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and Tatjana Petković
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Introduction

The main aim of this paper is to give a survey of the most important structural
properties of uniformly π-regular rings and semigroups. It is well-known that there
are many similarities between certain types of semigroups and related rings. For
example, we will see in Theorem 2.1 that the regularity of a semigroup can be
characterized by means of the properties of its left and right ideals, and in the
same way, the regularity of a ring can be characterized through its ring left and
right ideals. On the other hand, there are many significant differences between
the properties of certain types of semigroups and the properties of related rings.
For example, many concepts such as the left, right and complete regularity and
other, are different in Theory of semigroups, but they coincide in Theory of rings.
One of the main goals of this paper is exactly to underline both the similarities
and differences between related types of rings and semigroups. For that purpose
many interesting results of Theory of rings or Theory of semigroups will be omitted
here if they are not similar or essentially different than the corresponding result of
another theory.

There are two central places in the paper. The first one is Theorem 5.11
which asserts that a π-regular ring is uniformly π-regular if and only if it is an
ideal extension of a nil-ring by a Clifford ring. This theorem makes possible to
represent such rings by the Everett’s sums of nil-rings and Clifford rings. This has
shown oneself to be very useful in many situations. For example, using Theorem
5.11, a lot of known results concerning uniformly π-regular semigroups can be very
successfully applied in Theory of rings.

Another crucial result is Theorem 5.44. This theorem describes rings whose
multiplicative semigroups are nil-extensions of unions of groups and it asserts that
such rings are exactly the direct sums of nil-rings and Clifford rings. We present
numerous known methods for decomposition of semigroups into a nil-extension of a
union of groups and we show that these methods have very significant applications
in Theory of rings, in decompositions of rings into the direct sum of a nil-ring and
a Clifford ring.

The purpose of this paper is twofold. At first, we intend to present the known
results concerning uniformly π-regular semigroups and applications of these results
in Theory of rings. On the other hand, we want also to interest ring-theoretists
and semigroup-theoretists for more intensive investigations in the considered area.

The paper is divided into six sections. In the first section we introduce the
necessary notions and notations and we present the main results concerning ideal
extensions of rings and their representation by the known Everett’s sums of rings.
In Sections 2 and 3 we introduce the notions of a regular, π-regular, completely
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π-regular and periodic ring and semigroup, and of a completely Archimedean semi-
group and we describe their basic properties. Structural characterizations of com-
pletely regular semigroups and rings are given in Section 4. The main tools that
we use there, are certain decomposition methods: semilattice decompositions, in
the case of semigroups, and subdirect sum decompositions, in the case of rings.

The main part of the whole paper is Section 5. In this section we first give
structural descriptions of uniformly π-regular semigroups and rings. After that we
present various characterizations of semigroups decomposable into a nil-extension
of a union of groups, and using these results we characterize the rings decomposable
into the direct sum of a nil-ring and Clifford ring.

Finally, in Section 6 we present certain applications of the results given in the
previous section. Here we study various types of semigroup identities satisfied on
the various classes of semigroups and rings. The classes of all identities satisfied
on the classes of the semilattices of Archimedean semigroups, the nil-extensions
of unions of groups, the bands of π-regular semigroups are described. The main
result in the part about the rings satisfying certain semigroup identities is the
characterization of all rings satisfying a semigroup identity of the form x1x2 · · ·xn =
w(x1, x2, . . . , xn), where |w| ≥ n + 1, given in the Theorem 6.29.

1. Preliminaries

In this section we introduce necessary notions and notations.

1.1. Basic notions and notations. Throughout this paper N will denote
the set of all positive integers, N0 the set of all non-negative integers, and Z will
denote the ring of integers. By Z 〈x, y〉 we will denote the ring of all polynomials
with the variables x and y and the coefficients in Z.

For a semigroup (ring) S, E(S) will denote the set of all idempotents of S, and
for A ⊆ S,

√
A will denote the subset of S defined by

√
A = {x ∈ S | (∃n ∈ N)xn ∈

A}. For a ring R, MR will denote the multiplicative semigroup of R. A subset A
of a semigroup (ring) S is called completely semiprime if for x ∈ S, x2 ∈ A implies
x ∈ A, completely prime if for x, y ∈ S, xy ∈ A implies that either x ∈ A or y ∈ A,
left consistent if for x, y ∈ S, xy ∈ A implies x ∈ A, right consistent if for x, y ∈ S,
xy ∈ A implies y ∈ A, and it is consistent if it is both left and right consistent.

The expression S = S0 means that S is a semigroup with the zero 0. Let
S be a semigroup (ring) with the zero 0. An element a ∈ S is called a nilpotent
element (or a nilpotent) if there exists n ∈ N such that an = 0, and the smallest
number n ∈ N having this property is called the index of nilpotency of a. The set
of all nilpotents of S is denoted by Nil(S), and also N2(S) = {a ∈ S | a2 = 0}. A
semigroup (ring) whose any element is nilpotent is called a nil-semigroup (nil-ring).
For n ∈ N, n ≥ 2, a semigroup (ring) S is called n-nilpotent if Sn = 0, and is called
nilpotent if it is n-nilpotent, for some n ∈ N, n ≥ 2. A 2-nilpotent semigroup (ring)
is called a null-semigroup (null-ring).
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For a semigroup S we say that is an ideal extension of a semigroup T by a
semigroup Q if T is an ideal of S and the factor semigroup S/T is isomorphic to
Q. An ideal extension of a semigroup S by a nil-semigroup (resp. n-nilpotent
semigroup, nilpotent semigroup, null-semigroup) is called a nil-extension (resp. n-
nilpotent extension, nilpotent extension, null-extension) T . A subsemigroup T of
a semigroup S is called a retract of S if there exists a homomorphism ϕ of S onto
T such that aϕ = a, for any a ∈ T , and then ϕ is called a retraction of S onto T .
An ideal extension S of a semigroup T is called a retractive extension of T if T is
a retract of S.

By A+ we denote the free semigroup over an alphabet A and by A∗ we denote
the free monoid over A. For n ∈ N, n ≥ 4, An = {x1, x2, . . . , xn}, A3 = {x, y, z}
and A2 = {x, y}. For a word w ∈ A+, w+ will denote the set w+ = {wn |n ∈ N}.
By |w| we denote the length of a word w ∈ A+ and by |x|w we denote the number
of appearances of the letter x ∈ A in the word w ∈ A+. A word v ∈ A+ is a left
(right) cut of a word w ∈ A+ if w = vu (w = uv), for some u ∈ A∗, and v is a
subword of w if w = u′vu′′, for some u′, u′′ ∈ A∗. For w ∈ A+ such that |w| ≥ 2,
by h(2)(w) (t(2)(w)) we denote the left (right) cut of w of the length 2. By h(w)
(t(w)) we denote the first (last) letter of a word w ∈ A+, called the head (tail)
of w, and by c(w) we denote the set of all letters which appear in w, called the
content of w [246]. An expression w(x1, . . . , xn) will mean that w is a word with
c(w) = {x1, . . . , xn}. If w ∈ A+ and i ∈ N, i ≤ |w|, then li(w) (ri(w)) will denote
the left (right) cut of w of the length i, ci(w) will denote the i-th letter of w and
for i, j ∈ N, i, j ≤ |w|, i ≤ j, mj

i (w) will denote the subword w determined by:
w = li−1(w)mj

i (w)r|w|−j(w). For n ∈ N, Πn will denote the word x1x2 . . . xn ∈ A+
n .

If w ∈ A+ and x ∈ A, then x ‖
l
w (x ‖

r
w) if w = xv (w = vx), v ∈ A+ and x /∈ c(v).

Otherwise we write x ∦
l
w (x ∦

r
w).

Let n ∈ N, w ∈ A+
n and let S be a semigroup. By the value of the word w

in S, in a valuation a = (a1, a2, . . . , an), ai ∈ S, i ∈ {1, 2, . . . , n}, in notation
w(a) or w(a1, a2, . . . , an), we mean the element wϕ ∈ S, where ϕ : A+

n → S is
the homomorphism determined by xiϕ = ai, i ∈ {1, 2, . . . , n}. Also, we then
say that for i ∈ {1, 2, . . . , n}, the letter xi assumes the value ai in S, in notation
xi := ai. For two words u, v ∈ A+

n , the formal expression u = v we call an identity
(or a semigroup identity) over the alphabet An, and for a semigroup S we say
that it satisfies the identity u = v, in notation S |= u = v, if uϕ = vϕ, for any
homomorphism ϕ from A+

n into S, i.e. if u and v have the same value for any
valuation in S. The class of all semigroups satisfying the identity u = v is denoted
by [u = v], and is called the variety determined by the identity u = v. Identities
u = v and u′ = v′ over an alphabet A+

n are p-equivalent if u′ = v′ can be obtained
from u = v by some permutation of letters. It is clear that p-equivalent identities
determine the same variety.

Let ϕ be a homomorphism of a free semigroup A+ into a semigroup S. For
an identity over A, which is treated as a pair of words from A+, we say that it is
a solution of the equation uϕ = vϕ if it is contained in the kernel of ϕ. Any trivial
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identity over A, i.e. an identity of the form w = w, is clearly a solution of the
equation uϕ = vϕ, called the trivial solution of uϕ = vϕ. All other solutions of
uϕ = vϕ, if they exist, are called non-trivial solutions of uϕ = vϕ.

Let Σ be a set of non-trivial identities over an alphabet A. i.e. a subset of
A+ × A+ having the empty intersection with the equality relation on A+. For a
semigroup S we say that it satisfies variabily the set Σ of identities, or that it
satisfies the variable identity Σ, in notation S |=v Σ, if for any homomorphism ϕ
from A+ to S, the equation uϕ = vϕ has a solution in Σ (clearly, such solutions
are non-trivial). The class of all semigroups which satisfy the variable identity Σ
is denoted by [Σ]v and is called a variable variety .

A semigroup S is called a band (resp. left zero band , right zero band , rectan-
gular band , left regular band , right regular band , semilattice) if it belongs to the
variety [x = x2] (resp. [xy = x], [xy = y], [x = x2, xyx = x], [x = x2, xyz = xzy],
[x = x2, xyz = yxz], [x = x2, xy = yx]). If B is a band, we say that a semigroup S
is a band B of semigroups if B is a homomorphic image of S. When B is semilattice
(resp. left zero band, right zero band, rectangular band), then we say that S is a
semilattice (resp. left zero band , right zero band , matrix ) of semigroups.

In this paper we will use several semigroups given by the following presenta-
tions:

B2 =
〈

a, b | a2 = b2 = 0, aba = a, bab = b
〉

A2 =
〈

a, e | a2 = 0, e2 = e, aea = a, eae = e
〉

Nm =
〈

a | am+1 = am+2, am 6= am+1〉

L3,1 =
〈

a, f | a2 = a3, f2 = f, a2f = a2, fa = f
〉

C1,1 =
〈

a, e | a2 = a3, e2 = e, ae = a, ea = a
〉

C1,2 =
〈

a, e | a2 = a3, e2 = e, ae = a, ea = a2〉

where m ∈ N, and R3,1 (resp. C2,1) will denote the dual semigroup of L3,1 (resp.
C1,2). By L2 (resp. R2) we denote the two-element left zero (resp. right zero)
semigroup. Let A+

N be the free semigroup over an alphabet AN = {xk | k ∈ N} and
let I = {u ∈ A+

N | (∃xi ∈ AN ) |xi|u ≥ 2}. Then I is an ideal of A+
N . By DN we

will denote the factor semigroup (A+
N )/I. It is clear that DN is isomorphic to the

semigroup
({u ∈ A+

N |Π(u) = c(u)} ∪ {0}, ·),

where the multiplication “ · ” is defined by

u · v =
{

uv if u, v 6= 0 and c(u) ∩ c(v) = ∅
0 otherwise

.

DN is a nil-semigroup and it is not nilpotent.
The principal twosided (resp. left , right) idealof a semigroup (ring) S generated

by an element a ∈ S will be denoted by (a) (resp. (a)L, (a)R). The Green’s relations
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J , L, R, H and D on a semigroup S are defined by

aL b ⇔ (a)L = (b)L; aR b ⇔ (a)R = (b)R;

aJ b ⇔ (a) = (b); H = L ∩R, D = LR,

where a, b ∈ S. The division relations |, |
l
, |

r
and |

t
on a semigroup S are defined by

a |
l
b ⇔ b ∈ (a)L, a |

r
b ⇔ b ∈ (a)R,

a | b ⇔ b ∈ (a), |
t
=|

l
∩ |

r
,

and the relations l−→, r−→, t−→ and −→ on S are defined by

a l−→ b ⇔ (∃n ∈ N) an |
l
b, a r−→ b ⇔ (∃n ∈ N) an |

r
b,

a t−→ b ⇔ (∃n ∈ N) an |
t
b, a −→ b ⇔ (∃n ∈ N) an | b,

for a, b ∈ S.
If a semigroup T is a homomorphic image of a subsemigroup T ′ of a semigroup

S, then we say that T divides S through T ′. If the intersection of all ideals of a
semigroup S is non-empty, then it is an ideal of S called the kernel of S. With
respect to set-theoretical union and intersection, the set of all left ideals of a semi-
group S, with the empty set included, is a lattice and it is denoted by LId(S). By
a discrete partially ordered set we mean a partially ordered set in which any two
elements are incomparable. An element of a semigroup (ring) S is called central if
it commutes with any element of S, and the set of all central elements of S is called
the center of S. A ring without non-zero nilpotent elements is called a reduced
ring .

For undefined notions and notations we refer to the books [36], [48], [105],
[106], [128], [144], [147], [153], [195], [210], [241], [243], [245], [246], [247],
[270], [291], [292], [301] and [313].

1.2. Everett’s sums of rings. In this section we talk about the general
problem of ideal extensions of rings. This problem is formulated in the following
way: Given rings A and B, construct all ideal extensions of a ring A by a ring B,
i.e. construct all rings R having the property that A is an ideal of R and the factor
ring R/A is isomorphic to B. A solution of this problem was given by Everett in
[113], 1942, and is referred here as the Everett’s theorem.

The original version of the Everett’s theorem can be found in the book of
Rédei [270], 1961. The version which will be given here due to Müller and Petrich
[217], 1971. The Everett’s construction, given in such a version, is a combination
of the well-known Schreier’s construction of all extensions of a group by another,
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and the construction of all ideal extensions of a semigroup by a semigroup with
zero, due to Yoshida [348], 1965. Namely, as in the group case, one chooses a
system of representatives of the cosets of A in R, and as in the semigroup case, one
makes a bitranslation of A by any of these representatives. Moreover, because the
representatives are chosen in different cosets, two “factor systems”, one for addition
and one for multiplication, have to be introduced. For more information concerning
Schreier’s extensions of groups we refer to Hall [131] and Rédei [270], 1961, and
for more information about ideal extensions of semigroups we refer to the survey
article written by Petrich [240], 1970, and the book of the same author [241], 1973.

To present the Everett’s construction we need the notion of a translational
hull of a ring. The translational hull occurs naturally when one is concerned with a
construction of ideal extensions of semigroups, and seeing that ring extensions can
be treated as their particular case, it appears also in ring theory, with the necessary
modification that all the functions in the definition be additive.

Let R be a ring. An endomorphism λ (%) of the additive group of R, written on
the left (right), is a left (right) translation of R if λ(xy) = (λx)y ((xy)% = x(y%)),
for all x, y ∈ R. A left translation λ and a right translation % of R are linked
if x(λy) = (x%)y, for all x, y ∈ R, and in such a case the pair (λ, %) is called a
bitranslation of R. It is sometimes convenient to consider a bitranslation (λ, %) as a
bioperator denoted by a single letter, say π, which acts as λ, if it is written on the
left, and as %, if it is written on the right, i.e. πx = λx and xπ = x%, for x ∈ R. For
any a ∈ R, the inner left (right) translation induced by a is the mapping λa (%a) of
R into itself defined by λax = ax (x%a = xa), for x ∈ R, and the pair πa = (λa, %a)
is called the inner bitranslation of R induced by a.

A left translation λ and a right translation % of a ring R are permutable if
(λx)% = λ(x%), for all x ∈ R, and a set T of bitranslations of R is permutable if for
all (λ, %), (λ′, %′) ∈ T , λ and %′ are permutable.

The set Λ(R) (P(R)) of all left (right) translations of a ring R is a ring under
the addition and the multiplication defined by:

(λ + λ′)x = λx + λ′x
(

x(% + %′) = x% + x%′
)

,

(λλ′)x = λ(λ′x)
(

x(%%′) = (x%)%′
)

,

for λ, λ′ ∈ Λ(R) (%, %′ ∈ P(R)) and x ∈ R. The subring Ω(R) of the direct sum of
rings Λ(R) and P(R), consisting of all bitranslations of R, is called the translational
hull of R. More information about translational hulls of rings and semigroups can
be found in [240] and [241].

Theorem 1.1. (Everett’s theorem) Let A and B be disjoint rings. Let θ be a
function of B onto a set of permutable bitranslations of A, in notation θ : a 7→ θa ∈
Ω(A), a ∈ B, and let [, ], 〈, 〉 : B ×B → A be functions such that for all a, b, c ∈ B
the following conditions hold:

(E1) θa + θb − θa+b = π[a,b];
(E2) θa · θb − θab = π〈a,b〉;
(E3) 〈ab, c〉+ 〈a, b〉θc = 〈a, bc〉+ θa〈b, c〉;
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(E4) [0, 0] = 0;
(E5) [a, b] = [b, a];
(E6) [a, b] + [a + b, c] = [a, b + c] + [b, c];
(E7) [a, b]θc + 〈a + b, c〉 = [ac, bc] + 〈a, c〉+ 〈b, c〉;
(E8) θa[b, c] + 〈a, b + c〉 = [ab, ac] + 〈a, b〉+ 〈a, c〉.

Define an addition and a multiplication on R = A×B by:
(E9) (α, a) + (β, b) = (α + β + [a, b], a + b);

(E10) (α, a) · (β, b) = (αβ + 〈a, b〉+ θaβ + αθb, ab),
α, β ∈ A, a, b ∈ B. Then (R, +, ·) is a ring isomorphic to an ideal extension of A
by B.

Conversely, every ideal extension of A by B can be so constructed.

A ring constructed as in the Everett’s theorem we call an Everett’s sum of rings
A and B by a triplet (θ; [, ]; 〈, 〉) of functions and we denote it by E(A,B; θ; [, ]; 〈, 〉).
The representation of a ring R as an Everett’s sum of some rings we call an Everett’s
representation of R.

More information about the Everett’s theorem can be found in [240] and [270].
There we can see that an Everett’s representation E(A, B; θ; [, ]; 〈, 〉) of some ring
R is determined by the choice of a set of representatives of the cosets of A in R.
Namely, if for every coset a ∈ B we choose a representative, in notation a′, then
the set {a′ | a ∈ B} determines the triplet (θ; [, ]; 〈, 〉) in the following way:
(E11) αθa = α · a′, θaα = a′ · α, α ∈ A, a ∈ B;
(E12) [a, b] = a′ + b′ − (a + b)′, a, b ∈ B;
(E13) 〈a, b〉 = a′ · b′ − (a · b)′, a, b ∈ B.

