RIGHT π-INVERSE SEMIGROUPS AND RINGS

Stojan Bogdanović and Miroslav Ćirić

Abstract

In this paper we consider semigroups and rings whose multiplicative semigroups are completely π-regular and right π-inverse (for the definitions see below).

Throughout this paper, \mathbf{Z}^{+}will denote the set of all positive integers. A semigroup (ring) S is π-regular (left π-regular, right π-regular) if for every $a \in S$ there exists $n \in \mathbf{Z}^{+}$such that $a^{n} \in a^{n} S a^{n}\left(a^{n} \in S a^{n+1}, a^{n} \in a^{n+1} S\right.$. A semigroup (ring) S is completely π-regular if for every $a \in S$ there exists $n \in \mathbf{Z}^{+}$ and $\quad x \in S$ such that $a^{n}=a^{n} x a^{n}$ and $a^{n} x=x a^{n}$. A semigroup S is π inverse (completely π-inverse) if it is π-regular (completely π-regular) and every regular element has a unique inverse. A semigroup S is right (left) π-inverse if it is π-regular and $a=a x a=a y a \quad$ implies $\quad x a=y a(a x=a y)$. By $\operatorname{Reg}(S)$ $(G r(S), E(S))$ we denote the set of all regular (completely regular, idempotent) elements of a semigroup S. If e is an idempotent of a semigroup (ring) S, then by G_{e} we denote the maximal subgroup of S with e as its identity. By $\mathcal{M} R$ we denote the multiplicative semigroup of a ring R. A semigroup S is a nil-semigroup if for every $a \in S$ there exists $n \in \mathbf{Z}^{+}$such that $a^{n}=0$. An ideal extension S of a semigroup S is a nil-extension of T if S / T is a nil-semigroup.
M.S.Putcha [5] studied completely π-regular rings which are semilattices of Archimedean semigroups. Right π-inverse semigroups are studied in [2]. In this paper we consider semigroups and rings whose multiplicative semigroups are completely π-regular and right π-inverse, called right completely π-inverse. As a consequence we obtain a result of J.L.Galbiati and M.L.Veronesi [3] for completely π-inverse semigroups. Furthermore, we prove that in rings the notions of right completely π-inverse and right π-inverse coincide and in this case we have a ring in which multiplicative semigroup is a semilattice of nil-extensions of left groups.

Supported by Grant 0401A of Science Fund of Serbia through Math. Inst. SANU 1991 Mathematics subject classification: 20M10, 20M25, 16A30

Theorem 1. A semigroup S is completely π-regular if and only if S is π-regular and left (or right) π-regular.

Proof. Let S be a π-regular and a left π-regular semigroup. Then for every $a \in S$ there exists $x \in S$ and $r \in \mathbf{Z}^{+}$such that $a^{r}=x a^{r+1}$, whence

$$
\begin{equation*}
a^{k r}=x a^{k r+1} \tag{1}
\end{equation*}
$$

for all $k \in \mathbf{Z}^{+}$. Since S is π-regular we then have that for a^{r} there exists $y \in S$ and $m \in \mathbf{Z}^{+}$such that

$$
\left(a^{r}\right)^{m}=\left(a^{r}\right)^{m} y\left(a^{r}\right)^{m},
$$

so by (1) we obtain that

$$
a^{r m}=a^{r m} y\left(x a^{r m+1}\right)=a^{r m} y x a^{r m+1} .
$$

Therefore, $a^{r m} \in a^{r m} S a^{r m+1}$, and by Theorem IV 2. [1] we have that S is completely π-regular.

The converse follows immediately.
Definition. A semigroup S is right (left) completely π-inverse if S is completely π-regular and for all $a, x, y \in S$ by $a=a x a=a y a$ it implies that $x a=y a(a x=a y)$, i.e. if it is completely π-regular and right π-inverse.

