SEMIGROUPS IN WHICH THE RADICAL OF EVERY IDEAL IS A SUBSEMIGROUP

Stojan Bogdanović and Miroslav Ćirić

Abstract

In this paper we consider semigroups S in which $\sqrt{A}=\{x \in$ $\left.S \mid\left(\exists n \in \mathbf{Z}^{+}\right) x^{n} \in A\right\}$ is a subsemigroup of S for every ideal A of S.

1. Introduction and preliminaries

Throughout paper, by \mathbf{Z}^{+}we denote the set of all positive integers. If $a, b \in S$, then $a \mid b$ iff $b=x a y$ for some $x, y \in S^{1}, a \mid b$ iff $a x=b$ for some $x \in S^{1}$, $\left.a\right|_{l} b$ iff $x a=b$ for some $x \in S^{1},\left.a\right|_{t} b$ iff $\left.a\right|_{r} b$ and $\left.a\right|_{l} b, a \longrightarrow b$ iff $a \mid b^{i}$ for some $i \in \mathbf{Z}^{+}$and $a \xrightarrow{h} b$ iff $a \mid b_{h}^{i}$ for some $i \in \mathbf{Z}^{+}$, where h is r, l or t. A semigroup S is Archimedean (right Archimedean, t-Archimedean, power joined) iff for all $a, b \in S, a \longrightarrow b(a \xrightarrow{r} b, a \xrightarrow{t} b,\langle a\rangle \cap\langle b\rangle \neq \varnothing)$. By the radical of the subset A of a semigroup S we mean the set \sqrt{A} defined by

$$
\sqrt{A}=\left\{x \in S \mid\left(\exists n \in \mathbf{Z}^{+}\right) x^{n} \in A\right\}
$$

If S is a semigroup with the zero 0 , then an element $a \in S$ is a nilpotent if there exists $n \in \mathbf{Z}^{+}$such that $a^{n}=0$, and the set of all nilpotents of S we denote by $\operatorname{Nil}(S)$.
T.Tamura and N.Kimura [12] showed that every commutative semigroup is a semilattice of Archimedean semigroups. This well known result has since been generalized by many authors [2-13]. Semigroups which are semilattice of Archimedean semigroups are completely described by M.S.Putcha [7], T.Tamura [10] and by M.Ćirić and S.Bogdanović [4]. M.S.Putcha [7] has proved the following

Theorem P. A semigroup S is a semilattice of Archimedean semigroups if and only if

$$
a \mid b \Rightarrow a^{2} \longrightarrow b
$$

for all $a, b \in S$.

These semigroups are, also, completely described by M.Ćirić and S.Bogdanović in [4] by the following

Theorem ĆB. The following conditions are equivalent on a semigroup S :
(i) S is a semilattice of Archimedean semigroups;
(ii) $(\forall a, b \in S) a^{2} \longrightarrow a b$;
(iii) the radical of every ideal of S is an ideal of S.
Л.Н.Шеврин [14] showed that the equivalence $(i) \Leftrightarrow$ (iii) of Theorem ĆB. holds if S is completely π-regular $\left((\forall a \in S)(\exists x \in S)\left(\exists n \in \mathbf{Z}^{+}\right) a^{n}=a^{n} x a^{n}, a^{n} x=\right.$ $x a^{n}$).

In this paper we characterize semigroups in which the radical of every ideal (right ideal, bi-ideal, subsemigroup) is a subsemigroup (or ideal or bi-ideal or right ideal).

For undefined notion and notations we refer to [1].

2. Main results

Theorem 1. The following conditions on a semigroup S are equivalent:
(i) the radical of every ideal of S is a subsemigroup of S;
(ii) in every homomorphic image with zero of S the set of all nilpotent elements is a subsemigroup;
(iii) $(\forall a, b \in S)\left(\forall k, l \in \mathbf{Z}^{+}\right) a^{k} \longrightarrow a b \quad \vee \quad b^{l} \longrightarrow a b$.

