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Faculty of Economics, 18000 Nǐs, Yugoslavia
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1. INTRODUCTION AND PRELIMINARIES

The purpose of this paper is to give a short presentation of new results
concerning greatest decompositions of semigroups. The topic in question will
be semilattice decompositions and decompositions of semigroups with zero:
Orthogonal decompositions and decompositions into a right sum of semigroups.

The greatest semilattice decompositions were subject of interest of many
mathematicians during last four decades. In this paper we present some new
results of the authors [15] treating this topic. These results were obtained using
a new approach to the problem and they join former results from this area.

To the difference from semilattice decompositions, studying of orthogonal
decompositions and decompositions into a right sum is generally a new problem
treated in the papers of the authors [11], [12].

In all the previous types of decompositions the authors use methods founded
on the usage of various types of ideals (two-sided and one-sided) and the equiv-
alence systems that generalize Green’s equivalences.

This paper is divided into three chapters: In §1 we introduce basic notions
and notations, §2 is devoted to semilattice decompositions and in §3 we present
the basic results concerning decompositions of semigroups with zero.

Throughout this paper, Z+ will denote the set of all positive integers,
J(a), L(a) and R(a) will denote the principal ideal, principal left ideal and
the principal right ideal of a semigroup S and L, R, J will denote Green’s
relations of S.

For a binary relation ξ on a set A, ξn, n ∈ Z+ will denote the n-th power of
ξ in the semigroup of binary relations on A, and ξ∞ will denote the transitive
closure of ξ. Let S denote the class of all semigroups. By a type of relations we
mean any family ϑ = {ϑS |S ∈ S} of relations such that ϑS is a relation of S,
for each S ∈ S. If S ∈ S, then we say that ϑS is a relation of the type ϑ of S,
and if we consider one fixed semigroup S, then we write simply ϑ instead ϑS .
If ϑ is a type of relations, then a semigroup S is ϑ-simple if ϑS is the universal
relation of S.
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Let A be a subset of a semigroup S. Then
√

A = {x ∈ S | (∃n ∈ Z+) xn ∈
A}. If for x, y ∈ S, xy ∈ A implies x ∈ A or y ∈ A, then A is a completely
prime subset of S. Clearly, the empty set is a completely prime subset of S.
If for x ∈ S, x2 ∈ A implies x ∈ A, then A is a completely semiprime subset
of S. If for x, y ∈ S, xy ∈ A implies x, y ∈ A (xy ∈ A implies x ∈ A, xy ∈ A
implies y ∈ A), then A is a consistent (left consistent , right consistent) subset
of S. Clearly, the empty set is a consistent subset of S.

A subset A of a semigroup S = S0 is a 0-consistent (left 0-consistent , right
0-consistent) subset of S if A• is a consistent (left consistent, right consistent)
subset of S.

A subsemigroup A of a semigroup S is a filter (left filter , right filter) of S if
A is a consistent (right consistent, left consistent) subset of S.

Let a be an element of a semigroup S. By a principal (left , right) radical of
S generated by a we mean the smallest completely semiprime (left, right) ideal
of S containing a, i.e. the intersection of all completely semiprime (left, right)
ideals of S containing a. By ΣS we denote the set of all principal radicals of
S. By a principal (left , right) filter of S generated by a we mean the smallest
(left, right) filter of S containing a, i.e. the intersection of all (left, right) filters
of S containing a.

Let A be an ideal of a semigroup S. If for x, y ∈ S, xSy ⊆ A implies x ∈ A
or y ∈ A, then A is a prime ideal of S. It is well known that A is a prime ideal
of S if and only if for ideals M, N of S, MN ⊆ A implies M ⊆ A or N ⊆ A. If
for x ∈ S, xSx ⊆ A implies x ∈ A, then A is a semiprime ideal of S.

A lattice L is bounded if it has a zero and a unity. A lattice L is complete for
joins (complete for meets) if every nonempty subset of L has a join (meet) and
it is complete if it is complete both for joins and for meets. An element a of a
lattice L with the zero 0 is an atom of L if a > 0 and there exists no x ∈ L such
that a > x > 0. A complete Boolean algebra B is atomic if every element of B
is the join of some set of atoms of B. If L is a distributive bounded lattice, then
the set B(L) of all elements of L having a complement in L is a Boolean algebra
and it is called the greatest Boolean subalgebra of L. A lattice L complete for
joins is infinitely distributive for meets if a ∧ (∨α∈Y xα) = ∨α∈Y (a ∧ xα), for
every a ∈ S and every nonempty subset {xα |α ∈ Y } of L. A nontrivial lattice
L is directly indecomposable if it has the property: When L is a direct product
of lattices Li, i ∈ I, then there exists i ∈ I such that Li is isomorphic to L and
|Lj | = 1, for every j ∈ I, j 6= i.

For a semigroup S, Id(S) will denote the lattice of all ideals of S. If S = S0,
then Id(S) is a complete lattice, infinitely distributive for meets, with the zero
0 and the unity S. Also, LId(S) will denote the lattice of left ideals of a
semigroup S defined on the following way: if S = S0, then LId(S) contains all
of left ideals of S, and if S is without zero, then LId(S) contains the empty set
and all of left ideals of S. In both of this cases LId(S) is a complete lattice,
infinitely distributive for meets. Clearly, for a semigroup S without zero, the
lattice LId(S) is isomorphic to LId(S0). If S = S0, Idc(S) will denote the
set of all 0-consistent ideals of S and LIdc(S) will denote the set of all right
0-consistent left ideals of S.