Right completely π-inverse semigroups we describe by the following theorem:
Theorem 2. The following conditions on a semigroup S are equivalent:
(i) S is right completely π-inverse;
(ii) S is π-regular and

$$
\begin{equation*}
(\forall a \in S)(\forall f \in E(S))\left(\exists n \in \mathbf{Z}^{+}\right) \quad(a f)^{n}=(f a f)^{n} ; \tag{2}
\end{equation*}
$$

(iii) S is π-regular and

$$
\begin{equation*}
(\forall a \in \operatorname{Reg}(S))(\forall f \in E(S))\left(\exists n \in \mathbf{Z}^{+}\right) \quad(a f)^{n}=(f a f)^{n} . \tag{3}
\end{equation*}
$$

Proof. (iii) $\Rightarrow(i)$. Let we prove that S is completely π-regular. Let $a=a x a$ for some $x \in S$. Then by (3) it follows that there exists $r \in \mathbf{Z}^{+}$such that

$$
a^{r}=(a(x a))^{r}=((x a) a)^{r}=\left(x a^{2}\right)^{r}=x a^{r+1} .
$$

Therefore, every regular element of S is right π-regular. Since S is π-regular, then for every $a \in S$ there exists $m \in \mathbf{Z}^{+}$such that $a^{m} \in \operatorname{Reg}(S)$, whence it follows that there exists $r \in \mathbf{Z}^{+}$and $x \in S$ such that $\left(a^{m}\right)^{r}=x\left(a^{m}\right)^{r+1}$, so $a^{m r} \in S a^{m r+1}$. Hence, S is π-regular and right π-regular so by Theorem 1 . we obtain that S is completely π-regular semigroup. That S is right π-inverse follows by Theorem 1. [2].
(i) \Rightarrow (ii). Let S be a right completely π-inverse semigroup. Assume $a \in S$ and $f \in E(S)$. Then there exists $k, m \in \mathbf{Z}^{+}$such that $(a f)^{k} \in G_{g}$ and $(f a f)^{m} \in G_{h}$ for some $g, h \in E(S)$. By Lemma 1. [4] it follows that there exists $n \in \mathbf{Z}^{+}$such that $(a f)^{n} \in G_{g}$ and $(f a f)^{n} \in G_{h}$. Now

$$
g=\left((a f)^{n}\right)^{-1}(a f)^{n}=\left((a f)^{n}\right)^{-1}(a f)^{n} f=g f
$$

Similarly we obtain that $h=h f=f h$. Since

$$
f(a f)^{r}=(f a)^{r} f=(f a f)^{r}
$$

for all $r \in \mathbf{Z}^{+}$, we then have that

$$
f(a f)^{n}=(f a f)^{n}=h(f a f)^{n}=h f(a f)^{n}=h(a f)^{n} .
$$

Thus

$$
f(a f)^{n}\left((a f)^{n}\right)^{-1}=h(a f)^{n}\left((a f)^{n}\right)^{-1}
$$

i.e. $\quad f g=h g$, so $g(f g)=g(h g)$. Hence, $g=g h g=g^{2}$ (since $g f=g$). Since S is right π-inverse, then we obtain that $h g=g$. Therefore

$$
\begin{equation*}
f g=h g=g \tag{4}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
h & =h f=\left((f a f)^{n}\right)^{-1}(f a f)^{n} f=\left((f a f)^{n}\right)^{-1} f(a f)^{n} f \\
& =\left((f a f)^{n}\right)^{-1} f(a f)^{n} g f=\left((f a f)^{n}\right)^{-1}(f a f)^{n} g f \\
& =h g f=h g .
\end{aligned}
$$

By this and by (4) we obtain that $g=h$. Thus $(a f)^{n}$ and $(f a f)^{n}$ lies in the same subgroup G_{g} of S, so

$$
(f a f)^{n}=g(f a f)^{n}=g f(a f)^{n}=g(a f)^{n}=(a f)^{n}
$$

since $g f=g$.
$(i i) \Rightarrow$ (iii). This follows immediately.
Corollary 1. [3] The following conditions on a semigroup S are equivalent:
(i) S is completely π-inverse;
(ii) S is π-regular and

$$
(\forall a \in S)(\forall f \in E(S))\left(\exists n \in \mathbf{Z}^{+}\right) \quad(a f)^{n}=(f a)^{n}
$$

(iii) S is π-regular and

$$
(\forall a \in \operatorname{Reg}(S))(\forall f \in E(S))\left(\exists n \in \mathbf{Z}^{+}\right) \quad(a f)^{n}=(f a)^{n}
$$

By the following theorem we describe rings whose multiplicative semigroups are right π-inverse.

