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FILOMAT-20, Nǐs, Septembar 26–28, 1991

SEMIGROUPS IN WHICH THE RADICAL OF
EVERY IDEAL IS A SUBSEMIGROUP

Stojan Bogdanović and Miroslav Ćirić

Abstract. In this paper we consider semigroups S in which
√

A = {x ∈
S | (∃n ∈ Z+) xn ∈ A} is a subsemigroup of S for every ideal A of S.

1. Introduction and preliminaries

Throughout paper, by Z+ we denote the set of all positive integers. If a, b ∈ S,
then a | b iff b = xay for some x, y ∈ S1, a |

r
b iff ax = b for some x ∈ S1,

a |
l
b iff xa = b for some x ∈ S1, a |

t
b iff a |

r
b and a |

l
b, a −→ b iff a | bi for

some i ∈ Z+ and a h−→ b iff a |
h

bi for some i ∈ Z+, where h is r, l or t. A

semigroup S is Archimedean (right Archimedean, t-Archimedean, power joined)
iff for all a, b ∈ S, a −→ b (a r−→ b, a t−→ b, 〈a〉 ∩ 〈b〉 6= ∅). By the radical of
the subset A of a semigroup S we mean the set

√
A defined by√

A = {x ∈ S | (∃n ∈ Z+) xn ∈ A}.
If S is a semigroup with the zero 0, then an element a ∈ S is a nilpotent if
there exists n ∈ Z+ such that an = 0, and the set of all nilpotents of S we
denote by Nil(S).

T.Tamura and N.Kimura [12] showed that every commutative semigroup is a
semilattice of Archimedean semigroups. This well known result has since been gen-
eralized by many authors [2-13]. Semigroups which are semilattice of Archimedean
semigroups are completely described by M.S.Putcha [7], T.Tamura [10] and by
M.Ćirić and S.Bogdanović [4]. M.S.Putcha [7] has proved the following

Theorem P. A semigroup S is a semilattice of Archimedean semigroups if
and only if

a | b ⇒ a2 −→ b
for all a, b ∈ S. �

Supported by Grant 0401A of Science Fund of Serbia through Math. Inst. SANU
1991 Mathematics subject classification. Primary: 20M10

129



130 S.Bogdanović and M.Ćirić

These semigroups are, also, completely described by M.Ćirić and S.Bogdanović
in [4] by the following

Theorem ĆB. The following conditions are equivalent on a semigroup S:
(i) S is a semilattice of Archimedean semigroups;

(ii) (∀a, b ∈ S) a2 −→ ab;
(iii) the radical of every ideal of S is an ideal of S. �

L.N.Xevrin [14] showed that the equivalence (i) ⇔ (iii) of Theorem ĆB.
holds if S is completely π-regular ((∀a ∈ S)(∃x ∈ S)(∃n ∈ Z+) an = anxan, anx =
xan).

In this paper we characterize semigroups in which the radical of every ideal
(right ideal, bi-ideal, subsemigroup) is a subsemigroup (or ideal or bi-ideal or right
ideal).

For undefined notion and notations we refer to [1].

2. Main results

Theorem 1. The following conditions on a semigroup S are equivalent:
(i) the radical of every ideal of S is a subsemigroup of S;

(ii) in every homomorphic image with zero of S the set of all nilpotent
elements is a subsemigroup;

(iii) (∀a, b ∈ S)(∀k, l ∈ Z+) ak −→ ab ∨ bl −→ ab.

Proof. (i) ⇒ (iii). Let a, b ∈ S, k, l ∈ Z+. Since A = S{ak, bl}S is an
ideal of S and a, b ∈

√
A we then have by hypothesis that ab ∈

√
A. Hence,

there exists n ∈ Z+ such that (ab)n ∈ S{ak, bl}S. Thus ak −→ ab or bl −→ ab.
(iii) ⇒ (ii). Let T be a semigroup with the zero element and let T

be a homomorphic image of S. Then the condition (iii) holds in T . For
every a, b ∈ Nil(T ) there exist m, l ∈ Z+ such that ak = bl = 0, and thus
(ab)n ∈ T{0, 0}T = {0}, for some n ∈ Z+. Therefore, Nil(T ) is a subsemigroup
of T .

(ii) ⇒ (i). Let A be an ideal of S. Let ϕ be a homomorphism of S
onto S/A. Let a, b ∈

√
A. Since ϕ(a), ϕ(b) ∈ Nil(S/A) we then have that

ϕ(a)ϕ(b) ∈ Nil(S/A), i.e. ϕ(ab) ∈ Nil(S/A) and thus (ab)n ∈ A for some
n ∈ Z+. Hence ab ∈

√
A, i.e.

