A NEW APPROACH TO SOME GREATEST DECOMPOSITIONS OF SEMIGROUPS

Stojan Bogdanović Faculty of Economics, 18000 Niš, Yugoslavia

> Miroslav Čirić University of Niš, Yugoslavia

1. INTRODUCTION AND PRELIMINARIES

The purpose of this paper is to give a short presentation of new results concerning greatest decompositions of semigroups. The topic in question will be semilattice decompositions and decompositions of semigroups with zero: Orthogonal decompositions and decompositions into a right sum of semigroups.

The greatest semilattice decompositions were subject of interest of many mathematicians during last four decades. In this paper we present some new results of the authors [15] treating this topic. These results were obtained using a new approach to the problem and they join former results from this area.

To the difference from semilattice decompositions, studying of orthogonal decompositions and decompositions into a right sum is generally a new problem treated in the papers of the authors [11], [12].

In all the previous types of decompositions the authors use methods founded on the usage of various types of ideals (two-sided and one-sided) and the equivalence systems that generalize Green's equivalences.

This paper is divided into three chapters: In $\S1$ we introduce basic notions and notations, $\S2$ is devoted to semilattice decompositions and in $\S3$ we present the basic results concerning decompositions of semigroups with zero.

Throughout this paper, Z^+ will denote the set of all positive integers, J(a), L(a) and R(a) will denote the principal ideal, principal left ideal and the principal right ideal of a semigroup S and \mathcal{L} , \mathcal{R} , \mathcal{J} will denote Green's relations of S.

For a binary relation ξ on a set A, ξ^n , $n \in Z^+$ will denote the *n*-th power of ξ in the semigroup of binary relations on A, and ξ^{∞} will denote the transitive closure of ξ . Let \mathfrak{S} denote the class of all semigroups. By a *type of relations* we mean any family $\vartheta = \{\vartheta_S \mid S \in \mathfrak{S}\}$ of relations such that ϑ_S is a relation of S, for each $S \in \mathfrak{S}$. If $S \in \mathfrak{S}$, then we say that ϑ_S is a *relation of the type* ϑ of S, and if we consider one fixed semigroup S, then we write simply ϑ instead ϑ_S . If ϑ is a type of relations, then a semigroup S is ϑ -simple if ϑ_S is the universal relation of S.

27

Supported by Grant 0401A of RFNS through Math. Inst. SANU

SEA Bull. Math. Vol.18 No.3 (1994) 27–42
©Science Press
©CE Science Press Ltd.

Let A be a subset of a semigroup S. Then $\sqrt{A} = \{x \in S \mid (\exists n \in Z^+) x^n \in A\}$. If for $x, y \in S$, $xy \in A$ implies $x \in A$ or $y \in A$, then A is a completely prime subset of S. Clearly, the empty set is a completely prime subset of S. If for $x \in S$, $x^2 \in A$ implies $x \in A$, then A is a completely semiprime subset of S. If for $x, y \in S$, $xy \in A$ implies $x, y \in A$ ($xy \in A$ implies $x \in A$, $xy \in A$ implies $y \in A$), then A is a consistent (left consistent, right consistent) subset of S. Clearly, the empty set is a consistent subset of S.

A subset A of a semigroup $S = S^0$ is a 0-consistent (left 0-consistent, right 0-consistent) subset of S if A^{\bullet} is a consistent (left consistent, right consistent) subset of S.

A subsemigroup A of a semigroup S is a *filter* (*left filter*, *right filter*) of S if A is a consistent (right consistent, left consistent) subset of S.

Let a be an element of a semigroup S. By a principal (left, right) radical of S generated by a we mean the smallest completely semiprime (left, right) ideal of S containing a, i.e. the intersection of all completely semiprime (left, right) ideals of S containing a. By Σ_S we denote the set of all principal radicals of S. By a principal (left, right) filter of S generated by a we mean the smallest (left, right) filter of S containing a, i.e. the intersection of all (left, right) filters of S containing a.

Let A be an ideal of a semigroup S. If for $x, y \in S$, $xSy \subseteq A$ implies $x \in A$ or $y \in A$, then A is a *prime ideal* of S. It is well known that A is a prime ideal of S if and only if for ideals M, N of S, $MN \subseteq A$ implies $M \subseteq A$ or $N \subseteq A$. If for $x \in S$, $xSx \subseteq A$ implies $x \in A$, then A is a *semiprime ideal* of S.

A lattice L is bounded if it has a zero and a unity. A lattice L is complete for joins (complete for meets) if every nonempty subset of L has a join (meet) and it is complete if it is complete both for joins and for meets. An element a of a lattice L with the zero 0 is an atom of L if a > 0 and there exists no $x \in L$ such that a > x > 0. A complete Boolean algebra B is atomic if every element of B is the join of some set of atoms of B. If L is a distributive bounded lattice, then the set $\mathfrak{B}(L)$ of all elements of L having a complement in L is a Boolean algebra and it is called the greatest Boolean subalgebra of L. A lattice L complete for joins is infinitely distributive for meets if $a \land (\lor_{\alpha \in Y} x_{\alpha}) = \lor_{\alpha \in Y} (a \land x_{\alpha})$, for every $a \in S$ and every nonempty subset $\{x_{\alpha} \mid \alpha \in Y\}$ of L. A nontrivial lattice L is directly indecomposable if it has the property: When L is a direct product of lattices L_i , $i \in I$, then there exists $i \in I$ such that L_i is isomorphic to L and $|L_j| = 1$, for every $j \in I$, $j \neq i$.

For a semigroup S, $\mathcal{I}d(S)$ will denote the lattice of all ideals of S. If $S = S^0$, then $\mathcal{I}d(S)$ is a complete lattice, infinitely distributive for meets, with the zero 0 and the unity S. Also, $\mathcal{LI}d(S)$ will denote the lattice of left ideals of a semigroup S defined on the following way: if $S = S^0$, then $\mathcal{LI}d(S)$ contains all of left ideals of S, and if S is without zero, then $\mathcal{LI}d(S)$ contains the empty set and all of left ideals of S. In both of this cases $\mathcal{LI}d(S)$ is a complete lattice, infinitely distributive for meets. Clearly, for a semigroup S without zero, the lattice $\mathcal{LI}d(S)$ is isomorphic to $\mathcal{LI}d(S^0)$. If $S = S^0$, $\mathcal{I}d^{\mathbf{c}}(S)$ will denote the set of all 0-consistent ideals of S and $\mathcal{LI}d^{\mathbf{c}}(S)$ will denote the set of all right 0-consistent left ideals of S.

Let 0 be a fixed element of a set S. Then S with a multiplication defined by: xy = x, if x = y, and xy = 0, otherwise, $x, y \in S$, is a semilattice called

Kronecker's semilattice.

For undefined notions and notations we refer to [2], [6], [13], [17], [18], [30], [31] and [40].

