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Preface

General decomposition problems hold a central place in the general struc-
ture theory of semigroups, as they look for different ways to break a semi-
group into parts, with as simple a structure as possible, in order to ex-
amine these parts in detail, as well as the relationships between the parts
within the whole semigroup. The main problem is to determine whether the
greatest decomposition of a given type exists, the decomposition having the
finest components, and to give a characterization and construction of this
greatest decomposition. Another important issue is whether a given type of
decomposition is atomic, in the sense that the components of the greatest
decomposition of the given type cannot further be broken down by decom-
position of the same type. In semigroup theory only five types of atomic
decompositions are known so far. The atomicity of semilattice decomposi-
tions was proved by Tamura [Osaka Math. J. 8 (1956) 243-261], of ordinal
decompositions by Lyapin [Semigroups, Fizmatgiz, Moscow, 1960], of the
so-called U-decompositions by Shevrin [Dokl. Akad. Nauk SSSR 138 (1961)
796-798], of orthogonal decompositions by Bogdanovi¢ and Ciri¢ [Israel J.
Math 90 (1995) 423-428], whereas the atomicity of subdirect decompositions
follows from a more general result of universal algebra proved by Birkhoff
[Bull. AMS 50 (1944) 764-768]. Semilattice decompositions of semigroups
were first defined and studied by A. H. Clifford [Annals of Math. 42 (1941)
1037-1049]. Later T. Tamura and N. Kimura [Kodai Math. Sem. Rep. 4
(1954) 109-112] proved the existence of the greatest semilattice decompo-
sition of an arbitrary semigroup, and as we have already noted, while T.
Tamura [Osaka Math. J. 8 (1956) 243-261] proved the atomicity of semilat-
tice decompositions. The theory of the greatest semilattice decompositions
of semigroups has been developed from the middle of the 1950s to the middle
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of the 1970s by T. Tamura, M. S. Putcha, M. Petrich, and others. For a long
time after that there were no new results in this area. In the mid of 1990s,
the authors of this book initiated the further development of this theory
by introducing completely new ideas and methodology. The purpose of this
book is to give an overview of the main results on semilattice decompositions
of semigroups which appeared in the last 15 years, as well as to connect them
with earlier results.

The structure of the book is as follows. The first three chapters of the
book provide an introduction to the basic concepts of semigroup theory, var-
ious types of regularity and the concepts of simple, 0-simple, Archimedean
and 0-Archimedean semigroups. Chapter 4 develops the general theory of
the greatest semilattice decompositions of semigroups, using the methodol-
ogy that was built by the authors. This methodology is based on the compu-
tation of the principal radicals of a semigroup, which is an iterative process
that, in general, may consist of infinitely many iterations. For this reason,
later this chapter discusses the various cases where the greatest semilattice
decompositions can be achieved by methods that involve only finitely many
iterations.

The first effective construction of the smallest semilattice congruence
on a semigroup, provided by T. Tamura [Semigroup Forum 4 (1972) 255—
261], was based on the arrow relation —, which was defined as a natural
generalization of the division relation. Namely, two elements a and b of
a semigroup are said to be in the relation —, written as a — b, if the
element b divides some power of the element a. If each pair of elements
of a semigroup is in that relation, then this semigroup is said to satisfy
the famous Archimedean property, which Archimedes proved for natural
numbers, and such a semigroup is called an Archimedean semigroup. In
the above mentioned paper, T. Tamura proved that the smallest semilattice
congruence on a semigroup can be constructed as the symmetric opening of
the transitive closure of the arrow relation, whereas M. S. Putcha [Trans.
Amer. Math. Soc. 189 (1974), 93-106] showed that these two operations
can be permuted, i.e., the smallest semilattice congruence can be computed
as the transitive closure of the symmetric opening of the arrow relation.

In Chapter 4 the authors discuss various situations where the transitive
closure of the arrow relation can be computed in a finite number of steps, and
in Chapter 5 they consider the situation when the arrow relation is transitive.
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Semigroups with the latter property are actually semigroups that can be
represented as a semilattice of Archimedean semigroups. Chapter 5 also
deals with various special types of semilattices of Archimedean semigroups.
A particular case of Archimedean semigroups are semigroups in which each
element divides a fixed power of any other element, and such semigroups are
called k-Archimedean. The semilattices of k-Archimedean semigroups and
many of their special cases are studied in Chapter 6.