√
A is a subsemigroup of S. �

In a similar way as in the previous theorem it can be proved the following

Theorem 2.
√

R is a subsemigroup of S, for every right ideal R of S if
and only if

(∀a, b ∈ S)(∀k, l ∈ Z+) ak r−→ ab ∨ bl r−→ ab. �

Theorem 3. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of Archimedean semigroups;

(ii) (∀a, b ∈ S) a |
r

b ⇒ a2 −→ b;
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(iii)
√

SaS is an ideal of S, for all a ∈ S;
(iv) in every homomorphic image with zero of S the set of all nilpotent

elements is an ideal.

Proof. By Theorems P. and ĆB. �

Theorem 4. The radical of every right ideal of a semigroup S is a bi-ideal
of S if and only if

(1) (∀a, b, c ∈ S)(∀k, l ∈ Z+) ak r−→ abc ∨ cl r−→ abc .

Proof. Let a, b, c ∈ S and let k, l ∈ Z+. Assume that R = {ak, cl}S. Since
a, c ∈

√
R and

√
R is a bi-ideal of S we then have that abc ∈

√
RS

√
R ⊆

√
R,

i.e. there exists n ∈ Z+ such that (abc)n ∈ R = {ak, cl}S. Thus ak r−→ abc or
cl r−→ abc.

Conversely, let R be a right ideal of S. For a, c ∈
√

R there exist k, l ∈ Z+

such that ak, cl ∈ R. Now by (1) we have that
{ak, cl}S ⊆ RS ⊆ R

for some n ∈ Z+. Hence, abc ∈
√

R. Therefore,
√

R is a bi-ideal of S. �

Theorem 5. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of right Archimedean semigroups;

(ii) (∀a, b ∈ S)(∀k ∈ Z+) bk r−→ ab;
(iii) the radical of every right ideal of S is a left ideal of S.

Proof. (i) ⇒ (ii). Let S be a semilattice Y of right Archimedean
semigroups Sα, α ∈ Y . Then for a ∈ Sα, b ∈ Sβ we have that ab, bka ∈ Sαβ ,
for all k ∈ Z+, and there exists n ∈ Z+ such that

(ab)n ∈ bkaSαβ ⊆ bkS .

Thus bk r−→ ab.
(ii) ⇒ (i). This implication follows by Proposition 1.1.[2].
(ii) ⇒ (iii). Let R be a right ideal of S. Assume that a ∈ S, b ∈

√
R.

Then bk ∈ R, for some k ∈ Z+, and we have that
(ab)n ∈ bkS ⊆ RS ⊆ R ,

for some n ∈ Z+. Thus ab ∈
√

R, i.e.
√

R is a left ideal of S.
(iii) ⇒ (i). Let a, b ∈ S, R = bS. Then b ∈

√
R. Since

√
R is a left

ideal of S we then have that ab ∈
√

R, i.e. there exists n ∈ Z+ such that
(ab)n ∈ R = bS, whence by Proposition 1.1.[2] we have that the condition (i)
holds. �

Theorem 6. The following conditions on a semigroup S are equivalent:
(i) (∀a, b ∈ S) a |

r
b ⇒ a2 r−→ b;

(ii) (∀a, b ∈ S)(∀k ∈ Z+) ak r−→ ab;
(iii) (∀a, b ∈ S) a2 r−→ ab;
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(iv)
√

aS is a right ideal of S, for every a ∈ S;
(v)

√
R is a right ideal of S, for every right ideal R of S.

Proof. (i) ⇒ (iii). Since ab ∈ aS for every a, b ∈ S, we then have that
(ab)n ∈ a2S. Thus a2 r−→ ab.

(iii) ⇒ (ii). By induction.
(ii) ⇒ (i). Let b = au for some u ∈ S. Then there exists n ∈ Z+ such

that bn = (au)n ∈ a2S. Thus a2 r−→ b.
(ii) ⇒ (iv). Let x ∈

√
aS and let b ∈ S. Then xk ∈ aS for some

k ∈ Z+. Since
(xb)n ∈ xkS ⊆ aSS ⊆ aS , for some n ∈ Z+

we then have that xb ∈
√

aS. Thus
√

aS is a right ideal of S.
(iv) ⇒ (iii). Let a, b ∈ S. Then a ∈

√
a2S. Since

√
a2S is a right ideal

of S, then ab ∈
√

a2S, and therefore (iii) holds.
(v) ⇒ (iv). Since aS is a right ideal of S, by (v) we then have that

√
aS

is also right ideal of S.
(ii) ⇒ (v). Let R be a right ideal of S. Let a ∈

√
R, b ∈ S. Then

ak ∈ R for some k ∈ Z+. Now,
(ab)n ∈ akS ⊆ RS ⊆ R for some n ∈ Z+

and thus ab ∈
√

R, i.e.
√

R is a right ideal of S. �

Theorem 7. The following conditions on a semigroup S are equivalent:
(i) S is a normal band of t-Archimedean semigroups;

(ii) (∀a, b, c ∈ S) ac t−→ abc;
(iii) for every a, b, c ∈ S,

a |
r

c ∧ b |
l
c ⇒ ab t−→ c .