Let 0 be a fixed element of a set S. Then S with a multiplication defined
by: xy = x, if x = y, and xy = 0, otherwise, x, y ∈ S, is a semilattice called
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Kronecker’s semilattice.
For undefined notions and notations we refer to [2], [6], [13], [17], [18], [30],

[31] and [40].

2. SEMILATTICE DECOMPOSITIONS

Semilattice decompositions of semigroups were first defined and studied by
A.H.Clifford [16], 1941. After that, several authors worked on this very impor-
tant topic. A significant contribution to the Theory of semilattice decomposi-
tions of semigroups was given by T.Tamura. A series of papers concerning this
topic was opened by T.Tamura and N.Kimura. In the paper [55], 1954, they
considered semilattice decompositions of commutative semigroups. The same
authors in [56], 1955, and M.Yamada in [62], 1955, established the existence of
the greatest semilattice decomposition of an arbitrary semigroup. T.Tamura
[44], 1956, proved the fundamental result that components in the greatest semi-
lattice decomposition of a semigroup are semilattice indecomposable. In [46],
1964, he described the smallest semilattice congruence on a semigroup, using
the concept of contents. Various other characterizations of this congruence
were given by the same and several other authors. M.Petrich [28], 1964, gave
a characterization of this congruence using completely prime ideals and filters.
Another connection among these concepts was given by R.Šulka [43], 1970.
T.Tamura in [50], 1972, and [52], 1973, proved that −→∞ ∩( −→∞ )−1

is the smallest semilattice congruence of a semigroup and M.S.Putcha [36],
1974, proved this for the relation (−→ ∩ −→−1)∞. Finally, M.Ćirić and
S.Bogdanović [15] gave a characterization of the greatest semilattice homomor-
phic image of a semigroup by completely semiprime ideals. Using completely
semiprime subsets and ideals they defined an equivalence system that general-
izes Green’s equivalences and they developed a new method in the Theory of
semilattice decompositions of semigroups.

For semilattice decompositions whose components are Archimedean we refer
to the former survey article of the authors [9].

In Section 2.1 we present general results concerning the greatest semilat-
tice decomposition of a semigroup and results concerning some special cases.
Section 2.2 is devoted to semilattice decompositions by the relation λ.

2.1. The greatest semilattice decomposition.

Let C be a class of semigroups. A congruence ξ of a semigroup S is a
C-congruence of S if the factor S/ξ is in C. The partition and the factor deter-
mined by a C-congruence of a semigroup S are called a C-decomposition and a
C-homomorphic image of S, respectively. If C is a class of all bands, we have
band congruences, band decompositions and band homomorphic images , if C is
a class of all semilattices, we have semilattice congruences , semilattice decom-
positions and semilattice homomorphic images , if C is a class of all rectangular
bands, we have matrix congruences and matrix decompositions , and if C is a
class of all left (right) zero bands, then we have left (right) zero congruences
and left (right) zero decompositions . A C-congruence ξ of a semigroup S is a
smallest C-congruence of S if ξ is contained in every C-congruence of S. The
partition and the factor determined by the smallest C-congruence of a semi-
group S are greatest C-decomposition and greatest C-homomorphic image of S,
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respectively. If C is a variety of semigroups, then every semigroup have the
smallest C-congruence, i.e. the greatest C-decomposition.

On a semigroup S we define a relation of the type −→ by:

a −→ b ⇔ (∃n ∈ Z+) bn ∈ J(a), (a, b ∈ S).

Let S be a semigroup. For a ∈ S let

Σn(a) = {x ∈ S | a −→n x}, n ∈ Z+, Σ(a) = {x ∈ S | a −→∞ x}.

An equivalent definition of these sets is the following:

Σ1(a) =
√

SaS, Σn+1(a) =
√

SΣn(a)S, n ∈ Z+, Σ(a) =
⋃

n∈Z+

Σn(a).

Clearly, Σn(a) ⊆ Σn+1(a), for each n ∈ Z+, and Σ(a) and Σn(a), n ∈ Z+, are
completely semiprime subsets of S. On S we define equivalences of the types σ
and σn, n ∈ Z+, by

a σ b ⇔ Σ(a) = Σ(b), a σn b ⇔ Σn(a) = Σn(b),

(a, b ∈ S).
Lemma 2.1 [15] Let a be an element of a semigroup S. Then Σ(a) is the

principal radical of S generated by a. �
Since −→∞ is transitive, then σ = −→∞ ∩( −→∞ )−1, so the result of

T.Tamura [50] describing the smallest semilattice congruence of a semigroup
can be formulated on the following way:

Theorem 2.1 The relation σ on a semigroup S is the smallest semilattice
congruence on S and every σ-class is semilattice indecomposable. �

Let =−→ ∩(−→)−1. M.S.Putcha [36] proved the following
Theorem 2.2 The relation ∞ of a semigroup S is the smallest semilattice

congruence on S, where =−→ ∩(−→)−1. �
A characterization of the greatest semilattice homomorphic image of a semi-

group by principal radicals was given by M.Ćirić and S.Bogdanović [15]. This
result is the following:

Theorem 2.3 For elements a and b of a semigroup S,

Σ(ab) = Σ(a) ∩ Σ(b).