2. SEMILATTICE DECOMPOSITIONS

Semilattice decompositions of semigroups were first defined and studied by A.H.Clifford [16], 1941. After that, several authors worked on this very important topic. A significant contribution to the Theory of semilattice decompositions of semigroups was given by T.Tamura. A series of papers concerning this topic was opened by T.Tamura and N.Kimura. In the paper [55], 1954, they considered semilattice decompositions of commutative semigroups. The same authors in [56], 1955, and M.Yamada in [62], 1955, established the existence of the greatest semilattice decomposition of an arbitrary semigroup. T.Tamura [44], 1956, proved the fundamental result that components in the greatest semilattice decomposition of a semigroup are semilattice indecomposable. In [46], 1964, he described the smallest semilattice congruence on a semigroup, using the concept of contents. Various other characterizations of this congruence were given by the same and several other authors. M.Petrich [28], 1964, gave a characterization of this congruence using completely prime ideals and filters. Another connection among these concepts was given by R.Sulka [43], 1970. T.Tamura in [50], 1972, and [52], 1973, proved that $\longrightarrow^{\infty} \cap (\longrightarrow^{\infty})^{-1}$ is the smallest semilattice congruence of a semigroup and M.S.Putcha [36], 1974, proved this for the relation $(\longrightarrow \cap \longrightarrow^{-1})^{\infty}$. Finally, M.Ćirić and S.Bogdanović [15] gave a characterization of the greatest semilattice homomorphic image of a semigroup by completely semiprime ideals. Using completely semiprime subsets and ideals they defined an equivalence system that generalizes Green's equivalences and they developed a new method in the Theory of semilattice decompositions of semigroups.

For semilattice decompositions whose components are Archimedean we refer to the former survey article of the authors [9].

In Section 2.1 we present general results concerning the greatest semilattice decomposition of a semigroup and results concerning some special cases. Section 2.2 is devoted to semilattice decompositions by the relation λ .

2.1. The greatest semilattice decomposition.

Let \mathfrak{C} be a class of semigroups. A congruence ξ of a semigroup S is a \mathfrak{C} -congruence of S if the factor S/ξ is in \mathfrak{C} . The partition and the factor determined by a \mathfrak{C} -congruence of a semigroup S are called a \mathfrak{C} -decomposition and a \mathfrak{C} -homomorphic image of S, respectively. If \mathfrak{C} is a class of all bands, we have band congruences, band decompositions and band homomorphic images, if \mathfrak{C} is a class of all semilattices, we have semilattice congruences, semilattice decompositions and semilattice homomorphic images, if \mathfrak{C} is a class of all rectangular bands, we have matrix congruences and matrix decompositions, and if \mathfrak{C} is a class of all left (right) zero bands, then we have left (right) zero congruences and left (right) zero decompositions. A \mathfrak{C} -congruence ξ of a semigroup S is a smallest \mathfrak{C} -congruence of S if ξ is contained in every \mathfrak{C} -congruence of S. The partition and the factor determined by the smallest \mathfrak{C} -congruence of S are greatest \mathfrak{C} -decomposition and greatest \mathfrak{C} -homomorphic image of S.

respectively. If \mathfrak{C} is a variety of semigroups, then every semigroup have the smallest \mathfrak{C} -congruence, i.e. the greatest \mathfrak{C} -decomposition.

On a semigroup S we define a relation of the type \longrightarrow by:

$$a \longrightarrow b \Leftrightarrow (\exists n \in Z^+) b^n \in J(a), \quad (a, b \in S).$$

Let S be a semigroup. For $a \in S$ let

$$\Sigma_n(a) = \{ x \in S \mid a \longrightarrow^n x \}, \ n \in Z^+, \quad \Sigma(a) = \{ x \in S \mid a \longrightarrow^\infty x \}.$$

An equivalent definition of these sets is the following:

$$\Sigma_1(a) = \sqrt{SaS}, \ \Sigma_{n+1}(a) = \sqrt{S\Sigma_n(a)S}, \ n \in Z^+, \ \Sigma(a) = \bigcup_{n \in Z^+} \Sigma_n(a)$$

Clearly, $\Sigma_n(a) \subseteq \Sigma_{n+1}(a)$, for each $n \in Z^+$, and $\Sigma(a)$ and $\Sigma_n(a)$, $n \in Z^+$, are completely semiprime subsets of S. On S we define *equivalences of the types* σ and σ_n , $n \in Z^+$, by

$$a \sigma b \Leftrightarrow \Sigma(a) = \Sigma(b), \qquad a \sigma_n b \Leftrightarrow \Sigma_n(a) = \Sigma_n(b),$$

 $(a, b \in S).$

Lemma 2.1 [15] Let a be an element of a semigroup S. Then $\Sigma(a)$ is the principal radical of S generated by a. \Box

Since \longrightarrow^{∞} is transitive, then $\sigma = \longrightarrow^{\infty} \cap (\longrightarrow^{\infty})^{-1}$, so the result of T.Tamura [50] describing the smallest semilattice congruence of a semigroup can be formulated on the following way:

Theorem 2.1 The relation σ on a semigroup S is the smallest semilattice congruence on S and every σ -class is semilattice indecomposable. \Box

Let $\longrightarrow (\longrightarrow)^{-1}$. M.S.Putcha [36] proved the following

Theorem 2.2 The relation $-\infty$ of a semigroup S is the smallest semilattice congruence on S, where $- = \longrightarrow \cap (\longrightarrow)^{-1}$. \Box

A characterization of the greatest semilattice homomorphic image of a semigroup by principal radicals was given by M.Ćirić and S.Bogdanović [15]. This result is the following:

Theorem 2.3 For elements a and b of a semigroup S,

$$\Sigma(ab) = \Sigma(a) \cap \Sigma(b).$$

Furthermore, the set Σ_S of all principal radicals of S, ordered by inclusion, is the greatest semilattice homomorphic image of S. \Box

Theorem 2.3 gives many important consequences. As a first, a result of the authors [15] describing principal filters of semigroups. Corollary 2.2 is a result of M.Petrich [28], [30] that characterizes the smallest semilattice congruence of a semigroup with the help of principal filters. Corollaries 2.3 and 2.4 treat the well-known problem of representation of completely semiprime ideals by intersections of completely prime ideals. In Theory of semigroups this problem was considered by K.Iséki [23] and III.IIIBapµ [42], and for its solution in the general case we refer to M.Petrich [30]. The same result was proved by the authors in [15] without use of Zorn's lemma arguments.

Let a be an element of a semigroup S. Then

$$N_n(a) = \{ x \in S \mid x \longrightarrow^n a \}, \ n \in Z^+, \quad N(a) = \{ x \in S \mid x \longrightarrow^\infty a \}.$$

Clearly, N(a) and $N_n(a)$, $n \in Z^+$, are consistent subsets of S.

Corollary 2.1 Let a be an element of a semigroup S. Then N(a) is the principal filter of S generated by a. \Box

Corollary 2.2 For elements a and b of a semigroup S, $a \sigma b$ if and only if N(a) = N(b). \Box

Corollary 2.3 Let I be a completely semiprime ideal of a semigroup S and let $a \in S$ such that $a \notin I$. Then there exists a completely prime ideal P of S such that $I \subseteq P$ and $a \notin P$. \Box

Corollary 2.4 Every completely semiprime ideal of a semigroup S is an intersection of completely prime ideals of S. \Box

Semilattice indecomposable semigroups were studied by several authors. In the next theorem T.Tamura [50] proved $(i) \Leftrightarrow (iii)$ and M.Petrich [28], [30] proved $(i) \Leftrightarrow (iv) \Leftrightarrow (v)$.