A very important special case of semilattices of Archimedean semigroups
are semilattices of completely Archimedean semigroups, or equivalently, se-
milattices of nil-extensions of completely simple semigroups. At a scientific
conference held back in 1977, L. N. Shevrin announced that a semigroup can
be decomposed into a semilattice of completely Archimedean semigroups if
and only if each of its elements has a regular power, and each of its regular
elements is completely regular (i.e., belongs to a subgroup of this semigroup).
However, this result along with other related results was published with proof
17 years later [Mat. Sbornik 185 (8) (1994) 129-160, 185 (9) (1994) 153-176].
In the meantime, other authors have studied these decompositions building
their own methodology, for example J. L. Galbiati and M. L. Veronesi [Rend.
Ist. Lomb. Cl. Sc. (A) 116 (1982) 180-189; Riv. Mat. Univ. Parma (4) 10
(1984) 319-329], and others. The first author of this book began his research
in this area in 1985, and later the other two authors joined him. In a series
of papers, the authors of this book built their own methodology, which not
only led to the same results announced by L. N. Shevrin, but also provided
some significant improvements. A complete theory of the decompositions of
a semigroup into a semilattice of completely Archimedean semigroups was
presented for the first time in the book by the first two authors [Semigroups,
Prosveta, Nis, 1993]. Chapter 7 of this book outlines not only these results,
but also many results obtained later.

The authors wish to express their gratitude to Professors Petar Protic,
Predrag Stanimirovié¢ and Jelena Ignjatovié¢, for their valuable comments and
suggestions.

Ni§, On Saint Petka, 2011

Authors
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Chapter 1

Introduction

In this chapter we will outline the basic notions and results of the theory
of semigroups which will be used in the main part of this book. Also, we
will present some basic notions of general lattice theory and the theory of
Boolean algebra. For more details, we refer to special monographs from
these areas.

1.1 The Definition of a Semigroup

Let S be a non-empty set. The mapping o from a Cartesian product Sx.5
into a set S, which to every ordered pair (a,b) of elements of S associates
an element of S, denoted by a o b, we call a binary operation on the set .S,
or a (binary) operation of S. An ordered pair (5,0) is called a groupoid.

A binary operation o of a groupoid (S, 0) is associative if (a 0 b)oc =
ao(boc), for all a,b,c € S. Then, the pair (S, 0) is a semigroup.

For the sake of simplicity, we introduce the following agreement: the
operation of a groupoid we will denote by ”-”, and refer to it as the multipli-
cation or the product, and the element a - b we will call the multiplication of
elements a and b. Without any loss of generality, the pair (S,-) we will, for
short, denote as S, so instead of " the goupoid (S, -)” we will simply say ” the
goupoid S”. As a substitution for the term ”a - b” we use the term ”abd”. In
the case when we use some different symbols for the notation of operations,
we will stress this additionally.

” '77
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Often, it is not easy to determine that some binary operation on a
groupoid S is associative. A. H. Clifford and G. B. Preston in their book
" The algebraic theory of semigroups I” give Light’s associativity test for finite
groupoids. The procedure is consists of: Let (5, -) be a groupoid. We define
for .S two new binary operations * and o with

zxy=2x-(a-y), xoy=(xr-a)- vy, x,y €5,

where a € S is a fixed element. It is evident that associativity hold in S if
and only if both operations * and o are equal on .S, for every a € S.

This procedure we will shown on an example. Let the groupoid (S, -) be
given by Cayley’s table
a p
ala «
BB «
Then for a = a the product a - y is in the first row (aa), and for a = 5 the
product a - y is in the second row (Sa).

Now, the given table extends to the right side first by the first row, then
by the second row, and does all the multiplications with the elements from
S. In this way we obtain the operation * for both elements of the groupoid
S. Similarly, the given table extends down throught columns from S. Then
we obtain the operation o for all the elements of S.

g B

o
a |«
EE

™ QR

= QR

Q Q™™ LR

(67
(07
(67
[a]
(87
(67

S o™ Le|™ R

Now, it is easy to see that for a = « the tables for * and o do not coincide,
because

Brp=p-(a-f)=F-a=p, pfof=(L -a)-B=F-B=qa,

as we can see in the extended table. Thus, the given table does not define a
semigroup.