Furthermore, the set ΣS of all principal radicals of S, ordered by inclusion, is
the greatest semilattice homomorphic image of S. �

Theorem 2.3 gives many important consequences. As a first, a result of the
authors [15] describing principal filters of semigroups. Corollary 2.2 is a result
of M.Petrich [28], [30] that characterizes the smallest semilattice congruence
of a semigroup with the help of principal filters. Corollaries 2.3 and 2.4 treat
the well-known problem of representation of completely semiprime ideals by
intersections of completely prime ideals. In Theory of semigroups this problem
was considered by K.Iséki [23] and X.Xvarc [42], and for its solution in the
general case we refer to M.Petrich [30]. The same result was proved by the
authors in [15] without use of Zorn’s lemma arguments.
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Let a be an element of a semigroup S. Then

Nn(a) = {x ∈ S | x −→n a}, n ∈ Z+, N(a) = {x ∈ S | x −→∞ a}.

Clearly, N(a) and Nn(a), n ∈ Z+, are consistent subsets of S.
Corollary 2.1 Let a be an element of a semigroup S. Then N(a) is the

principal filter of S generated by a. �
Corollary 2.2 For elements a and b of a semigroup S, a σ b if and only if

N(a) = N(b). �
Corollary 2.3 Let I be a completely semiprime ideal of a semigroup S and

let a ∈ S such that a /∈ I. Then there exists a completely prime ideal P of S
such that I ⊆ P and a /∈ P . �

Corollary 2.4 Every completely semiprime ideal of a semigroup S is an
intersection of completely prime ideals of S. �

Semilattice indecomposable semigroups were studied by several authors. In
the next theorem T.Tamura [50] proved (i) ⇔ (iii) and M.Petrich [28], [30]
proved (i) ⇔ (iv) ⇔ (v).

Theorem 2.4 The following conditions on a semigroup S are equivalent:
(i) S is semilattice indecomposable;
(ii) S is σ-simple;
(iii) (∀a, b ∈ S) a −→∞ b;
(iv) S has not proper completely semiprime ideals;
(v) S has not proper completely prime ideals. �
Semigroups whose greatest semilattice homomorphic image is a chain will

be treated by the next theorem. The conditions (ii), (iii) and (vii) are from
M.Petrich [28], [30] and the rest is the result of the authors [15].

Theorem 2.5 The following conditions on a semigroup S are equivalent:
(i) S is a chain of σ-simple semigroups;
(ii) ΣS is a chain;
(iii) the partially ordered set of all completely prime ideals of S is a chain;
(iv) −→∞ ∪( −→∞ )−1 is equal to the universal relation of S;
(v) a union of an arbitrary nonempty family of filters of S is a filter of S;
(vi) (∀a, b ∈ S) ab −→∞ a ∨ ab −→∞ b;
(vii) every completely semiprime ideal of S is completely prime;
(viii) every principal radical of S is completely prime.
Theorem 2.6 [15] Let n ∈ Z+. Then the following conditions on a semi-

group S are equivalent:
(i) S is a band of σn-simple semigroups;
(ii) S is a semilattice of σn-simple semigroups;
(iii) every σn-class of S is a subsemigroup;
(iv) (∀a ∈ S) a σn a2;
(v) (∀a, b ∈ S) a −→n b ⇒ a2 −→n b;
(vi) (∀a, b, c ∈ S) a −→n c ∧ b −→n c ⇒ ab −→n c;
(vii) for every a ∈ S, Σn(a) is an ideal of S;
(viii) (∀a, b ∈ S) Σn(ab) = Σn(a) ∩ Σn(b);
(ix) for every a ∈ S, Nn(a) is a subsemigroup of S;
(x) −→n is a quasi-order on S;
(xi) σn =−→n ∩(−→n)−1 on S.
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Corollary 2.5 [15] Let S be a finite semigroup. Then there exists n ∈
Z+, n ≤ |S|, such that S is a semilattice of σn-simple semigroups. �

By Theorem 2.6 we obtain the results of R.Croisot [19], O.Anderson [1]
and M.Petrich [28], [30] concerning semilattices of simple semigroups (se also
A.H.Clifford and G.B.Preston [17]), and for n = 1 we obtain some results of
M.S.Putcha [34], T.Tamura [49] and S.Bogdanović and M.Ćirić [7] for semilat-
tices of Archimedean (i.e. σ1-simple) semigroups. M.Ćirić and S.Bogdanović
[14] gave and another result:

Theorem 2.7 The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of Archimedean semigroups;
(ii) (∀a, b ∈ S)(∀k ∈ Z+) ak −→ ab;
(iii) (∀a, b ∈ S) a2 −→ ab. �
Theorem 2.8 [15] Let n ∈ Z+. Then the following conditions on a semi-

group S are equivalent:
(i) S is a chain of σn-simple semigroups;
(ii) for every a ∈ S, Σn(a) is a completely prime ideal of S;
(iii) S is a semilattice of σn-simple semigroups and for every a ∈ S, Σn(a)

is a completely prime subset of S;
(iv) S is a semilattice of σn-simple semigroups and for all a, b ∈ S, ab −→n a

or ab −→n b;
(v) S is a semilattice of σn-simple semigroups and for all a ∈ S, a −→n b

or b −→n a. �
A subset A of a semigroup S is semiprimary if

(∀x, y ∈ S)(∃n ∈ Z+) xy ∈ A ⇒ xn ∈ A ∨ yn ∈ A.