Theorem 2.4 The following conditions on a semigroup S are equivalent: (i) S is semilattice indecomposable;

(ii) S is σ -simple;

(iii) $(\forall a, b \in S) \ a \longrightarrow^{\infty} b;$

(iv) S has not proper completely semiprime ideals;

(v) S has not proper completely prime ideals. \Box

Semigroups whose greatest semilattice homomorphic image is a chain will be treated by the next theorem. The conditions (ii), (iii) and (vii) are from M.Petrich [28], [30] and the rest is the result of the authors [15].

Theorem 2.5 The following conditions on a semigroup S are equivalent:

(i) S is a chain of σ -simple semigroups;

(ii) Σ_S is a chain;

(iii) the partially ordered set of all completely prime ideals of S is a chain;

(iv) $\longrightarrow^{\infty} \cup (\longrightarrow^{\infty})^{-1}$ is equal to the universal relation of S;

(v) a union of an arbitrary nonempty family of filters of S is a filter of S;

(vi) $(\forall a, b \in S) ab \longrightarrow^{\infty} a \lor ab \longrightarrow^{\infty} b;$

(vii) every completely semiprime ideal of S is completely prime;

(viii) every principal radical of S is completely prime.

Theorem 2.6 [15] Let $n \in Z^+$. Then the following conditions on a semigroup S are equivalent:

(i) S is a band of σ_n -simple semigroups;

(ii) S is a semilattice of σ_n -simple semigroups;

- (iii) every σ_n -class of S is a subsemigroup;
- (iv) $(\forall a \in S) \ a \ \sigma_n \ a^2;$

(v) $(\forall a, b \in S) \ a \longrightarrow^n b \Rightarrow a^2 \longrightarrow^n b;$

(vi) $(\forall a, b, c \in S) \ a \longrightarrow^n c \land b \longrightarrow^n c \Rightarrow ab \longrightarrow^n c;$

(vii) for every $a \in S$, $\Sigma_n(a)$ is an ideal of S;

(viii) $(\forall a, b \in S)$ $\Sigma_n(ab) = \Sigma_n(a) \cap \Sigma_n(b);$

(ix) for every $a \in S$, $N_n(a)$ is a subsemigroup of S;

 $(\mathbf{x}) \longrightarrow^n is \ a \ quasi-order \ on \ S;$

(xi) $\sigma_n = \longrightarrow^n \cap (\longrightarrow^n)^{-1}$ on S.

Corollary 2.5 [15] Let S be a finite semigroup. Then there exists $n \in Z^+$, $n \leq |S|$, such that S is a semilattice of σ_n -simple semigroups. \Box

By Theorem 2.6 we obtain the results of R.Croisot [19], O.Anderson [1] and M.Petrich [28], [30] concerning semilattices of simple semigroups (se also A.H.Clifford and G.B.Preston [17]), and for n = 1 we obtain some results of M.S.Putcha [34], T.Tamura [49] and S.Bogdanović and M.Ćirić [7] for semilattices of Archimedean (i.e. σ_1 -simple) semigroups. M.Ćirić and S.Bogdanović [14] gave and another result:

Theorem 2.7 The following conditions on a semigroup S are equivalent: (i) S is a semilattice of Archimedean semigroups;

(ii) $(\forall a, b \in S)(\forall k \in Z^+) a^k \longrightarrow ab;$

(iii) $(\forall a, b \in S) \ a^2 \longrightarrow ab.$

Theorem 2.8 [15] Let $n \in Z^+$. Then the following conditions on a semigroup S are equivalent:

(i) S is a chain of σ_n -simple semigroups;

(ii) for every $a \in S$, $\Sigma_n(a)$ is a completely prime ideal of S;

(iii) S is a semilattice of σ_n -simple semigroups and for every $a \in S$, $\Sigma_n(a)$ is a completely prime subset of S;

(iv) S is a semilattice of σ_n -simple semigroups and for all $a, b \in S$, $ab \longrightarrow^n a$ or $ab \longrightarrow^n b$;

(v) S is a semilattice of σ_n -simple semigroups and for all $a \in S$, $a \longrightarrow^n b$ or $b \longrightarrow^n a$. \Box

A subset A of a semigroup S is *semiprimary* if

$$(\forall x, y \in S)(\exists n \in Z^+) xy \in A \Rightarrow x^n \in A \lor y^n \in A.$$

A semigroup S is *semiprimary* if all of its ideals are semiprimary [3], [4].

In [10] the authors showed that semiprimary semigroups are exactly chains of Archimedean semigroups. This is a part of the following

Theorem 2.9 The following conditions on a semigroup S are equivalent:

(i) S is a chain of Archimedean semigroups;

(ii) $(\forall a, b \in S) \ ab \longrightarrow a \lor ab \longrightarrow b;$

(iii) S is semiprimary;

(iv) for every ideal A of S, \sqrt{A} is a completely prime ideal of S;

(v) for every ideal A of S, \sqrt{A} is a completely prime subset of S. \Box

2.2. Semilattices of λ -simple semigroups.

On a semigroup S we define a relation of the type $\stackrel{l}{\longrightarrow}$ by:

$$a \xrightarrow{l} b \Leftrightarrow (\exists n \in Z^+) b^n \in L(a), \quad (a, b \in S).$$

Let a be an element of a semigroup S. Then

$$\Lambda_n(a) = \{ x \in S \mid a \longrightarrow^n x \}, \ n \in Z^+, \quad \Lambda(a) = \{ x \in S \mid a \longrightarrow^\infty x \}.$$

An equivalent definition of these sets is the following:

$$\Lambda_1(a) = \sqrt{SaS}, \ \Lambda_{n+1}(a) = \sqrt{S\Lambda_n(a)S}, \ n \in Z^+, \ \Lambda(a) = \bigcup_{n \in Z^+} \Lambda_n(a).$$

Clearly, $\Lambda_n(a) \subseteq \Lambda_{n+1}(a)$, for each $n \in Z^+$, and $\Lambda(a)$ and $\Lambda_n(a)$, $n \in Z^+$, are completely semiprime subsets of S. On S we define *equivalences of the types* λ and λ_n , $n \in Z^+$, by

$$a \lambda b \Leftrightarrow \Lambda(a) = \Lambda(b),$$
 $a \lambda_n b \Leftrightarrow \Lambda_n(a) = \Lambda_n(b), (a, b \in S).$

Lemma 2.2 [15] Let a be an element of a semigroup S. Then $\Lambda(a)$ is the principal left radical of S generated by a. \Box

If in Corollary 2.4. the expression "ideal" we replace with "left ideal", then the assertion do not holds. An example for this is the following semigroup:

 $\langle a, e \mid a^3 = a, e^2 = e, ae = ea^2 = e \rangle.$

The conditions under which every completely semiprime left ideal is an intersection of completely prime left ideals are given by:

Theorem 2.10 [15] The following conditions on a semigroup S are equivalent:

(i) every completely semiprime left ideal of S is an intersection of some family of completely prime left ideals of S;

(ii) $(\forall a, b, c \in S) \ a \xrightarrow{l} \infty c \land b \xrightarrow{l} \infty c \Rightarrow ab \xrightarrow{l} \infty c;$

(iii) for every $a \in S$, $\{x \in S \mid x \xrightarrow{l} \infty a\}$ is a subsemigroup of S. \Box

By the next theorem obtained by the authors in [15] various characterizations of semilattices of λ -simple semigroups are given. Afterwards several special cases will be treated.

