Miroslav Čirić & Stojan Bogdanović RÉDEI'S BAND OF PERIODIC $\widetilde{\mathcal{H}}$ -GROUPS

(Received 30.05.1989.)

ABSTRACT: In this paper we consider $\mbox{\rm GU}_{n+1}\mbox{-semigroups}$ i.e. semigroups with the following condition:

$$(\forall x_1, x_2, \dots, x_{n+1})(\exists m) \quad (x_1 x_2 \dots x_{n+1})^m \in \langle x_1 \rangle \bigcup \langle x_2 \rangle \bigcup \dots \bigcup \langle x_{n+1} \rangle$$

and we prove that S is a π -regular GU_{n+1} -semigroup if and only if S is a Rédei's band of periodic nil-extensions of groups (π -groups).

1. INTRODUCTION AND PRELIMINARIES

A semigroup S is a U-semigroup if the union of every two subsemigroups of S is a subsemigroup of S, which is equivalent with $xy \in \langle x \rangle \bigcup \langle y \rangle$ for all $x,y \in S$. These semigroups have been considered more a time in conection with a study of lattices of subsemigroups of some semigroup. S is a GU-semigroup if for every $x,y \in S$ there exists $m \in Z^+$ such that $(xy)^m \in \langle x \rangle \bigcup \langle y \rangle$, [2]. An other generalization for U-semigroups is the notion of U_{n+1} -semigroup: S is a U_{n+1} -semigroup if $x_1x_2...x_{n+1} \in \langle x_1 \rangle \bigcup \langle x_2 \rangle \bigcup ... \bigcup \langle x_{n+1} \rangle$ for every $x_1,x_2,...,x_{n+1} \in S$, [6]. In this paper we consider a semigroup for which the following condition holds:

 $\begin{array}{c} (\forall \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n+1}) (\ \exists \ \mathbf{m}) \ (\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_{n+1})^m \in \langle \mathbf{x}_1 \rangle \bigcup \langle \mathbf{x}_2 \rangle \bigcup \dots \bigcup \langle \mathbf{x}_{n+1} \rangle. \\ \text{Such a semigroup we call } \ \mathsf{GU}_{n+1} \text{-} \underline{\mathsf{semigroup}} \ (\ \underline{\mathsf{generalized}} \ \mathsf{U}_{n+1} \text{-} \underline{\mathsf{semigroup}}) \ . \end{array}$

A semigroup S is a Rédei's band if $xy \in \{x,y\}$ AMS Subject Classification (1980): Primary 20 M for all $x,y \in S$. S is a \mathfrak{N} -regular semigroup if for every $a \in S$ there exists $m \in Z^+$ such that $a^m \in a^m S a^m$. S is a \mathfrak{N} -group if S is a nil-extension of a group. The main result of this paper is the following: S is a $(\mathfrak{N}$ -)regular GU_{n+1} -semigroup if and only if S is a Rédei's band of periodic $(\mathfrak{N}$ -)groups.

For non defined notions and notations we refer to [1] and [8].

2. A GUn+1-SEMIGROUP

DEFINITION 2.1. Let $n \in \mathbb{Z}^+$. A semigroup S is a generalized U_{n+1} -semigroup or simply GU_{n+1} -semigroup if S satisfies the following condition:

$$(\forall x_1,x_2,\ldots,x_{n+1})(\exists m) \ (x_1x_2\ldots x_{n+1})^m \in \langle x_1\rangle \bigcup \langle x_2\rangle \bigcup \ldots \bigcup \langle x_{n+1}\rangle \ .$$

A group G is a GU_{n+1} -group if G is a GU_{n+1} -semigroup.

A ${\rm GU_2-semigroup}$ (${\rm GU_2-group}$) we call simply ${\rm GU-semigroup}$ (${\rm GU-group}$) .

THEOREM 2.1. The following conditions are equivalent:

- (i) G is a GUn+1-group;
- (ii) G is a GU-group;
- (iii) G is a periodic group .