Although an Everett’s representation of a ring is determined by the choice of repre-
sentatives of the related cosets, for any such choice we obtain equivalent Everett’s
sums. The precise conditions under which two Everett’s sums are equivalent were
given by Müller and Petrich in [217], 1971, by the following theorem:

Theorem 1.2. Two Everett’s sums E(A,B; θ; [, ]; 〈, 〉) and E(A,B; θ′; [, ]′; 〈, 〉′)
of rings A and B are equivalent if and only if there exists a mapping ξ : B → A
such that 0ξ = 0 and for all a, b ∈ B the following conditions hold:

(a) (θ′)b = θb + πbξ;
(b) [a, b]′ = [a, b] + aξ + bξ − (a + b)ξ;
(c) 〈a, b〉′ = 〈a, b〉+ θa(bξ) + (aξ)θb + (aξ)(bξ)− (ab)ξ.

Let n ∈ N and let w ∈ A+
n . If X1, X2, . . . , Xn are sets, then we will denote

by w(X1, X2, . . . , Xn) the set obtained by replacement of letters x1, x2, . . . , xn in
w by sets X1, X2, . . . , Xn, respectively, considering the Cartesian multiplication of
sets instead of the juxtapositions in w. Let R be a ring, let P be a set of permutable
bitranslations of R and let µ be an element of the Cartesian n-th power of R ∪ P .
If at least one projection of µ is in R, then w(µ) will denote the element of R
obtained by replacement of any letter xi, i ∈ {1, 2, . . . , n}, by the i-th projection of
µ, considering the multiplications in MR and MΩ(R) and acting of bitranslations
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from P on elements of R, instead of the juxtapositions in w. Otherwise, if all the
projections of µ are in P , then w(µ) will denote the value of w in the semigroup
MΩ(R), for the valuation µ.

The following theorem, given by Ćirić, Bogdanović and Petković in [94], 1995,
describes more complicated multiplications in Everett’s sums of rings.

Theorem 1.3. Let R = E(A,B; θ; [, ]; 〈, 〉), let n ∈ N, n ≥ 2, and assume that
w = w(x1, . . . , xn) ∈ A+

n , |w| = k, a = (a1, . . . , an) ∈ Bn, α = (α1, . . . , αn) ∈ An,
ξi = (αi, ai), i ∈ {1, . . . , n}, ξ = (ξ1, . . . , ξn), and θa = (θa1 , . . . , θan). Then for

β =
k−2
∑

j=1

〈(lj(w))(a), (cj+1(w))(a)〉(rk−j−1(w))(θa) + 〈(lk−1(w))(a), (t(w))(a)〉,

the following statements hold:

(i) w(θa) = θw(a) + πβ , and (ii) w(ξ) =

(

∑

µ∈Mw

Πk(µ) + β, w(a)

)

,

where Mw = w(X1, . . . , Xn)− {θa}, Xi = {αi, ai}, i ∈ {1, . . . , n}.
Furthermore, if θbAθc = 0, for all b, c ∈ B and if k ≥ 3, then

β = 〈(h(w))(a), (mk−1
2 (w))(a)〉θ(t(w))(a) + 〈(lk−1(w))(a), (t(w))(a)〉.

There are many known constructions in Theory of rings which are special cases
of Everett’s sums. For example, the well known split extension of rings is in fact
an Everett’s sum of rings in which the functions [, ] and 〈, 〉 are zero functions, i.e.
[a, b] = 〈a, b〉 = 0, for all a, b. In such a way we obtain also the well-known Dorroh
extension of a ring by a ring of integers, which realizes an embedding of a ring into
a ring with unity.

An interesting specialization of Everett’s sums was given by Ćirić and Bog-
danović in [80], 1990. An Everett’s sum E(A,B; θ; [, ]; 〈, 〉) was called by them a
strong Everett’s sum if θ is a zero homomorphism of B into Ω(A), i.e. if θa = π0, for
any a ∈ B. Such an Everett’s sum is denoted by E(A,B; [, ]; 〈, 〉), and a representa-
tion of a ring R by such an Everett’s sum is called a strong Everett’s representation
of R. A ring R is called a strong extension of a ring A by a ring B if there exists a
strong Everett’s representation R = E(A,B; [, ]; 〈, 〉).

Using the concept of strong extensions of rings, Ćirić and Bogdanović in [80],
1990, gave the following construction of nilpotent rings:

Theorem 1.4. Let n ∈ N, n ≥ 2. A ring R is an (n + 1)-nilpotent ring if and
only if it is a strong extension of a null-ring by an n-nilpotent ring.

Recall that by a null-ring we mean a 2-nilpotent ring.
The same authors investigated also some other strong extensions of rings, and

some of the obtained results will be presented in the next sections. Here we will
give only some general properties of strong extensions.
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Theorem 1.5. Any strong extension of a ring by a ring with identity is iso-
morphic to their direct sum.

The previous result was obtained by Ćirić and Bogdanović in [80], 1990, who
also stated the following problem: Is any strong extension of two rings isomorphic
to their direct sum?

An example of an Everett’s sum of two rings which is not equivalent to a strong
Everett’s sum of these rings is the following: Let n ∈ N, n ≥ 2, and let R be the
ring of all n× n upper triangular matrices over a field F . The set N of nilpotents
of R is the set of all matrices (aij) from R for which aij = 0, whenever i ≥ j, and
we have that N is an ideal of R, the factor ring R/N is isomorphic to the ring Fn,
and by the previous theorem, R cannot be a strong extension of N by Fn.

Note that the previous theorem is similar to the following well-known result:

Theorem 1.6. Let A be a ring with an identity. Then a ring R is an ideal
extension of A if and only if A is a direct summand of R.

This theorem is in fact an immediate consequence of the result given by Ćirić
and Bogdanović in [80], 1990, concerning retractive extensions of rings. A subring
A of a ring R is called a retract of R if there exists a homomorphism ϕ of R onto
A such that aϕ = a, for any a ∈ A. Such a homomorphism is called a retraction of
R onto A. If R is an ideal extension of A and there exists a retraction of R onto A,
we say that R is a retractive extension of A and that A is a retractive ideal of R.

Theorem 1.7. A ring R is a retractive ideal of a ring R if and only if A is a
direct summand of R.

Note that any ideal A with an identity of a ring R is a retract of R. Namely,
a retraction ϕ of R onto A is given by xϕ = xe, where x ∈ R and e is an identity
of A.

More information concerning retractions of semigroups will be given in Sec-
tion 5.

2. On π-regular semigroups and rings

In this section we present the main properties of regular and π-regular semi-
groups and rings.

2.1. The regularity in semigroups and rings. The regularity was first
defined in Ring theory by von Neumann in [224], 1936, and after that this definition
was naturally transmitted in Semigroup theory. By this definition, an element a of
a ring (semigroup) R is a regular element if there exists x ∈ R such that a = axa,
and a ring (semigroup) is defined to be a regular ring (regular semigroup) if all its
elements are regular. Thierrin, who first investigated some general properties of
regular semigroups in [322], 1951, called them inversive semigroups (demi-groupes
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inversifs). The set of all regular elements of a semigroup (ring) S we call the regular
part of S and we denote it by Reg(S).

Many very important kinds of rings are regular. For example, such a prop-
erty have division rings, the full matrix ring over a division ring, the ring of linear
transformations of a vector space over a division ring, and many other rings. This
also holds for many significant concrete semigroups. For example, the full trans-
formation semigroup of an arbitrary finite set is regular, and the statement that
the full transformation semigroup of a set X is regular for any set X is equivalent
to the famous Axiom of Choice. For more information about general properties
of regular rings and semigroups we refer to the books: Goodearl [128], Steinfeld
[301], Petrich [245] and others. Here we give only some their properties which we
need in the further work.

Theorem 2.1. The following conditions on a semigroup (ring) S are equiva-
lent:

(i) S is regular;
(ii) A ∩B = BA, for any left ideal A and any right ideal B of S;
(iii) any one-sided ideal of S is globally idempotent and BA is a quasi-ideal of

S, for any left ideal A and any right ideal B of S;
(iv) any principal left (right) ideal of S has an idempotent generator.

The equivalence of conditions (i) and (ii) was established by Iséki in [145],
1956, for semigroups, and Kovács in [160], 1956, for rings. Similar characterizations
of regular elements by principal one-sided ideals, and related characterizations of
regular semigroups and rings, were given by Lajos in [164], 1961, for semigroups,
and Szász in [308], 1961, for rings. For many information on other interesting
properties of two-sided, one-sided, quasi- and bi-ideals of regular semigroups and
rings we refer to the book of Steinfeld [301], 1978.

The equivalence of conditions (i) and (iii) was proved by Calais in [67], 1961,
for semigroups, and by Steinfeld in [301], 1978, for rings. Finally, (i) ⇔ (iv) was
proved by von Neuman in [224], 1936 (see also Clifford and Preston [105], 1961).

If a is a regular element of a semigroup (ring) S, then the element x, whose
existence was postulated by the definition of the regularity, can be chosen such
that a = axa and x = xax, and any element x satisfying this condition, which is
not necessary unique, is called an inverse of a. This property of regular elements
was first observed by Thierrin in [323], 1952. A regular semigroup (ring) whose
any element has a unique inverse is called an inverse semigroup (inverse ring).
Inverse semigroups were first defined and investigated by Vagner in [335], 1952,
and [337], 1953, who called them generalized groups, and independently by Preston
in [252], [253], [254], 1954. The most significant example of inverse semigroups is
the semigroup of partial one-to-one mappings of a set X into itself, and is called
the symmetric inverse semigroup on X. Just as any group can be embedded in
a symmetric group, by the Cayley theorem, and any semigroup can be embedded
in a full transformation semigroup, so every inverse semigroup can be embedded
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into a symmetric inverse semigroup. This result is due to Vagner [332], 1952, and
Preston [254], 1954, and is known as the Vagner-Preston Representation Theorem.

For more information on inverse semigroups we refer to the books of Howie
[144, Chapter V], 1976, and Petrich [247], 1984. Here we quote only some
characterizations of these semigroups that we need in the further work.

Theorem 2.2. The following conditions on a semigroup S are equivalent:
(i) S is inverse;
(ii) S is regular and the idempotents of S commute;
(iii) any principal one-sided ideal of S has a unique idempotent generator.

The implication (ii) ⇒ (iii) was proved by Vagner in [335], 1952, and inde-
pendently by Preston in [252], 1954, (i) ⇒ (ii) was proved by Liber in [197], 1954,
whereas the equivalence of all three conditions was proved by Munn and Penrose
in [219], 1955.

A natural generalization of inverse semigroups was given by Venkatesan in
[338], 1974, who defined a regular semigroup (ring) to be a left inverse (resp. right
inverse) semigroup (ring) if for all a, x, y ∈ S, a = axa = aya implies ax = ay
(resp. a = axa = aya implies xa = ya). Left inverse semigroups are characterized
by the following theorem:

Theorem 2.3. The following conditions on a semigroup S are equivalent:
(i) S is left inverse;
(ii) S is regular and E(S) is a left regular band;
(iii) any principal left ideal of S has a unique idempotent generator.

Another important kind of the regularity was introduced by Clifford in [99],
1941, who studied elements a of a semigroup S having the property that there
exists x ∈ S such that a = axa and ax = xa, which we call now completely
regular elements , and semigroups whose any element is completely regular, called
completely regular semigroups . The complete regularity was also investigated by
Croisot in [107], 1953, who also studied elements a of a semigroup S for which
a ∈ Sa2S (resp. a ∈ Sa2, a ∈ a2S), called intra-regular(resp. left regular , right
regular) elements , and semigroups whose every element is intra-regular (resp. left
regular, right regular), called intra-regular (resp. left regular , right regular) semi-
groups. Analogously we define intra-, left, right and completely regular rings and
elements of rings. As we will see in Section 4, the concepts of the left, right and
completely regular rings coincide, and in Ring theory such rings are known under
the names strongly regular and Abelian regular rings . The results of A. H. Clifford
and R. Croisot from the above mentioned papers concerning intra-, left, right and
completely regular semigroups will be also presented in Section 4. Here we give only
some their results which characterizes completely regular elements of a semigroup:

Theorem 2.4. The following conditions for an element a of a semigroup S
are equivalent:

(i) a is completely regular;
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(ii) a has an inverse which commutes with a;
(iii) a is contained in a subgroup of S;
(iv) a is left regular and right regular.

In view of the previous theorem, completely regular elements are often called
group elements , and the set of all completely regular elements of a semigroup (ring)
S is denoted by Gr(S) and is called the group part of S. For any idempotent e of a
semigroup S, Ge = {a ∈ S | a ∈ eS∩Se, e ∈ aS∩Sa} is the maximal subgroup of S
having e as its identity, and Gr(S) is a disjoint union of all maximal subgroups of
S. The existence of maximal subgroups was established by Schwarz in [278], 1943,
for periodic semigroups, and by Wallace in [340], 1953, and Kimura in [155], 1954,
for an arbitrary semigroup. The sets of all left, right and intra-regular elements of
a semigroup (ring) S are called the left regular , right regular and intra-regular part
of S, and are denoted by LReg(S), RReg(S) and Intra(S), respectively.

For any pair m,n ∈ N0, m + n > 1, Croisot in [107], 1953, also defined an
element a of a semigroup S to be (m,n)-regular if a ∈ amSan, where a0 denotes
the identity adjoined to S. He proved that for all m,n ≥ 2, the (m, 0)-regularity
is equivalent to the right regularity and the (0, n)-regularity is equivalent to the
left regularity, and for all m,n ∈ N for which m + n ≥ 3, the (m,n)-regularity
of a semigroup is equivalent to the complete regularity. As we see, the intra-
regularity is not included in this Croisot’s concept. But, by Lajos and Szász in
[192], 1975, for p, q, r ∈ N0, an element a of a semigroup S was defined to be
(p, q, r)-regular if a ∈ apSaqSar, and a semigroup S was defined to be a (p, q, r)-
regular semigroup if any its element is (p, q, r)-regular. This definition obviously
includes the intra-regularity and many other interesting concepts. For example,
this definition includes the concept of quasi-regularity introduced by Calais in [67],
1961, as a generalization of the ordinary regularity, seeing that by Theorem 2.1, in a
regular semigroup (ring) any its one-sided ideal is globally idempotent. Namely, J.
Calais defined a semigroup (ring) to be left quasi-regular (resp. right quasi-regular
if any its left ideal (resp. right ideal) is globally idempotent, and to be quasi-regular
if it is both left and right quasi-regular. The corresponding definitions can be given
for elements: an element a of a semigroup (ring) S is called left quasi-regular (resp.
right quasi-regular) if the principal left ideal (a)L (resp. the principal right ideal
(a)R) generated by a is globally idempotent, and is called quasi-regular if it is both
left and right quasi-regular. It is easy to see that a semigroup (ring) is (left, right)
quasi-regular if and only if any its element is (left, right) quasi-regular. As Lajos
and Szász proved in [192], 1975, the left quasi-regular and the right quasi-regular
elements of a semigroup S are exactly the (0, 1, 1)-regular and the (1, 1, 0)-regular
elements of S, respectively.

Note that this concept of quasi-regularity differs to the well-known concept of
quasi-regularity of elements of rings which is used in the definition of the Jacobson
radical of a ring.

2.2. The π-regularity in semigroups and rings. In order to give a gener-
alization both of regular rings and of algebraic algebras and rings with minimum
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conditions on left or right ideals, Arens and Kaplansky in [11], 1948, and Kaplan-
sky in [150], 1950, defined π-regular rings. Following their terminology, an element
a of a semigroup (ring) S is called π-regular (resp. left π-regular , right π-regular ,
completely π-regular , intra-π-regular) if some its power is regular (resp. left reg-
ular, right regular, completely regular, intra-regular), and S is called a π-regular
(resp. left π-regular , right π-regular , completely π-regular , intra-π-regular) if any
its element is π-regular (resp. left π-regular, right π-regular, completely π-regular,
intra-π-regular). In some origins several other names were used. For example,
Putcha in [255], 1973, Galbiati and Veronesi in [121]–[125], Shum, Ren and Guo in
[289], [290], [272] and [273], and others called π-regular semigroups quasi regular ,
whereas Edwards in [112], 1993, called them eventually regular . Completely π-
regular semigroups were sometimes called quasi-completely regular or group-bound ,
and Shevrin in [285] and [296], 1994, called them epigroups. In theory of rings,
completely π-regular rings are known as strongly π-regular rings , as they were called
by Azumaya in [14], 1954. In order to unify the terminology used in this paper,
we use the name completely π-regular both for semigroups and rings.

Some variations of the π-regularity were also investigated by Fuchs and Ran-
gaswamy in [119], 1968. For a positive integer m, they called an element a of a
semigroup (ring) S m-regular if the power am is regular, and m-regular , if an is
regular for any n ≥ m, and S is called an m-regular (resp. m-regular) semigroup
(ring) if any its element is m-regular (resp. m-regular). Clearly, an element a is
π-regular if and only if it is m-regular for some m ∈ N. If for an element a of a
semigroup (ring) S there exists m ∈ N such that a is m-regular, we then say that
a is π-regular , and a semigroup (ring) whose any element is π-regular is called a
π-regular semigroup (ring). If a is an element of a semigroup (ring) S and am is
left (resp. right, completely) regular for some m ∈ N, then an is left (resp. right,
completely) regular for any n ≥ m.

Some relationships between the π-regularity,left π-regularity,right π-regularity,
complete π-regularity and intra-π-regularity were investigated by many authors.
We give here the most important results concerning these relationships. The first
theorem that we give was proved by Bogdanović and Ćirić in [55], 1996:

Theorem 2.5. A semigroup S is left π-regular if and only if it is intra-π-
regular and Intra(S) = LReg(S).

By this theorem we obtain the following interesting result:

Theorem 2.6. If S is a completely π-regular semigroup, then

Gr(S) = LReg S) = RReg(S) = Intra(S) ⊆ Reg(S).

Note that there exists a completely π-regular semigroup S in which Gr(S) is
a proper subset of Reg(S). Completely π-regular semigroups whose regular part
coincide with the group part will be considered in Section 5.

Another theorem gives some connections between the complete π-regularity,
π-regularity and left (or right) π-regularity:
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Theorem 2.7. The following conditions on a semigroup S are equivalent:
(i) S is completely π-regular;
(ii) S is left and right π-regular;
(iii) S is π-regular and left (or right) π-regular;
(iv) for any a ∈ S there exists n ∈ N such that an is regular and left (or right)

regular.

The equivalence of conditions (i) and (iv) was proved by Hongan in [143],
1986, and of (i) and (iii) by Bogdanović and Ćirić in [44], 1992.

For rings a more rigorous theorem holds:

Theorem 2.8. The following conditions on a ring R are equivalent:
(i) R is left π-regular;
(ii) R is right π-regular;
(iii) R is completely π-regular.

This very important theorem was proved by Dischinger in [108], 1976, and
another proof was given by Hirano in [139], 1978.

Clearly, any completely π-regular ring is π-regular. Various conditions under
which a π-regular ring is completely regular were investigated by many authors.
The best known results from this area are the results obtained by Azumaya in
[14], 1954. He investigated rings in which the indices of nilpotency of all nilpotent
elements are bounded, called the rings of bounded index and he proved the following
two theorems:

Theorem 2.9. If R is a ring of bounded index, then

RReg(R) = LReg(R) = Gr(R).

Theorem 2.10. Let R be a ring of bounded index. Then R is π-regular if
and only if it is completely π-regular.