Proof. (i) ⇔ (ii). This equivalence is from [3].
(ii) ⇒ (iii). Let a |

r
c, b |

l
c. then there exist u, v ∈ S such that c = au = vb,

whence c2 = auvb. Now, there exists n ∈ Z+ such that c2n = (auvb)n ∈ abSab,
i.e. ab t−→ c.

(iii) ⇒ (ii). It is clear that a |
r

abc, c |
l
abc, for every a, b, c ∈ S. By (iii)

there exists n ∈ Z+ such that (abc)n ∈ acS ∩ Sac. Hence, (ii) holds. �

Theorem 8. The following conditions on a semigroup S are equivalent:
(i) (∀a, b ∈ S) a2b r−→ ab;

(ii) for all a, b, c ∈ S,

a |
r

c ∧ b |
r

c ⇒ ab r−→ c .

Proof. (i) ⇒ (ii). Let c = au = bv for some u, v ∈ S, whence c2 = (au)2.
Now, there exists i ∈ Z+ such that

c2i = (a(uau))i ∈ a2uauS ⊆ a2uS = a(au)S = a(bv)S ⊆ abS .
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Thus ab r−→ c.
(ii) ⇒ (i). It is clear that a |

r
ab, ab |

r
ab, for all a, b ∈ S, and by (ii) we

have that a(ab) = a2b r−→ ab. �

Theorem 9. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of t-Archimedean semigroups;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ bSa;
(iii) the radical of every bi-ideal of S is an ideal of S.

Proof. (i) ⇔ (ii). This equivalence is from [2].
(ii) ⇒ (iii). Let A be a bi-ideal of S and let a ∈

√
A, b ∈ S. Then

ak ∈ A for some k ∈ Z+, whence
(ab)m, (ba)n ∈ akbSbak ⊆ ASA ⊆ A ,

for some m,n ∈ Z+. Thus ab, ba ∈
√

A, i.e.
√

A is an ideal of S.
(iii) ⇒ (ii). Let a, b ∈ S. Assume that A = aSa, B = bSb. It is clear

that a ∈
√

a, b ∈
√

B. Since
√

A and
√

B are ideals of S, we then have that
ab ∈

√
A ∩

√
B, i.e. there exist m, n ∈ Z+ such that (ab)m ∈ aSa, (ab)n ∈ bSb,

whence (ab)m+n ∈ bSbaSa ⊆ bSa. �

3. More on bi-ideals and radicals

The Theorems 10.-22. can be proved as some of the previous theorems and the
proof of any of its will be omitted.

Theorem 10. The radical of every ideal of a semigroup S is a bi-ideal of S
if and only if

(∀a, b, c ∈ S)(∀k, l ∈ Z+) ak −→ abc ∨ cl −→ abc. �

Theorem 11. The radical of every subsemigroup of a semigroup S is a
bi-ideal of S if and only if

(∀a, b, c ∈ S)(∀k, l ∈ Z+)(∃n ∈ Z+) (abc)n ∈
〈

ak, cl
〉

. �

Theorem 12. The radical of every bi-ideal of a semigroup S is a bi-ideal of
S if and only if

(∀a, b, c ∈ S)(∀k, l ∈ Z+)(∃n ∈ Z+) (abc)n ∈ {ak, cl}S{ak, cl}. �

Theorem 13. The radical of every subsemigroup of a semigroup S is a
subsemigroup of S if and only if

(∀a, b ∈ S)(∀k, l ∈ Z+)(∃n ∈ Z+) (ab)n ∈
〈

ak, bl
〉

. �

Theorem 14. The radical of every bi-ideal of a semigroup S is a subsemigroup
of S if and only if

(∀a, b ∈ S)(∀k, l ∈ Z+)(∃n ∈ Z+) (ab)n ∈ {ak, bl}S{ak, bl}. �
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Theorem 15. The radical of every subsemigroup of a semigroup S is a left
ideal of S if and only if S is a right zero band of power joined semigroups. �

Theorem 16. The radical of every subsemigroup of a semigroup S is an
ideal of S if and only if S is power joined. �

Theorem 17. The following conditions on a semigroup S are equivalent:
(i) (∀a, b, c, d ∈ S) b2 −→ abcd ∨ c2 −→ abcd;

(ii) for all a, b, c ∈ S,
ab | c ⇒ a2 −→ c ∨ b2 −→ c. �

Theorem 18. The following conditions on a semigroup S are equivalent:
(i) (∀a, b, c ∈ S) a2 r−→ abc ∨ b2 r−→ abc;

(ii) for all a, b, c ∈ S,

ab |
r

c ⇒ a2 r−→ c ∨ b2 r−→ c. �

Theorem 19. The following conditions on a semigroup S are equivalent:
(i) (∀a, b ∈ S) a2 t−→ aba;

(ii) for all a, b ∈ S,

a |
t
b ⇒ a2 t−→ b. �
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