Theorem 2.11 The following conditions on a semigroup S are equivalent: (i) S is semilattice of λ -simple semigroups;

(ii) $(\forall a, b \in S) \ a \xrightarrow{l} \infty ab;$

(iii) for every $a \in S$, $\Lambda(a)$ is an ideal of S;

(iv) every completely semiprime left ideal of S is an ideal of S;

(v) $(\forall a, b \in S) \Lambda(ab) = \Lambda(a) \cap \Lambda(b);$

(vi) for every $a \in S$, $\{x \in S \mid x \xrightarrow{l} \infty a\}$ is a filter of S. \Box

Theorem 2.12 [15] The following conditions on a semigroup S are equivalent:

(i) S is chain of λ -simple semigroups;

(ii) every left radical of S is a completely prime ideal of S;

(iii) S is a semilattice of λ -simple semigroups and for all $a, b \in S$, $ab \xrightarrow{l} \infty a$ or $ab \xrightarrow{l} \infty b$;

(iv) S is a semilattice of λ -simple semigroups and for all $a, b \in S$, $a \xrightarrow{l} \infty b$ or $b \xrightarrow{l} \infty a$. \Box

Theorem 2.13 [15] Let $n \in Z^+$. Then the following conditions on a semigroup S are equivalent:

(i) $\stackrel{l}{\longrightarrow}^{n}$ is a quasi-order on S;

(ii) $(\forall a \in S) \ a \lambda_n a^2;$

(iii) $(\forall a, b \in S) \ a \xrightarrow{l} b \Rightarrow a^2 \xrightarrow{l} b b;$

- (iv) for every $a \in S$, $\Lambda_n(a)$ is a left ideal of S;
- (v) $\lambda_n = \stackrel{l}{\longrightarrow}{}^n \cap (\stackrel{l}{\longrightarrow}{}^n)^{-1}.$

Theorem 2.14 [7] The following conditions on a semigroup S are equivalent:

(i) $(\forall a, b \in S) \ a \xrightarrow{l} b \Rightarrow a^2 \xrightarrow{l} b;$ (ii) $(\forall a, b \in S)(\forall k \in Z^+) \ b^k \xrightarrow{l} ab;$

(iii) $(\forall a, b \in S) \ b^2 \xrightarrow{l} ab.$

Theorem 2.15 [15] Let $n \in Z^+$. Then the following conditions on a semigroup S are equivalent:

(i) S is a semilattice of λ_n -simple semigroups;

- (ii) $a \lambda_n a^2$, for every $a \in S$, and $a \xrightarrow{l} a b$, for all $a, b \in S$;
- (iii) for every $a \in S$, $\Lambda_n(a)$ is an ideal of S;
- (iv) $(\forall a, b \in S) \Lambda_n(ab) = \Lambda_n(a) \cap \Lambda_n(b);$
- (v) for every $a \in S$, $\{x \in S \mid x \xrightarrow{l} a\}$ is a filter of S. \Box

Semilattices of left simple semigroups was studied by M.Petrich [28], [30]. Semilattices of left Archimedean (i.e. λ_1 -simple) semigroups was described by M.S.Putcha [37]. S.Bogdanović [5] gave and another characterization of these semigroups:

Theorem 2.16 The following conditions on a semigroup S are equivalent: (i) S is a semilattice of left Archimedean semigroups;

- (ii) $(\forall a, b \in S)(\forall k \in Z^+) a^k \xrightarrow{l} ab;$
- (iii) $(\forall a, b \in S) \ a \xrightarrow{l} ab.$

By \xrightarrow{r} , ρ_n , $n \in Z^+$, and ρ we denote the dual relations for \xrightarrow{l} , λ_n , $n \in Z^+$, and λ , respectively, and $\tau_n = \lambda_n \cap \rho_n$, $n \in Z^+$, and $\tau = \lambda \cap \rho$. The following proposition shows that these relations generalize well-known Green's relations.

Proposition 2.1 [15] If S is a semigroup, then

$\mathcal{H} \subseteq \tau_1 \subseteq \tau_2 \subseteq \cdots \subseteq \tau_n \subseteq \cdots \subseteq \tau$
$\mathcal{L} \subseteq \lambda_1 \subseteq \lambda_2 \subseteq \cdots \subseteq \lambda_n \subseteq \cdots \subseteq \lambda$
$\mathcal{J} \subseteq \sigma_1 \subseteq \sigma_2 \subseteq \cdots \subseteq \sigma_n \subseteq \cdots \subseteq \sigma$
$\mathcal{R} \subseteq \rho_1 \subseteq \rho_2 \subseteq \cdots \subseteq \rho_n \subseteq \cdots \subseteq \rho$.

In contrast to semilattices and bands of σ_n -simple semigroups, semilattices and bands of λ - (λ_n -) simple semigroups do not determine the same class of semigroups. M.S.Putcha [35] described bands of left Archimedean and bands of t-Archimedean (i.e. τ_1 -simple) semigroups.

Note that the congruence of a semigroup generated by τ is the smallest band congruence of this semigroup.

3. DECOMPOSITIONS OF SEMIGROUPS WITH ZERO

Some "classical" types of decompositions, like decompositions into a right and a left zero band of semigroups and matrix decompositions, degenerate in semigroups with zero. This requires some new decomposition methods specific to semigroups with zero. Here we present two such methods: Orthogonal decompositions and decompositions into a right sum of semigroups. Orthogonal decompositions of semigroups were first defined and studied by E.C. Ляпин [26], [27], 1950, and by III.IIIварц [41], 1951. After that, these decompositions were considered by many authors in several special cases (more informations about these the reader can find in the books [18] and [39] and in the survey article [9]). The existence of the greatest orthogonal decomposition of a semigroup with zero was established by S.Bogdanović and M.Ćirić [11]. In the same paper the authors proved also that summands of the greatest orthogonal decomposition of a semigroup with zero are orthogonal indecomposable. This result shouts to (but does not follow from) the existence of the smallest F-congruence of a semigroup, for a given finite set of identities F, discussed by T.Tamura, N.Kimura, M.Yamada, A.H.Clifford and G.B.Preston in 1955–65.

Decompositions of semigroups with zero into a right sum of semigroups are an analogue of decompositions of semigroups without zero into a right zero band of semigroups. For such decompositions the authors in [12] obtained results similar to the ones for orthogonal decompositions. A difference is that sometimes summands in the greatest decomposition into a right sum could be further decomposed into a right sum.

The author's approach to the question of decompositions of semigroups with zero, presented in this paper, is different from the one used by J.Dieudonné [20], 1942, in Theory of rings, and by III.IIIBapµ [41], 1951, in Theory of semigroups. Their main tools were the cocle and 0-minimal ideals (two-sided and one-sided). Here the main role is captured by (right) 0-consistent (left) ideals. Note that the notion of (right, left) consistent subset was introduced by P.Dubreil [21], 1941. Also, the author's approach differs from the one of G.Lallement and M.Petrich [25], which studied decompositions of semigroups with zero by congruences whose corresponding factors are 0-rectangular bands. Instead of making of decompositions by congruences, the authors in [12] used (right) 0-consistent equivalences and other equivalence system that generalizes Green's relations.