In connection with the π-regularity, rings of bounded index were also investi-
gated by Tominaga in [329], 1955, and Hirano in [140], 1990.

As known, Moore in [215], 1936, Penrose in [234], 1955, and Rado in [264],
1956, introduced the notion of a generalized inverse of a matrix. Namely, by a
result obtained by Moore, but stated in a more convenient form by Penrose, for
any square complex matrix a there exists a unique complex matrix x such that
axa = a, xax = x and both ax and xa are hermitian. Such a matrix x is called
the generalized inverse, or the Moore-Penrose inverse, of a. In order to give a
further generalization of generalized inverses, Drazin introduced in [110], 1958, the
following notion: Given a semigroup (ring) S and an element a ∈ S. An element
x ∈ S is called the pseudo-inverse, or the Drazin inverse, of a, if ax = xa, x2a = x
and there exists m ∈ N such that am = am+1x. An element having a pseudo-
inverse is called pseudo-invertible, and also, a semigroup (ring) whose any element
is pseudo-invertible is called a pseudo-invertible semigroup (ring). As was shown
by Drazin, a pseudo-inverse of an element a, if it exists, is unique. He also proved
the following:
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Theorem 2.11. An element a of a semigroup (ring) S is pseudo-invertible if
and only if it is completely π-regular.

Let us note that an element a of a semigroup S is completely π-regular if and
only if there exists n ∈ N such that the power an lies in some subgroup of S (see
Theorem 2.4). The next theorem, proved by Drazin in [110], 1958, and in a slightly
simplified form by Munn in [218], 1961, and known in Theory of semigroups as the
Munn’s lemma, gives an interesting property of such elements:

Theorem 2.12. Let a be an element of a semigroup S such that for some
n ∈ N, an belongs to some subgroup G of S, and let e be the identity of this group.
Then ea = ae ∈ Ge and am ∈ Ge, for each integer m ≥ n.

Using the previous two theorems, pseudo-inverses can be represented in another
way. Namely, if a is a pseudo-invertible, or equivalently, a completely π-regular
element of a semigroup S, then an ∈ Ge, for some n ∈ N and ae ∈ Ge, and then
the pseudo-inverse x of a is given by x = (ae)−1, i.e. x is the group inverse of the
element ae in the group Ge. If a is an element of a completely π-regular semigroup
S and an ∈ Ge, for some n ∈ N and e ∈ E(S), then a0 denotes the identity of Ge,
i.e. a0 = e.

An interesting characterization of completely π-regular rings was given by
Ôhori in [229], 1985. Before we exhibit this result, we must introduce some new
notions. These notions were introduced by Hirano, Tominaga and Yaqub in [142],
1988, but they are given here in a slightly modified form. Let A and B be two sub-
sets of a ring R. We say that R is (A, B)-representable if for any x ∈ R there exist
a ∈ A and b ∈ B such that x = a + b, and that it is uniquely (A, B)-representable
if for any x ∈ X there exist unique a ∈ A and b ∈ B such that x = a + b. Simi-
larly, we say that R is [A, B]-representable if for any x ∈ R there exist a ∈ A and
b ∈ B such that x = a + b and ab = ba, and that it is uniquely [A,B]-representable
if for any x ∈ R there exist unique a ∈ A and b ∈ B such that x = a + b and
ab = ba. Clearly, any uniquely (A, B)-representable ring is (A,B)-representable,
any uniquely [A, B]-representable ring is [A,B]-representable, and all these rings
are (A,B)-representable.

The characterization of completely π-regular rings given by Ôhori in [229],
1985, is the following:

Theorem 2.13. A ring R is completely π-regular if and only if it is [Nil(R),
Gr(R)]-representable.

In order to generalize the concept of an inverse semigroup, Galbiati and Veronesi
defined in [120], 1980, a semigroup (and also ring) to be π-inverse if it is π-
regular and any its regular element has a unique inverse. A further generalization
of these concept was given by Bogdanović in [35], 1984, who defined a semigroup
(or ring) S to be left (resp. right) π-inverseif it is π-regular and for all a, x, y ∈ S,
a = axa = aya implies ax = xa (resp. a = axa = aya implies xa = ya).

Similarly, a semigroup (ring) S is called completely π-inverse(resp. left com-
pletely π-inverse, right completely π-inverse) if it is completely π-regular and π-
inverse (resp. left π-inverse, right π-inverse).
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The following theorem, which characterizes left π-inverse semigroups, was
proved by Bogdanović in [35], 1984:

Theorem 2.14. The following conditions on a semigroup S are equivalent:
(i) S is left π-inverse;
(ii) S is π-regular and for all e, f ∈ E(S) there exists n ∈ N such that (ef)n =

(ef)ne;
(iii) S is π-regular and for any pair e, f ∈ E(S) there exists n ∈ N such that

(ef)nL(fe)n;
(iv) for any a ∈ S there exists n ∈ N such that (an)L has a unique idempotent

generator.

A consequence of the previous theorem and its dual is the following result
obtained by Galbiati and Veronesi in [120], 1980, and Bogdanović in [33], 1982,
and [35], 1984.

Theorem 2.15. The following conditions on a semigroup S are equivalent:
(i) S is π-inverse;
(ii) S is left and right π-inverse;
(iii) S is π-regular and for all e, f ∈ E(S) there exists n ∈ N such that (ef)n =

(fe)n.
(iv) S is π-regular and for any a ∈ S there exists n ∈ N such that (an)L and

(an)R have unique idempotent generators.

Left completely π-inverse semigroups were studied by Bogdanović and Ćirić in
[44], 1992, where the following result was obtained:

Theorem 2.16. A semigroup S is left completely π-inverse if and only if it is
π-regular and for all a ∈ S, e ∈ E(S), there exists n ∈ N such that (ea)n = (ea)ne.

Finally, completely π-inverse semigroups are characterized by the following
theorem, due to Galbiati and Veronesi [124], 1984.

Theorem 2.17. The following conditions on a semigroup S are equivalent:
(i) S is completely π-inverse;
(ii) S is left and right completely π-inverse;
(iii) S is π-regular and for all a ∈ S, e ∈ E(S) there exists n ∈ N such that

(ea)n = (ae)n.

2.3. Periodic semigroups and rings. Periodic semigroups and rings are
among the most important special types of completely π-regular semigroups and
rings. They are defined as semigroups (rings) in which for any element a there
exist different m,n ∈ N such that am = an, or equivalently, as semigroups (rings)
in which for any element a, some power of a is an idempotent.

Periodic semigroups and rings have many very interesting properties. For
example, the property “being periodic” is a hereditary property, both for semi-
groups and rings, and many subclasses of the class of periodic semigroups (rings)
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can be characterized in terms of variable identities, as we will see in Section 5.
Clearly, the whole class of periodic semigroups is definable by a variable identity
{xm = xn |m,n ∈ N, m 6= n} over the one-element alphabet. Also, all finite
semigroups and rings are periodic, and the periodicity was often investigated as a
generalization of the finiteness.

An element a of a semigroup (ring) S having the property that am = an, for
some different m,n ∈ N, will be called a periodic element . An interesting type of
periodic elements of a semigroup (ring) are potent elements defined as follows: an
element a of a semigroup (ring) S is potent if a = an, for some n ∈ N, n ≥ 2. The
set of all potent elements of S is denoted by P (S) and called the potent part of S.

Periodic rings have especially interesting properties. The next theorem, which
is due to Chacron [68], 1969, gives a criterion of periodicity of rings, known as the
Chacron’s criterion of the periodicity .

Theorem 2.18. A ring R is periodic if and only if for any a ∈ R there exists
n ∈ N and a polynomial p(x) with integer coefficients such that an = an+1p(a).

Another proof of this theorem can be found in Bell [19], 1980.

The following properties of periodic rings were found by Bell in [18], 1977.

Theorem 2.19. Let R be a periodic ring. Then the following conditions
hold:

(a) for any a ∈ R there exists n ∈ N such that a− an ∈ Nil(R);
(b) R is (Nil(R), P (R))-representable;
(c) if I is an ideal of R and a+I is a non-zero nilpotent of R/I, then R contains

a nilpotent element u such that a ≡ u (mod I).

By Grosen, Tominaga and Yaqub in [129], 1990, rings satisfying the condition
(b) of the above theorem were called weakly periodic rings . Therefore, the Bell’s
theorem asserts that any periodic ring is weakly periodic. The converse does not
hold, but Ôhori in [229], 1985, found the conditions under which a weakly periodic
rings is periodic, and this result is given here as the following theorem:

Theorem 2.20. A ring R is periodic if and only if it is [P (R), Nil(R)]-represen-
table.

3. On completely Archimedean semigroups

The topic of this paper are uniformly π-regular semigroups and rings, i.e.
semigroups and rings decomposable into a semilattice of completely Archimedean
semigroups, or equivalently, into a semilattice of nil-extensions of completely simple
semigroups, so we must present the main properties of completely Archimedean and
completely simple semigroups.
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3.1. Completely simple semigroups. As known, a semigroup S having
no an ideal different than the whole S is called a simple semigroup, and similarly,
a semigroup S having no a left (resp. right) ideal different than the whole S is
called a left simple (resp. right simple) semigroup. In other words, a semigroup S
is simple (resp. left simple, right simple) if and only if a | b (resp. a |

l
b, a |

r
b), for

all a, b ∈ S. The first papers from Theory of semigroups were devoted exactly to
these semigroups, because they are the closest generalization of groups. Namely, a
semigroup is a group if and only if it is both left and right simple. By Sushkevich
in [304], 1928, and [305], 1937, and Rees in [271], 1940, finite simple semigroups
and other significant special types of simple semigroups were investigated. In this
section we talk about the most important special types of these semigroups.

Semigroups which are both simple and left (resp. right) regular were called
by Bogdanović and Ćirić in [55], 1996, left (resp. right) completely simple. Some
characterizations of these semigroups are given by the following theorem:

Theorem 3.1. The following conditions on a semigroup S are equivalent:
(i) S is left completely simple;
(ii) S is simple and left π-regular;
(iii) S is simple and has a minimal left ideal;
(iv) S is a union of its minimal left ideals;
(v) S is a disjoint union of its principal left ideals;
(vi) any principal left ideal of S is a left simple subsemigroup of S;
(vii) any left ideal of S is right consistent;
(viii) S is a matrix of left simple semigroups;
(ix) S is a right zero band of left simple semigroups;
(x) |

l
is a symmetric relation on S;

(xi) S/L is a discrete partially ordered set;
(xii) LId(S) is a Boolean algebra;
(xiii) (∀a, b ∈ S) a ∈ Sba.

The equivalence of the conditions (iii), (iv), (vii) and (xiii) was proved by
Croisot in [107], 1953, of (vi), (ix) and (xiii) by Bogdanović in [33], 1982, and of
(i), (ii), (viii), (ix), (x), (xi) and (xiii) by Bogdanović and Ćirić in [55], 1996. The
equivalence of the conditions (vii), (ix) and (xii) is an immediate consequence of
the results of Bogdanović and Ćirić from [53], 1995, concerning so-called right sum
decomposition of semigroups with zero. In the book of Clifford and Preston [106],
1967, semigroups satisfying the condition (xiii) of the above theorem were called
left stratified semigroups .

Another important type of simple semigroups are simple semigroups having a
primitive idempotent, called completely simple semigroups . Recall that an idempo-
tent e of a semigroup S is called primitive if it is minimal in the partially ordered set
of idempotents on S, i.e. if for f ∈ E(S), ef = fe = f implies e = f . Completely
simple semigroups were first studied also by Sushkevich in [304], 1928, and [305],
1937, and Rees in [271], 1940, who gave the following fundamental representation
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theorem for these semigroups:

Theorem 3.2. Let G be a group, let I and Λ be non-empty sets and let P =
(pλi) be a Λ× I matrix with entries in G. Define a multiplication on S = G× I×Λ
by:

(a, i, λ)(b, j, µ) = (apλjb, i, µ).

Then S with so defined multiplication is a completely simple semigroup.
Conversely, any completely simple semigroup is isomorphic to some semigroup

constructed in this way.

The semigroup constructed in accordance with this recipe is called the Rees
matrix semigroup of type Λ × I over a group G with the sandwich matrix P , and
is denoted by M(G; I, Λ, P ). The previous theorem is usually called the Rees-
Sushkevich theorem.

Some other characterizations of completely simple semigroups are given by the
following theorem:

Theorem 3.3. The following conditions on a semigroup S are equivalent:
(i) S is completely simple;
(ii) S is simple and completely π-regular;
(iii) S is simple and completely regular;
(iv) S is simple and has a minimal left ideal and a minimal right ideal;
(v) S is simple and has a minimal quasi-ideal;
(vi) S is a union of its minimal quasi-ideals;
(vii) S is left and right completely simple;
(viii) S is left (or right) completely simple and has an idempotent;
(ix) S is regular and all its idempotents are primitive;
(x) S is regular and a = axa implies x = xax;
(xi) S is regular and weakly cancellative;
(xii) (∀a, b ∈ S) a ∈ aSba;
(xii’) (∀a, b ∈ S) a ∈ abSa;
(xiii) |

t
is a symmetric relation on S;

(xiv) S/H is a discrete partially ordered set.

The equivalence of conditions (i) and (iv) is from Clifford [100], 1948. The
assertion (i) ⇔ (ii) was proved by Munn in [218], 1961, and is known as the Munn
theorem. For periodic semigroups this assertion was proved by Rees in [271], 1940.
The equivalence of the conditions (iv) and (v) is a result of Schwarz from [279],
1951, and the equivalence of the conditions (v) and (vi) is derived from the results of
Steinfeld from [296], 1956 (see also his book [301]). For the proof of the equivalence
of conditions (i), (ix), (x) and (xi) we refer to the book of Petrich [241], 1973. The
equivalence of the conditions (vii), (xii), (xii’), (xiii) and (xiv) is an immediate
consequence of Theorem 3.1 and its dual.

Special types of completely simple semigroups are left, right and rectangular
groups. A semigroup S is called a rectangular group if it is a direct product of a
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rectangular band and a group, and is called a left group (resp. right group) if it is a
direct product of a left zero band (resp. right zero band) and a group. Rectangular
groups and left groups are characterized by the following two theorems:

Theorem 3.4. The following conditions on a semigroup S are equivalent:
(i) S is a rectangular group;
(ii) S is completely simple and E(S) is a subsemigroup of S;
(iii) S is regular and E(S) is a rectangular band;
(iv) S ∼= M(G; I,Λ, P ) with p−1

λi pλj = p−1
µi pµj , for all i, j ∈ I, λ, µ ∈ Λ.

For the proof of this theorem we refer to the book of Petrich [241], 1973.

Theorem 3.5. The following conditions on a semigroup S are equivalent:
(i) S is a left group;
(ii) S is left simple and right cancellative;
(iii) S is left simple and has an idempotent;
(iv) S has a right identity e and e ∈ Sa, for any a ∈ S;
(v) S is regular and right cancellative;
(vi) S is regular and E(S) is a right zero band;
(vii) for all a, b ∈ S, the equation xa = b has a unique solution in S;
(viii) for any a ∈ S, the equation xa2 = a has a unique solution in S;
(ix) S is a left zero band of groups;
(x) (∀a, b ∈ S) a ∈ aSb;
(xi) S ∼= M(G; I, Λ, P ) with |I| = 1.

The equivalence of conditions (i), (ii) and (iii) was proved by Sushkevich in
[304], 1928, for finite semigroups, and in [305], 1937, in the general case, and it was
also formulated (without proofs) by Clifford in [98], 1933. The assertion (i) ⇔ (iv)
was proved by Clifford in [98], 1933, (i) ⇔ (v) is an unpublished result of Munn,
and (i) ⇔ (x) was proved by Bogdanović and Stamenković in [66], 1988.

Now, in terms of left groups, right groups and groups, completely simple semi-
groups can be characterized as follows:

Theorem 3.6. The following conditions on a semigroup S are equivalent:
(i) S is completely simple;
(ii) S is a left zero band of right groups;
(iii) S is a right zero band of left groups;
(iv) S is a matrix of groups.

The above theorem is an immediate consequence of the Rees-Sushkevich rep-
resentation theorem for completely simple semigroups, and also, of Theorem 3.1,
its dual and Theorem 3.3.

Note finally that the multiplicative semigroup of a non-trivial ring may not be
simple, since a semigroup with zero is simple only if it is trivial. But, simple semi-
groups can appear in Theory of rings as subsemigroups of multiplicative semigroups
of rings, as we will see later. On the other hand, in investigations of semigroups
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with zero one introduces other more suitable concepts. For example, one defines
a semigroup S = S0 to be a 0-simple semigroup if S2 6= 0 and it has no an ideal
different than 0 and the whole S. Similarly, completely 0-simple semigroups one
defines as 0-simple semigroups having a 0-primitive idempotent , by which we mean
a minimal element in the partially ordered set of all non-zero idempotents of S. It
is interesting to note that these semigroups have also a representation theorem of
the Rees-Sushkevich type, through so-called Rees matrix semigroups over a group
with zero adjoined. More information on completely 0-simple semigroups can be
found in the books: Clifford and Preston [105], 1961, and [106], 1967, Howie [144],
1976, Steinfeld [301], 1978, Bogdanović and Ćirić [48], 1993, and others.

In theory of rings, a ring R having no an ideal different than 0 and the whole
ring R is called a simple ring . More information about them and on so-called Rees
matrix rings over a division ring can be found in the Petrich’s book [243], 1974.

3.2.Completely Archimedean semigroups. By a natural generalization
of semigroups considered in the previous section, the following semigroups one
obtains: A semigroup S is called an Archimedean semigroup if a −→ b, for all
a, b ∈ S, and similarly, S is called a left Archimedean (resp. right Archimedean)

semigroup if a l−→ b (resp. a r−→ b), for all a, b ∈ S. A semigroup which is both left
and right Archimedean is called two-sided Archimedean, or shortly, a t-Archimedean
semigroup.

The structure of Archimedean semigroups is quite complicated, but when an
Archimedean semigroup is supplied by some additional property, such as the π-
regularity, intra-, left, right or complete π-regularity, then its structure can be
described more precisely, as we will see in the further text.

First we present the following two theorems, due mostly to Putcha [255], 1973.

Theorem 3.7. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a simple semigroup;
(ii) S is Archimedean and intra-π-regular;
(iii) S is Archimedean and has an intra-regular element;
(iv) S is Archimedean and has a kernel;
(v) (∀a, b ∈ S)(∃n ∈ N) an ∈ Sb2nS.

Theorem 3.8. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a left simple semigroup;
(ii) S is left Archimedean and intra-π-regular;
(iii) S is left Archimedean and left π-regular;
(iv) S is left Archimedean and has an intra-regular element;
(v) S is left Archimedean and has a left regular element;
(vi) S is left Archimedean and has a kernel;
(vii) (∀a, b ∈ S)(∃n ∈ N) an ∈ Sbn+1.

By Theorem 3.7 it follows that a semigroup S is Archimedean and π-regular
if and only if it is a nil-extension of a regular simple semigroup.
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Left (resp. right) π-regular Archimedean semigroups were studied under the
name left (resp. right) completely Archimedean semigroups by Bogdanović and Ćirić
in [59], where the following theorem was proved:

Theorem 3.9. The following conditions on a semigroup S are equivalent:
(i) S is left completely Archimedean;
(ii) S is a nil-extension of a left completely simple semigroup;
(iii) S is Archimedean and has a minimal left ideal;
(iv) (∀a, b ∈ S)(∃n ∈ N) an ∈ Sban.