A semigroup S is semiprimary if all of its ideals are semiprimary [3], [4].
In [10] the authors showed that semiprimary semigroups are exactly chains

of Archimedean semigroups. This is a part of the following
Theorem 2.9 The following conditions on a semigroup S are equivalent:
(i) S is a chain of Archimedean semigroups;
(ii) (∀a, b ∈ S) ab −→ a ∨ ab −→ b;
(iii) S is semiprimary;
(iv) for every ideal A of S,

√
A is a completely prime ideal of S;

(v) for every ideal A of S,
√

A is a completely prime subset of S. �

2.2. Semilattices of λ-simple semigroups.

On a semigroup S we define a relation of the type l−→ by:

a l−→ b ⇔ (∃n ∈ Z+) bn ∈ L(a), (a, b ∈ S).

Let a be an element of a semigroup S. Then

Λn(a) = {x ∈ S | a −→n x}, n ∈ Z+, Λ(a) = {x ∈ S | a −→∞ x}.

An equivalent definition of these sets is the following:

Λ1(a) =
√

SaS, Λn+1(a) =
√

SΛn(a)S, n ∈ Z+, Λ(a) =
⋃

n∈Z+

Λn(a).
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Clearly, Λn(a) ⊆ Λn+1(a), for each n ∈ Z+, and Λ(a) and Λn(a), n ∈ Z+, are
completely semiprime subsets of S. On S we define equivalences of the types λ
and λn, n ∈ Z+, by

aλ b ⇔ Λ(a) = Λ(b), a λn b ⇔ Λn(a) = Λn(b), (a, b ∈ S).

Lemma 2.2 [15] Let a be an element of a semigroup S. Then Λ(a) is the
principal left radical of S generated by a. �

If in Corollary 2.4. the expression ”ideal” we replace with ”left ideal”, then
the assertion do not holds. An example for this is the following semigroup:

〈

a, e | a3 = a, e2 = e, ae = ea2 = e
〉

.

The conditions under which every completely semiprime left ideal is an inter-
section of completely prime left ideals are given by:

Theorem 2.10 [15] The following conditions on a semigroup S are equiva-
lent:

(i) every completely semiprime left ideal of S is an intersection of some
family of completely prime left ideals of S;

(ii) (∀a, b, c ∈ S) a l−→∞ c ∧ b l−→∞ c ⇒ ab l−→∞ c;

(iii) for every a ∈ S, {x ∈ S | x l−→∞ a} is a subsemigroup of S. �
By the next theorem obtained by the authors in [15] various characterizations

of semilattices of λ-simple semigroups are given. Afterwards several special
cases will be treated.

Theorem 2.11 The following conditions on a semigroup S are equivalent:
(i) S is semilattice of λ-simple semigroups;

(ii) (∀a, b ∈ S) a l−→∞ ab;
(iii) for every a ∈ S, Λ(a) is an ideal of S;
(iv) every completely semiprime left ideal of S is an ideal of S;
(v) (∀a, b ∈ S) Λ(ab) = Λ(a) ∩ Λ(b);

(vi) for every a ∈ S, {x ∈ S | x l−→∞ a} is a filter of S. �
Theorem 2.12 [15] The following conditions on a semigroup S are equiva-

lent:
(i) S is chain of λ-simple semigroups;
(ii) every left radical of S is a completely prime ideal of S;

(iii) S is a semilattice of λ-simple semigroups and for all a, b ∈ S, ab l−→∞ a

or ab l−→∞ b;
(iv) S is a semilattice of λ-simple semigroups and for all a, b ∈ S, a l−→∞ b

or b l−→∞ a. �
Theorem 2.13 [15] Let n ∈ Z+. Then the following conditions on a semi-

group S are equivalent:
(i) l−→n is a quasi-order on S;
(ii) (∀a ∈ S) aλn a2;

(iii) (∀a, b ∈ S) a l−→n b ⇒ a2 l−→n b;
(iv) for every a ∈ S, Λn(a) is a left ideal of S;

(v) λn = l−→n ∩ ( l−→n )−1. �
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Theorem 2.14 [7] The following conditions on a semigroup S are equiva-
lent:

(i) (∀a, b ∈ S) a l−→ b ⇒ a2 l−→ b;

(ii) (∀a, b ∈ S)(∀k ∈ Z+) bk l−→ ab;

(iii) (∀a, b ∈ S) b2 l−→ ab. �
Theorem 2.15 [15] Let n ∈ Z+. Then the following conditions on a semi-

group S are equivalent:
(i) S is a semilattice of λn-simple semigroups;

(ii) aλn a2, for every a ∈ S, and a l−→n ab, for all a, b ∈ S;
(iii) for every a ∈ S, Λn(a) is an ideal of S;
(iv) (∀a, b ∈ S) Λn(ab) = Λn(a) ∩ Λn(b);

(v) for every a ∈ S, {x ∈ S | x l−→n a} is a filter of S. �
Semilattices of left simple semigroups was studied by M.Petrich [28], [30].