By Z* we denote the set of all positive integers.
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Theorem 1.1 Fvery semigroup S satisfies the general associative law, i.e.
for every n € ZT, a product of n elements from S does not depend on the
positioning of the parentheses.

Proof. Let ai,ao,...,a, € S and let

ayag - - ap = aj(az(as - (ap—1an)...)).

The statement of the theorem immediately follows for n = 1 and n = 2.
Also, it is true for n = 3, by supposition, because S is a semigroup.

Assume n > 3 and that the statement of the theorem holds for some
r < n. Assume that u € S is equal to the product of elements a1, ao,...,ay,
with an arbitrary disposition of parentheses. Then the element u we can
write as u = vw, where v is the product of elements a1, a2, ...,a, and w is
the product of elements a,41,ar42,...,a,, (with some disposition of paren-
theses), where 1 < r < n. Using induction we obtain that v = ajay---a,
and w = ap410r42 - ay and

u = (a1a2 - a,)(arp1Gr42 -+ an) = (a1(az -~ a))(ary10r12 - - ap)
=ai((az---a;)(ary10r42- - an)) = a1(az - - - Qr@r1Gr42 - - - ap)
=aqaiag - Q.

for r > 1, and u = vw = ai(az---a,) = ajas - - - a,, for r = 1. This proves
the theorem. O

Namely, the general associative law says that the product of n elements
of a semigroup is not dependent on the order in which we calculate this
product, while it is dependent on the order in which we write the elements
in this product, from left to right. By Theorem 1.1, in a semigroup S we
can omit all the parentheses in products of elements from S, so the product
of elements ai,a9,...,a, € S, in this order, we will simply denote with
ajag---ap, n € ZT. If a; = a, for every i € {1,2,...,n}, then the product
aias - - an we denote as a”, and it is called the n-th power of the element
a € 5. If Ais a non-empty subset of a semigroup S, then the set

VA={zeS|BneZ)z"c A}

we call the radical of set A.

Let S be a semigroup. Elements a,b € S commute if ab = ba. If A is a
non-empty subset of a semigroup S, then with C'(A) we denote the set of all
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the elements of S which commute with every element of A. The set C(S) we
call the center of a semigroup S, and its elements are the central elements of
S. A semigroup S is commutative if all of its elements commute with each
other. A semigroup S is anti-commutative if for all a,b € S, from ab = ba it
follows that a = b.

If S is an arbitrary semigroup, then we define a binary operation * on
S, with: a*b = ba. The set S with such a defined operation is a semigroup,

which we call a dual semigroup of a semigroup S, and we denote it by ? A
semigroup need not be commutative, i.e. the value of a product depends on
the order of elements which are in the product, and as a consequence of this in
terms corresponding to the semigroup, for its subsets or for its elements, very
often we use terms ”left” or "right”. The dual of a term which corresponding
to a semigroup, or its subsets or its elements, is the term which we obtain
when the word ”left” is replaced with the word ”right” and conversely, every
product ab we replace with ba.

An element a of a semigroup S is idempotent if a®> = a. The set of all
idempotents of a semigroup S we denote by E(S). A semigroup in which all
the elements are idempotents is a band. A commutative band is a semilattice.
A semilattice S is a chain if ab = a or ab = b, for all a,b € S.

Let S be a semigroup and let a € S. An element e € S is a left (right)
identity of element a if ea = a (ae = a), and e is an identity of element
aif ae = ea = a. If e € S is an identity (left identity, right identity) for
all the elements of S, then e is an identity (left identity, right identity) of
a semigroup S. By definition, every (left, right) identity of a semigroup is
an idempotent of S. It is easy to prove that a semigroup has exactly one
identity. A semigroup which has an identity is a semigroup with an identity
or monoid.

Let S be a semigroup and let e be an element which is not contained in
S. On the set S U {e} we define multiplication with: ae = ea = a, a € §,
ee = e, and the product of the elements from S stays the same. Then,
the set S U {e} with such a defined multiplication is a semigroup with the
identity e, which we call the identity extension of a semigroup S by e. If S
is a semigroup, then with S' we denote a semigroup obtained from S in the
following way: if S has an identity, then S = S, if S has no identity, then
S is an identity extension of S by 1. The identity element of a semigroup S
we usually denote with e or 1. Using the identity extension of a semigroup,
we extend the definition of the power in the semigroup: if S is a semigroup
and if @ is an element of S, then a° is the identity of the monoid S*.
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Let S be a semigroup and let z € S. An element z is a left (right) zero of
S if za = z (az = z), for every a € S, and z is a zero of S if z is both the left
and right zero of S. Every (left, right) zero of a semigroup is an idempotent.
Thus, a semigroup whose every element is left (right) zero is a band, which
we call left (right) zero band. Hence, a semigroup S is a left (right) zero band
if ab=a (ab=0">), for all a,b € S. It is evident that a semigroup has exactly
one zero. A semigroup which has a zero we call a semigroup with a zero.