In analogy with completely simple semigroups, Archimedean semigroups hav-
ing a primitive idempotents was called by Bogdanović in [36], 1985, completely
Archimedean semigroups . The structure of these semigroups is described by the
following theorem:

Theorem 3.10. The following conditions on a semigroup S are equivalent:
(i) S is completely Archimedean;
(ii) S is a nil-extension of a completely simple semigroup;
(iii) S is Archimedean and completely π-regular;
(iv) S is Archimedean and has a minimal left ideal and a minimal right ideal;
(v) S is Archimedean and has a minimal quasi-ideal;
(vi) S is left and right completely Archimedean;
(vii) S is left (or right) completely Archimedean and has an idempotent;
(viii) S is π-regular and all its idempotents are primitive;
(ix) (∀a, b ∈ S)(∃n ∈ N) an ∈ anSban;
(ix’) (∀a, b ∈ S)(∃n ∈ N) an ∈ anbSan.

The equivalence of the conditions (ii), (viii), (ix) and (ix’) was proved by
Bogdanović and Milić in [64], 1984, the assertion (i) ⇔ (iii) due to Galbiati and
Veronesi [123], 1984, while (i) ⇔ (ii) is an immediate consequence of Theorems 3.7
and 3.3.

A representation theorem of the Rees-Sushkevich type for completely Archime-
dean semigroups was given by Shum and Ren in [289], 1995.

Before we give a theorem which characterizes nil-extensions of rectangular
groups, we must introduce the following notion: Let S and T be semigroups and
let a semigroup H be a common homomorphic image of S and T , with respect to
homomorphisms ϕ and ψ, respectively. Then

P = {(a, b) ∈ S × T | aϕ = bψ},

is a subsemigroup of the direct product S×T of semigroups S and T , and is called
a spined product of S and T with respect to H. It is known that P is a subdirect
product of S and T . In Universal algebra this notion is known as a pullback product .
It was introduced by Fuchs in [117], 1952, and since studied by Fleischer in [116],
1955, and Wenzel in [343], 1968. In Theory of semigroups these products have
been intensively studied by Kimura, Yamada, Ćirić and Bogdanović and others,
and the name “spined product” was introduced by Kimura in [156], 1958.
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Theorem 3.11. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a rectangular group;
(ii) S is completely Archimedean and E(S) is a subsemigroup of S;
(iii) S is π-regular and E(S) is a rectangular band;
(iv) S is π-regular and Archimedean and for any e ∈ E(S), the mapping ϕe :

x 7→ exe is a homomorphism of S onto eSe;
(v) S is a subdirect product of a group and a nil-extension of a rectangular

band;
(vi) S is a subdirect product of a group, a nil-extension of a left zero band and

a nil-extension of a right zero band;
(vii) S is a spined product of a nil-extension of a left group and a nil-extension

of a right group with respect to a nil-extension of a group.

The equivalence of the conditions (i), (v) and (vi) was established by Putcha
in [255], 1973, and of (i), (iii), (iv) and (vii) by Ren, Shum and Guo in [273]. Ren,
Shum and Guo also gave a representation theorem of the Rees-Sushkevich type for
these semigroups.

The next theorem, which characterizes nil-extensions of left groups, is mostly
due to Bogdanović and Milić [64], 1984.

Theorem 3.12. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a left group;
(ii) S is left Archimedean and π-regular;
(iii) S is left Archimedean and right π-regular;
(iv) S is left Archimedean and completely π-regular;
(v) S is left Archimedean and has an idempotent;
(vi) S is π-regular and E(S) is a left zero band;
(vii) (∀a, b ∈ S)(∃n ∈ N) an ∈ anSanb.

A Rees-Sushkevich type representation theorem for nil-extensions of left groups
was given by Shum, Ren and Guo in [290].

The previous theorem and its dual give the following:

Theorem 3.13. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a group;
(ii) S is π-regular and has a unique idempotent;
(iii) S is Archimedean and has a unique idempotent;
(iv) S is t-Archimedean and intra-π-regular;
(v) S is t-Archimedean and π-regular;
(vi) S is t-Archimedean and has an intra-regular element;
(vii) S is t-Archimedean and has an idempotent.

The equivalence of the conditions (i) and (iii) was established by Tamura in
[318], 1982.

Note finally that a semigroup with zero may be Archimedean if and only if
it is a nil-semigroup, so Ćirić and Bogdanović introduced in [89], 1996, a concept
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more convenient for semigroups with zero, which generalizes both 0-simple and
Archimedean semigroups. Namely, they defined a semigroup S = S0 to be a 0-
Archimedean semigroup if a −→ b, for all a, b ∈ S − 0. These semigroups and some
their special types were also studied by Ćirić and Bogdanović in [86], 1996, and
Ćirić, Bogdanović and Bogdanović in [97].

4. Completely regular semigroups and rings

Although in Section 2 we have already discussed intra-, left, right and com-
pletely regular semigroups and rings, here we present their precise structure.

4.1. Completely regular semigroups. We start with intra-regular semi-
groups.

Theorem 4.1. The following conditions on a semigroup S are equivalent:

(i) S is intra-regular;
(ii) S is a union of simple semigroups;
(iii) any J -class of S is a subsemigroup;
(iv) S is a semilattice of simple semigroups;
(v) any ideal of S is completely semiprime;
(vi) (∀a, b ∈ S) (a) ∩ (b) = (ab);
(vii) A ∩B ⊆ AB, for any left ideal A and any right ideal B of S.

The equivalence of conditions (i) and (vii) was proved by Lajos and Szász in
[192], 1975. The rest of the theorem due to Croisot [107], 1953, and Anderson [7],
1952.

Combining the previous theorem with Theorem 2.1, the following theorem was
obtained:

Theorem 4.2. The following conditions on a semigroup S are equivalent:

(i) S is regular and intra-regular;
(ii) S is a semilattice of regular simple semigroups;
(iii) A ∩B = AB ∩BA, for any left ideal A and any right ideal B of S;
(iv) A ∩B ⊆ AB, for all bi-ideals (or quasi-ideals) A and B of S;
(v) any quasi-ideal of S is globally idempotent.

The equivalence of conditions (i) and (v) was established by Lajos in [177],
1972, and of (i) and (iv) by Lajos and Szász in [192], 1975. By Lajos in [187],
1991, the proof of (i) ⇔ (iii) was attributed to Pondeliček. Finally, (i) ⇔ (ii) is an
immediate consequence of Theorem 4.1.

Structure of left regular semigroups was described by Croisot, 1953, and Bog-
danović and Ćirić, 1996, who proved the following:
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Theorem 4.3. The following conditions on a semigroup S are equivalent:
(i) S is left regular;
(ii) S is intra-regular and left π-regular;
(iii) S is a union of left simple semigroups;
(iv) any L-class of S is a subsemigroup;
(v) S is a semilattice of left completely simple semigroups;
(vi) any left ideal of S is completely semiprime.

The equivalence of conditions (i), (ii) and (v) was proved by Bogdanović and
Ćirić in [107], 1996, and the rest is from Croisot [55], 1953.

For an element a of a semigroup (ring) S we say that it is left duo (right duo)
if the principal left (right) ideal generated by a is a two-sided ideal, and that a
is duo if it is both left and right duo. Similarly, a semigroup (ring) S is called
left duo (right duo) if any left (right) ideal of S is a two-sided ideal, and is called
duo if it is both left and right duo. The notion of a duo ring (semigroup) was
introduced by Feller in [114], 1958, and Thierrin in [325], 1960, the corresponding
definition for elements was given first by Steinfeld in [300], 1973, and left and right
duo semigroups, rings and elements were first defined and studied by Lajos in [181]
and [182], 1974. Between these notions the following relationship holds:

Theorem 4.4. A semigroup (ring) is duo (resp. left duo, right duo) if and
only if any its element is duo (resp. left duo, right duo).

The previous theorem was proved by Kertész and Steinfeld in [154], 1974, and
Steinfeld in [300], 1973, for the case of duo semigroups and rings.

Note also that the following holds:

Theorem 4.5. An element a of a semigroup (ring) S is duo (resp. left duo,
right duo) if and only if (a)L = (a)R (resp. (a)R ⊆ (a)L, (a)L ⊆ (a)R).

Recall that (a)L and (a)R denote the principal left and the principal right ideal
of S generated by a, respectively.

Now we are ready to give the following characterization of semilattices of left
simple semigroups.

Theorem 4.6. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of left simple semigroups;
(ii) S is left (or intra-) regular and left duo;
(iii) S is left quasi-regular and left duo;
(iv) A ∩B = AB, for all left ideals A and B of S.

The equivalence of conditions (i) and (ii) was proved by Petrich in [236], 1964,
the proof of (i) ⇔ (iv) was given by Saitô in [274], 1973, and the equivalence of
(ii) and (iii) is an immediate consequence of Theorem 4.3 and Theorem 1 from the
paper of Lajos and Szász [192], 1975.

Now we go to the completely regular semigroups. Various characterizations of
these semigroups are collected in the following theorem:
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Theorem 4.7. The following conditions on a semigroup S are equivalent:

(i) S is completely regular;
(ii) S is regular and left (or right) regular;
(iii) S is a union of groups;
(iv) any H-class of S is a subsemigroup;
(v) S is a semilattice of completely simple semigroups;
(vi) any one-sided ideal of S is completely semiprime;
(vii) any left (or right, bi-) ideal of S is a regular semigroup;
(viii) any principal bi-ideal of S has an idempotent generator.

The equivalence of conditions (i), (iii) and (v) was established by Clifford in
[99], 1941, of (i), (ii) and (vi) by Croisot in [107], 1953, of (i) and (vii) by Lajos in
[184], 1983. As was noted by Lajos in [187], 1991, (i) ⇔ (viii) was proved in his
paper from 1976. Note that the analogue of the condition (vii) for two-sided ideals
is valid in any regular semigroup and ring (see Kaplansky [151], 1969, or Steinfeld
[301], 1978).

For various constructions of completely regular semigroups we refer to Lalle-
ment [194], 1967, Petrich [244], 1974, and [245], 1977, Clifford [104], 1976, Warne
[341], 1973, and Yamada [346], 1971.

Next we present the structure descriptions of the most important special types
of completely regular semigroups.

Theorem 4.8. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of rectangular groups;
(ii) S is regular and a = axa implies a = ax2a2;
(iii) S is completely regular and E(S) is a subsemigroup.
(iv) S is completely regular and any inverse of any idempotent of S is an idem-

potent.

The equivalence of conditions (iii) and (iv) is an immediate consequence of the
result of Reilly and Scheiblich from [269], 1967, by which in any regular semigroup
S, the idempotents of S form a subsemigroup if and only if any inverse of any
idempotent of S is an idempotent. For the proof of the rest of the theorem we refer
to Petrich [241], 1973.

Theorem 4.9. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of left groups;
(ii) S is regular and a = axa implies ax = ax2a;
(iii) S is completely regular and E(S) is a left regular band;
(iv) S is regular (or right regular) and left duo;
(v) S is quasi-regular (or right quasi-regular) and left duo;
(vi) A ∩B = BAB, for any left ideal A and any right ideal B of S;
(vii) A ∩B = AB, for any bi-ideal A and any right ideal B of S;
(viii) A ∩B = AB, for any bi-ideal A and any two-sided ideal B of S;
(ix) A ∩B = BA, for any left ideal A and any quasi-ideal B of S.
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The equivalence of conditions (i) and (iv) was established by Lajos in [178],
1972, and [182], 1974, of (i) and (viii) by Lajos in [177], 1972, and (i) ⇔ (v) is
a consequence of Theorem 4.6 and Theorem 1 from the paper of Lajos and Szász
[192], 1975. The proofs of (i) ⇔ (ii) and (ii) ⇔ (iii) can be found in Petrich [241],
1973. Finally, the conditions (vi), (vii) and (ix) are assumed from the survey paper
of Lajos [187], 1991.

As we said before, completely regular semigroups were first investigated by
Clifford in [99], 1941, and in some origins these semigroups were called the Clifford
semigroups. But, some other authors, for example Howie in [144], 1976, used this
name for another class of semigroups, studied first also by Clifford in [99], 1941, and
following the terminology of these authors, in this paper by a Clifford semigroup
(ring) we mean a regular semigroup (ring) whose all idempotents are central. These
semigroups are characterized by the following theorem:

Theorem 4.10. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of groups;
(ii) S is a strong semilattice of groups;
(iii) S is a Clifford semigroup;
(iv) S is regular and a = axa implies ax = xa;
(v) S is completely regular and E(S) is a semilattice;
(vi) S is completely regular and inverse;
(vii) S is regular (or left, right, intra regular) and duo;
(viii) S is quasi-regular (or left, right quasi-regular) and duo;
(ix) A ∩B = AB, for any left ideal A and any right ideal B of S;
(x) A ∩B = AB, for all bi-ideals A and B of S;
(xi) A ∩B = AB, for all quasi-ideals A and B of S;
(xii) S is regular and a subdirect product of groups with a zero possibly adjoined.

By Clifford in [99], 1941, the equivalence of conditions (i), (ii) and (iii) was
proved, the equivalence of conditions (iv), (v) and (vi) is an immediate consequence
of Theorem 2.2, (i) ⇔ (vii) was proved by Petrich in [236], 1964, and (i) ⇔ (xii)
by the same author in [242], 1973. The equivalence of the condition (i) or (vii) and
the conditions (ix), (x) and (xi) was established by Lajos in [167] and [168], 1969,
[170] and [171], 1970, and [174] and [175], 1971.

The previous theorem, applied to commutative semigroups, gives the following
their characterizations:

Theorem 4.11. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of Abelian groups;
(ii) S is a strong semilattice of Abelian groups;
(iii) S is regular and commutative;
(iv) S is quasi-regular and commutative;
(v) S is regular and a subdirect product of Abelian groups with a zero possibly

adjoined.



36 Bogdanović, Ćirić and Petković

Various other characterizations of the semigroups considered here in terms of
two-sided, one-sided, bi- and quasi-ideals we refer to the book of Steinfeld [301],
1978, the survey paper of Lajos [187], 1991, and other their papers given in the
list of references.

4.2. Completely regular rings. In this section we will see that many of
the concepts from Theory of semigroups considered in the previous section coincide
in Theory of rings and are equivalent to the complete regularity. But, in Theory
of rings we have many interesting special types of completely regular rings, such as
Jacobson rings, p-rings, Boolean rings etc, whose main properties will be presented
here.

The first theorem that we quote here gives various equivalents of the complete
regularity of rings.

Theorem 4.12. The following conditions on a ring R are equivalent:
(i) R is completely regular;
(ii) R is left (right) regular;
(iii) R is regular and intra-regular;
(iv) R is inverse;
(v) R is a Clifford ring;
(vi) R is regular and has no non-zero nilpotents;
(vii) R is a regular (left, right) duo ring;
(viii) R is an intra-regular (left, right) duo ring;
(ix) R is a (left, right) quasi-regular (left, right) duo ring;
(x) R is regular and a subdirect sum of division rings;
(xi) any left (right, bi-) ideal of R is a regular ring;
(xii) A ∩B = AB, for any left ideal A and any right ideal B of R;
(xiii) A ∩B = AB, for all left (right) ideals A and B of R;
(xiv) A ∩B = AB, for all quasi-ideals A and B of R;
(xv) any quasi-ideal of R is globally idempotent.

The equivalence of conditions (v), (vi) and (vii) was proved by Schein in [276],
1966, although (vi) ⇒ (vii) was first stated by Calais in [67], 1961. The equivalence
of (vi) and (xvi) is due to Kovács [160], 1956, of (vii), (xii) and (xiii) is due to
Lajos [166], 1969, and [169], 1970, while (i) ⇔ (xiii) is due to Andrunakievich
[8], 1964, (vii) ⇔ (xiv) was proved by Lajos in [175], 1971, and Steinfeld in [299],
1971, (vi) ⇔ (x) by Forsythe and Mc Coy in [117], 1946, (ii) ⇔ (xi) by Lajos in
[184], 1983, (ii) ⇔ (v) is from Lajos and Szász [189] and [190], 1970. The proof
of (iii) ⇔ (xv) can be found in Steinfeld [301], 1978. Finally, the equivalence of (i)
and (ii) is an immediate consequence of the result of Azumaya given in Section 2
as Theorem 2.9.

Let us hold our attention on the equivalence of the conditions (vi) and (x) of
the above theorem. This result can be viewed as a consequence of a more general
result obtained by Andrunakievich and Ryabuhin in [9], 1968, given by the following
theorem:
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Theorem 4.13. A ring R has no non-zero nilpotent elements if and only if it
is a subdirect sum of rings without zero divisors.

A proof of this theorem can be found also in their book [10], 1979 (see also
Thierrin [327], 1967). In the commutative case this theorem was proved by Krull
in [161], 1929, and [162], 1950.

An analogue of the previous theorem holds in Theory of semigroups. It was
proved by Park, Kim and Sohn in [233], 1988, and it follows directly from the
theorem that asserts that any completely semiprime ideal of a semigroup is an
intersection of some family of their completely prime ideals. The proofs of this
theorem given by Petrich in [241], 1973, and Park, Kim and Sohn in [233], 1988,
include an essential use of the Zorn lemma, but Ćirić and Bogdanović showed in [87]
and [91], 1996, that its proof can be derived from the general theory of semilattice
decompositions of semigroups, without recourse to transfinite methods.

Let us also note that direct sums of division rings were characterized by Ger-
chikov in [126], 1940, by the following theorem:

Theorem 4.14. A ring R is a direct sum of division rings if and only if it
has no non-zero nilpotent elements and it satisfies minimum conditions on left (or
right) ideals.

In the case of commutative rings we have

Theorem 4.15. The following conditions on a ring R are equivalent:
(i) R is regular and commutative;
(ii) R is quasi-regular and commutative;
(iii) R is regular and a subdirect sum of fields.

As we said before, several special types of completely regular rings are of the
great importance in Theory of rings. The first of these types are Jacobson rings,
which one defines in the following way: A ring R is called a Jacobson ring if for
any a ∈ R there exists n ∈ N, n ≥ 2 such that an = a. This condition is known
as the Jacobson’s an = a condition. This condition has appeared in investigations
of algebraic algebras without nilpotent elements over a finite field, carried out
by Jacobson in [148], 1945. In this paper Jacobson proved that such algebras are
commutative and as a consequence he obtained the following very important result:

Theorem 4.16. (Jacobson’s an = a theorem) Any Jacobson ring is commu-
tative.

This theorem can be viewed as a generalization of the celebrated Wedderburn’s
theorem from [342], 1905, which asserts that any finite division ring must be a field.

A complete characterization of Jacobson rings, in few ways, is given by the next
theorem, which is an immediate consequence of the Jacobson’s an = a theorem and
Theorem 4.12.

Theorem 4.17. The following conditions on a ring R are equivalent:
(i) R is a Jacobson ring;
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(ii) R is commutative, regular and periodic;
(iii) R is completely regular and periodic;
(iv) R is regular and a subdirect sum of periodic fields;
(v) MR is a semilattice of periodic groups;
(vi) MR is a semilattice of periodic Abelian groups.