Proof. (i) \Rightarrow (iii). Let G be a GU_{n+1}-group with the identity element e . Let $x \in G$. If n+1=2k, $k \in Z^+$, then

$$e = ((xx^{-1})^k)^m \in \langle x \rangle | \langle x^{-1} \rangle$$

for some $m \in Z^+$, so $e \in \langle x \rangle$. If n+1=2k+1, $k \in Z^+$, then there exists $m \in Z^+$ such that

$$e = ((xx^{-1})^{k-1}x^{-1}x^{2}x^{-1})^{m} \in \langle x \rangle \bigcup \langle x^{2} \rangle \bigcup \langle x^{-1} \rangle$$

= $\langle x \rangle \bigcup \langle x^{-1} \rangle$

whence $e \in \langle x \rangle$. Thus, in any case G is periodic. $(ii) \Rightarrow (iii)$. This is similar with $(i) \Rightarrow (iii)$. $(iii) \Rightarrow (ii)$ and $(iii) \Rightarrow (i)$ follows immediately.

Also we obtain the following :

LEMMA 2.2. Let S be a GU_{n+1} -semigroup and let $E(S) \neq \emptyset$. Then E(S) is a Rédei's band.

Proof. Let $e, f \in E(S)$. Then there exists $m \in Z^+$ such that

$$(ef)^m = (e...ef)^m \in \langle e \rangle \bigcup \langle f \rangle = \{e,f\}$$
.

If $(ef)^m = e$, then $ef = (ef)^m f = (ef)^m = e$. Similarly, from $(ef)^m = f$ it follows that ef = f. Thus, E(S) is a Rédei's band. \square

DEFINITION 2.2. A band Y of semigroups $S_{\alpha}, \alpha \in Y$, is a GU_{n+1} -band of semigroups if for all $x_i \in S_{\alpha_i}$, $\alpha_i \in Y$, $i = 1, 2, \ldots, n+1$, there exists $m \in Z^+$ such that

$$(\mathbf{x}_1\mathbf{x}_2...\mathbf{x}_{n+1})^m \in \langle \mathbf{x}_1 \rangle \bigcup \langle \mathbf{x}_2 \rangle \bigcup ... \bigcup \langle \mathbf{x}_{n+1} \rangle$$

for all $\alpha_1, \ldots, \alpha_{n+1} \in Y$ such that $\alpha_i \neq \alpha_j$ for some $i, j \in \{1, 2, \ldots, n+1\}$.

In a similar way we define a $\,^{GU}_{n+1}\text{--}\underline{semilattice}\,$ and $\,^{GU}_{n+1}\text{--}\underline{chain}\,$ of $\underline{semigroups}\,$.

DEFINITION 2.3. A band Y of semigroups S_{α} , $\alpha \in Y$, is a Rédei's band of semigroups if Y is a Rédei's band .

3. A REGULAR GUn+1-SEMIGROUP

LEMMA 3.1. The following conditions on a semigroup S are equivalent:

- (i) S is a completely simple GUn+1-semigroup;
- (ii) S is a periodic left or right group;
- (iii) S is a left or a right zero band of perodic groups .

Proof. (i) \Rightarrow (ii). Let S be a completely simple GU_{n+1} -semigroup. Then $E(S) \neq \emptyset$ and by Lemma 2.2. E(S) is a Rédei's band, whence S is a rectangular group (Theorem IV 3.3. [8]). Now by Lemma 2.1. [5] and Theorem IV 3.9.[8] we have that S is a left or a right group. By Theorem 2.1. S is periodic.

 $(ii) \Rightarrow (iii)$. This follows immediately.

i = 1,2,...,n+1 . Then $x_1x_2...x_{n+1} \in G_{\alpha_1}$ so there exists $m \in Z^+$ such that

$$(x_1x_2...x_{n+1})^m = e \in \langle x_1 \rangle$$
,

where e is the identity element of the group ${\tt G}_{{\rm N}_1}$. Therefore , S is a completely simple ${\tt GU}_{n+1}\text{--}{\tt semigroup}$. \Box

THEOREM 3.1. The following conditions on a semigroup S are equivalent:

- (i) S is a regular GU_{n+1}-semigroup;
- (ii) S is a GUn+1-chain of periodic left and right

groups ;

- (iii) S is a Rédei's band of periodic groups ;
- (iv) S is a regular GU-semigroup;
- (v) S is a GU-chain of periodic left and right

groups

Proof. (i) \Rightarrow (ii). Let S be a regular GU_{n+1} -semigroup. For $a \in S$ there exists $x \in S$ such that a = axa and x = xax. By Lemma 2.2. it follows that

$$(ax)(xa) = ax$$
 or $(ax)(xa) = xa$.