Proof. $(i) \Rightarrow(i i i)$. Let $a, b \in S, k, l \in \mathbf{Z}^{+}$. Since $A=S\left\{a^{k}, b^{l}\right\} S$ is an ideal of S and $a, b \in \sqrt{A}$ we then have by hypothesis that $a b \in \sqrt{A}$. Hence, there exists $n \in \mathbf{Z}^{+}$such that $(a b)^{n} \in S\left\{a^{k}, b^{l}\right\} S$. Thus $a^{k} \longrightarrow a b$ or $b^{l} \longrightarrow a b$.
(iii) $\Rightarrow(i i)$. Let T be a semigroup with the zero element and let T be a homomorphic image of S. Then the condition (iii) holds in T. For every $a, b \in \operatorname{Nil}(T)$ there exist $m, l \in \mathbf{Z}^{+}$such that $a^{k}=b^{l}=0$, and thus $(a b)^{n} \in T\{0,0\} T=\{0\}$, for some $n \in \mathbf{Z}^{+}$. Therefore, $\operatorname{Nil}(T)$ is a subsemigroup of T.
(ii) $\Rightarrow(i)$. Let A be an ideal of S. Let φ be a homomorphism of S onto S / A. Let $a, b \in \sqrt{A}$. Since $\varphi(a), \varphi(b) \in N i l(S / A)$ we then have that $\varphi(a) \varphi(b) \in \operatorname{Nil}(S / A)$, i.e. $\varphi(a b) \in \operatorname{Nil}(S / A)$ and thus $(a b)^{n} \in A$ for some $n \in \mathbf{Z}^{+}$. Hence $a b \in \sqrt{A}$, i.e. \sqrt{A} is a subsemigroup of S.

In a similar way as in the previous theorem it can be proved the following
ThEOREM 2. \sqrt{R} is a subsemigroup of S, for every right ideal R of S if and only if

$$
(\forall a, b \in S)\left(\forall k, l \in \mathbf{Z}^{+}\right) a^{k} \xrightarrow{r} a b \quad \vee \quad b^{l} \xrightarrow{r} a b .
$$

Theorem 3. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of Archimedean semigroups;
(ii) $\left.(\forall a, b \in S) a\right|_{r} b \Rightarrow a^{2} \longrightarrow b$;
(iii) $\sqrt{S a S}$ is an ideal of S, for all $a \in S$;
(iv) in every homomorphic image with zero of S the set of all nilpotent elements is an ideal.
Proof. By Theorems P. and ĆB.
THEOREM 4. The radical of every right ideal of a semigroup S is a bi-ideal of S if and only if

$$
\begin{equation*}
(\forall a, b, c \in S)\left(\forall k, l \in \mathbf{Z}^{+}\right) a^{k} \xrightarrow{r} a b c \quad \vee \quad c^{l} \xrightarrow{r} a b c . \tag{1}
\end{equation*}
$$

Proof. Let $a, b, c \in S$ and let $k, l \in \mathbf{Z}^{+}$. Assume that $R=\left\{a^{k}, c^{l}\right\} S$. Since $a, c \in \sqrt{R}$ and \sqrt{R} is a bi-ideal of S we then have that $a b c \in \sqrt{R} S \sqrt{R} \subseteq \sqrt{R}$, i.e. there exists $n \in \mathbf{Z}^{+}$such that $(a b c)^{n} \in R=\left\{a^{k}, c^{l}\right\} S$. Thus $a^{k} \xrightarrow{r} a b c$ or $c^{l} \xrightarrow{r} a b c$.

Conversely, let R be a right ideal of S. For $a, c \in \sqrt{R}$ there exist $k, l \in \mathbf{Z}^{+}$ such that $a^{k}, c^{l} \in R$. Now by (1) we have that

$$
\left\{a^{k}, c^{l}\right\} S \subseteq R S \subseteq R
$$

for some $n \in \mathbf{Z}^{+}$. Hence, $a b c \in \sqrt{R}$. Therefore, \sqrt{R} is a bi-ideal of S.
ThEOREM 5. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of right Archimedean semigroups;
(ii) $(\forall a, b \in S)\left(\forall k \in \mathbf{Z}^{+}\right) b^{k} \xrightarrow{r} a b$;
(iii) the radical of every right ideal of S is a left ideal of S.