Theorem 3. The following conditions on a ring R are equivalent:
(i) $\mathcal{M} R$ is a right π-inverse semigroup;
(ii) R is π-regular and ae $=$ eae for every $a \in R, e \in E(R)$;
(iii) R is π-regular and $(E(R), \cdot)$ is a right regular band;
(iv) $\mathcal{M R}$ is a semilattice of nil-extensions of left groups;
(v) $\mathcal{M R}$ is a right completely π-inverse semigroup.

Proof. $(i) \Rightarrow(i i)$. Let $a \in R$ and let $e \in E(R)$. Then $g=e+a e-e a e \in$ $E(R)$. It is clear that $g e=g$ and $e g=e$. Now $g=g(e g)=g(g e g)$, so $e g=g e g$. By this it follows that $e=g$, so $a e=e a e$.
(ii) \Rightarrow (iii). This follows immediately.
(iii) \Rightarrow (i). This follows by Theorem 1. [2].
(i) $\Rightarrow(i v)$. Let $a \in \operatorname{Reg}(R)$, i.e. let $a=a x a$ for some $x \in R$. By (ii) it follows that

$$
a=a(x a)=(x a) a(x a)=x a^{2}
$$

whence

$$
a=a x a=a x^{2} a^{2} \in G r(R) .
$$

Hence, $\operatorname{Reg}(R)=\operatorname{Gr}(R)$, so by Corollary 3. [2] we obtain that $\mathcal{M} R$ is a semilattice of nil-extensions of left groups.
$(i v) \Rightarrow(i)$. This follows by Theorem 1. [3] and by Corollary 3. [3].
$(i v) \Rightarrow(v)$. This follows by Theorem 1. [2], by Corollary 3. [2] and by Theorem 2.
$(v) \Rightarrow(i)$. This follows immediately.
By Theorem 3. we obtain the following:
Corollary 2. The following conditions on a ring R are equivalent:
(i) $\mathcal{M} R$ is a π-inverse semigroup;
(ii) R is π-regular and ae $=$ ea for every $a \in R, e \in E(R)$;
(iii) R is π-regular and $(E(R), \cdot)$ is a semilattice;
(iv) $\mathcal{M R}$ is a semilattice of nil-extensions of groups;
(v) $\mathcal{M R}$ is a completely π-inverse semigroup.

Remark. If a ring R has an identity element, then by Theorem 12. [5] it follows that all of the conditions from Theorem 3. and Corollary 2. are equivalent.

References

[1] S.Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math. Novi Sad, 1985.
[2] S.Bogdanović, Right π-inverse semigroups, Zbornik radova PMF Novi Sad, 14, 2 (1984), 187-195.
[3] J.L.Galbiati e M.L.Veronesi, Sui semigruppi quasi completamente inverse, Rend. Ist. Lombardo, Cl. Sc. (A) (1984).
[4] W.D.Munn, Pseudoinverses in semigroups, Proc. Camb. Phil. Soc. 57 (1961), 247-250.
[5] M.S.Putcha, Rings which are semilattices of Archimedean semigroups, Semigroup Forum, 23 (1981), 1-5.

Faculty of Economics
18000 Niš, Trg Jna 11
Yugoslavia

Department of Mathematics Philosophical Faculty 18000 Niš, Ćirila i Metodija 2 Yugoslavia

Current address: Stojan Bogdanović, Faculty of Economics, 18000 Niš, Yugoslavia