Assume that $ax^2a = xa$. If n+1=2k, $k \in Z^+$, then

$$xa = ((xa)^k)^m$$
, for every $m \in Z^+$,
 $\in \langle x \rangle \bigcup \langle a \rangle$, for some $m \in Z^+$.

If $xa = x^p$ for some $p \in Z^+$, then $x = xax = x^{p+1}$ and $x^2a = x^{p+1} = x$, whence $ax = ax^2a = xa$, so $a = axa = ax^2a^2$, so $a \in aSa^2$. If $xa = a^p$ for some $p \in Z^+$, then $a = axa = a^{p+1} \in aSa^2$. Let n+1=2k+1, $k \in Z^+$. Then

$$xa = (ax)(xa) = ((ax)(xa)^k)^m$$
, for every $m \in Z^+$,
 $\in \langle ax \rangle \bigcup \langle a \rangle \bigcup \langle x \rangle$, for some $m \in Z^+$,
 $= \{ax\} \bigcup \langle a \rangle \bigcup \langle x \rangle$.

If xa = ax, then $a = axa = xaa = ax^2a^2 \in aSa^2$. If $xa = x^p$ for some $p \in Z^+$, then $x = xax = x^{p+1}$ and $x^2a = x^{p+1} = x$, whence $ax = ax^2a$, so $a = axa = ax^2a^2 \in aSa^2$. If $xa = a^p$ for some $p \in Z^+$, then $a = axa = a^{p+1} \in aSa^2$. Assume that $ax^2a = ax$. Then $a = axa = ax^2a^2 \in aSa^2$. Thus, in any cases $a \in aSa^2$, so by Theorem IV 1.6. [8] it follows that S is completely regular and so S is a semilattice Y of completely simple semigroups S_{∞} , $\alpha \in Y$. Then by Lemma 2.1. and by

Lemma 3.1. we have that S_{α} is a periodic left or right group, for every $\alpha \in Y$. It is clear that Y is a chain, so S is a GU_{n+1} -chain of periodic left and right groups S_{α} , $\alpha \in Y$.

(ii) \Rightarrow (i). This implication follows by Lemma 3.1. and by the definition of the GU $_{n+1}$ -chain of semigroups .

(ii) \Rightarrow (iii). Let S be a GU_{n+1} -chain Y of periodic left and right groups S_{\propto} , \propto \in Y. Then S is periodic and by (i) \Rightarrow (ii) it follows that S is a GU_{n+1} -semigroup. Thus, $\mathrm{S} = \bigcup_{e \in \mathrm{E}(\mathrm{S})} {}^{\mathrm{K}}_{e}$, where K_{e} is a $\boldsymbol{\mathcal{K}}$ -class containing an idempotent e and $\boldsymbol{\mathcal{K}}$ is an equivalence relation defined on S by:

$$a \mathcal{K} b \iff (\exists p, q \in Z^+) a^p = b^q$$

Let $\alpha\in Y$. Then by Lemma 3.1. it follows that S_{α} is a left or a right zero band of periodic groups , whence S_{α} is a band $E(S_{\alpha})$ of periodic groups K_{e} , $e\in E(S_{\alpha})$.

Let $x \in K_e$, $y \in K_f$ for some $e, f \in E(S)$. If $x, y \in S_{\alpha}$ for some $\alpha \in Y$, then by Lemma 3.1. we have that $xy \in K_e = K_{ef}$, if S_{α} is a left group, and $xy \in K_f = K_{ef}$, if S_{α} is a right group. Let $x \in S_{\alpha}$, $y \in S_{\beta}$, $\alpha, \beta \in Y$. If $\alpha < \beta$ then by Lemma 2.2. it follows that ef = fe = e and $xy \in S_{\alpha\beta} = S_{\alpha}$, and by

$$(xy)^{m} = (e...exy)^{m} , \text{ for all } m \in Z^{+},$$

$$\in \langle e \rangle \bigcup \langle x \rangle \bigcup \langle y \rangle ,$$

$$= \langle x \rangle \bigcup \langle y \rangle ,$$

it follows that $(xy)^m \in \langle x \rangle \subseteq K_e$, so $xy \in K_e = K_{ef}$. The similar proof we have if $\beta < \alpha$. Therefore, S is a Rédei's band E(S) of periodic groups K_e , $e \in E(S)$.