Let S be a semigroup and let z be an element which is not contained in
S, on the set S U {z} we define multiplication with: az = za = z, a € S,
zz = z, and the product of elements from S stays the same, then, the set
SU{z} with such a defined multiplication is a semigroup with zero z, which
we call the zero extension of a semigroup S by z. If S is a semigroup, then
SY denotes a semigroup obtained from S in the following way: if S has a
zero, then S = S, if S has no zero, then S° is a zero extension of S by 0.
The zero of a semigroup we often denote with 0, and very often the term
7{0}” we replace with the term ”0”. According to the previous notations,
with S = S° we denote a semigroup S with zero 0. If S = S° and if A C S,
then we use the notations A% = AUO0, A* = A —0. If S = S, then the
element a € S® is a divisor of zero if there is an element b € S® such that
ab =0 or ba = 0. A semigroup S = S° which has no divisors of zero, i.e. if
S*® is a subsemigroup of S, is called a semigroup without a zero divisor.

A partial (binary) operation on a non-empty set S is a mapping of a
non-empty subset of S x S into S. A non-empty set with a partial binary
operation is a partial groupoid. If S is a partial groupoid with a partial

” N

operation ”-”, and for arbitrary z,y,z € S, the product x - (y - z) is defined
if and only if the product (z - y) - z is defined, and where these products
are equal, then S is a partial semigroup. It is evident that every subset of
a semigroup is a partial semigroup. On the other hand, if @ is a partial
semigroup and if 0 is an element which is not contained in @, then the set

@ U {0} with a operation ”-” defined with:

9

ooy 4%y iy zyed
vy= 0, otherwise

where zy is a product in @, is a semigroup which we denote as Q°, and we
refer to it as a zero extension of a partial semigroup Q.

If X is a non-empty set, then with P(X) we denote the partitive set of
the set X, i.e. the set of all the subsets of X. Let S be a semigroup. On the
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partitive set of a semigroup S we define a multiplication with:
AB={z€S|(Fac A)(Fbe B) z=ab }, A,B e P(S).

Then, under this operation the set P(S) is a semigroup which we call a
partitive semigroup of a semigroup S. It is evident that P(S) is a semigroup
with zero () (the empty set), without a divisor of zero. Definitions and
notations which we use for the multiplication of elements of a semigroup 5,
we will also use for the multiplication of elements of a semigroup P(S). For
an element a of a semigroup S, in terms of the products of subsets of .S,
often the term ”{a}” will be replaced with the term ”a”.

A non-empty subset T' of a semigroup S is a subsemigroup of S if T is
closed under an operation of S, i.e. if ab € T, for all a,b € T. If T is a
subsemigroup of a semigroup S, then we say that S is an over semigroup of
T. It is evident that the intersection of an arbitrary family of subsemigroups
of a semigroup S, if it is non-empty, is also a subsemigroup of S. Thus, if
A is a non-empty subset of S, then the intersection of all the subsemigroups
of S containing A is a subsemigroup of S, which we denote by (A), and
which we call a subsemigroup of S generated by A. A semigroup (A), under
the set inclusion, is the smallest subsemigroup of S containing A. If A =
{a1,a9,...,a,}, then instead ({a1,as,...,a,}) we write (a1, as,...,a,), and
we say that (A) is generated by elements aq,as,...,a,. A subsemiogroup
(a) of a semigroup S generated by the one element subset {a} of S we call
a monogenic or a cyclic subsemigroup of S. If A is a subset of a semigroup
S such that (4) = S, then we say that A generates a semigroup S and A is
a generating set of a semigroup S. The elements from A we call generator
elements or generators of S. A semigroup generated by its one element
subset we call a monogenic or a cyclic semigroup. The proof of the following
statement is elementary, so we will omit it.