Proof. $\quad(i) \Rightarrow(i i)$. Let S be a semilattice Y of right Archimedean semigroups $S_{\alpha}, \alpha \in Y$. Then for $a \in S_{\alpha}, b \in S_{\beta}$ we have that $a b, b^{k} a \in S_{\alpha \beta}$, for all $k \in \mathbf{Z}^{+}$, and there exists $n \in \mathbf{Z}^{+}$such that

$$
(a b)^{n} \in b^{k} a S_{\alpha \beta} \subseteq b^{k} S
$$

Thus $b^{k} \xrightarrow{r} a b$.
(ii) $\Rightarrow(i)$. This implication follows by Proposition 1.1.[2].
(ii) \Rightarrow (iii). Let R be a right ideal of S. Assume that $a \in S, b \in \sqrt{R}$. Then $b^{k} \in R$, for some $k \in \mathbf{Z}^{+}$, and we have that

$$
(a b)^{n} \in b^{k} S \subseteq R S \subseteq R,
$$

for some $n \in \mathbf{Z}^{+}$. Thus $a b \in \sqrt{R}$, i.e. \sqrt{R} is a left ideal of S.
(iii) $\Rightarrow(i)$. Let $a, b \in S, R=b S$. Then $b \in \sqrt{R}$. Since \sqrt{R} is a left ideal of S we then have that $a b \in \sqrt{R}$, i.e. there exists $n \in \mathbf{Z}^{+}$such that $(a b)^{n} \in R=b S$, whence by Proposition 1.1.[2] we have that the condition (i) holds.

THEOREM 6. The following conditions on a semigroup S are equivalent:
(i) $\left.(\forall a, b \in S) a\right|_{r} b \Rightarrow a^{2} \xrightarrow{r} b$;
(ii) $(\forall a, b \in S)\left(\forall k \in \mathbf{Z}^{+}\right) a^{k} \xrightarrow{r} a b$;
(iii) $(\forall a, b \in S) a^{2} \xrightarrow{r} a b$;
(iv) $\sqrt{a S}$ is a right ideal of S, for every $a \in S$;
(v) \sqrt{R} is a right ideal of S, for every right ideal R of S.

Proof. $(i) \Rightarrow($ iii $)$. Since $a b \in a S$ for every $a, b \in S$, we then have that $(a b)^{n} \in a^{2} S$. Thus $a^{2} \xrightarrow{r} a b$.
(iii) \Rightarrow (ii). By induction.
$(i i) \Rightarrow(i)$. Let $b=a u$ for some $u \in S$. Then there exists $n \in \mathbf{Z}^{+}$such that $b^{n}=(a u)^{n} \in a^{2} S$. Thus $a^{2} \xrightarrow{r} b$.
$(i i) \Rightarrow(i v)$. Let $x \in \sqrt{a S}$ and let $b \in S$. Then $x^{k} \in a S$ for some $k \in \mathbf{Z}^{+}$. Since

$$
(x b)^{n} \in x^{k} S \subseteq a S S \subseteq a S, \text { for some } n \in \mathbf{Z}^{+}
$$

we then have that $x b \in \sqrt{a S}$. Thus $\sqrt{a S}$ is a right ideal of S.
$(i v) \Rightarrow(i i i)$. Let $a, b \in S$. Then $a \in \sqrt{a^{2} S}$. Since $\sqrt{a^{2} S}$ is a right ideal of S, then $a b \in \sqrt{a^{2} S}$, and therefore (iii) holds.
$(v) \Rightarrow(i v)$. Since $a S$ is a right ideal of S, by (v) we then have that $\sqrt{a S}$ is also right ideal of S.
$(i i) \Rightarrow(v)$. Let R be a right ideal of S. Let $a \in \sqrt{R}, b \in S$. Then $a^{k} \in R$ for some $k \in \mathbf{Z}^{+}$. Now,

$$
(a b)^{n} \in a^{k} S \subseteq R S \subseteq R \quad \text { for some } n \in \mathbf{Z}^{+}
$$

and thus $a b \in \sqrt{R}$, i.e. \sqrt{R} is a right ideal of S.
Theorem 7. The following conditions on a semigroup S are equivalent:
(i) S is a normal band of t-Archimedean semigroups;
(ii) $(\forall a, b, c \in S) a c \xrightarrow{t} a b c$;
(iii) for every $a, b, c \in S$,

$$
\left.a\right|_{r} c \wedge b \mid c \Rightarrow a b \xrightarrow{t} c .
$$

Proof. $(i) \Leftrightarrow(i i)$. This equivalence is from [3].
$(i i) \Rightarrow(i i i)$. Let $\left.a\right|_{r} c,\left.b\right|_{l} c$. then there exist $u, v \in S$ such that $c=a u=v b$, whence $c^{2}=a u v b$. Now, there exists $n \in \mathbf{Z}^{+}$such that $c^{2 n}=(a u v b)^{n} \in a b S a b$, i.e. $a b \xrightarrow{t} c$.
$(i i i) \Rightarrow(i i)$. It is clear that $a \underset{r}{ } a b c, c|l| l$, for every $a, b, c \in S$. By (iii) there exists $n \in \mathbf{Z}^{+}$such that $(a b c)^{n} \in a c S \cap S a c$. Hence, (ii) holds.