(iii) \Rightarrow (i). Let S be a Rédei's band Y of periodic groups G_{α} , $\alpha \in Y$. Let $x_i \in G_{\alpha_i}$ for some $\alpha_i \in Y$, $i=1,2,\ldots,n+1$. Then

$$(x_1x_2...x_{n+1})^m = e \in \langle x_k \rangle$$
,

where e is the identity element of a group ${^G\!\alpha_k}$. Therefore , S is a ${^G\!U}_{n+1}\text{--semigroup}$.

In a similar way we prove that $(iii) \Rightarrow (iv) \Rightarrow (v)$.

4. A M-REGULAR GUn+1-SEMIGROUP

THEOREM 4.1. The following conditions on a semigroup S are equivalent:

(i) S is a A-regular GU_{n+1}-semigroup and E(S)

is a left zero band ;

(ii) S is a retractive nil-extension of a periodic left group;

> (iii) S is a left zero band of periodic W-groups; (iv) S is a M-regular GU-semigroup and E(S) is

a left zero band;
(v) S is J-regular and

(4.1) $(\forall x_1, x_2, ..., x_{n+1} \in S) (\exists_m \in Z^+) (x_1 x_2 ... x_{n+1})^m \in \langle x_1 \rangle;$ (vi) S is л-regular and

 $(\forall x,y \in S)(\exists m \in Z^+) (xy)^m \in \langle x \rangle$. (4.2)

Proof. (i) \Rightarrow (iii). Let S be a JI-regular GU_{n+1} semigroup and E(S) be a left zero band . Then by Theorem VI 3.2.1. [1] and by Lemma 3.1. we have that S is a nilextension of a periodic left group T. Thus, S is periodic so $S = \bigcup_{e \in E(S)} K_e$ and by Theorem X 1. [1] we have that

 $X = T = H^*$ and K_e , $e \in E(S)$ are H = groups. Let $x \in K_e$, $y \in K_f$, e, $f \in E(S)$, e $\neq f$. Assume that $xy \in K_g$ for some $g \in E(S)$, i.e. $(xy)^S = g$ for some $s \in Z^+$. Then we have that there exists $k,m \in \mathbb{Z}^+$ such that

$$(ye)^k = (ye...e)^k \in \langle y \rangle \bigcup \langle e \rangle$$
,

and

$$(xf)^m = (xf...f)^m \in \langle x \rangle \bigcup \langle f \rangle$$
.

Let $(ye)^k = e$. Moreover, there exists $p \in Z^+$ such that $(ey)^p = (e...ey)^p \in \langle e \rangle | \langle y \rangle$.

Assume that $(ey)^p \in \langle y \rangle$, i.e. $(ey)^r = f$ for some $r \in Z^+$. Then

$$e = ef = e(ey)^r = (ey)^r = f$$

which is not possible. Therefore, $(ey)^p = e$. Let $y^t = f$, $t \in Z^+$. By $(ey)^p = e$ it follows that $ey \in K_a$ and

$$z = (ey)^{k-1}e \in K_e$$
 , $yz = e$ and $z \in G_e$,

where G_e is the maximal subgroup of K_e . Now we have that $ye = yee = yyze = y^2z = y^2ez = y^2yzz = y^3z^2 = ... = y^qz^{q-1}$

for every $\ q \in Z^+$. Hence

$$ye = y^tz^{t-1} = fz^{t-1}$$

whence

$$e = yz = yez = fz^{t-1}z = fz^{t} = f(fz^{t}) = f(yez) = f(yz) = fe = f$$

which is not possible . Hence , $(ye)^k \in \langle y \rangle \subseteq K_f$. In a similar way we obtain that $(xf)^m \in \langle x \rangle \subseteq K_e$. Thus , we have that $ye \in K_f \cap T = G_f$ and $xf \in K_e \cap T = G_e$. Now it follows that $xfye \in G_eG_f \subseteq G_e$ (Lemma 3.1.) so

g = ge =
$$(xy)^{S}$$
e = $(xy)^{S-1}xye$ = $(xy)^{S-1}xfye$ = $(xy)^{S-1}e(xfye)$ = ... = $(xfye)^{S} \in G_e$.