In Sections 3.1 and 3.2 we treat the greatest orthogonal decomposition and the greatest decomposition into a right sum, respectively. In Section 3.3 we consider left 0-consistent, right 0-consistent and 0-consistent equivalences of a semigroup with zero, their mutual connections and connections with decompositions mentioned above. Results presented there give also mutual connections between these types of decompositions. Finally, in Section 3.4 we present a connection between these decompositions and decompositions of the lattice of ideals of a semigroup with zero into a direct product.

3.1. The greatest orthogonal decomposition.

A semigroup $S = S^0$ is an orthogonal sum of semigroups S_{α} , $\alpha \in Y$, in notation $S = \sum_{\alpha \in Y} S_{\alpha}$, if $S_{\alpha} \neq 0$, for all $\alpha \in Y$, $S = \bigcup_{\alpha \in Y} S_{\alpha}$ and $S_{\alpha} \cap S_{\beta} =$ $S_{\alpha}S_{\beta} = 0$, for all $\alpha, \beta \in Y$, $\alpha \neq \beta$. In this case, the family $\mathcal{D} = \{S_{\alpha} | \alpha \in Y\}$ is an orthogonal decomposition of S and S_{α} are orthogonal summands of S or summands in \mathcal{D} . If \mathcal{D} and \mathcal{D}' are two orthogonal decompositions of a semigroup $S = S^0$, then we say that \mathcal{D} is greater than \mathcal{D}' if each member of \mathcal{D} is a subset of some member of \mathcal{D}' . A semigroup $S = S^0$ is orthogonal indecomposable if $\mathcal{D} = \{S\}$ is the unique orthogonal decomposition of S.

Lemma 3.1 [11] The following conditions for an ideal A of a semigroup

 $S = S^0$ are equivalent:

- (i) A is 0-consistent;
- (ii) A' is an ideal of S;
- (iii) A is an orthogonal summand of S. \Box

Let we introduce a relation of the type \sim on a semigroup $S = S^0$ by

 $x \sim y \Leftrightarrow J(x) \cap J(y) \neq 0$, for $x, y \in S^{\bullet}$, $0 \sim 0$.

Clearly, \sim is reflexive and symmetric. For $a \in S$, $n \in Z^+$, let

$$\Delta_n(a) = \{ x \in S \mid x \sim^n a \} \cup 0, \quad \Delta(a) = \{ x \in S \mid x \sim^\infty a \} \cup 0 = \bigcup_{n \in Z^+} \Delta_n(a).$$

Clearly, $\Delta_n(0) = 0$, for each $n \in Z^+$, and $\Delta_n(a) \subseteq \Delta_{n+1}(a)$, for all $a \in S$, $n \in Z^+$. Also, let we introduce *equivalences of the types* δ and δ_n , $n \in Z^+$, on S by

$$a \,\delta b \, \Leftrightarrow \, \Delta(a) = \Delta(b), \qquad a \,\delta_n \,b \, \Leftrightarrow \, \Delta_n(a) = \Delta_n(b),$$

 $(a, b \in S)$. For $a \in S$, Δ_a will denote the δ -class of a. Clearly, $\Delta_0 = \Delta(0) = 0$, and $\delta_n \subseteq \sim^n$, for each $n \in Z^+$.

By the following theorem principal 0-consistent ideals of a semigroup with zero are described.

Theorem 3.1 [11] Let $a \neq 0$ be an element of a semigroup $S = S^0$. Then

(a) $\Delta(a)$ is the principal 0-consistent ideal of S generated by a;

(b) $\Delta(a) = \Delta_a^0$;

(c) $\Delta(a)$ is an orthogonal indecomposable semigroup.

Because of Theorem 3.1, it follows that $\delta = \sim^{\infty}$ on every semigroup with zero.

Lemma 3.2 [12] Let A be a 0-consistent ideal of a semigroup $S = S^0$. Then

$$\mathcal{LId}(A) \subseteq \mathcal{LId}(S), \ \mathcal{LId}^{\mathbf{c}}(A) \subseteq \mathcal{LId}^{\mathbf{c}}(S),$$
$$\mathcal{Id}(A) \subseteq \mathcal{Id}(S), \ \mathcal{Id}^{\mathbf{c}}(A) \subseteq \mathcal{Id}^{\mathbf{c}}(S). \quad \Box$$

Important features of the set of all 0-consistent ideals in the lattice of all ideals of a semigroup with zero are presented by the next theorem. This gives the main result of the theory of orthogonal decompositions of semigroups.

Theorem 3.2 [11] For an arbitrary semigroup $S = S^0$, $\mathcal{I}d^{\mathbf{c}}(S)$ is a complete atomic Boolean algebra and $\mathcal{I}d^{\mathbf{c}}(S) = \mathfrak{B}(\mathcal{I}d(S))$.

Furthermore, every complete atomic Boolean algebra is isomorphic to the Boolean algebra of 0-consistent ideals of some semigroup with zero. \Box

Theorem 3.3 [11] Every semigroup with zero have a greatest orthogonal decomposition and every summand of this decomposition is an orthogonal indecomposable semigroup. \Box

Note that summands in the greatest orthogonal decomposition of a semigroup $S = S^0$ are all the atoms of $\mathcal{I}d^{\mathbf{c}}(S)$.

Corollary 3.1 [11] The following conditions on a semigroup $S = S^0$ are equivalent:

(i) S is orthogonal indecomposable;

(ii) S have not proper 0-consistent ideals;

(iii) $(\forall a, b \in S^{\bullet}) \ a \sim^{\infty} b.$

3.2. The greatest decomposition into a right sum.

A semigroup $S = S^0$ is a right sum of semigroups S_{α} , $\alpha \in Y$, in notation $S = \mathbb{R}\Sigma_{\alpha \in Y}S_{\alpha}$, if $S_{\alpha} \neq 0$, for all $\alpha \in Y$, $S = \bigcup_{\alpha \in Y}S_{\alpha}$, and $S_{\alpha} \cap S_{\beta} = 0$ and $S_{\alpha}S_{\beta} \subseteq S_{\beta}$, for all $\alpha, \beta \in Y$, $\alpha \neq \beta$. In this case, the family $\mathcal{D} = \{S_{\alpha} \mid \alpha \in Y\}$ is a decomposition of S into a right sum and S_{α} are right summands of S or summands in \mathcal{D} . If \mathcal{D} and \mathcal{D}' are two decompositions of a semigroup $S = S^0$ into a right sum, then we say that \mathcal{D} is greater than \mathcal{D}' if each member of \mathcal{D} is a subset of some member of \mathcal{D}' . A semigroup $S = S^0$ is indecomposable into a right sum if $\mathcal{D} = \{S\}$ is the unique decomposition of S into a right sum.

Similarly we define *left sums* of semigroups and the related notions and notations.