A special case of Jacobson rings are the rings satisfying the semigroup identity
of the form xn = x, where n ≥ 2 is an integer. Such rings were studied by Ayoub and
Ayoub in [13], 1965, Luh in [203] and [204], 1967, and others. Luh characterized
in [203], 1967, these rings in terms of pk-rings, which are introduced by McCoy
and Montgomery in [211], 1937, in the following way: A ring R is called a pk-ring
if there exists a prime p and a positive integer k such that R has the characteristic
p and it satisfies the identity xpk

= x. Rings defined in such a way with k = 1 are
known as p-rings. The theorem proved by Luh in [203], 1967, is the following:

Theorem 4.18. The following conditions on a ring R are equivalent:
(i) R satisfies the identity xn = x, for some integer n ≥ 2;
(ii) R satisfies the identity xp = x, for some prime p;
(iii) R is a direct sum of finitely many pk-rings.

Particularly, p-rings are characterized by the following theorem:

Theorem 4.19. Let p be a prime. A ring R is a p-ring if and only if it is a
subdirect sum of fields of integers modulo p.

Let us emphasize that p-rings, and consequently pk-rings, trace one’s origin to
the famous Boolean rings , defined as rings whose any element is an idempotent.
The following theorem characterizes these rings:

Theorem 4.20. The following conditions on a ring R are equivalent:
(i) R is a Boolean ring;
(ii) R is a 2-ring;
(iii) R is a subdirect sum of fields of integers modulo 2;
(iv) MR is a band;
(v) MR is a semilattice.

For more information on Boolean rings, and especially on their connections
with Boolean algebras, we refer to the book of Abian [1], 1976, the paper of Stone
[302], 1936, and others.

Various subdirect and direct sums whose summands are division rings or inte-
gral domains were studied by Kovácz in [160], 1956, Sussman in [306], 1958, Abian
in [2], 1970, Chacron in [69], 1971, Wong in [345], 1976 and others.

5. Uniformly π-regular semigroups and rings

In Section 2 we seen that the left regular, right regular, intra-regular and group
part of a completely π-regular semigroup (ring) coincide, but in the general case,
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they form a proper subset of the regular part of S. This motivates as to give the
following definition: a π-regular semigroup (ring) S is called uniformly π-regular
if every its regular element is completely regular. Similarly, a π-regular semigroup
(ring) whose any regular element is left (resp. right) regular will be called left (resp.
right) uniformly π-regular . We will see later that all of these notions coincide.

The subject of this section are some general structural properties of uniformly
π-regular semigroups and rings. We will also consider uniformly π-inverse (resp.
left uniformly π-inverse, right uniformly π-inverse) semigroups (rings), defined as
uniformly π-regular semigroups (rings) which are also π-inverse (resp. left π-inverse,
right π-inverse), and uniformly periodic semigroups (rings), defined as semigroups
(rings) which are both uniformly π-regular and periodic.

5.1. Uniformly π-regular semigroups. One of the celebrated results in
Theory of semigroups is the theorem of Tamura from [314], 1956, which asserts
that any semigroup has a greatest semilattice decomposition, whose components are
semilattice indecomposable semigroups. The smallest semilattice congruence on a
semigroup, which corresponds to this decomposition, has various characterizations,
but two of these characterization, given by Tamura in [317], 1972, and Putcha
in [257], 1974, are especially interesting. Namely, T. Tamura proved that the
transitive closure of the relation −→ on a semigroup S is a quasi-order on S whose
symmetric opening, i.e. its natural equivalence, equals the smallest semilattice
congruence on S. On the other hand, M. S. Putcha started from the relation on
S, defined as the symmetric opening of −→, i.e. =−→ ∩(−→)−1, and he proved
that the smallest semilattice congruence on S equals the transitive closure of .
In the special case when the relations −→ and are transitive, we obtain exactly
semigroups having a decomposition into a semilattice of Archimedean semigroups,
as demonstrated by the following theorem:

Theorem 5.1. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of Archimedean semigroups;
(ii) (∀a, b ∈ S) a −→ b ⇒ a2 −→ b;
(iii) (∀a, b, c ∈ S) a −→ b & b −→ c ⇒ a −→ c;
(iv) (∀a, b, c ∈ S) a −→ c & b −→ c ⇒ ab −→ c;
(v) (∀a, b ∈ S) a b ⇒ a2 b;
(vi) (∀a, b, c ∈ S) a b & b c ⇒ a c;
(vii) (∀a, b, c ∈ S) a c & b c ⇒ ab c;
(viii) (∀a, b ∈ S) a2 −→ ab;
(viii)’ (∀a, b ∈ S) b2 −→ ab;

(ix)
√

A is an ideal (or left ideal, right ideal) of S, for any ideal A of S;
(x)

√
SabS =

√
SaS ∩

√
SbS, for all a, b ∈ S.

The first characterization of semilattices of Archimedean semigroups was given
by Putcha in [255], 1973, who proved the equivalence of conditions (i) and (ii) of
the above theorem. The equivalence of the conditions (ii), (iii) and (iv) was proved
by Tamura in [316], 1972. The condition (ii) is known as the power property , (iii)
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is the transitivity and (iv) is known as the common multiple property , or shortly
cm-property of a relation. The equivalence of the conditions (i), (v), (vi) and (vii)
was established by Bogdanović, Ćirić and Popović in [62], Ćirić and Bogdanović
in [83], 1993, showed the equivalence of the conditions (i), (viii), (viii)’ and (ix),
while Kmeť in [157], 1988, proved (i) ⇔ (ix). The condition (x) is obtained from
a more general result given by Ćirić and Bogdanović in [87], 1996.

Semilattices of left Archimedean semigroups are characterized by the following
theorem:

Theorem 5.2. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of left Archimedean semigroups;

(ii) (∀a, b ∈ S) a −→ b ⇒ a l−→ b;

(iii) (∀a, b ∈ S) a l−→ ab;
(iv)

√
L is an ideal (or right ideal) of S, for any left ideal L of S;

(v)
√

Sab =
√

Sa ∩
√

Sb, for all a, b ∈ S.

The equivalence (i) ⇔ (ii) was proved by Putcha in [258], 1981, (i) ⇔ (iii) by
Bogdanović in [34], 1984, and the equivalence of (i), (iv) and (v) was established
by Bogdanović and Ćirić in [43], 1992.

By the previous theorem and its dual one obtains:

Theorem 5.3. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of t-Archimedean semigroups;
(ii) (∀a, b ∈ S) a −→ b ⇒ a t−→ b;

(iii) (∀a, b ∈ S) a l−→ ab & b r−→ ab;
(iv)

√
B is an ideal of S, for any bi-ideal B of S.

Supplying the above considered semigroups with the intra-π-regularity we ob-
tain the following two theorems:

Theorem 5.4. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of simple semigroups;
(ii) S is a semilattice Archimedean semigroups and it is intra π-regular;
(iii) S is intra-π-regular and any J -class of S containing an intra-regular element

is a subsemigroup;
(iv) (∀a, b ∈ S)(∃n ∈ N) (ab)n ∈ S(ba)n(ab)nS.

The equivalence of conditions (i), (ii) and (iii) was given by Putcha in [255],
1973.

Theorem 5.5. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of left simple semigroups;
(ii) S is a semilattice left Archimedean semigroups and it is intra-π-regular;
(iii) S is a semilattice left Archimedean semigroups and it is left π-regular;
(iv) (∀a, b ∈ S)(∃n ∈ N) (ab)n ∈ S(ab)na.
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The next theorem, which characterizes semilattices of left completely Archime-
dean semigroups, was proved by Bogdanović and Ćirić in [59].

Theorem 5.6. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of left completely Archimedean semigroups;
(ii) S is a semilattice of Archimedean semigroups and it is left π-regular;
(iii) S is left π-regular and each L-class of S containing a left regular element is

a subsemigroup;
(iv) S is left π-regular and each J -class of S containing a left regular element

is a subsemigroup;
(v) (∀a, b ∈ S)(∃n ∈ N) (ab)n ∈ Sa(ab)n.

Finally, we go to the uniformly π-regular semigroups. These semigroups are
characterized by the following theorem:

Theorem 5.7. The following conditions on a semigroup S are equivalent:
(i) S is uniformly π-regular;
(ii) S is left (or right) uniformly π-regular;
(iii) S is a semilattice of completely Archimedean semigroups;
(iv) S is a semilattice of Archimedean semigroups and it is completely π-regular;
(v) S is a semilattice of left completely Archimedean semigroups and it is right

π-regular;
(vi) S is a semilattice of left completely Archimedean semigroups and it is π-

regular;
(vii) S is π-regular and any L-class of S containing an idempotent is a subsemi-

group;
(viii) S is completely π-regular and any J -class of S containing an idempotent is

a subsemigroup;
(ix) S is completely π-regular and any D-class of S containing a regular element

is a subsemigroup;
(x) S is completely π-regular and A2 and B2 don’t divide S through completely

π-regular subsemigroups of S;
(xi) (∀a, b ∈ S)(∃n ∈ N)(ab)n ∈ (ab)nbS(ab)n;

The first characterization of semilattices of completely Archimedean semi-
groups was given by Putcha in [255], 1973, who proved that the conditions (iii),
(iv) and (viii) are equivalent. The equivalence of the conditions (i), (iii), (ix) and
(x) was stated without proofs by Shevrin in [282], 1977, and [284], 1981, and it was
proved in [285], 1994. Some of these conditions, and also some other conditions
equivalent to the uniform π-regularity of semigroups, were independently found
by Veronesi in [339], 1984. The conditions (ii), (v), (vi) and (vii) were given by
Bogdanović and Ćirić in [59], while (xi) is from Bogdanović [38], 1987.

Next we give the results obtained by Bogdanović in [34], 1984, Bogdanović
and Ćirić in [54], 1995, and Shevrin in [286], 1994.

Theorem 5.8. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of rectangular groups;
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(ii) S is π-regular and for all a, x ∈ S, a = axa implies a = ax2a2;
(iii) S is uniformly π-regular and any inverse of any idempotent of S is an

idempotent;
(iv) S is uniformly π-regular and for all e, f ∈ E(S) there exists n ∈ N such

that (ef)n = (ef)n+1;
(v) S is completely π-regular and (ab)0 = (ab)0(ba)0(ab)0, for all a, b ∈ S.

The results collected in the next theorem were also obtained by Bogdanović in
[34], 1984, Bogdanović and Ćirić in [54], 1995, and Shevrin in [286], 1994.

Theorem 5.9. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of left groups;
(ii) S is a semilattice of left Archimedean semigroups and it is π-regular (or

right π-regular, completely π-regular);
(iii) S is left uniformly π-inverse;
(iv) S is π-regular and for all a, x ∈ S, a = axa implies ax = xa2x;
(v) S is completely π-regular and (ab)0 = (ab)0(ba)0, for all a, b ∈ S.
(vi) (∀a, b ∈ S)(∃n ∈ N) (ab)n ∈ (ab)nS(ba)n.

Finally, semilattices of nil-extensions of groups are characterized by the follow-
ing theorem:

Theorem 5.10. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of nil-extensions of groups;
(ii) S is a semilattice of t-Archimedean semigroups and it is π-regular (or intra-

π-regular, left π-regular, right π-regular, completely π-regular);
(iii) S is π-regular and for all a, x ∈ S, a = axa implies ax = xa;
(iv) S is uniformly π-inverse;
(v) S is completely π-regular and (ab)0 = (ba)0, for all a, b ∈ S.
(vi) (∀a, b ∈ S)(∃n ∈ N) (ab)n ∈ (ba)nS(ba)n.

The equivalence of the conditions (i) and (iv) was established by Veronesi in
[339], 1984, of (i), (ii), (iii) and (vi) by Bogdanović in [34], 1984, and of (i) ⇔ (v)
was proved by Shevrin in [286], 1994, and Bogdanović and Ćirić in [54], 1995.

5.2. Uniformly π-regular rings. Uniformly π-regular rings have also a very
interesting structure characterization, given by the following theorem:

Theorem 5.11. The following conditions on a ring R are equivalent:

(i) R is uniformly π-regular;
(ii) R is π-regular and Nil(R) is an ideal od MR;
(iii) R is π-regular and Nil(R) is an ideal od R;
(iv) R is π-regular and an ideal extension of a nil-ring by a Clifford ring;
(v) MR is a semilattice of completely Archimedean semigroups;
(vi) MR is a semilattice of left (or right) completely Archimedean semigroups;
(vii) MR is a semilattice of Archimedean semigroups and R is π-regular.
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The equivalence of the conditions (v), (ii) and (iii) was proved by Putcha in
[258], 1981, for completely π-regular rings, and the same proof was translated to
π-regular rings by Ćirić and Bogdanović in [81], 1992, where also it was proved
that (i), i.e. (v), is equivalent to (iv) and (vii). The equivalence of the conditions
(v) and (vi) follows by Theorems 2.8 and 5.7.

Note that an analogue of the equivalence (v) ⇔ (vii) is not valid in Theory
of semigroups. For example, bicyclic semigroups are regular and simple, but these
are no uniformly π-regular.

As we will see later, the condition (iv) has a great importance, since it gives a
possibility to represent uniformly π-regular rings by Everett’s sums.

Problem. Can the equivalence of the conditions (i), (ii), and (iii) of the previous
theorem be proved if in (ii) and (iii) we omit the assumption that R is π-regular?

Some special cases of uniformly π-regular rings are also interesting. First we
give

Theorem 5.12. The following conditions on a ring R are equivalent:
(i) R is uniformly π-regular and for all e, f ∈ E(R) there exists n ∈ N such

that (ef)n = (ef)n+1;
(ii) R is uniformly π-regular and (ef)2 = (ef)3, for all e, f ∈ E(R);
(iii) MR is a semilattice of nil-extensions of rectangular groups.

Rings whose multiplicative semigroups can be decomposed into a semilattice
of nil-extensions of left groups were investigated by Bogdanović and Ćirić in [44],
1992, who proved the following theorem:

Theorem 5.13. The following conditions on a ring R are equivalent:
(i) MR is a semilattice of nil-extensions of left groups;
(ii) R is left π-inverse;
(iii) R is left completely π-inverse;
(iv) R is π-regular and ea = eae, for any a ∈ R and e ∈ E(R);
(v) R is π-regular and E(R) is a left regular band.

The previous theorem and its dual yield the next theorem, proved also by
Bogdanović and Ćirić in [44], 1992.

Theorem 5.14. The following conditions on a ring R are equivalent:
(i) MR is a semilattice of nil-extensions of groups;
(ii) R is π-inverse;
(iii) R is completely π-inverse;
(iv) R is uniformly π-inverse;
(v) R is π-regular and the idempotents of R are central;
(vi) R is π-regular and E(R) is a semilattice.

In the case of completely π-regular rings with an identity, Putcha in [258],
1981, showed that the above considered concepts coincide. Namely, he proved the
following:
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Theorem 5.15. The following conditions on a completely π-regular ring R
with the identity are equivalent:

(i) MR is a semilattice of left Archimedean semigroups;
(ii) MR is a semilattice of right Archimedean semigroups;
(iii) MR is a semilattice of t-Archimedean semigroups;
(iv) the idempotents of R are central.

In the mentioned paper, M. S. Putcha gave an example of a ring that is a
semilattice of right Archimedean semigroups, but it is not a semilattice of left
Archimedean semigroups.

5.3.Uniformly periodic semigroups and rings. There are examples that
the property “being a semilattice of Archimedean semigroups” is not a hereditary
property. Semigroups on which this property is hereditary were investigated by
Bogdanović, Ćirić and Mitrović in [60], 1995, where the following theorem was
given:

Theorem 5.16. The following conditions on a semigroup S are equivalent:
(i) any subsemigroup of S is a semilattice of Archimedean semigroups;
(ii) (∀a, b ∈ S) ab ↑ a2;
(ii)’ (∀a, b ∈ S) ab ↑ b2;
(iii) S satisfies one of the following variable identities over A2:

(a) {(xy)n = w |w ∈ A∗2x
2A∗2 ∪A∗2x, n ∈ N};

(b) {(xy)n = w |w ∈ A∗2y
2A∗2 ∪ yA∗2, n ∈ N};

(c) {(xy)nx = w |w ∈ A∗2x
2A∗2, n ∈ N};

(d) {(xy)nx = w |w ∈ A∗2y
2A∗2 ∪ yA∗2 ∪A∗2y, n ∈ N}.

Semigroups in which the property “being uniformly π-regular” is hereditary
are exactly the uniformly periodic semigroups. This is demonstrated by the next
theorem, proved in the same paper of S. Bogdanović, M. Ćirić and M. Mitrović.

Theorem 5.17. The following conditions on a semigroup S are equivalent:
(i) S is uniformly periodic;
(ii) S is a semilattice of nil-extensions of periodic completely simple semigroups;
(iii) S is periodic and a semilattice of Archimedean semigroups;
(iv) any subsemigroup of S is uniformly π-regular;
(v) (∀a, b ∈ S)(∃n ∈ N) (ab)n = (ab)n ((ba)n(ab)n)n;
(v)’ (∀a, b ∈ S)(∃n ∈ N) (ab)n = ((ab)n(ba)n(ab)n)n;
(vi) S satisfies one of the following variable identities over A2:

(a) {(xy)n = w |w ∈ A∗2x
2A∗2 ∪A∗2x, |w| 6= 2n, n ∈ N};

(b) {(xy)n = w |w ∈ A∗2y
2A∗2 ∪ yA∗2, |w| 6= 2n, n ∈ N};

(c) {(xy)nx = w |w ∈ A∗2x
2A∗2, |w| 6= 2n + 1, n ∈ N};

(d) {(xy)nx = w |w ∈ A∗2y
2A∗2 ∪ yA∗2 ∪A∗2y, |w| 6= 2n + 1, n ∈ N}.

The next theorem, which describes the structure of uniformly periodic rings,
is due to the authors.
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Theorem 5.18. The following conditions on a ring R are equivalent:
(i) R is uniformly periodic;
(ii) R is an ideal extension of a nil-ring by a Jacobson’s ring;
(iii) any subring of R is uniformly π-regular;
(iv) any subsemigroup of MR is uniformly π-regular;
(v) MR is a semilattice of nil-extensions of periodic completely simple semi-

groups.

A special type of the above considered rings, namely the rings which are ideal
extensions of a nil-ring by a Boolean ring, were studied by Hirano, Tominaga and
Yaqub in [142], 1988, where the following theorem was proved:

Theorem 5.19. The following conditions on a ring R are equivalent:
(i) R is an ideal extension of a nil-ring by a Boolean ring;
(ii) (∀a ∈ R) a− a2 ∈ Nil(R);
(iii) R is [E(R),Nil(R)]-representable;
(iv) R is uniquely [E(R), Nil(R)]-representable.

In the same paper, Y. Hirano, H. Tominaga and A. Yaqub also considered the
condition of the form

(#)n (∀a ∈ R) x− xn ∈ Nil(R),

where n ∈ N, n ≥ 2. By the above theorem, Nil(R) form an ideal of R, whenever a
ring R satisfies (#)2, but this does not holds for all n ∈ N. Necessary and sufficient
conditions for n, under which Nil(R) is an ideal of R, for any ring R satisfying (#)n,
are determined by the following theorem, proved also in the above mentioned paper.