THEOREM 8. The following conditions on a semigroup S are equivalent:
(i) $(\forall a, b \in S) a^{2} b \xrightarrow{r} a b$;
(ii) for all $a, b, c \in S$,

$$
\left.a\right|_{r} c \wedge b \underset{r}{\mid} c \Rightarrow a b \xrightarrow{r} c .
$$

Proof. $(i) \Rightarrow(i i)$. Let $c=a u=b v$ for some $u, v \in S$, whence $c^{2}=(a u)^{2}$. Now, there exists $i \in \mathbf{Z}^{+}$such that

$$
c^{2 i}=(a(u a u))^{i} \in a^{2} u a u S \subseteq a^{2} u S=a(a u) S=a(b v) S \subseteq a b S
$$

Thus $a b \xrightarrow{r} c$.
$(i i) \Rightarrow(i)$. It is clear that $\left.a\right|_{r} a b,\left.a b\right|_{r} a b$, for all $a, b \in S$, and by (ii) we have that $a(a b)=a^{2} b \xrightarrow{r} a b$.

Theorem 9. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of t-Archimedean semigroups;
(ii) $(\forall a, b \in S)\left(\exists n \in \mathbf{Z}^{+}\right)(a b)^{n} \in b S a$;
(iii) the radical of every bi-ideal of S is an ideal of S.

Proof. (i) \Leftrightarrow (ii). This equivalence is from [2].
(ii) \Rightarrow (iii). Let A be a bi-ideal of S and let $a \in \sqrt{A}, b \in S$. Then $a^{k} \in A$ for some $k \in \mathbf{Z}^{+}$, whence

$$
(a b)^{m},(b a)^{n} \in a^{k} b S b a^{k} \subseteq A S A \subseteq A
$$

for some $m, n \in \mathbf{Z}^{+}$. Thus $a b, b a \in \sqrt{A}$, i.e. \sqrt{A} is an ideal of S.
(iii) \Rightarrow (ii). Let $a, b \in S$. Assume that $A=a S a, B=b S b$. It is clear that $a \in \sqrt{a}, b \in \sqrt{B}$. Since \sqrt{A} and \sqrt{B} are ideals of S, we then have that $a b \in \sqrt{A} \cap \sqrt{B}$, i.e. there exist $m, n \in \mathbf{Z}^{+}$such that $(a b)^{m} \in a S a,(a b)^{n} \in b S b$, whence $(a b)^{m+n} \in b S b a S a \subseteq b S a$.

3. More on bi-ideals and radicals

The Theorems 10.-22. can be proved as some of the previous theorems and the proof of any of its will be omitted.

Theorem 10. The radical of every ideal of a semigroup S is a bi-ideal of S if and only if

$$
(\forall a, b, c \in S)\left(\forall k, l \in \mathbf{Z}^{+}\right) a^{k} \longrightarrow a b c \quad \vee \quad c^{l} \longrightarrow a b c . \square
$$

THEOREM 11. The radical of every subsemigroup of a semigroup S is a bi-ideal of S if and only if

$$
(\forall a, b, c \in S)\left(\forall k, l \in \mathbf{Z}^{+}\right)\left(\exists n \in \mathbf{Z}^{+}\right)(a b c)^{n} \in\left\langle a^{k}, c^{l}\right\rangle
$$

Theorem 12. The radical of every bi-ideal of a semigroup S is a bi-ideal of S if and only if

$$
(\forall a, b, c \in S)\left(\forall k, l \in \mathbf{Z}^{+}\right)\left(\exists n \in \mathbf{Z}^{+}\right)(a b c)^{n} \in\left\{a^{k}, c^{l}\right\} S\left\{a^{k}, c^{l}\right\} .
$$