Lemma 3.3 [12] The following conditions for an ideal A of a semigroup $S = S^0$ are equivalent:

- (i) A is right 0-consistent;
- (ii) A' is a left ideal of S;

(iii) A is a right summand of S. \Box

Let we introduce a relation of the type $\stackrel{\ell}{\sim}$ on a semigroup $S = S^0$ by

$$x \stackrel{\ell}{\sim} y \Leftrightarrow L(x) \cap L(y) \neq 0, \quad \text{for } x, y \in S^{\bullet}, \qquad 0 \stackrel{\ell}{\sim} 0.$$

Clearly, $\stackrel{\ell}{\sim}$ is reflexive and symmetric. For $a \in S, n \in Z^+$, let

$$\mathbf{K}_n(a) = \{ x \in S \mid x \stackrel{\ell}{\sim} {}^n a \} \cup 0, \quad \mathbf{K}(a) = \{ x \in S \mid x \stackrel{\ell}{\sim} {}^\infty a \} \cup 0 = \bigcup_{n \in Z^+} \mathbf{K}_n(a).$$

Clearly, $K_n(0) = 0$, for each $n \in Z^+$, and $K_n(a) \subseteq K_{n+1}(a)$, for all $a \in S$, $n \in Z^+$. Also, let we introduce equivalences of the types κ and κ_n , $n \in Z^+$, on S by

$$a \kappa b \Leftrightarrow \mathbf{K}(a) = \mathbf{K}(b), \qquad a \kappa_n b \Leftrightarrow \mathbf{K}_n(a) = \mathbf{K}_n(b), \qquad (a, b \in S).$$

For $a \in S$, K_a will denote the κ -class of a. Clearly, $K_0 = K(0) = 0$.

Let $\stackrel{r}{\sim}$ be the relation obtained by replacement of principal left by principal right ideals in the definition for $\stackrel{\ell}{\sim}$, and let v and v_n , $n \in Z^+$, be the relations obtained by replacement of $\stackrel{\ell}{\sim}$ by $\stackrel{r}{\sim}$ in definitions for κ and κ_n , $n \in Z^+$, respectively, and let $\mu = \kappa \cap v$, $\mu_n = \kappa_n \cap v_n$, $n \in Z^+$.

Principal right 0-consistent left ideals of a semigroup with zero characterize the following

Theorem 3.4 [12] Let $a \neq 0$ be an element of a semigroup $S = S^0$. Then

(a) K(a) is the principal right 0-consistent left ideal of S generated by a;

(b) $K(a) = K_a^0$;

(c) K(a) contains not right 0-consistent left ideals of S different to 0 and K(a). \Box

Because of Theorem 3.4, $\kappa = \stackrel{\ell}{\sim} \infty$ on every semigroup with zero.

Some properties of orthogonal decompositions hold also for decompositions into a right sum:

Theorem 3.5 [12] For an arbitrary semigroup $S = S^0$, $\mathcal{LId}^{\mathbf{c}}(S)$ is a complete atomic Boolean algebra and $\mathcal{LId}^{\mathbf{c}}(S) = \mathfrak{B}(\mathcal{LId}(S))$. \Box

Theorem 3.6 [12] Every semigroup with zero have a greatest decomposition into a right sum. \Box

In contrast to orthogonal decompositions, summands in the greatest decomposition of a semigroup with zero into a right sum, sometimes could be further decomposed into a right sum. An example for this was given in [12].

An analogue of a decomposition of a semigroup with zero into a right sum of semigroups is a decomposition of a semigroup without zero into a right zero band of semigroups, considered by M.Petrich in [29] and [31].

3.3. On (left, right) 0-consistent equivalences.

An equivalence ξ of a semigroup $S = S^0$ is left (right) 0-consistent if for $x, y \in S, xy \neq 0$ implies $xy \xi x (xy \neq 0$ implies $xy \xi y$), and ξ is 0-consistent if it is both left and right 0-consistent. For a set $X, \mathcal{E}(X)$ will denote the *lattice* of equivalences (equivalence relations) of X, and for a semigroup $S = S^0, \mathcal{E}^{\mathbf{c}}(S)$ ($\mathcal{E}^{\mathbf{rc}}(S), \mathcal{E}^{\mathbf{lc}}(S)$) will denote the set of all 0-consistent (right 0-consistent, left 0-consistent) equivalences of S.

Lemma 3.4 [12] An equivalence ξ of a semigroup $S = S^0$ is 0-consistent (right 0-consistent, left 0-consistent) if and only if $\sim \subseteq \xi$ ($\stackrel{r}{\sim} \subseteq \xi$). \Box

Lemma 3.5 [12] The following conditions for an equivalence ξ of a semigroup $S = S^0$ are equivalent:

(i) ξ is 0-consistent (right 0-consistent, left 0-consistent);

(ii) $(a\xi)^0$ is a 0-consistent (right 0-consistent, left 0-consistent) subset of S, for every $a \in S^{\bullet}$;

(iii) $(a\xi)^0$ is an ideal (left ideal, right ideal) of S, for every $a \in S^{\bullet}$. \Box

Main features of sets $\mathcal{E}^{\mathbf{c}}(S)$, $\mathcal{E}^{\mathbf{rc}}(S)$ and $\mathcal{E}^{\mathbf{lc}}(S)$ in the lattice of all equivalences of a semigroup with zero and their mutual connections are given by the following

Theorem 3.7 [12] For a semigroup $S = S^0$, $\mathcal{E}^{\mathbf{c}}(S)$, $\mathcal{E}^{\mathbf{rc}}(S)$ and $\mathcal{E}^{\mathbf{lc}}(S)$ are complete sublattices of $\mathcal{E}(S)$. The smallest elements of $\mathcal{E}^{\mathbf{c}}(S)$, $\mathcal{E}^{\mathbf{rc}}(S)$ and $\mathcal{E}^{\mathbf{lc}}(S)$ are δ , κ and v, respectively.

Furthermore, the join of an arbitrary subset of $\mathcal{E}(S)$ containing at least one right 0-consistent equivalence and at last one left 0-consistent equivalence of S is a 0-consistent equivalence of S. Especially, the join of κ and v is δ . \Box

Clearly, $\mathcal{E}^{\mathbf{c}}(S)$, $\mathcal{E}^{\mathbf{rc}}(S)$ and $\mathcal{E}^{\mathbf{lc}}(S)$ are principal dual ideals of $\mathcal{E}(S)$ generated by δ , κ and v, respectively.

By the results of the previous two sections and by Lemma 3.5. we see a connection between the lattice $\mathcal{E}^{\mathbf{c}}(S)$ and orthogonal decompositions and between the lattice $\mathcal{E}^{\mathbf{rc}}(S)$ ($\mathcal{E}^{\mathbf{lc}}(S)$) and decompositions into a right (left) sum. Also, by Lemma 3.5. we see that decompositions into a right (left) sum are "finer" than orthogonal decompositions.

The following proposition give other generalization of Green's relations.

Proposition 3.1 [12] If $S = S^0$, then

Various types of orthogonal decompositions are described in the next theorems.

A semigroup $S = S^0$ is $0 - \delta_n$ -simple if S has exactly two δ_n -classes, i.e. if $x \sim^n y$, for all $x, y \in S^{\bullet}$. The following theorem describe orthogonal sums of $0 - \delta_n$ -simple semigroups.