Theorem 5.20. Let n ∈ N, n ≥ 2. Then the following conditions are equiva-
lent:

(i) Nil(R) is an ideal of R, for any ring R which satisfies (#)n;
(ii) n 6≡ 1 (mod 3) and n 6≡ 1 (mod 8);
(iii) for each prime p, n 6≡ 1 (mod p2 − 1);
(iv) for each prime p, M2(GF (p)) fails to satisfy (#)n.

5.4. Nil-extensions of unions of groups. The subject of this section are
semigroups decomposable into a nil-extension of a union of groups. In other words,
these are π-regular semigroups in which the group part form an ideal, and they are
one of the most significant special cases of uniformly π-regular semigroups.

Except the mentioned semigroups, here we also consider certain their special
types, such as retractive, nilpotent and retractive nilpotent extensions of unions
of groups. Recall that we say that a semigroup S is a retractive extension of a
semigroup K if S is an ideal extension of K and there exists a retraction of S onto
K. These are extensions which can be more easily constructed than many other
kinds of extensions, and this make important their investigation.
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For n ∈ N, a retractive (n + 1)-nilpotent extension S of a semigroup K was
called by Bogdanović and Milić in [65], 1987, an n-inflation of K. These authors
also gave a general construction for such extensions. It is important to note that
1-inflations are called simply inflations, while 2-inflations are also known as strong
inflations. Inflations of semigroups were first defined and studied by Clifford in
[102], 1950, and strong inflations by Petrich in [238], 1967.

The first theorem which we quote here was proved by Bogdanović and Ćirić in
[41], 1991, and it describes nil-extensions of regular semigroups.

Theorem 5.21. A semigroup S is a nil-extension of a regular semigroup if
and only if for all x, a, y ∈ S there exists n ∈ N such that xany ∈ xanySxany.

An immediate consequence of the previous theorem is the following:

Theorem 5.22. A semigroup S is a nil-extension of a union of groups if and
only if for all x, a, y ∈ S there exists n ∈ N such that xany ∈ xanyxSxany.

Nil-extensions of semilattices of left groups are characterized similarly:

Theorem 5.23. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of left groups;
(ii) (∀x, a, y ∈ S)(∃n ∈ N) xany ∈ xanySyanx;
(iii) S is π-regular and for all x, a, y ∈ S there exists n ∈ N such that xany ∈

xSx.

The equivalences (i) ⇔ (iii) and (i) ⇔ (iv) are from Bogdanović and Ćirić [41],
1991, and [46], 1992, respectively.

When we deal with retractive nil-extensions of regular semigroups, the follow-
ing theorem has a crucial role:

Theorem 5.24. A semigroup S is a retractive nil-extension of a regular semi-
group if and only if it is a subdirect product of a nil-semigroup and a regular
semigroup.

The above theorem was proved by Bogdanović and Ćirić in [45], 1992. The
same authors in another paper [46], 1992, proved the following:

Theorem 5.25. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a union of groups;
(ii) S is a subdirect product of a nil-semigroup and a union of groups;
(iii) (∀x, a, y ∈ S)(∃n ∈ N) xany ∈ x2Sy2.

A very interesting property of retractive nil-extensions of unions of groups was
found by Bogdanović and Ćirić in [41], 1991, who gave:

Theorem 5.26. Let a semigroup S be a nil-extension of a union of groups
K. Then an arbitrary retraction ϕ of S onto K has the following representation:

aϕ = ea if a ∈
√

Ge, for e ∈ E(S) (a ∈ S).
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In view of the Munn’s lemma (Theorem 2.12), if the above condition is fulfilled,
then ae = ea ∈ Ge, so also aϕ = ae.

The next theorem was proved by Bogdanović and Ćirić in [46], 1992:

Theorem 5.27. A semigroup S is a retractive nil-extension of a semilattice
of left groups if and only if it is π-regular and the following condition holds:

(∀x, a, y ∈ S)(∃n ∈ N) xany ∈ x2Sx.

Nil-extensions of Clifford semigroups (semilattices of groups) one considers in
the following theorem:

Theorem 5.28. The following conditions on a semigroup S are equivalent:

(i) S is a nil-extension of a semilattice of groups;
(ii) S is a retractive nil-extension of a semilattice of groups;
(iii) (∀x, a, y ∈ S)(∃n ∈ N) xany ∈ xanySyanx ∩ yanxSxany;
(iv) S is π-regular and for all x, a, y ∈ S there exists n ∈ N such that xany ∈

xSx ∩ ySy.

The equivalence (i) ⇔ (ii) was proved by Bogdanović and Ćirić in [41], 1991.
The remaining conditions are derived from Theorem 5.23 and its dual.

Now we pass from nil-extensions to the nilpotent ones. For an arbitrary n ∈ N,
a semigroup S which is an (n+1)-nilpotent extension of a regular semigroup (resp.
union of groups) can be characterized by a simple condition Sn+1 ⊆ Reg(S) (resp.
Sn+1 ⊆ Gr(S) ). But, (n + 1)-nilpotent extensions of semilattices of left groups
have a more interesting characterization, given by the following theorem:

Theorem 5.29. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an (n + 1)-nilpotent extension of a semilattice of left groups;
(ii) S is π-regular (or right π-regular) and xSn = xSnx, for any x ∈ S;
(iii) (∀x1, x2, . . . , xn+1 ∈ S) x1x2 · · ·xn+1 ∈ x1x2 · · ·xn+1Sx1.

The equivalence of the conditions (i) and (iii) was proved by Bogdanović and
Stamenković in [66], 1988.

As was proved by Bogdanović and Ćirić in [45], 1992, retractive nilpotent
extensions of regular semigroups can be also characterized in terms of subdirect
products:

Theorem 5.30. Let n ∈ N. A semigroup S is an n-inflation of a regular
semigroup K if and only if it is a subdirect product of K and an (n + 1)-nilpotent
semigroup.

Applying this theorem to n-inflations of unions of groups we obtain the fol-
lowing:
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Theorem 5.31. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an n-inflation of a union of groups;
(ii) S is a subdirect product of a union of groups and an (n + 1)-nilpotent

semigroup;
(iii) (∀x, y ∈ S) xSn−1y = x2Sny2.

The equivalence of conditions (i) and (ii) was proved by Bogdanović and Milić
in [65], 1987. In the case n = 1 this was shown by Bogdanović in [37], 1985.

Next we quote

Theorem 5.32. Let n ∈ N. A semigroup S is an n-inflation of a semilattice
of left groups if and only if the following condition holds:

(∀x ∈ S)xSn = x2Snx.

This theorem was proved by Bogdanović and Stamenković in [66], 1988 (see
also Bogdanović and Ćirić [46], 1992), and by Bogdanović in [38], 1987, in the case
n = 1.

This section we finish giving the following theorem:

Theorem 5.33. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an (n + 1)-nilpotent extension of a semilattice of groups;
(ii) S is an n-inflation of a semilattice of groups;
(iii) (∀x, y ∈ S) xany ∈ y2Snx.

These results are due to Bogdanović and Milić [65], 1987. Inflations of semi-
lattices of groups were described in a similar way by Bogdanović in [37], 1985.

5.5.Nil-extensions ofunions ofperiodicgroups. The class of semigroups
which are nil-extensions of unions of groups, and certain its subclasses, have very
nice characterizations in terms of variable identities, which will be presented in this
section. Except the results whose origins we quote explicitly, all remaining results
are unpublished results of the authors.

For a given n ∈ N, n ≥ 3, at the start of the section we deal with semigroup
identities over An of the form

(1) x1u(x2, . . . , xn−1)xn = w(x1, x2, . . . , xn),

and the following conditions concerning them:

(A1) for a fixed i ∈ {1, . . . , n}, xi appears once on one side of (1) and at most
twice on another side;

(B1) |w| 6= |u|+ 2;
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(C1.1) x1 ∦
l
w; (C1.2) h(2)(w) = x2

1; (C1.3) h(w) 6= x1;

(D1.1) xn ∦
r

w; (D1.2) t(2)(w) = x2
n; (D1.3) t(w) 6= xn;

and we also deal with identities of the form

(2) x1u(x2, . . . , xn) = v(x1, . . . , xn−1)xn,

and the following conditions concerning them:
(A2) for a fixed i ∈ {1, . . . , n}, xi appears once on one side of (2) and at most

twice on another side;
(B2) |u| 6= |v|;
(C2.2) h(2)(v) = x2

1; (C2.3) h(v) 6= x1;
(D2.2) t(2)(u) = x2

n; (D2.3) t(u) 6= xn.
Let us observe that the following implications hold: (C1.2) ⇒ (C1.1)& (A.1),
(C1.3) ⇒ (C1.1), (D1.2) ⇒ (D1.1)& (A.1), (D1.3) ⇒ (D1.1), (C2.2) ⇒ (A2) and
(D2.2) ⇒ (A2).

The next five theorems are due to the authors:

Theorem 5.34. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a union of periodic groups;
(ii) (∀x, a, y ∈ S)(∃m,n ∈ N) xany = (xany)m+1;
(iii) for an integer n ≥ 3, S satisfies the variable identity consisting of all iden-

tities of the form (1) having the properties (A1), (B1), (C1.1) and (D1.1).

Theorem 5.35. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a union of periodic groups;
(ii) (∀x, a, y ∈ S)(∃n ∈ N) xany = xn+1anyn+1;
(iii) (∀x, a, y ∈ S)(∃n ∈ N) xanyn+1 = xn+1any;
(iv) for an integer n ≥ 3, S satisfies the variable identity consisting of all iden-

tities of the form (1) having the properties (B1), (C1.2) and (D1.2);
(v) for an integer n ≥ 3, S satisfies the variable identity consisting of all iden-

tities of the form (2) having the properties (B.2), (C2.2) and (D2.2).

Theorem 5.36. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of periodic left groups;
(ii) (∀x, a, y ∈ S)(∃n ∈ N) xany = xanyxn;
(iii) for an integer n ≥ 3, S satisfies the variable identity consisting of all iden-

tities of the form (1) having the properties (A1), (B1), (C1.1) and (D1.3)

Theorem 5.37. The following conditions on a semigroup S are equivalent:
(i) S is a retractive nil-extension of a semilattice of periodic left groups;
(ii) (∀x, a, y ∈ S)(∃n ∈ N) xany = xn+1anyxn;
(iii) (∀x, a, y ∈ S)(∃n ∈ N) xanyan = xn+1any;
(iv) for an integer n ≥ 3, S satisfies the variable identity consisting of all iden-

tities of the form (1) having the properties (B1), (C1.2) and (D1.3);
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(v) for an integer n ≥ 3, S satisfies the variable identity consisting of all iden-
tities of the form (2) having the properties (B2), (C2.2) and (D2.3).

Theorem 5.38. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of periodic groups;
(ii) (∀x, a, y ∈ S)(∃n ∈ N) xany = ynxanyxn;
(iii) (∀x, a, y ∈ S)(∃n ∈ N) xanyn+1an = anxn+1any;
(iv) for an integer n ≥ 3, S satisfies the variable identity consisting of all iden-

tities of the form (1) having the properties (A1), (B1), (C1.3) and (D1.3);
(v) for an integer n ≥ 3, S satisfies the variable identity consisting of all iden-

tities of the form (2) having the properties (A2), (B2), (C2.3) and (D2.3).

For n ∈ N, now we deal with semigroup identities over An+1 of the form

(3) x1x2 · · ·xn+1 = w(x1, x2, . . . , xn+1),

and the following conditions concerning them:
(A3) for a fixed i ∈ {1, . . . , n + 1}, xi appears once on one side of (3) and at

most twice on another side;
(B3) |w| ≥ n + 2;
(C3.1) x1 ∦

l
w; (C3.2) h(2)(w) = x2

1; (C3.3) h(w) 6= x1;

(D3.1) xn+1 ∦
r

w; (D1.2) t(2)(w) = x2
n+1; (D1.3) t(w) 6= xn+1;

The next theorems characterize various types of nilpotent extensions of unions
of groups.

Theorem 5.39. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an (n + 1)-nilpotent extension of a union of periodic groups;
(ii) (∀x1, x2, . . . , xn ∈ S)(∃m ∈ N) x1x2 · · ·xn+1 = (x1x2 · · ·xn+1)m+1;
(iii) S satisfies the variable identity consisting of all identities of the form (3)

having the properties (A3), (B3), (C3.1) and (D3.1).

The equivalence (i) ⇔ (ii) was proved by Bogdanović and Milić in [65], 1987,
and for n = 1 by Bogdanović in [37], 1985. A condition similar to (iii) was given by
Putcha and Weissglass in [263], 1972 (they required that the condition (A3) holds
for all i ∈ {1, 2, . . . , n + 1}).

Theorem 5.40. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an n-inflation of a union of periodic groups;
(ii) (∀x1, x2, . . . , xn ∈ S)(∃m ∈ N) x1x2 · · ·xn+1 = xm+1

1 x2 · · ·xnxm+1
n+1 ;

(iii) S satisfies the variable identity consisting of all identities of the form (3)
having the properties (B3), (C3.2) and (D3.2).

The equivalence of the conditions (i) and (ii) was established by Bogdanović
and Milić in [65], 1987, whereas in the case n = 1 this was shown by Bogdanović
in [37], 1985.
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Theorem 5.41. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an (n + 1)-nilpotent extension of a semilattice of periodic left groups;
(ii) (∀x1, x2, . . . , xn ∈ S)(∃m ∈ N) x1x2 · · ·xn+1 = x1x2 · · ·xn+1xm

1 ;
(iii) S satisfies the variable identity consisting of all identities of the form (3)

having the properties (A3), (B3), (C3.1) and (D3.3).

A condition equivalent to (i), and similar to (ii), was given by Bogdanović and
Stamenković in [66], 1988, and by Bogdanović in [38], 1987, for the case n = 1.
These remarks hold also for the next theorem.

Theorem 5.42. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an n-inflation of a semilattice of periodic left groups;
(ii) (∀x1, x2, . . . , xn ∈ S)(∃m ∈ N) x1x2 · · ·xn+1 = xm+1

1 x2 · · ·xn+1xm
1 ;

(iii) S satisfies the variable identity consisting of all identities of the form (3)
having the properties (B3), (C3.2) and (D3.3).

Theorem 5.43. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an (n + 1)-nilpotent extension of a semilattice of periodic groups;
(ii) S is an n-inflation of a semilattice of periodic groups;
(iii) (∀x1, x2, . . . , xn ∈ S)(∃m ∈ N) x1x2 · · ·xn+1 = xm

n+1x1 · · ·xn+1xm
1 ;

(iii) S satisfies the variable identity consisting of all identities of the form (3)
having the properties (A3), (B3), (C3.3) and (D3.3).

The equivalence (i) ⇔ (iii) was proved by Bogdanović and Milić in [65], 1987,
while (i) ⇔ (iv) was shown by Putcha and Weissglass in [263], 1972. The related
results concerning the case n = 1 were given by Bogdanović in [37], 1985, and
Putcha and Weissglass in [262], 1971. The equivalence of the conditions (i) and
(ii) was obtained as a consequence of Theorem 5.28.

The theorems characterizing nilpotent and nil-extensions of bands, left regu-
lar bands and semilattices, and their retractive analogues, are very similar to the
previous ones, so they will be omitted. We only note that the variable identities
describing these semigroups consist of the corresponding identities from the above
theorems, having an additional property:
(A1–3)∗ for a fixed i ∈ {1, . . . , xn} (resp. i ∈ {1, . . . , xn}, i ∈ {1, . . . , xn+1}), xi

appears once on one side of (1) (resp. (2), (3) ), and exactly twice on
another side.

This condition forces all subgroups of a semigroup to be one-element.

5.6.Direct sums of nil-rings and Clifford rings. In Section 5.2 we have
seen that the set of nilpotents of a π-regular ring is a ring ideal if and only if it is a
semigroup ideal. Here we show that this property also holds for the group part of
such a ring, i.e. that the group part of a π-regular ring is a ring ideal if and only
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if it is a semigroup ideal. In this case we get a decomposition of this ring into a
direct sum of a nil-ring and a Clifford ring, as it is demonstrated by the following
theorem:

Theorem 5.44. The following conditions on a ring R are equivalent:
(i) R is a direct sum of a nil-ring and a Clifford ring;
(ii) R is a subdirect sum of a nil-ring and a Clifford ring;
(iii) R is a strong extension of a nil-ring by a Clifford ring;
(iv) R is uniquely (Gr(R), Nil(R))-representable;
(v) R is π-regular and uniquely (LReg(R), Nil(R))-representable;
(vi) R is π-regular and E(R) is contained in a reduced ideal of R;
(vii) MR is a nil-extension of a completely regular (or a Clifford) semigroup;
(viii) MR is a retractive nil-extension of a completely regular (or a Clifford)

semigroup;
(ix) MR is a subdirect product of a nil-semigroup and a completely regular (or

a Clifford) semigroup;
(x) MR is a direct product of a nil-semigroup and a completely regular (or a

Clifford) semigroup.

The equivalence of conditions (i), (v) and (vi) was proved by Hirano and Tomi-
naga in [141], 1985, and of (i) and (ii) by Bell and Tominaga in [23], 1986, Tominaga
[332]. For some related results see also Tominaga [331]. Ćirić and Bogdanović in
[80], 1990, showed that the conditions (iii), (vii) and (viii) are equivalent, and in
[90], 1996, they established the equivalence of the conditions (i), (vii) and (x).
The implications (i) ⇒ (ii) and (ii) ⇒ (ix) are obvious, while (ix) ⇒ (viii) is an
immediate consequence of Theorem 5.24.

For some related results see also Bell and Yaqub [24], 1987, and Abu-Khuzam
and Yaqub [4], 1985. Certain more general decompositions can be found in Hirano
and Tominaga [141], 1985, and Bell and Tominaga [23], 1986.

On the other hand, a special case of the above decompositions are decompo-
sitions into a direct sum of a nil-ring and a Jacobson ring. The results concerning
these decompositions are collected in the following theorem:

Theorem 5.45. The following conditions on a ring R are equivalent:
(i) R is a direct sum of a nil-ring and a Jacobson ring;
(ii) R is a subdirect sum of a nil-ring and a Jacobson ring;
(iii) R is uniquely (P (R),Nil(R))-representable;
(iv) E(R) ·N2(R) = N2(R) · E(R) = 0 and R is [P (R), Nil(R)]-representable;
(v) R is periodic and E(R) is contained in a reduced ideal of R;
(vi) MR is a nil-extension of a union (or a semilattice) of periodic groups;
(vii) MR is a retractive nil-extension of a union (or a semilattice) of periodic

groups;
(viii) MR is a subdirect product of a nil-semigroup and a union (or a semilattice)

of periodic groups;
(ix) MR is a direct product of a nil-semigroup and a union (or a semilattice)

of periodic groups.
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The conditions (i), (iii) and (iv) are equivalent by theorems proved by Bell and
Tominaga in [23], 1986, and Hirano, Tominaga and Yaqub in [142], 1988, although
(i) ⇔ (iii) was proved by Bell in [20], 1985, and Hirano and Tominaga in [141],
1985, under the assumption that R is periodic. The condition (v) is assumed from
Hirano and Tominaga [141], 1985. The equivalence of the conditions (i), (vii), (viii)
and (ix) was established by Ćirić and Bogdanović in [90], 1996.

By the next theorem we describe direct sums of nil-rings and Boolean rings.