Lemma 1.1 Let A be a non-empty subset of a semigroup S. Then

<A> = UnEZ"’An'

Let A be a non-empty subset of a semigroup S. An element a € S has a
decomposition into a product of elements from A if there are a1, a9, ..., a, €
A such that a = aqas - - - a,. According to Lemma 1.1, A is a set of generators
of a semigroup S if and only if every element of S has a decomposition into a
product of elements from A. An element a € S has a unique decomposition
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into a product of elements from A, if from a = a1as - - - a, and a = b1by - - - by,
a;,bj € A, it follows that n = m and a; = b;, for every i € {1,2,...,n}.

Exercises

1. If e is a left identity (left zero) and f is a right identity (right zero) of a semigroup
S, then e = f and e is a unit (zero) of S.
2. Prove that a subsemigroup of a monogenic semigroup need not be monogenic.

3. A semigroup S is a left zero band if and only if its dual semigroup is a right zero
band.

4. Give an example of (finite) semigroup in which the set of all idempotents is not
a subsemigroup.

5. Give examples of semigroups with zero, and with or without a zero divisor.

1.2 Semigroups of Relations and Mappings

Let A be a non-empty set. Every subset of a Cartesian product A x A
(including the empty set) is a (binary) relation on A.  The set Ay =
{(a,a)|a € A} is an identical relation (diagonal or equality relation) on A.
The set wq = A x A is a universal (full) relation on A. If there is no danger
of confusion (if we know the set), then the identical and universal relation
we denote by A and w for short, respectively. The empty subset of A x A we
call the empty relation on A. If £ is a binary relation on A, and if (a,b) € &,
then we say that a and b are in the relation &, and often the term ” (a, b) € £”
we replace with the term ”a&b”.

Let A be a non-empty set and let B(A) be the set of all binary relations
in A. For a, 8 € B(A), a product of relations o and (3 is the relation af in
A defined by:

af ={(a,b) e AxA|(3zx € A) (a,x) € a A (x,b) € B}.

The set B(A) with such a defined multiplication is a semigroup which we
call a semigroup of (binary) relations in the set A. For n € Z*, by " we
denote the n-th power of the relation £ in A in a semigroup B(A).

Let A be a non-empty set and let & € B(A). The set dom{ = {a €
A|l(3b € A)alb} we call a domain of relation §. The set ran{ = {b €
Al (Ja € A)a&b} we call a range of relation §. For a € S is a§ = {x €
Alakzx}, €a = {z € A|zéa}, and for X C A is X¢ = U{aé|a € X},
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€X = U{¢ala € X}. The relation ¢1 = {(a,b) € A x A|bfa} is an
inverse relation of a relation £. It is evident that dom(¢71) = rané, and
ran(¢71) = domé. The relation {(a,b) € A x A|(a,b) ¢ &} is a converse

relation of &.

Let A be a non-empty set. An element ¢ € B(A) is a partial mapping
(partial transformation) of a set A if |ag| = 1, for every a € dom¢ (by | X]|
we denote the cardinality of the set X), i.e. if for every a € dom¢ there
exists a unique b € A such that (a,b) € ¢. Using this definition, the empty
relation on A is a partial mapping in the set A. A set PT(A) of all the
partial mappings in the set A is a subsemigroup of a semigroup B(A), which
we call a semigroup of partial mappings (transformations) of the set A. For

@, € PT(A), dom(pv) = [rany N dome)]p~!, ran(py) = [rang N domyep,
the following condition holds

a(py) = (ap)y, for every a € dom(yv)),

which we use as a definition of a multiplication of partial mappings.

Let ¢ and ¢ be a partial mappings of a set A such that ¢ C 1. Then
domy C domt and ranp C ranty. If we introduce notions X = raney,
Y = domt, then we say that ¢ is a restriction of ¥ on X, in notation,
¢ =1 /X, and that 9 is an eztension of ¢ on Y.

Let X and Y be non-empty sets. If ¢ is a partial mapping of some set
such that dom¢ = X and ran¢g C Y, then we say that ¢ is a mapping of the
set X into the setY (or ¢ maps X intoY'), and we write ¢ : X — Y. Based
on the definition of partial mapping, for every x € X there exists a unique
y € Y such that (z,y) € ¢, and then we write y = z¢ and ¢ : x — y, and
we say that ¢ maps z intoy. If p: X — Y, and if X =Y, then we say that
¢ is a mapping of the set X (into itself). If ¢: X Y, U C X and V C Y,
then the set Up = {y € Y| (Ju € U)up = y} is an image of the subset U
(under a mapping ¢), and the set V¢~ = {z € X |z¢ € V} is an inverse
image of the subset V' (under a mapping ¢).