Theorem 3.8 [12] Let $n \in Z^+$. Then the following conditions on a semigroup $S = S^0$ are equivalent:

(i) S is an orthogonal sum of $0-\delta_n$ -simple semigroups;

(ii) $(\forall x, y, a \in S) \ xy \neq 0 \Rightarrow [(x \sim^n a \lor y \sim^n a) \Rightarrow xy \sim^n a];$

(iii) for every $a \in S$, $\Delta_n(a)$ is an ideal of S;

(iv) \sim^n is an equivalence relation on S;

(v) δ_n is a 0-consistent equivalence on S.

Corollary 3.2 [12] Let S be a finite semigroup. Then there exists $n \in Z^+$, $n \leq |S|$, such that S is an orthogonal sum of $0 - \delta_n$ -simple semigroups. \Box

A semigroup $S = S^0$ is $0 \text{-}\sigma \text{-simple}$, $n \in Z^+$ if $a \longrightarrow^{\infty} b$ $(a \longrightarrow^n b)$ for all $a, b \in S^{\bullet}$.

Theorem 3.9 [12] The following conditions on a semigroup S are equivalent: (i) S is an orthogonal sum of 0- σ -simple semigroups:

(ii) $(\forall x, y \in S) xy \neq 0 \Rightarrow x \sigma y;$

(iii) $(\forall x, y \in S) xy \neq 0 \Rightarrow (xy \longrightarrow^{\infty} x \land xy \longrightarrow^{\infty} y);$

(iv) every principal radical of S is 0-consistent;

(v) every completely semiprime ideal of S is 0-consistent;

(vi) Σ_S is a Kronecker's semilattice and $\Sigma(0)$ is a 0-consistent ideal of S.

Theorem 3.10 [12] Let $n \in Z^+$. A semigroup $S = S^0$ is an orthogonal sum of 0- σ_n -simple semigroups if and only if

$$(\forall x, y, a \in S) \ xy \neq 0 \ \Rightarrow \ [(x \longrightarrow^n a \lor \ y \longrightarrow^n a) \ \Rightarrow \ xy \longrightarrow^n a].$$

Theorem 3.11 [25] A semigroup $S = S^0$ is an orthogonal sum of semigroups having 0 as a prime ideal if and only if the following conditions hold:

(a) 0 is a semiprime ideal of S; (b) $(\forall a, b, c \in S) \ aSb \neq 0 \land bSc \neq 0 \Rightarrow aSc \neq 0$. \Box

Information on connections between 0-primitivity of idempotents of $(\pi$ -)regular semigroups and orthogonal decompositions the reader can find in the former survey article of the authors [9] and in the books of A.H.Clifford and G.B.Preston [18] and of O.Steinfeld [39].

3.4. Lattices of ideals of semigroups with zero.

In the following section we will present some theorems that give connections between orthogonal decompositions (decompositions into a right sum) of a semigroup with zero and of decompositions of the lattice of its ideals (left ideals) into a direct product.

Lemma 3.6 Let L be a bounded lattice, infinitely distributive for meets. If $\{a_{\alpha} \mid \alpha \in Y\}$ is a subset of L for which

$$\bigvee_{\alpha \in Y} a_{\alpha} = 1, \qquad a_{\alpha} \wedge a_{\beta} = 0, \text{ for } \alpha \neq \beta, \alpha, \beta \in Y,$$

then L is isomorphic to the direct product of its intervals $[0, a_{\alpha}], \alpha \in Y$. \Box

Theorem 3.12 Let L be a bounded lattice, infinitely distributive for meets. Then L has a decomposition into a direct product of directly indecomposable lattices if and only if $\mathfrak{B}(L)$ is a complete atomic Boolean algebra. \Box

Corollary 3.3 Let L be a bounded lattice, infinitely distributive for meets. Then L is directly indecomposable if and only if $\mathfrak{B}(L) = \{0,1\}$. \Box

Theorem 3.13 [12] Let $\{S_{\alpha} | \alpha \in Y\}$ be the greatest orthogonal decomposition of a semigroup $S = S^0$. Then the lattice $\mathcal{I}d(S)$ is isomorphic to the direct product of lattices $\mathcal{I}d(S_{\alpha}), \alpha \in Y$, and lattices $\mathcal{I}d(S_{\alpha}), \alpha \in Y$, are directly indecomposable. \Box

Theorem 3.14 [12] The lattice of ideals of a semigroup $S = S^0$ is directly indecomposable if and only if S is orthogonal indecomposable. \Box

Theorem 3.15 [12] Let $\{S_{\alpha} | \alpha \in Y\}$ be the greatest decomposition of a semigroup $S = S^0$ into a right sum. Then the lattice $\mathcal{LId}(S)$ is isomorphic to the direct product of its intervals $[0, S_{\alpha}], \alpha \in Y$, which are directly indecomposable lattices. \Box

Note that for $\alpha \in Y$, the interval $[0, S_{\alpha}]$ cannot be equal to $\mathcal{LId}(S_{\alpha})$. Because of that we give the following two results:

Corollary 3.4 [12] Let $\{S_{\alpha} | \alpha \in Y\}$ be the greatest decomposition of a semigroup $S = S^0$ into a right sum. Then the lattice $\mathcal{LId}(S)$ can be embedded into the direct product of lattices $\mathcal{LId}(S_{\alpha}), \alpha \in Y$. \Box

Theorem 3.16 [12] Let $\{S_{\alpha} | \alpha \in Y\}$ be the greatest orthogonal decomposition of a semigroup $S = S^0$. Then the lattice $\mathcal{LId}(S)$ is isomorphic to the direct product of lattices $\mathcal{LId}(S_{\alpha}), \alpha \in Y$. \Box

Results concerning decompositions of the lattice of ideals of a semigroup with zero into a direct product could be naturally extended to the lattice of ideals of a semigroup with kernel. Moreover, results concerning decompositions of the lattice of left ideals of a semigroup with zero into a direct product could be transferred to the lattice of left ideals of a semigroup without zero, and in this case these decompositions are connected with decompositions of this semigroup into a right zero band of semigroups.

References

- [1] O. Anderson, Ein Bericht uber Structur abstrakter Halbgruppen, Thesis, Hamburg, 1952.
- [2] G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Publ. 25, Providence, 1967, (3rd. edition).
- [3] S. Bogdanović, A note on strongly reversible semiprimary semigroups, Publ. Inst. Math. 28 (42) (1980), 19-23.
- [4] S. Bogdanović, r-semigrupe, Zbornik radova PMF Novi Sad, 10 (1980), 149-152.