Semilattices of left Archimedean (i.e. λ1-simple) semigroups was described by
M.S.Putcha [37]. S.Bogdanović [5] gave and another characterization of these
semigroups:

Theorem 2.16 The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of left Archimedean semigroups;

(ii) (∀a, b ∈ S)(∀k ∈ Z+) ak l−→ ab;

(iii) (∀a, b ∈ S) a l−→ ab. �

By r−→, ρn, n ∈ Z+, and ρ we denote the dual relations for l−→, λn, n ∈ Z+,
and λ, respectively, and τn = λn ∩ ρn, n ∈ Z+, and τ = λ ∩ ρ. The following
proposition shows that these relations generalize well-known Green’s relations.

Proposition 2.1 [15] If S is a semigroup, then
H ⊆ τ1 ⊆ τ2 ⊆ · · · ⊆ τn ⊆ · · · ⊆ τ
∩ ∩ ∩ ∩ ∩
L ⊆ λ1 ⊆ λ2 ⊆ · · · ⊆ λn ⊆ · · · ⊆ λ
∩ ∩ ∩
J ⊆ σ1 ⊆ σ2 ⊆ · · · ⊆ σn ⊆ · · · ⊆ σ
∪ ∪ ∪
R ⊆ ρ1 ⊆ ρ2 ⊆ · · · ⊆ ρn ⊆ · · · ⊆ ρ .

�
In contrast to semilattices and bands of σn-simple semigroups, semilattices

and bands of λ- (λn-) simple semigroups do not determine the same class of
semigroups. M.S.Putcha [35] described bands of left Archimedean and bands
of t-Archimedean (i.e. τ1-simple) semigroups.

Note that the congruence of a semigroup generated by τ is the smallest band
congruence of this semigroup.

3. DECOMPOSITIONS OF SEMIGROUPS WITH ZERO

Some ”classical” types of decompositions, like decompositions into a right
and a left zero band of semigroups and matrix decompositions, degenerate in
semigroups with zero. This requires some new decomposition methods specific
to semigroups with zero. Here we present two such methods: Orthogonal
decompositions and decompositions into a right sum of semigroups.
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Orthogonal decompositions of semigroups were first defined and studied by
E.S. L�pin [26], [27], 1950, and by X.Xvarc [41], 1951. After that, these
decompositions were considered by many authors in several special cases (more
informations about these the reader can find in the books [18] and [39] and in
the survey article [9]). The existence of the greatest orthogonal decomposition
of a semigroup with zero was established by S.Bogdanović and M.Ćirić [11]. In
the same paper the authors proved also that summands of the greatest orthog-
onal decomposition of a semigroup with zero are orthogonal indecomposable.
This result shouts to (but does not follow from) the existence of the smallest
F -congruence of a semigroup, for a given finite set of identities F , discussed by
T.Tamura, N.Kimura, M.Yamada, A.H.Clifford and G.B.Preston in 1955–65.

Decompositions of semigroups with zero into a right sum of semigroups are
an analogue of decompositions of semigroups without zero into a right zero
band of semigroups. For such decompositions the authors in [12] obtained
results similar to the ones for orthogonal decompositions. A difference is that
sometimes summands in the greatest decomposition into a right sum could be
further decomposed into a right sum.

The author’s approach to the question of decompositions of semigroups with
zero, presented in this paper, is different from the one used by J.Dieudonné
[20], 1942, in Theory of rings, and by X.Xvarc [41], 1951, in Theory of
semigroups. Their main tools were the cocle and 0-minimal ideals (two-sided
and one-sided). Here the main role is captured by (right) 0-consistent (left)
ideals. Note that the notion of (right, left) consistent subset was introduced
by P.Dubreil [21], 1941. Also, the author’s approach differs from the one of
G.Lallement and M.Petrich [25], which studied decompositions of semigroups
with zero by congruences whose corresponding factors are 0-rectangular bands.
Instead of making of decompositions by congruences, the authors in [12] used
(right) 0-consistent equivalences and other equivalence system that generalizes
Green’s relations.

In Sections 3.1 and 3.2 we treat the greatest orthogonal decomposition and
the greatest decomposition into a right sum, respectively. In Section 3.3 we
consider left 0-consistent, right 0-consistent and 0-consistent equivalences of a
semigroup with zero, their mutual connections and connections with decompo-
sitions mentioned above. Results presented there give also mutual connections
between these types of decompositions. Finally, in Section 3.4 we present a
connection between these decompositions and decompositions of the lattice of
ideals of a semigroup with zero into a direct product.

3.1. The greatest orthogonal decomposition.

A semigroup S = S0 is an orthogonal sum of semigroups Sα, α ∈ Y , in
notation S = Σα∈Y Sα, if Sα 6= 0, for all α ∈ Y , S = ∪α∈Y Sα and Sα ∩ Sβ =
SαSβ = 0, for all α, β ∈ Y, α 6= β. In this case, the family D = {Sα| α ∈ Y }
is an orthogonal decomposition of S and Sα are orthogonal summands of S or
summands in D. If D and D′ are two orthogonal decompositions of a semigroup
S = S0, then we say that D is greater than D′ if each member of D is a subset
of some member of D′. A semigroup S = S0 is orthogonal indecomposable if
D = {S} is the unique orthogonal decomposition of S.