Let X and Y be non-empty sets and ¢ : X — Y. A mapping ¢ is an
injection (injective, one-to-one) if for a,b € X from a¢ = b¢ it follows a = b.
A mapping ¢ is a surjection (surjective, onto) if X¢ =Y, i.e. if for every
y € Y there exists x € X such that x¢ = y. If ¢ is a surjection, then we say
that ¢ is a mapping of X onto Y, or that maps X onto Y. A mapping ¢ is
a bijection (bijective) if ¢ is both one-to-one and onto.

A mapping ix : X — X of a non-empty set X defined by xix =,z € X
is an identical mapping of a set X. Let X and Y be non-empty sets and let
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w: X —= Y. If there exists ¢ : Y — X such that p¢p = ix and Yy = iy,
then 1 is an inverse mapping of ¢. Let a mapping ¢ be a partial mapping

1 1

of some set A. If ¥ is an inverse mapping of ¢, then ) = ¢, where ¢~ is

1is a partial mapping of a set A,

an inverse relation of p. Conversely, if ¢~
then o= : Y + X and ¢! is an inverse mapping of . The proof of the

following lemma is elementary.

Lemma 1.2 Let X and Y be non-empty sets. A mapping ¢ : X — Y has
an tnverse mapping if and only if ¢ is a bijective mapping.

Let X be a non-empty set. For a mapping ¢ on a set X, we use two types
of notations. First one, a right notation of mapping: ¢ : x — zp, x € X.
In this case we say that ¢ is a mapping of X right writing. A product of
mappings « and S of a set X right writing is a mapping af of a set X which
is defined by
z(af) = (za)p, z e X.

A set 7.(X) of all the mappings of a set X right writing with a previous
multiplication is a semigroup which we call a full semigroup of transformation
(mapping) of a set X right writing. A semigroup 7,(X) is a subsemigroup
of a semigroup PT(X). The second way, a left notation of mapping: ¢ :
x +— px, x € X. In this case we say that ¢ is a mapping of X left writing.
A product of mappings a and 3 of a set X left writing is a mapping af of
a set X which is defined by

(af)xr = a(fx), xr e X.

A set T;(X) of all the mappings of a set X left writing with a previous
multiplication is a semigroup which we call a full semigroup transformation
(mapping) of a set X left writing. It is clear that semigroups 7,(X) and
Ti(X) are dual. Thus, we usually discuss only one of these semigroups,
most often a semigroup 7,(X), so this semigroup is called a full semigroup
transformation (mapping) of a set X, for short.

Let a be an element of a semigroup S. A mapping A, € 7,(X) defined by
TAg = ax, x € S, is an inner left translation of a semigroup S. A mapping
pa € Tr(X) defined by zp, = xa, x € S, is an inner right translation of a
semigroup S.

Except (partial) mappings, some other types of relations are very in-

teresting, especially partial ordering and equivalence relations. Let A be a
non-empty set. A relation £ in a set A is:
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o reflexive, if ala, for every a € A, ie. if A C¢&;

o symmetric, if for a,b € A, from a¢b it follows ba, i.e. if £ C £71;

e anti-symmetric, if for a,b € A, from a&b and b&a it follows a = b, i.e.
if ENETT CA;

o transitive, if for a,b,c € A, from aéb and béc it follows a&c, i.e. if

gce

A reflexive and transitive relation is a quasi-order. A reflexive, anti-symme-
tric and transitive relation is a partial ordering. A reflexive, symmetric and
transitive relation is an equivalence relation or equivalence, for short. There
will be more talk of partial ordering in Section 1.5. Here we will discuss
equivalence relations.

Let £ be a binary relation on a set A. The relations & and & on A
defined by:

afib & al = b€, a&b < Ea = &b, a,be A,

are equivalences on A.