Theorem 5.46. The following conditions on a ring R are equivalent:
(i) R is a direct sum of a nil-ring and a Boolean ring;
(ii) R is a subdirect sum of a nil-ring and a Boolean ring;
(iii) R is a strong extension of a nil-ring by a Boolean ring;
(iv) E(R) ·N2(R) = N2(R) · E(R) = 0 and R satisfies one of the conditions of

Theorem 5.19;
(v) E(R) ·N2(R) = N2(R) · E(R) = 0 and R is (E(R), Nil(R))-representable;
(vi) E(R)·N2(R) = N2(R)·E(R) = 0 and R is uniquely (E(R), Nil(R))-represen-

table;
(vii) MR is a nil-extension of a band (or a semilattice);
(viii) MR is a retractive nil-extension of a band (or a semilattice);
(ix) MR is a subdirect product of a nil-semigroup and a band (or a semilattice);
(x) MR is a direct product of a nil-semigroup and a band (or a semilattice).

Hirano, Tominaga and Yaqub in [142], 1988, proved that (i), (iv), (v) and (vi)
are equivalent. The remaining conditions were given by Ćirić and Bogdanović in
[80], 1990, and [90], 1996.

In the rest of the section we present the results characterizing direct sums of
nilpotent rings and of Clifford, Jacobson and Boolean rings.

Theorem 5.47. Let n ∈ N. Then the following conditions on a ring R are
equivalent:

(i) R is a direct sum of an (n + 1)-nilpotent ring and a Clifford ring;
(ii) R is a subdirect sum of an (n + 1)-nilpotent ring and a Clifford ring;
(iii) (∀a ∈ R) aRn = aRna;
(iv) (∀a ∈ R) aRn ⊆ Rna2;
(v) (∀a ∈ R) aRn = a2Rn & Rna = Rna2;
(vi) Rn+1 ⊆ LReg(R)

(

or Rn+1 ⊆ RReg(R)
)

;
(vii) MR is an (n+1)-nilpotent extension of a completely regular (or a Clifford)

semigroup;
(viii) MR is an n-inflation of a completely regular (or a Clifford) semigroup;
(ix) MR is a subdirect product of an (n + 1)-nilpotent semigroup and a com-

pletely regular (or a Clifford) semigroup;
(x) MR is a direct product of an (n+1)-nilpotent semigroup and a completely

regular (or a Clifford) semigroup.
The conditions (iii) and (iv) are equivalent to their left-right analogues.

The equivalence of the conditions (i), (iii), (iv) and (v) was proved by Chiba
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and Tominaga in [75], 1976, the condition (vi) is assumed from Komatsu and
Tominaga [138], 1989, and the remaining conditions are from Ćirić and Bogdanović
[80], 1990, and [90], 1996. Note that the assertion (i) ⇔ (iii) is a consequence of
Theorems 2.8 and 5.29.

Theorem 5.48. The following conditions on a ring R are equivalent:

(i) R is a direct sum of a null-ring and a Clifford ring;
(ii) R is a subdirect sum of a null-ring and a Clifford ring;
(iii) (∀a ∈ R) aR = aRa;
(iv) (∀a ∈ R) aR ⊆ Ra2;
(v) (∀a ∈ R) aR = a2R & Ra = Ra2;
(vi) MR is a null-extension of a completely regular (or a Clifford) semigroup;

(viii) MR is an inflation of a completely regular (or a Clifford) semigroup;
(ix) MR is a subdirect product of a null-semigroup and a completely regular

(or a Clifford) semigroup;
(x) MR is a direct product of a null-semigroup and a completely regular (or a

Clifford) semigroup.

The conditions (ii) and (iv) are equivalent to their left-right analogues.

Rings satisfying (iii) were first studied by Szász in [309], 1972, and they are
known as P1-rings. The equivalence of the conditions (i) and (iii) was established
by Ligh and Utumi in [301], 1974, and of (i), (iv) and (v) by Chiba and Tominaga
in [74], 1975.

Theorem 5.49. Let n ∈ N. Then the following conditions on a ring R are
equivalent:

(i) R is a direct sum of an (n + 1)-nilpotent ring and a Jacobson ring;
(ii) R is a subdirect sum of an (n + 1)-nilpotent ring and a Jacobson ring;
(iii) Rn+1 ⊆ P (R);
(iv) MR satisfies a variable identity consisting of all identities of the form:

x1x2 · · ·xn+1 = (x1x2 · · ·xn+1)2u,

with u ∈ A+
n+1;

(v) MR is an (n+1)-nilpotent extension of a union (or a semilattice) of periodic
groups;

(viii) MR is an n-inflation of a union (or a semilattice) of periodic groups;
(ix) MR is a subdirect product of an (n + 1)-nilpotent semigroup and a union

(or a semilattice) of periodic groups;
(x) MR is a direct product of an (n + 1)-nilpotent semigroup and a union (or

a semilattice) of periodic groups.

Characterizations of direct sums of (n + 1)-nilpotent rings and Jacobson rings
through the conditions (iii) and (iv) were given by H. Komatsu and H. Tominaga,
while the remaining conditions are due to the first two authors of this paper.
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Theorem 5.50. The following conditions on a ring R are equivalent:
(i) R is a direct sum of a null-ring and a Jacobson ring;
(ii) R is a subdirect sum of a null-ring and a Jacobson ring;
(iii) (∀a, b ∈ R)(∃p(x, y) ∈ Z 〈x, y〉) ab = (ab)2p(a, b);
(iv) (∀a, b ∈ R)(∃p(x, y) ∈ Z 〈x, y〉) ab = (ba)2p(a, b);
(v) MR satisfies a variable identity consisting of all identities of the form xy =

(xy)m+1, with m ∈ N;
(vi) MR is a null-extension of a union (or a semilattice) of periodic groups;
(vii) MR is an inflation of a union (or a semilattice) of periodic groups;
(viii) MR is a subdirect product of a null-semigroup and a union (or a semilat-

tice) of periodic groups;
(ix) MR is a direct product of a null-semigroup and a union (or a semilattice)

of periodic groups.

The equivalence (i) ⇔ (v) was proved by Ligh and Luh in [200], 1989, and
(iii) and (iv) are assumed from Bell and Ligh [22], 1989.

Note that the above considered rings are commutative. An elementary proof
of the commutativity of rings satisfying the condition (v) was given by Ó Searcóid
and Mac Hale in [232], 1986.

Note that all direct sums of nil-, nilpotent and null-rings and Jacobson rings
considered above can be characterized in terms of variable identities, using the
semigroup-theoretical results presented in the previous section. The next three
theorems, which were proved by Bell in [18], 1977, follow immediately from such
obtained characterizations.

Theorem 5.51. Let R be a ring satisfying one of the following variable iden-
tities over A2:

(a) {xy = w | |x|w ≥ 2, |y|w ≥ 2};
(b) {xy = w |w = yxn, n ∈ N, n ≥ 2};
(c) {xy = w |w = ynx, n ∈ N, n ≥ 2};
(d) {xy = w | |y|w = 0, |w| ≥ 3};
(e) {xy = w | |x|w = 0, |w| ≥ 3};
(f) {xy = w |w = xmyxn, m, n ∈ N};
(g) {xy = w |w = ymxyn, m, n ∈ N}.

Then R is commutative.

Theorem 5.52. If a periodic ring R satisfies a variable identity xy = w(x, y),
with w = yx, or h(w) = y and |x|w ≥ 2, then R is commutative.

Theorem 5.53. If a ring R satisfies a variable identity xy = w(x, y), with
h(w) = y and |x|w ≥ 2, then R is commutative.

6. Semigroups and rings satisfying certain semigroup identities

There are many semigroup identities for which it was observed that they in-
duce certain structural properties on semigroups on which they are satisfied. But,
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the general problem of finding all semigroup identities inducing a given structural
property was first stated by Clarke in [78], 1981, and in a more general form in the
Ph. D. thesis of Ćirić [79], 1991, and in the paper of Ćirić and Bogdanović [83],
1993. This problem was formulated in the following way:

(P1) for a given class X of semigroups, find all semigroup identities u = v having
the property [u = v] ⊆ X .

It was also stated one similar problem:
(P2) for given classes X1 and X2 of semigroups, find all semigroup identities u = v

having the property [u = v] ∩ X1 ⊆ X2.
Identities having the property [u = v] ⊆ X are called X -identities, and identities
having the property [u = v] ∩ X1 ⊆ X2 are called X1 . X2-identities.

In other words, (P1) is the problem of finding all identities having the property
that every semigroup satisfying them must be in X , and (P2) is the problem of find-
ing all identities having the property that every semigroup from X1 satisfying them
must be in X2. Problems of this type were treated only in the mentioned papers
of Clarke, Ćirić and Bogdanović, and also by Ćirić and Bogdanović in [84], 1994,
and [88], 1996. The results obtained in these papers, which characterize all iden-
tities that induce decompositions of semigroups into a semilattice of Archimedean
semigroups and nil-extensions into a union of groups, will be presented in Sections
1 and 2. In Section 3 we show how these results can be applied in Theory of rings.

As was proved by Chrislock in [77], 1969, any semigroup which satisfies a het-
erotype identity is a nil-extensions of a periodic completely simple semigroup, and
hence, any ring satisfying a heterotype semigroup identity is a nil-ring. Therefore,
studying of heterotype semigroup identities is not so interesting, and in this sec-
tion we aim our attention only to homotype semigroup identities. Our topic under
question will be identities of the form

(1) u(x1, x2, . . . , xn) = v(x1, x2, . . . , xn),

where u, v ∈ A+
n and c(u) = c(v) = An, n ∈ N, n ≥ 2. We will also treat a

particular case

(2) u(x, y) = v(x, y),

where u, v ∈ A+
2 and c(u) = c(v) = A2.

Before we give the results promised above, we introduce the following nota-
tions:

Notation Class of semigroups Notation Class of semigroups
A Archimedean CA completely Archimedean
LA left Archimedean LG left groups
T A t-Archimedean G groups
S semilattices N nil-semigroups
πR π-regular Nk k + 1-nilpotent
CS completely simple UG unions of groups
M×G rectangular groups
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Let X1 and X2 be classes of semigroups. By X1 ◦ X2 we denote the Maljcev’s
product of classes X1 and X2, i.e. the class of all semigroups S on which there exists
a congruence ρ such that S/ρ is in X2 and every ρ-class which is a subsemigroup
is in X1. This product was introduced by Mal’cev in [206], 1967. The related
decomposition is called an X1 ◦X2-decomposition. It is clear that X ◦S is the class
of all semilattices of semigroups from the class X . If X2 is a subclass of the class N ,
then X1 ◦ X2 is a class of all semigroups which are ideal extensions of semigroups
from X1 by semigroups from X2. Also, in such a case, by X1 ~X2 we denote a class
of all semigroups which are retract extensions of semigroups from X1 by semigroups
from X2.

6.1. On A◦S-identities. Various types ofA◦S-identities have been inves-
tigated by many authors. The commutativity identity xy = yx is an identity for
which it has been first proved that it is an A◦S-identity. This was done by Tamura
and Kimura in [319], 1954. After that, the same property was established by Chris-
lock in [76], 1969, for the medial identity : x1x2x3x4 = x1x3x2x4, by Tamura and
Shafer in [321], 1972, Tamura and Nordahl in [320], 1972, and Nordahl in [225],
1974, for the exponential identity : (xy)n = xnyn, n ∈ N, n ≥ 2, by Schutzenberger
in [277], 1976, for the identity (xy)n =

(

(xy)n(yx)n(xy)n
)n

, n ∈ N, by Sapir and
Suhanov in [275], 1985, for the identity (xy)m =

(

(xy)m(yx)m
)n

(xy)m, m,n ∈ N,
and identities of the form x1x2 · · ·xn+1 = w(x1, x2, . . . , xn+1), n ∈ N, etc. But,
the first general characterization of all A ◦ S-identities was given by Ćirić and
Bogdanović in [83], 1993, who proved the following theorem:

Theorem 6.1. The following conditions for an identity (1) are equivalent:
(i) (1) is an A ◦ S-identity;
(ii) (1) is not satisfied on the semigroup B2;
(iii) there exists a homomorphism ϕ : A+

n → A+
2 and a permutation π of a set

{u, v} such that one of the following conditions hold:
(A1) (uπ)ϕ ∈ (xy)+ and (vπ)ϕ /∈ (xy)+;
(A2) (uπ)ϕ ∈ (xy)+x and (vπ)ϕ /∈ (xy)+x;

(iv) there exists k ∈ N and w ∈ A∗2x
2A∗2 ∪A∗2y

2A∗2 such that

[u = v] ⊆ [(xy)k = w].

One description of all identities which are satisfied on the semigroup B2 was
given by Mashevitskĭı in [208], 1979, but it is quite complicated.

Using the above theorem, for many other significant semigroup identities it
can be proved that they are A ◦ S-identities. For example, this can be proved
for permutation identities , by which we mean identities of the form x1x2 · · ·xn =
x1σx2σ · · ·xnσ, where σ is a non-identical permutation of the set {1, 2, . . . , n}, for
quasi-permutation identities , which have the form

x1 · · ·xk−1yxk · · ·xn = x1σ · · ·x(l−1)σy2xlσ · · ·xnσ,
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for some permutation σ of the set {1, 2, . . . , n} and some k, l ∈ {2, . . . , n}, and
other.

In the mentioned paper of Ćirić and Bogdanović [83], from 1993, the authors
also investigated some special types of A ◦ S-identities, and all theorems from 6.4
to 6.9 were proved in this paper.

The next theorem says that the set of all A ◦ S-identities coincides with the
set of all identities which forces all π-regular semigroups to be uniformly π-regular.

Theorem 6.2. The identity (1) is a πR . CA ◦ S-identity if and only if (1) is
an A ◦ S-identity.

The following theorem, which is a consequence of the previous two theorems,
give an answer to one problem stated by Shevrin and Suhanov in [288], 1989, con-
cerning semigroup varieties consisting of semilattices of Archimedean semigroups.

Theorem 6.3. Let X be a variety of semigroups. Then the following condi-
tions are equivalent:

(i) X ⊆ A ◦ S;
(ii) X does not contain the semigroup B2;
(iii) any regular semigroup from X is completely regular;
(iv) any completely 0-simple semigroup from X has no zero divisors;
(v) in any semigroup with zero from X the set of all nilpotents is a subsemi-

group;
(vi) in any semigroup with zero from X the set of all nilpotents is an ideal.

More information on semigroup varieties contained in A ◦ S can be found in
Schutzenberger [277], 1976, Sapir and Suhanov [275], 1985, Shevrin and Volkov
[287], 1985, and Shevrin and Suhanov [288], 1989.

The next two theorems characterize identities which induce decompositions of
π-regular semigroups into a semilattice of left Archimedean semigroups and into a
semilattice of t-Archimedean semigroups.

Theorem 6.4. The following conditions for an identity (1) are equivalent:

(i) (1) is a πR . (LG ◦ N ) ◦ S-identity;
(ii) (1) is not satisfied on semigroups B2 and R2;
(iii) (1) is an A ◦ S-identity and t(u) 6= t(v).

Theorem 6.5. The following conditions for an identity (1) are equivalent:

(i) (1) is a πR . (G ◦ N ) ◦ S-identity;
(ii) (1) is not satisfied on semigroups B2, R2 and L2;
(iii) (1) is an A ◦ S-identity, h(u) 6= h(v) and t(u) 6= t(v).

Using the previous theorems, it can be proved that the identities of the form
x1 · · ·xnxm+1 · · ·xm+n = xm+1 · · ·xm+nx1 · · ·xn, called the (m,n)-commutativity
identities, are T A◦S-identities. These identities were intensively studied by Babc-
sanyi in [15], 1991, Babcsanyi and Nagy in [16], 1993, Lajos in [185], 1990, and
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[186], 1991, and by Nagy in [221], 1992, and [222], [223], 1993. The assertion that
these identities are T A ◦ S-identities was proved by Lajos in [185], 1990.

The next two theorems were also given by Ćirić and Bogdanović in [83], 1993:

Theorem 6.6. The following conditions for an identity (1) are equivalent:

(i) (1) is a πR . (CS ~N ) ◦ S-identity;
(ii) (1) is not satisfied on semigroups B2, L3,1 and R3,1;
(iii) (1) is an A ◦ S-identity, h(2)(u) 6= h(2)(v) and t(2)(u) 6= t(2)(v).

Theorem 6.7. The following conditions for an identity (1) are equivalent:

(i) (1) is a πR . (LG ~N ) ◦ S-identity;
(ii) (1) is not satisfied on semigroups B2, L3,1 and R2;
(iii) (1) is an A ◦ S-identity, h(2)(u) 6= h(2)(v) and t(u) 6= t(v).

Identities over the two-element alphabet were systematically investigated by
Ćirić and Bogdanović in [88], 1996. In this paper it was shown that A◦S-identities
over the two-element alphabet have a more simple characterization, given by the
following theorem:

Theorem 6.8. The identity (2) is a A ◦ S-identity if and only if it is p-
equivalent to one of the following identities:

(B1) xy = w(x, y), where w 6= xy;
(B2) (xy)k = w(x, y), where k ∈ N, k ≥ 2 and w /∈ (xy)+;
(B3) (xy)kx = w(x, y), where k ∈ N and w /∈ (xy)+x;
(B4) xyk = w(x, y), where k ∈ N, k ≥ 2 and w /∈ xy+;
(B5) xky = w(x, y), where k ∈ N, k ≥ 2 and w /∈ x+y.

In the same paper the authors proved the following two theorems:

Theorem 6.9. The following conditions for the identity (2) are equivalent:

(i) (2) is a LA ◦ S-identity;
(ii) (2) is not satisfied on semigroups B2 and R2;
(iii) (2) is a A ◦ S-identity and t(u) 6= t(v).

Theorem 6.10. The following conditions for the identity (2) are equivalent:

(i) (2) is a T A ◦ S-identity;
(ii) (2) is not satisfied on semigroups B2, R2 and L2;
(iii) (2) is a A ◦ S-identity, t(u) 6= t(v) and h(u) 6= h(v).

Note that there are not any characterizations of LA◦S-identities and T A◦S-
identities over the alphabet with more than two letters.

The next two theorems were also proved in [88]:

Theorem 6.11. The identity (2) is a CS .M×G-identity if and only if one
of the following conditions holds:

(C1) h(u) 6= h(v) or t(u) 6= t(v);
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(C2) (1) is p-equivalent to some identity of the form

xm1yn1xm2yn2 · · ·xmhynh = xk1yl1xk2yl2 · · ·xksyls

mi, ni, kj , lj ∈ N, with gcd(px, py, h− s) = 1, where px = Σh
i=1mi − Σs

j=1kj

and py = Σh
i=1ni − Σs

j=1lj .
(C3) (1) is p-equivalent to some identity of the form

xm1yn1xm2yn2 · · ·xmhynhxmh+1 = xk1yl1xk2yl2 · · ·xksylsxks+1

mi, ni, kj , lj ∈ N, with gcd(px, py, h− s) = 1, where px = Σh+1
i=1 mi −Σs+1

j=1kj

and py = Σh
i=1ni − Σs

j=1lj .

Theorem 6.12. The identity (2) is a πR . (M× G ◦ N ) ◦ S-identity if and
only if (2) is a A ◦ S-identity and a CS .M×G-identity.

