,
then the poset ConDA is meet-dense in ConCA, i.e. any C-congruence on
A can be represented as the intersection of some family of D-congruences
on A. He also gave some significant applications of this result in Theory of
semigroups, for constructions of the smallest congruences corresponding to
certain varieties of semigroups.

The results obtained above have also very important applications in The-
ory of semigroups, in investigations of various decompositions of semigroups.
For example, if the class C is assumed to be the class of all chains (considered
as semigroups), then C is not closed under subdirect products, so there are
semigroups which have not a greatest chain decomposition.

Let C be the class of all semigroups with zero. Then C is closed under
homomorphisms and finite subdirect products, but not under infinite subdi-
rect products (it is closed only under infinite pullback products). Therefore,
for any semigroup S, ConCS is a dual ideal of ConS, but there are semi-
groups having no a smallest C-congruence. Minimal elements in ConCS were
investigated by T. Tamura in [15], 1965.

More information about decompositions of semigroups having the greatest
one can be found in M. Ćirić and S. Bogdanović [4], 1995.
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