Lemma 3.1 [11] The following conditions for an ideal A of a semigroup
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S = S0 are equivalent:
(i) A is 0-consistent;
(ii) A′ is an ideal of S;
(iii) A is an orthogonal summand of S. �
Let we introduce a relation of the type ∼ on a semigroup S = S0 by

x ∼ y ⇔ J(x) ∩ J(y) 6= 0, for x, y ∈ S•, 0 ∼ 0.

Clearly, ∼ is reflexive and symmetric. For a ∈ S, n ∈ Z+, let

∆n(a) = {x ∈ S | x ∼n a}∪ 0, ∆(a) = {x ∈ S | x ∼∞ a}∪ 0 = ∪n∈Z+∆n(a).

Clearly, ∆n(0) = 0, for each n ∈ Z+, and ∆n(a) ⊆ ∆n+1(a), for all a ∈ S, n ∈
Z+. Also, let we introduce equivalences of the types δ and δn, n ∈ Z+, on S
by

a δ b ⇔ ∆(a) = ∆(b), a δn b ⇔ ∆n(a) = ∆n(b),

(a, b ∈ S). For a ∈ S, ∆a will denote the δ-class of a. Clearly, ∆0 = ∆(0) = 0,
and δn ⊆∼n, for each n ∈ Z+.

By the following theorem principal 0-consistent ideals of a semigroup with
zero are described.

Theorem 3.1 [11] Let a 6= 0 be an element of a semigroup S = S0. Then
(a) ∆(a) is the principal 0-consistent ideal of S generated by a;
(b) ∆(a) = ∆0

a;
(c) ∆(a) is an orthogonal indecomposable semigroup. �
Because of Theorem 3.1, it follows that δ =∼∞ on every semigroup with

zero.
Lemma 3.2 [12] Let A be a 0-consistent ideal of a semigroup S = S0. Then

LId(A) ⊆ LId(S), LIdc(A) ⊆ LIdc(S),

Id(A) ⊆ Id(S), Idc(A) ⊆ Idc(S). �

Important features of the set of all 0-consistent ideals in the lattice of all
ideals of a semigroup with zero are presented by the next theorem. This gives
the main result of the theory of orthogonal decompositions of semigroups.

Theorem 3.2 [11] For an arbitrary semigroup S = S0, Idc(S) is a complete
atomic Boolean algebra and Idc(S) = B(Id(S)).

Furthermore, every complete atomic Boolean algebra is isomorphic to the
Boolean algebra of 0-consistent ideals of some semigroup with zero. �

Theorem 3.3 [11] Every semigroup with zero have a greatest orthogonal
decomposition and every summand of this decomposition is an orthogonal in-
decomposable semigroup. �

Note that summands in the greatest orthogonal decomposition of a semi-
group S = S0 are all the atoms of Idc(S).

Corollary 3.1 [11] The following conditions on a semigroup S = S0 are
equivalent:
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(i) S is orthogonal indecomposable;
(ii) S have not proper 0-consistent ideals;
(iii) (∀a, b ∈ S•) a ∼∞ b. �

3.2. The greatest decomposition into a right sum.

A semigroup S = S0 is a right sum of semigroups Sα, α ∈ Y , in notation
S = RΣα∈Y Sα, if Sα 6= 0, for all α ∈ Y , S = ∪α∈Y Sα, and Sα ∩ Sβ = 0 and
SαSβ ⊆ Sβ , for all α, β ∈ Y, α 6= β. In this case, the family D = {Sα| α ∈ Y }
is a decomposition of S into a right sum and Sα are right summands of S or
summands in D. If D and D′ are two decompositions of a semigroup S = S0

into a right sum, then we say that D is greater than D′ if each member of D is
a subset of some member of D′. A semigroup S = S0 is indecomposable into
a right sum if D = {S} is the unique decomposition of S into a right sum.

Similarly we define left sums of semigroups and the related notions and
notations.

Lemma 3.3 [12] The following conditions for an ideal A of a semigroup
S = S0 are equivalent:

(i) A is right 0-consistent;
(ii) A′ is a left ideal of S;
(iii) A is a right summand of S. �

Let we introduce a relation of the type `∼ on a semigroup S = S0 by

x `∼ y ⇔ L(x) ∩ L(y) 6= 0, for x, y ∈ S•, 0 `∼ 0.

Clearly, `∼ is reflexive and symmetric. For a ∈ S, n ∈ Z+, let

Kn(a) = {x ∈ S | x `∼ na} ∪ 0, K(a) = {x ∈ S | x `∼ ∞a} ∪ 0 = ∪n∈Z+Kn(a).

Clearly, Kn(0) = 0, for each n ∈ Z+, and Kn(a) ⊆ Kn+1(a), for all a ∈ S, n ∈
Z+. Also, let we introduce equivalences of the types κ and κn, n ∈ Z+, on S
by

a κ b ⇔ K(a) = K(b), a κn b ⇔ Kn(a) = Kn(b), (a, b ∈ S).