THEOREM 13. The radical of every subsemigroup of a semigroup S is a subsemigroup of S if and only if

$$
(\forall a, b \in S)\left(\forall k, l \in \mathbf{Z}^{+}\right)\left(\exists n \in \mathbf{Z}^{+}\right)(a b)^{n} \in\left\langle a^{k}, b^{l}\right\rangle
$$

Theorem 14. The radical of every bi-ideal of a semigroup S is a subsemigroup of S if and only if

$$
(\forall a, b \in S)\left(\forall k, l \in \mathbf{Z}^{+}\right)\left(\exists n \in \mathbf{Z}^{+}\right)(a b)^{n} \in\left\{a^{k}, b^{l}\right\} S\left\{a^{k}, b^{l}\right\}
$$

THEOREM 15. The radical of every subsemigroup of a semigroup S is a left ideal of S if and only if S is a right zero band of power joined semigroups.

THEOREM 16. The radical of every subsemigroup of a semigroup S is an ideal of S if and only if S is power joined.

ThEOREM 17. The following conditions on a semigroup S are equivalent:
(i) $(\forall a, b, c, d \in S) b^{2} \longrightarrow a b c d \vee c^{2} \longrightarrow a b c d$;
(ii) for all $a, b, c \in S$,

$$
a b \mid c \Rightarrow a^{2} \longrightarrow c \quad \vee \quad b^{2} \longrightarrow c
$$

THEOREM 18. The following conditions on a semigroup S are equivalent:
(i) $(\forall a, b, c \in S) a^{2} \xrightarrow{r} a b c \quad \vee b^{2} \xrightarrow{r} a b c$;
(ii) for all $a, b, c \in S$,

$$
\left.a b\right|_{r} c \Rightarrow a^{2} \xrightarrow{r} c \quad \vee \quad b^{2} \xrightarrow{r} c
$$

THEOREM 19. The following conditions on a semigroup S are equivalent:
(i) $(\forall a, b \in S) a^{2} \xrightarrow{t} a b a$;
(ii) for all $a, b \in S$,

$$
a \underset{t}{\mid} b \Rightarrow a^{2} \xrightarrow{t} b
$$

References

[1] S.Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math. Novi Sad, 1985.
[2] S.Bogdanović, Semigroups of Galbiati-Veronesi, Proc. of the conf. "Algebra and Logic", Zagreb, (1984), 9-20, Novi Sad 1985.
[3] S.Bogdanović and M.ĆIrić, Semigroups of Galbiati-Veronesi IV, Facta Universitatis (Niš), Ser. Math. Inform. (to appear).
[4] M.ĆIrić and S.Bogdanović, Decompositions of semigroups induced by identities, Semigroup Forum (to appear).
[5] J.L.Chrislock, On medial semigroups, J. Algebra 12 (1969), 1-9.
[6] T.Nordahl, Semigroup satisfying $(x y)^{m}=x^{m} y^{m}$, Semigroup Forum 8 (1974), 332-346.
[7] M.S.Putcha, Semilattice decomposition of semigroups, Semigroup Forum, 6 (1973), 12-34.
[8] M.S.Putcha, Bands of t-Archimedean semigroups, Semigroup Forum, 6 (1973), 232-239.
[9] M.S.Putcha, Rings which are semilattices of Archimedean semigroups, Semigroup Forum, 23 (1981), 1-5.
[10] T.Tamura, On Putcha's theorem concerning semilattice of Archimedean semigroups, Semigroup Forum, 4 (1972), 83-86.
[11] T.Tamura, Quasi-orders, generalized archimedeaness, semilattice decomposition, Math. Nachr. 68 (1975), 201-220.
[12] T.Tamura and N.Kimura, On decomposition of a commutative semigroup, Kodai Math. Sem. Rep. 4 (1954), 109-112.
[13] T.Tamura and J.Shafer, On exponential semigroups I, Proc. Japan Acad. 48 (1972), 77-80.
[14] Л.Н.ШЕвРин, Квазипериодические полугруппь, разложимые в связку Архимедовых полугрупn, XVI Всесоюзн. алгебр. конф. Тезисы докл., Л., 1981, Ч1, с. 188.

Faculty of Economics Department of Mathematics
18000 Niš, Trg Jna 11 Philosophical Faculty
Yugoslavia 18000 Niš, Ćirila i Metodija 2 Yugoslavia

Current address: Stojan Bogdanović, Faculty of Economics, 18000 Niš, Yugoslavia