Thus , g = e , i.e. $xy \in K_e$, so S is a left zero band E(S) of periodic J-groups K_e , $e \in E(S)$.

(iii) \Longrightarrow (ii). Let S be a left zero band Y of periodic π -groups S_{cc} , $\alpha \in Y$. Then S is periodic, E(S) is a left zero band isomorphic to Y and $S_{cc} = K_e$ if $e \in S_{cc} \cap E(S)$. Thus, S is a left zero band E(S) of periodic π -groups K_e , $e \in E(S)$. By Theorem VI 3.2.1. [1] we have that S is a nil-extension of a periodic left group T. Define a function $\forall : S \to T$ by

$$\forall (x) = ex \quad \text{if} \quad x \in K_e, e \in E(S)$$
.

Let $x \in K_e$, $y \in K_f$. Then $xy \in K_{ef} = K_e$, so

$$\Upsilon(xy) = e(xy) = (ex)y = (ex)ey = (ex)efy = (ex)e(fy) = (ex)(fy) = \Upsilon(x)\Upsilon(y)$$
.

Therefore, Ψ is a retraction, so S is a retractive nilextension of a periodic left group.

 $(ii) \Longrightarrow (v). \ \ \text{Let} \ \ S \ \ \text{be a retractive nil-extension}$ of a periodic left group T with the retraction Y. Let $x_1,x_2,\ldots,x_{n+1} \in S$. Then there exists $m \in Z^+$ such that $(x_1x_2\ldots x_{n+1})^m \in T$, so

$$(x_1x_2...x_{n+1})^m = \Psi((x_1x_2...x_{n+1})^m) = (\Psi(x_1)...\Psi(x_{n+1}))^m$$
.

By Lemma 3.1. it follows that there exists $k \in Z^+$ such that

$$(\Upsilon(\mathbf{x}_1)\Upsilon(\mathbf{x}_2)\dots\Upsilon(\mathbf{x}_{n+1}))^k \in \langle \Upsilon(\mathbf{x}_1) \rangle$$

whence

 $(x_1x_2...x_{n+1})^{km} = (\forall (x_1)\forall (x_2)...\forall (x_{n+1}))^{km} \in \langle \forall (x_1) \rangle$. Let $x_1^p = e$ for some $e \in E(S)$ and some $p \in Z^+$. By Lemma 3.1. [7] we have that

$$\Psi(x_1) = ex_1 = x_1^{p+1} \in \langle x_1 \rangle$$

so (4.1) holds .

 $(v) \Longrightarrow (i)$. This follows immediately.

In a similar way we prove that $(iv) \Rightarrow (iii) \Rightarrow (vi) \Rightarrow (iv)$.

A subsemigroup T of a semigroup S is a retract of a semigroup S if there exists a retraction of S onto T.

THEOREM 4.2. The following conditions on a semigroup S are equivalent:

(i) S is a π -regular GU_{n+1} -semigroup;

(ii) S is a periodic GUn+1-semigroup;

(iii) S is a GU_{n+1}-chain of retractive nil-exten-

sions of periodic left and right groups;

(iv) S is a Rédei's band of periodic J-groups;

(v) S is a M-regular GU-semigroup;

(vi) S is a periodic GU-semigroup;

(vii) S is a GU-chain of retractive nil-extensions of periodic left and right groups;

(viii) S contains a retract T which is a regular GU-semigroup and some power of each element of S lies in T.