For a ∈ S, Ka will denote the κ-class of a. Clearly, K0 = K(0) = 0.
Let r∼ be the relation obtained by replacement of principal left by principal

right ideals in the definition for `∼, and let υ and υn, n ∈ Z+, be the relations
obtained by replacement of `∼ by r∼ in definitions for κ and κn, n ∈ Z+,
respectively, and let µ = κ ∩ υ, µn = κn ∩ υn, n ∈ Z+.

Principal right 0-consistent left ideals of a semigroup with zero characterize
the following

Theorem 3.4 [12] Let a 6= 0 be an element of a semigroup S = S0. Then
(a) K(a) is the principal right 0-consistent left ideal of S generated by a;
(b) K(a) = K0

a;
(c) K(a) contains not right 0-consistent left ideals of S different to 0 and

K(a). �

Because of Theorem 3.4, κ = `∼ ∞ on every semigroup with zero.
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Some properties of orthogonal decompositions hold also for decompositions
into a right sum:

Theorem 3.5 [12] For an arbitrary semigroup S = S0, LIdc(S) is a
complete atomic Boolean algebra and LIdc(S) = B(LId(S)). �

Theorem 3.6 [12] Every semigroup with zero have a greatest decomposition
into a right sum. �

In contrast to orthogonal decompositions, summands in the greatest decom-
position of a semigroup with zero into a right sum, sometimes could be further
decomposed into a right sum. An example for this was given in [12].

An analogue of a decomposition of a semigroup with zero into a right sum
of semigroups is a decomposition of a semigroup without zero into a right zero
band of semigroups, considered by M.Petrich in [29] and [31].

3.3. On (left, right) 0-consistent equivalences.

An equivalence ξ of a semigroup S = S0 is left (right) 0-consistent if for
x, y ∈ S, xy 6= 0 implies xy ξ x (xy 6= 0 implies xy ξ y), and ξ is 0-consistent if
it is both left and right 0-consistent. For a set X, E(X) will denote the lattice
of equivalences (equivalence relations) of X, and for a semigroup S = S0, Ec(S)
(Erc(S), E lc(S)) will denote the set of all 0-consistent (right 0-consistent, left
0-consistent) equivalences of S.

Lemma 3.4 [12] An equivalence ξ of a semigroup S = S0 is 0-consistent

(right 0-consistent, left 0-consistent) if and only if ∼⊆ ξ ( `∼⊆ ξ, r∼⊆ ξ). �

Lemma 3.5 [12] The following conditions for an equivalence ξ of a semi-
group S = S0 are equivalent:

(i) ξ is 0-consistent (right 0-consistent, left 0-consistent);
(ii) (aξ)0 is a 0-consistent (right 0-consistent, left 0-consistent) subset of S,

for every a ∈ S•;
(iii) (aξ)0 is an ideal (left ideal, right ideal) of S, for every a ∈ S•. �

Main features of sets Ec(S), Erc(S) and E lc(S) in the lattice of all equiva-
lences of a semigroup with zero and their mutual connections are given by the
following

Theorem 3.7 [12] For a semigroup S = S0, Ec(S), Erc(S) and E lc(S) are
complete sublattices of E(S). The smallest elements of Ec(S), Erc(S) and
E lc(S) are δ, κ and υ, respectively.

Furthermore, the join of an arbitrary subset of E(S) containing at least one
right 0-consistent equivalence and at last one left 0-consistent equivalence of S
is a 0-consistent equivalence of S. Especially, the join of κ and υ is δ. �

Clearly, Ec(S), Erc(S) and E lc(S) are principal dual ideals of E(S) generated
by δ, κ and υ, respectively.

By the results of the previous two sections and by Lemma 3.5. we see
a connection between the lattice Ec(S) and orthogonal decompositions and
between the lattice Erc(S) (E lc(S)) and decompositions into a right (left) sum.
Also, by Lemma 3.5. we see that decompositions into a right (left) sum are
”finer” than orthogonal decompositions.

The following proposition give other generalization of Green’s relations.
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Proposition 3.1 [12] If S = S0, then
H ⊆ µ1 ⊆ µ2 ⊆ · · · ⊆ µn ⊆ · · · ⊆ µ
∩ ∩ ∩ ∩ ∩
L ⊆ κ1 ⊆ κ2 ⊆ · · · ⊆ κn ⊆ · · · ⊆ κ
∩ ∩
J ⊆ δ1 ⊆ δ2 ⊆ · · · ⊆ δn ⊆ · · · ⊆ δ
∪ ∪
R ⊆ υ1 ⊆ υ2 ⊆ · · · ⊆ υn ⊆ · · · ⊆ υ . �

Various types of orthogonal decompositions are described in the next theo-
rems.

A semigroup S = S0 is 0-δn-simple if S has exactly two δn-classes, i.e. if
x ∼n y, for all x, y ∈ S•. The following theorem describe orthogonal sums of
0-δn-simple semigroups.