- [5] S. Bogdanović, Semigroups of Galbiati-Veronesi, Algebra and Logic, Zagreb, 1984, 9-20.
- [6] S. Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math. Novi Sad, 1985.
- [7] S. Bogdanović and M. Ćirić, Semigroups in which the radical of every ideal is a subsemigroup, Zbornik radova Fil. fak. Niš, Ser. Mat. 6 (1992), 129-135.
- [8] S. Bogdanović and M. Cirić, Primitive π-regular semigroups, Proc. Japan. Acad. 68, Ser A, 10 (1992), 334-337.
- [9] S. Bogdanović and M. Ćirić, Semilattices of Archimedean semigroups and (completely) π-regular semigroups. I (A survey), Zb. rad. Fil. fak. (Niš), Ser. Mat. 7 (1993), 1-40.
- [10] S. Bogdanović and M. Ćirić, Chains of Archimedean semigroups (Semiprimary semigroups), Indian J. Pure Appl. Math. (to appear).
- [11] S. Bogdanović and M. Ćirić, Orthogonal sums of semigroups, Israel Math. J. (to appear).
- [12] S. Bogdanović and M. Ćirić, Decompositions of semigroups with zero, (to appear).
- [13] S. Bogdanović and M. Ćirić, Semigroups (in Serbian), Prosveta, Niš, 1993.
- [14] M. Ćirić and S. Bogdanović, Decompositions of semigroups induced by identities, Semigroup Forum (to appear).
- [15] M. Cirić and S. Bogdanović, Semilattice decompositions of semigroups, Semigroup Forum (to appear).
- [16 A. H. Clifford, Semigroups admitting relative inverses, Annals of Math. (2) 42 (1941), 1037-1049.
- [17] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups I, Amer. Math. Soc. 1961.
- [18] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups II, Amer. Math. Soc. 1967.
- [19] R. Croisot, Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. Sci. Ecole Norm. Sup. (3), 70 (1953), 361-379.
- [20] J. Dieudonné, Sur le socle d'un anneaux et les anneaux simple infinis, Bull. Soc. Math. France 70 (1942), 46-75.
- [21] P. Dubreil, Contibution a la theorie des demi-groupes, Mem. Acad. Sci. Instr. France, (2) 63, 3 (1941), 1-52.
- [22] T. Hall, On the natural order of *J*-class and of idempotents in a regular semigroup, Glasgow Math. J. 11 (1970), 167-168.
- [23] K. Iséki, Contibution to the theory of semigroups, IV, Proc. Japan Acad. 32 (1956), 430-435.
- [24] W. Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingung, Math. Ann. 101 (1929), 729-744.
- [25] G. Lallement and M. Petrich, Décomposition I-matricielles d'une demi-groupe, J. Math. Pures Appl. 45 (1966), 67-117.
- [26] Е. С. Ляпин, Нормальные комплексы ассоциативных систем, Изв. АН СССР, 14 (1950), 179-192.
- [27] Е. С. Ляпин, Полупростые коммутативные ассоциативные системы, Изв. АН СССР, 14 (1950), 367-380.
- [28] M. Petrich, The maximal semilattice decomposition of a semigroup, Math. Zeitschr. 85 (1964), 68-82.
- [29] M. Petrich, The maximal matrix decomposition of a semigroup, Portugaliae Math. 25 (1966), 15-33.
- [30] M. Petrich, Introduction to semigroups, Merill, Ohio, 1973.
- [31] M. Petrich, Lectures in semigroups, Akad. Verlag, Berlin, 1977.
- [32] G. B. Preston, Matrix representations of inverse semigroups, J. Australian Math. Soc. 9 (1969), 29-61.
- [33] P. Protić, A new proof of Putcha's theorem, PU. M. A. Ser. A. Vol. 2 (1991), 3-4, 281-284.
- [34] M. S. Putcha, Semilattice decomposition of semigroups, Semigroup Forum 6 (1973), 12-34.
- [35] M. S. Putcha, Bands of t-archimedean semigroups, Semigroup Forum 6 (1973), 232-239.
- [36] M. S. Putcha, Minimal sequences in semigroups, Trans. Amer. Math. Soc. 189 (1974), 93-106.

- [37] M. S. Putcha, Rings which are semilattices of Archimedean semigroups, Semigroup Forum 23 (1981), 1-5.
- [38] O. Steinfeld, On semigroups which are unions of completely 0-simple semigroups, Czech. Math. J. 16 (1966), 63-69.
- [39] O. Steinfeld, Quasi-ideals ind rings and semigroups, Akad. Kiadó, Budapest, 1978.
- [40] G. Szász, Théorie des treillis, Akadémiai Kiadó, Budapest, et Dunod, Paris, 1971.
- [41] Ш. Шварц, О полугруппах имеющих ядро, Сzech. Math. J. 1 (76) (1951), 259-301.
- [42] Ш. Шварц, О некоторой связи Галуа в теории характеров полугрупп, Czech. Math. J. 4 (1956), 296-313.
- [43] R. Šulka, The maximal semilattice decomposition of a semigroup, radicals and nilpotency, Mat. časopis 20 (1970), 172-180.
- [44] T. Tamura, The theory of construction of finite semigroups I, Osaka Math. J. 8 (1956), 243-261.
- [45] T. Tamura, The theory of construction of finite semigroups II, Osaka Math. J. 9 (1957), 1-42.
- [46] T. Tamura, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Japan Acad. 40 (1964), 777-780.
- [47] T. Tamura, Maximal or greatest homomorphic image of given type, Canad. J. Math. 20 (1968), 264-271.
- [48] T. Tamura, The study of closets and free contents related to semilattice decomposition of semigroups, Semigroups, Acad. Press, New York, 1969 (Ed. K. W. Folley), 221-259.
- [49] T. Tamura, On Putcha's theorem concerning semilattice of Archimedean semigroups, Semigroup Forum 4 (1972), 83-86.
- [50] T. Tamura, Note on the greatest semilattice decomposition of semigroups, Semigroup Forum 4 (1972), 255-261.
- [51] T. Tamura, Semilattice congruences viewed from quasi-orders, Proc. Amer. Math. Soc. 41 (1973), 75-79.
- [52] T. Tamura, Remark on the smallest semilattice congruence, Semigroup Forum 5 (1973), 277-282.
- [53] T. Tamura, Quasi-orders, generalized Archimedeaness, semilattice decompositions, Math. Nachr. 68 (1975), 201-220.
- [54] T. Tamura, Semilattice indecomposable semigroups with a unique idempotent, Semigroup Forum 24 (1982), 77-82.
- [55] T. Tamura and N. Kimura, On decompositions of a commutative semigroup, Kodai Math. Sem. Rep. 4 (1954), 109-112.
- [56] T. Tamura and N. Kimura, Existence of greatest decomposition of a semigroup, Kodai Math. Sem. Rep. 7 (1955), 83-84.
- [57] G. Thierrin, Quelques propriétiés des sous-groupoides consistants d'un demi-groupe abélien, C. R. Acad. Sci. Paris 236 (1953), 1837-1839.
- [58] G. Thierrin, Sur quelques propriétiés de certaines classes de demi-groupes, C. R. Acad. Sci. Paris 239 (1954), 1335-1337.
- [59] G. Thierrin, Sur quelques décompositions des groupoides, C. R. Acad. Sci. Paris 242 (1956), 596-598.
- [60] P. S. Venkatesan, On a class of inverse semigroups, Amer. J. Math. 84 (1962), 578-582.
- [61] P. S. Venkatesan, On decomposition of semigroups with zero, Math. Zeitsch. 92 (1966), 164-174.
- [62] M. Yamada, On the greatest semilattice decomposition of a semigroup, Kodai Mat. Sem. Rep. 7 (1955), 59-62.