Proof. (i) \Rightarrow (iii). Let S be a π -regular π π semigroup. Then π π and by Lemma 2.2. π π is a Rédei's band , so by Proposition 1. [3] it follows that π π π π is a subsemigroup of S . Now , by Theorem 3.1. We have that π π π π π is a semilattice Y of semigroups π π π is a nil-extension of a completely simple semigroup π π is a nil-extension of a completely simple semigroup π π is a periodic left or a right group . Since π π is a Rédei's band , then Y is a chain , so by Theorem 4.1. it follows that (iii) holds .

(iii) \Rightarrow (iv). Let S be a GU_{n+1} -chain Y of

semigroups S_{∞} , $\alpha\in Y$ and S_{∞} is a retractive nil-extension of a periodic left or right group T_{∞} , $\alpha\in Y$. By Theorem 4.1. S_{∞} is a left or a right zero band $E(S_{\infty})$ of π -groups $K_{\mathbf{e}}$, $\mathbf{e}\in E(S_{\infty})$. Since S is periodic, then $S=\bigcup_{\mathbf{e}\in E(S)}K_{\mathbf{e}}$. Let

 $x \in K_e$, $y \in K_f$, $e \in S_{\alpha}$, $f \in S_{\beta}$, $\alpha \neq \beta$. Assume that $\alpha < \beta$. Since S is a GU_{n+1} -chain of semigroups S_{α} , $\alpha \in Y$, then ef = fe = e. Also, $xy \in S_{\alpha\beta} = S_{\alpha}$. Let $xy \in K_g$ for some $g \in E(S_{\alpha})$, i.e. $(xy)^k = g$ for some $k \in Z^+$. Assume that $E(S_{\alpha})$ is a left zero band. Let $(ey)^t \in E(S_{\alpha})$ for some $t \in Z^+$ (since $ey \in S_{\alpha\beta} = S_{\alpha}$). Then $(ey)^t = e(ey)^t = e$, so $ey \in G_e$. Moreover, there exists $s \in Z^+$ such that

$$(ye)^S = (ye...e)^S \in \langle y \rangle \bigcup \langle e \rangle$$
,

and since $y \in S_{\beta \alpha} = S_{\alpha}$, $\langle y \rangle \subseteq S_{\beta}$, $\alpha \neq \beta$, then $(ye)^S = e$ and $y \in G_e$. Now we have that

ey = (ey)e = e(ye) = ye,

whence , by this and by Theorem I 4.3. [1] , it follows that

$$g = ge = (xy)^k e = e(xy)^k = eg = e$$
.

Thus $xy \in K_e = K_{ef}$. The similar proof we have if $E(S_{cX})$ is a right zero band and the similar proof we have if $\beta < \infty$. Therefore S is a Rédei's band E(S) of J-groups K_e , $e \in E(S)$.

$$x_1x_2...x_{n+1} \in s_k$$
.

Since S_{α_k} is power joined , then there exist $t,s\in Z^+$ such that

$$(x_1 x_2 ... x_{n+1})^t = x_k^s \in \langle x_k \rangle$$
.

Therefore S is a periodic GU_{n+1}-semigroup.

(ii) \Rightarrow (i) . This follows immediately .

In a similar way we prove that $(v) \Rightarrow (vi) \Rightarrow (vi)$ $\Rightarrow (iv)$.

(iv) \Rightarrow (viii). Let S be a Rédei's band Y of periodic π -groups S_{α} , $\alpha \in Y$. Then it is clear that S is periodic, $\Xi(S)$ is a Rédei's band isomorphic to Y and that

 $S_{c/s} = K_{e}$ if $e \in S_{c/s} \cap E(S)$. Thus S is a Rédei's band E(S) of periodic π -groups K_{e} , $e \in E(S)$. Define a function $\Psi: S \longrightarrow T$, T = Reg(S) by

$$\varphi(x) = ex \quad \text{if} \quad x \in K_e, e \in E(S).$$

Let $x \in K_e$, $y \in K_f$. Then $xy \in K_{ef}$. If ef = e , then

$$\Upsilon(xy) = \text{efxy} = \text{exy} = (\text{ex})\text{ey} = (\text{ex})\text{efy} = (\text{ex})(\text{fy}) = \\ = \Upsilon(x)\Upsilon(y) .$$

If ef = f, then by Theorem I 4.3. [1] we have that

$$\Psi(xy) = efxy = xyef = xyf = xfyf = xefyf = (ex)(fy) = = \Psi(x)\Psi(y)$$
.