Theorem 3.8 [12] Let n ∈ Z+. Then the following conditions on a semi-
group S = S0 are equivalent:

(i) S is an orthogonal sum of 0-δn-simple semigroups;
(ii) (∀x, y, a ∈ S) xy 6= 0 ⇒ [(x ∼n a ∨ y ∼n a) ⇒ xy ∼n a];
(iii) for every a ∈ S, ∆n(a) is an ideal of S;
(iv) ∼n is an equivalence relation on S;
(v) δn is a 0-consistent equivalence on S. �
Corollary 3.2 [12] Let S be a finite semigroup. Then there exists n ∈ Z+,

n ≤ |S|, such that S is an orthogonal sum of 0-δn-simple semigroups. �
A semigroup S = S0 is 0-σ-simple (0-σn-simple, n ∈ Z+) if a −→∞ b

(a −→n b) for all a, b ∈ S•.
Theorem 3.9 [12] The following conditions on a semigroup S are equivalent:
(i) S is an orthogonal sum of 0-σ-simple semigroups;
(ii) (∀x, y ∈ S) xy 6= 0 ⇒ xσ y;
(iii) (∀x, y ∈ S) xy 6= 0 ⇒ (xy −→∞ x ∧ xy −→∞ y);
(iv) every principal radical of S is 0-consistent;
(v) every completely semiprime ideal of S is 0-consistent;
(vi) ΣS is a Kronecker’s semilattice and Σ(0) is a 0-consistent ideal of S.
Theorem 3.10 [12] Let n ∈ Z+. A semigroup S = S0 is an orthogonal sum

of 0-σn-simple semigroups if and only if

(∀x, y, a ∈ S) xy 6= 0 ⇒ [(x −→n a ∨ y −→n a) ⇒ xy −→n a].

Theorem 3.11 [25] A semigroup S = S0 is an orthogonal sum of semigroups
having 0 as a prime ideal if and only if the following conditions hold:

(a) 0 is a semiprime ideal of S; (b) (∀a, b, c ∈ S) aSb 6= 0 ∧ bSc 6= 0 ⇒
aSc 6= 0. �

Information on connections between 0-primitivity of idempotents of (π-
)regular semigroups and orthogonal decompositions the reader can find in the
former survey article of the authors [9] and in the books of A.H.Clifford and
G.B.Preston [18] and of O.Steinfeld [39].

3.4. Lattices of ideals of semigroups with zero.
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In the following section we will present some theorems that give connections
between orthogonal decompositions (decompositions into a right sum) of a
semigroup with zero and of decompositions of the lattice of its ideals (left
ideals) into a direct product.

Lemma 3.6 Let L be a bounded lattice, infinitely distributive for meets. If
{aα| α ∈ Y } is a subset of L for which

∨
α∈Y

aα = 1, aα ∧ aβ = 0, for α 6= β, α, β ∈ Y,

then L is isomorphic to the direct product of its intervals [0, aα], α ∈ Y . �
Theorem 3.12 Let L be a bounded lattice, infinitely distributive for meets.

Then L has a decomposition into a direct product of directly indecomposable
lattices if and only if B(L) is a complete atomic Boolean algebra. �

Corollary 3.3 Let L be a bounded lattice, infinitely distributive for meets.
Then L is directly indecomposable if and only if B(L) = {0, 1}. �

Theorem 3.13 [12] Let {Sα| α ∈ Y } be the greatest orthogonal decomposi-
tion of a semigroup S = S0. Then the lattice Id(S) is isomorphic to the direct
product of lattices Id(Sα), α ∈ Y , and lattices Id(Sα), α ∈ Y , are directly
indecomposable. �

Theorem 3.14 [12] The lattice of ideals of a semigroup S = S0 is directly
indecomposable if and only if S is orthogonal indecomposable. �

Theorem 3.15 [12] Let {Sα| α ∈ Y } be the greatest decomposition of a
semigroup S = S0 into a right sum. Then the lattice LId(S) is isomorphic to
the direct product of its intervals [0, Sα], α ∈ Y , which are directly indecom-
posable lattices. �

Note that for α ∈ Y , the interval [0, Sα] cannot be equal to LId(Sα). Be-
cause of that we give the following two results:

Corollary 3.4 [12] Let {Sα| α ∈ Y } be the greatest decomposition of a
semigroup S = S0 into a right sum. Then the lattice LId(S) can be embedded
into the direct product of lattices LId(Sα), α ∈ Y . �

Theorem 3.16 [12] Let {Sα| α ∈ Y } be the greatest orthogonal decompo-
sition of a semigroup S = S0. Then the lattice LId(S) is isomorphic to the
direct product of lattices LId(Sα), α ∈ Y . �

Results concerning decompositions of the lattice of ideals of a semigroup
with zero into a direct product could be naturally extended to the lattice of
ideals of a semigroup with kernel. Moreover, results concerning decompositions
of the lattice of left ideals of a semigroup with zero into a direct product could
be transferred to the lattice of left ideals of a semigroup without zero, and
in this case these decompositions are connected with decompositions of this
semigroup into a right zero band of semigroups.
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[5] S. Bogdanović, Semigroups of Galbiati-Veronesi , Algebra and Logic, Zagreb, 1984, 9-20.
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[7] S. Bogdanović and M. Ćirić, Semigroups in which the radical of every ideal is a subsemi-

group, Zbornik radova Fil. fak. Nǐs, Ser. Mat. 6 (1992), 129-135.
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[11] S. Bogdanović and M. Ćirić, Orthogonal sums of semigroups, Israel Math. J. (to appear).
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