6.2. On UG ◦N -identities. There are many papers in which some types
of UG ◦ N -identities have been investigated. The identity xy = ymxm, for m,n ∈
N, m + n ≥ 3, was studied by Tully in [334], the identity xy = (xy)m, m ∈
N, m ≥ 2, by Gerhard in [127], 1977, the distributive identities xyz = xyxz
and xyz = xzyz by Petrich in [239], 1969, etc. Various UG ◦ N -identities of
the form x1x2 · · ·xn+1 = w(x1, x2, . . . , xn+1) were investigated by Bogdanović and
Stamenković in [66], 1988, Ćirić and Bogdanović in [80], 1990, Tishchenko in [328],
1991, and others. Tamura in [310], 1969, stated the general problem of describ-
ing structure of semigroups satisfying an identity of the form xy = w(x, y), where
|w| ≥ 3, known as Tamura’s problem. Various cases appearing in this problem were
treated in the mentioned paper of Tamura, and also by Lee in [196], 1973, Clarke
in [78], 1981, and Bogdanović in [38], 1987. Complete solutions of all possible cases
of the Tamura’s problem were given by Ćirić and Bogdanović in [88], 1996. More
information on problems of Tamura’s type can be found in another survey paper
of Bogdanović and Ćirić [49], 1993.

A complete description of all UG ◦ N -identities was given by Ćirić and Bog-
danović in [84], 1994, by the following theorem:

Theorem 6.13. The following conditions for an identity (1) are equivalent:
(i) (1) is a UG ◦ N -identity;
(ii) (1) is not satisfied on semigroups C1,1, C1,2 and C2,1;
(iii) Π(u) 6= Π(v) and (1) is p-equivalent to some identity of one of the following

forms:
(D1) x1u′(x2, . . . , xn) = v′(x1, . . . , xn−1)xn,

where x1 ∦
l
v′ and xn ∦

r
u′;

(D2) x1u′xn = v′,
where x1, xn - u′, x1 ∦

l
v′ and xn ∦

r
v′;

(D3) x1u′(x2, . . . , xn) = v′(x2, . . . , xn)x1.

In the same paper the next two theorems were obtained:
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Theorem 6.14. The following conditions for an identity (1) are equivalent:
(i) (1) is a (LG ◦ S) ◦ N -identity;
(ii) (1) is not satisfied on semigroups C1,1, C1,2, C2,1 and R2;
(iii) (1) is a UG ◦ N -identity and t(u) 6= t(v).

Theorem 6.15. The following conditions for an identity (1) are equivalent:
(i) (1) is a (G ◦ S) ◦ N -identity;
(ii) (1) is a (G ◦ S) ~N -identity;
(iii) (1) is not satisfied on semigroups C1,1, C1,2, C2,1, R2 and L2;
(iv) (1) is a UG ◦ N -identity, t(u) 6= t(v) and h(u) 6= h(v).

Identities which induce retractive nil-extensions of a union of groups were
characterized in the following way:

Theorem 6.16. The following conditions for an identity (1) are equivalent:
(i) (1) is a UG ~N -identity;
(ii) (1) is not satisfied on semigroups C1,1, C1,2, C2,1, L3,1 and R3,1;
(iii) (1) is a UG ◦ N -identity, h(2)(u) 6= h(2)(v) and t(2)(u) 6= t(2)(v).

Theorem 6.17. The following conditions for an identity (1) are equivalent:
(i) (1) is a (LG ◦ S) ~N -identity;
(ii) (1) is not satisfied on semigroups C1,1, C1,2, C2,1, L3,1 and R2;
(iii) (1) is a UG ◦ N -identity, h(2)(u) 6= h(2)(v) and t(u) 6= t(v).

Further we consider identities which induce nilpotent and retractive nilpotent
extensions of a union of groups. These identities are described by the next two
theorems which are also due to Ćirić and Bogdanović [84], 1994.

Theorem 6.18. Let k ∈ N. Then the following conditions for an identity (1)
are equivalent:

(i) (1) is a UG ◦ Nk-identity;
(ii) (1) is not satisfied on semigroups C1,1, C1,2, C2,1, DN and Nk+1;
(iii) n ≤ k + 1 and (1) is p-equivalent to some identity of the form

x1x2 . . . xn = w,

where |w| ≥ n + 1, x1 ∦
l
w and xn ∦

l
w.

Theorem 6.19. Let k ∈ N. Then the following conditions for an identity (1)
are equivalent:

(i) (1) is a UG ~Nk-identity;
(ii) (1) is not satisfied on semigroups C1,1, C1,2, C2,1, L3,1, R3,1, DN and Nk+1;
(iii) (1) is p-equivalent to some identity of the form

x1x2 . . . xn = w,

where |w| ≥ n + 1, h(2)(u) 6= x1x2 and t(2)(v) 6= xn−1xn.
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Applying the above results to the case of identities over the two-element al-
phabet, Ćirić and Bogdanović obtained in [88], 1996, the following two theorems:

Theorem 6.20. The identity (2) is a UG ◦ N -identity if and only if it is
p-equivalent to an identity of one of the following forms:

(F1) xy = w(x, y), where w 6= yx, w /∈ xy+ and w /∈ x+y;
(F2) xym = xny, where m, n ∈ N, m, n ≥ 2.

Theorem 6.21. The identity (2) is a UG ~ N -identity if and only if it is
p-equivalent to an identity of one of the following forms:

(G1) xy = w, where w ∈ A+
2 , |w| ≥ 3, h(2)(w) 6= xy and t(2)(w) 6= xy;

(G2) xym = xny, where m,n ∈ N, m, n ≥ 2.

Finally, a consequence of the previous theorem is the following theorem proved
by Clarke in [78], 1981:

Theorem 6.22. A semigroup identity determines a variety of inflations of
unions of groups if and only if this identity has one of the following forms:

(i) x = w, where w 6= x;
(ii) xy = w, where w 6= yx is a word which neither begins nor ends with xy.

6.3.Rings satisfying certain semigroup identities. The results presen-
ted in the previous two sections, together with the results given in Section 5, make a
possibility to give very nice descriptions of the structure of rings satisfying certain
semigroup identities. These descriptions will be presented in this section. But, we
first introduce some necessary notions.

For a semigroup identity u = v over the alphabet An, n ∈ N, n ≥ 2, and
for i ∈ {1, 2, . . . , n}, let pi =

∣

∣|xi|u − |xi|v
∣

∣. If there exists i ∈ {1, 2, . . . , n}
such that pi 6= 0, then we say that u = v is a periodic identity , and the number
p = gcd(p1, p2, . . . , pn) is called the period of this identity. When we deal with
the two-element alphabet A2 = {x, y}, then px =

∣

∣|x|u − |x|v
∣

∣, py =
∣

∣|y|u − |y|v
∣

∣

and p = gcd(px, py). Otherwise, if pi = 0, for any i ∈ {1, 2, . . . , n}, then we say
that the identity u = v is aperiodic. In some origins periodic identities were called
unbalanced , and aperiodic identities were called balanced . But, our terminology is
justified by the following theorem:

Theorem 6.23. The following conditions for a semigroup identity u = v are
equivalent:

(i) [u = v] consists of π-regular semigroups;
(ii) [u = v] consists of completely π-regular semigroups;
(iii) [u = v] consists of periodic semigroups;
(iv) u = v is a periodic identity.

As was noted by Ćirić and Bogdanović in [90], 1996, any group satisfying
a semigroup identity of the period p satisfies also the identity x = xp+1, and
any commutative semigroup satisfying the identity x = xp+1, satisfies also any
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identity of the period p. Using these properties and Theorems 5.44 and 6.13, in the
mentioned paper Ćirić and Bogdanović proved the following

Theorem 6.24. A ring R satisfies an UG ◦ N -identity of the period p if and
only if R is a direct sum of a nil-ring that satisfies the same identity and a nil-ring
that satisfies the identity x = xp+1.

As a consequence of this result, the same authors also obtained

Theorem 6.25. Any ring which satisfies the identity xy = w(x, y), with
w /∈ xy+ ∪ x+y, is commutative.

In the same paper the authors gave some examples which justify that the
previous assertion does not hold for identities of the form xy = xyn and xy = xny,
n ∈ N.

Many well-known results in Theory of rings are consequences of the above
quoted theorems. Here we present the results obtained by Abian and McWorter in
[3], 1964, and Lee in [196], 1973.

Let p be a prime. A ring R is called a pre p-ring if it is a commutative ring of
the characteristic p and it satisfies an identity xyp = xpy. The structure of these
rings was described by Abian and Mc Worter in [3], 1964, in the following way:

Theorem 6.26. Let p be a prime. A ring R is a pre-p-ring if and only if it is
a direct sum of a p-ring and a pre-p-nil-ring.

On the other hand, Lee investigated in [196], 1973, rings satisfying a system
of identities (xy)n = xy = xnyn. He proved the following two theorems:

Theorem 6.27. Let n ∈ N, n ≥ 2. A ring R satisfies a system of identities
(x + y)n = xn + yn, (xy)n = xy = xnyn, if and only if it is a direct sum of a ring
satisfying the identity x = xn and a null-ring.

Theorem 6.28. A ring R satisfies a system of identities (xy)2 = xy = x2y2

if and only if it is a direct sum of a Boolean ring a null-ring.

Except for the rings satisfying a UG ◦N -identity, very nice structural descrip-
tions can be given for rings satisfying certain other A ◦ S-identities, especially the
periodic ones. The main tool used in these descriptions are Theorems 5.11 and 6.1,
and the Everett’s representations of rings which follow by these theorems.

Here we present results concerning the structure of rings satisfying a semigroup
identity of the form

(3) x1 · · ·xn = w(x1, . . . , xn),

where n ∈ N, n ≥ 2, c(w) = An and |w| ≥ n + 1. Identities of this form have been
investigated by many authors, and the general result characterizing rings satisfying
an arbitrary semigroup identity of this form was given by Ćirić, Bogdanović and
Petković in [94], 1995.
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The identity (3) is a periodic A ◦ S-identity. Let p be its period and let

h = max
(

{i | w = x1 · · ·xiu(xi+1, . . . , xn)} ∪ 0
)

,

t = max
(

{l | w = u′(x1, . . . , xn−l)xn−l+1 · · ·xn} ∪ 0
)

.

The quadruplet (n, p, h, t) was called the characteristic quadruplet of the identity
(3) [94]. Clearly, h + t ≤ n− 1, and the following conditions hold:

x1 · · ·xn = x1 · · ·xhu(xh+1, · · · , xn),

with xh+1 ∦
l
u, if h ≥ 1,

x1 · · ·xn = u′(x1, . . . , xn−t)xn−t+1 . . . xn,

with xn−t ∦
r

u′, if t ≥ 1, and

x1 · · ·xn = x1 · · ·xhv(xh+1, · · · , xn−t)xn−t+1 · · ·xn,

with xh+1 ∦
l
v, xn−t ∦

r
v, if h ≥ 1 and t ≥ 1.

Using the above notion, M. Ćirić, S. Bogdanović and T. Petković proved the
following theorem:

Theorem 6.29. Let (3) be an identity with the characteristic quadruplet
(n, p, h, t). Then the following conditions for a ring R are equivalent:

(i) R satisfies (3);
(ii) R is an ideal extension of an n-nilpotent ring N by a ring satisfying the

identity x = xp+1 and

Nh+1 · E(R) = E(R) ·N t+1 = E(R) ·N · E(R) = 0;

(iii) R is an ideal extension of an n-nilpotent ring N by a ring satisfying the
identity x = xp+1 and

Nh+1 · Reg(R) = Reg(R) ·N t+1 = Reg(R) ·N · Reg(R) = 0;

(iv) R = E(N, Q; θ; [, ]; 〈, 〉), where N is an n-nilpotent ring, Q is a ring satisfying
the identity x = xp+1, and

θbNθc = 0, for all b, c ∈ Q.

Nh+1θb = θbN t+1 = 0, for each b ∈ Q.

In the particular case when the characteristic quadruplet of (3) has the form
(n, p, 0, 0), the same authors obtained the following:
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Theorem 6.30. Let (3) be an identity with the characteristic quadruplet
(n, p, 0, 0). Then a ring R satisfies the identity (3) if and only if R is a direct sum
of an n-nilpotent ring and a ring satisfying the identity x = xp+1.

The previous theorem is a consequence both of Theorems 6.24 and 6.29.
M. Ćirić, S. Bogdanović and T. Petković gave also a consequent classification

of semigroup identities over the two-element and the three-element alphabet.

Theorem 6.31. For the identity

(4) xy = w(x, y),

with w ∈ A+
2 , |w| ≥ 3, there are exactly three possibilities:

(i) (4) has the characteristic quadruplet (2, p, 0, 0), and then a ring satisfies (4)
if and only if it is a direct sum of a ring satisfying x = xp+1 and a null-ring,
and consequently these rings are commutative.

(ii) (4) has the characteristic quadruplet (2, p, 1, 0), and this holds if and only
if it is of the form xy = xyp+1.

(iii) (4) has the characteristic quadruplet (2, p, 0, 1), and this holds if and only
if it is of the form xy = xp+1y.

Theorem 6.32. For the identity

(5) xyz = w(x, y, z),

with w ∈ A+
3 , |w| ≥ 4, there are exactly six possibilities:

(i) (5) has the characteristic quadruplet (3, p, 0, 0), and then a ring satisfies
(5) if and only if it is a direct sum of a ring satisfying x = xp+1 and a
3-nilpotent ring.

(ii) (5) has the characteristic quadruplet (3, p, 1, 0), and this holds if and only
if it is of the form xyz = xu(y, z), |u| ≥ 3.

(iii) (5) has the characteristic quadruplet (3, p, 0, 1), and this holds if and only
if it is of the form xyz = v(x, y)z, |v| ≥ 3.

(iv) (5) has the characteristic quadruplet (3, p, 2, 0), and this holds if and only
if it is of the form xyz = xyzp+1.

(v) (5) has the characteristic quadruplet (3, p, 0, 2), and this holds if and only
if it is of the form xyz = xp+1yz.

(vi) (5) has the characteristic quadruplet (3, p, 1, 1), and this holds if and only
if it is of the form xyz = xyp+1z.

Important particular types of the identities of the form (3) are the identities
xyz = xyxz and xyz = xzyz. Rings satisfying the first one are known as left
distributive (or left self distributive) rings , and the rings satisfying another identity
are right distributive (or right self distributive). These rings have an important role
when we study rings whose any additive endomorphism is also multiplicative (see
Birkenmeier and Heatherly [27], 1990). Left distributive rings were investigated by
Birkenmaier, Heatherly and Kepka in [29], 1992. Using Theorem 6.29, these rings
can be characterized as follows:
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Theorem 6.33. A ring R is left distributive if and only if it is an ideal ex-
tension of a 3-nilpotent ring N by a Boolean ring, and the following conditions
hold:

E(R) ·N · E(R) = N · E(R) = E(R) ·N2 = 0.

Rings which are both left and right distributive are known as distributive rings .
These rings are characterized by the following theorem proved by Petrich in [239],
1969.

Theorem 6.34. A ring R is distributive if and only if it is a direct sum of a
Boolean ring and a 3-nilpotent ring.

One generalization of distributive rings was introduced by Ćirić and Bog-
danović in [80], 1990, who defined a ring R to be n-distributive, where n ∈ N, n ≥ 2,
if it satisfies the system of identities

x1x2 · · ·xn+1 = (x1x2)(x1x3) · · · (x1xn+1),

x1x2 · · ·xn+1 = (x1xn+1)(x2xn+1) · · · (xnxn+1).

These rings can be characterized as follows:

Theorem 6.35. A ring R is n-distributive if and only if it is a direct sum of
a ring satisfying the identity x = xn and a (n + 1)-nilpotent ring.

Note finally that rings satisfying identities of the form

x1x2 · · ·xn = w(x1, x2, . . . , xn)

(without the assumption |w| ≥ n + 1) were studied by Putcha and Yaqub in [260],
1972. They proved that in such a ring R, the commutator ideal C(R) is a nilpo-
tent ideal, and there exists m ∈ N such that RmC(R)Rm = 0. Rings satisfying
permutation identities were studied by Birkenmeier and Heatherly in [26] and [28].
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[51] S. Bogdanović and M. Ćirić, Chains of Archimedean semigroups (Semiprimary semigroups),
Indian J. Pure Appl. Math. 25 (3) (1994), 331–336.
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[82] M. Ćirić and S. Bogdanović, Spined products of some semigroups, Proc. Japan. Acad., Ser.
A 69 (9) (1993), 357–362.
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[85] M. Ćirić and S. Bogdanović, Theory of greatest decompositions of semigroups (A survey),
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[153] A. Kertész, Lectures on Artinian rings, Akadémiai Kiadó, Budapest, 1987.
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[228] M. Ôhori, On non-commutative generalized p.p. rings, Math. J. Okayama Univ. 26 (1984),
157–167.
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Facta Univ. (Nǐs), Ser. Math. Inform. (to appear).



Uniformly π-regular rings and semigroups: A survey 77

[273] X. M. Ren, K. P. Shum and Y. Q. Guo, On spined products of quasi-rectangular groups,
Algebra Colloquium (to appear).

[274] T. Saitô, On semigroups which are semilattices of left simple semigroups, Math. Japonica
18 (1973), 95–97.

[275] M. V. Sapir and E. V. Suhanov, On varieties of periodic semigroups, Izv. Vyzov. Mat. 4
(1981), 48–55. (in Russian)

[276] B. M. Schein, O-rings and LA-rings, Izv. Vysh. Uch. Zav. MAt. 2 (51) (1966), 111-122,
(English translation: Amer. Math. Soc. Transl. 96 (1970), 137–152). (in Russian)

[277] M. Schutzenberger, Sur le produit de concatenation non ambigu, Semigroup Forum 13
(1976), 47–75.
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[297] O. Steinfeld, Über die Quasiideale von Ringen, Acta Sci. Math. Szeged 17 (1956), 170–180.
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[304] A. K. Sushkevich, Über die wendlichen Gruppen ohne das Gesetz des einden figen umkehr-
borkeit, Math. Ann. 99 (1928), 30–50.

[305] A. K. Sushkevich, Theory of generalized groups, GNTI, Kharkov–Kiev, 1937.

[306] I. Sussman, A generalization of Boolean rings, Math. Ann. 136 (1958), 326–338.
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[314] T. Tamura, The theory of construction of finite semigroups I, Osaka Math. J. 8 (1956),
243–261.

[315] T. Tamura, Semigroups satisfying identity xy = f(x, y), Pacific J. Math. 3 (1969), 513–521.

[316] T. Tamura, On Putcha’s theorem concerning semilattice of archimedean semigroups, Semi-
group Forum 4 (1972), 83–86.

[317] T. Tamura, Note on the greatest semilattice decomposition of semigroups, Semigroup Forum
4 (1972), 255–261.

[318] T. Tamura, Semilattice indecomposable semigroups with a unique idempotent, Semigroup
Forum 24 (1982), 77–82.

[319] T. Tamura and N. Kimura, On decomposition of a commutative semigroup, Kodai Math.
Sem. Rep. 4 (1954), 109–112.

[320] T. Tamura and T. Nordahl, On exponential semigroups II, Proc. Japan Acad. 48 (1972),
474–478.

[321] T. Tamura and J. Shafer, On exponential semigroups I, Proc. Japan Acad. 48 (1972), 77–80.
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