Hence, \forall is a retraction. By Proposition 1. [3], Lemma 2.1. we have that T = Reg(S) is a regular GU-semigroup, and by π -regularity it follows that some power of each element of S lies in T.

 $(\text{viii}) \Rightarrow (\text{iv})$. Let S contains a retract T which is a regular GU-semigroup and some power of each element of S lies in T. By Theorem 3.1. it follows that S is periodic. Let $Y: S \rightarrow T$ be a retraction and let T be a Rédei's band Y of periodic groups G_{α} , $\alpha \in Y$ (this follows by Theorem 3.1.). Let we denote

$$S_{\alpha} = \Psi^{-1}(G_{\alpha})$$
 , $\alpha \in Y$.

Then S_{α} is periodic semigroup with exactly one idempotent, so S_{α} is a nil-extension of a periodic group, for every $\alpha \in Y$. Also, S is a Rédei's band Y of semigroups S_{α} , $\alpha \in Y$. \square

REMARK. In Theorem 4.2. (viii) the retract T and the retraction Ψ are not uniquely determined. For example, it is not hard to see that E(S) is also a retract with the retraction Ψ with the following representation:

$$\forall (x) = e$$
 if $x \in K_e$, $e \in E(S)$.

By the proof of Theorem 4.2. we have that statements of this theorem holds for E(S) and for this retraction.

EXAMPLE 4.1. The semigroup S given by the following table

is a U-semigroup but $Reg(S) = \{e,f\}$ is not an ideal of S since $xf = x \notin Reg(S)$.

EXAMPLE 4.2. The semigroup S given by the following table

	x	е	f	g
х	е	е	g	е
е	е	е	е	е
f	f	f	f	f
g	g	g	g	g

is a nil-extension of a left zero band , but $\, S \,$ is not a $\, GU \! - \! semigroup \,$.

EXAMPLE 4.3. The semigroup S given by the following table

	e ·	f	g	x
е	e f	е	е	е
f	f	f	f	f
g	е	f	g	x
x	f	е	x	g

is a chain of $\mbox{GU-semigroups}$, but \mbox{S} is not a $\mbox{GU-semigroup}$.

REFERENCES

- 1. S. Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math. Novi Sad 1985.
- 2. S. Bogdanović, Generalized U-semigroups, Zbornik radova Filozofskog fakulteta u Nišu, Ser. Mat. II(1988)3-7.

- 3. S. Bogdanović, Nil-extensions of a completely regular semigroup, Froc. of the conference "Algebra and Logic", Sarajevo 1987, Univ. of Novi Sad (to appear).
- 4. S. Bogdanović, Semigroups of Galbiati-Veronesi, Proc. of the conference "Algebra and Logic", Zagreb 1984, Univ. of Novi Sad 1985, 9-20.
- 5. S. Bogdanović and M. Ćirić, <u>Semigroups of</u>
 Galbiati-Veronesi III (<u>Semilattice of nil-extensions of left</u>
 and right groups), Facta Universitatis (Niš), Ser. Math.
 Inform. (to appear).
- 6. S. Bogdanović and M. Čirić , U_{n+1} -semigroups , (to appear) .
- 7. S. Bogdanović and M. Ćirić , $\frac{A}{A}$ nil-extension of a regular semigroup , (to appear) .
- 8. M. Petrich , $\underline{\text{Introduction}}$ to $\underline{\text{semigroups}}$, Merill Publ. Comp. Ohio 1973 .

Miroslav Čirić i Stojan Bogdanović RÉDEI-JEVA TRAKA PERIODIČKIH JJ-GRUPA

U ovom radu se razmatraju $\mbox{\rm GU}_{n+1}\mbox{-polugrupe}$, t.j. polugrupe sa sledećom osobinom :

Mašinski fakultet 18000 Niš Beogradska 14 Jugoslavija Ekonomski fakultet 18000 Niš Trg JNA 11 Jugoslavija