Let & be an equivalence relation on a set A. Elements a,b € A are &-
equivalent if afb. A set a& we call the equivalence class of an element a, or
&-class of an element a. It is evident that a € a€. The set of all é-classes we
denote by A/€ and call it the factor set of a set A. A mapping £ : a — a& of
a set A onto a factor set A/ is a natural mapping of A determined with an
equivalence £. Let A and B be non-empty sets and ¢ : A — B. A relation
kerp = {(z,y) € Ax Alxp = yo} in A we call the kernel of mapping ¢. A
connection between equivalences and mappings gives the following lemma,
whose proof is elementary, so it is omitted.

Lemma 1.3 Let A be a non-empty set. If ¢ is a mapping on a set A into
a set B, then ker¢g is an equivalence relation on A.

Also, if £ is an equivalence on A, then ker(¢%) = €.

The family {A; |i € I} of subsets on a set A is a partition of A if A; # 0,
for every i € I, A = UjerA;, and for all i, j € I, A; = Aj or A;NA; =0. The
following lemma, whose proof is elementary, gives us a connection between
partitions of A and equivalences on that set.
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Lemma 1.4 Letw = {A;|i € I} be a partition of a set A. Then the relation
&u on A defined by

ayb & (Fiel)abe A, a,be A,

18 an equivalence relation on a set A.

Conversely, let £ be an equivalence on a set A. Then a family we =
{a&|a € A} is a partition of A.

Also, mappings w +— &, and { — we are mutually inverse bijections
from the set of all partitions of A onto the set of all equivalences on A, and
conversely.

Let A be a non-empty set. An intersection of an arbitrary family of
transitive relations on A, if it is not empty, is also a transitive relation on
A. If £ is a binary relation on the set A, an intersection of all transitive
relations on A containing £ is a transitive relation, denoted by £°°. It is easy
to prove that £€*° = U, cz+&". The relation £ we call the transitive closure
of £&. An intersection of an arbitrary family of equivalences on A is not
empty, because it contains the identical relation on A, and this intersection
is an equivalence on A. If £ is a relation on A, then the intersection of all
equivalences containing & we call the equivalence relation generated by &, and
we denote it by £°. It is evident that £€° = (£ NE~L U A)®.

A mapping v which every semigroup S joins with some relation on S, we
call the type of relation and denote by vg. Then we say that vg is a relation
of type v on a semigroup S. If a semigroup is fixed, then the term ”"vg” we
replace with ”v”. If v is some type of relation and if vg is an equivalence,
for every semigroup S, then we say that v is a type of equivalence relation.
Let v be a type of equivalence relation. A semigroup S is v-simple if vg is a

universal relation on S, i.e. if S has only one vg-class.

Exercises

1. The empty relation on a set A is a zero of a semigroup B(A).

2. Let ¢ € PT(A). Then kerg = ¢ppp—1.

3. For ¢ € PT(A), the element a € dom¢ is a fiz point of the partial mapping ¢ if
a¢ = a. The set of all fix points of the partial mapping ¢ we denote by fix¢. Prove
that ¢ is an idempotent of PT (A) if and only if fix$p = rang.

4. For an infinite countable set A, S = {a € 7,(A) | A — A is the infinite set} is a
subsemigroup of 7;.(A) which we call Baer-Levi’s semigroup. Prove that Baer-Levi’s
semigroup has no idempotents.
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1.3 Congruences and Homomorphisms

Let £ be an equivalence relation on a semigroup S. A relation ¢ is a left
(right) congruence if for all a,b,c € S, a&b implies calchb (acbc). A relation
& is a congruence relation if it is both a left and right congruence relation.
The following lemma follows immediately:

Lemma 1.5 An equivalence relation & on a semigroup S is a congruence if
and only if for all a,b,c,d € S, alb and c€d imply acbd.

It is evident that the intersection of an arbitrary family of congruences
on a semigroup S is also a congruence on S. Here we determine that for an
arbitrary relation £ on S, the intersection of all congruences on S containing &
is a congruence relation on S, which we call the congruence relation generated
by &, and denote by £#.

Let € be an equivalence on a semigroup S. Then we define £ by
& ={(a,b) € S x S| (Va,y € §") (zay, wby) € £}.

The important characteristic of a relation & is outlined in the following
theorem:

Theorem 1.2 Let & be an equivalence relation on a semigroup S. Then the
relation & is a congruence on S contained in &.

Also, for an arbitrary congruence n on S contained in & isn C €.

Proof. It is clear that £” is an equivalence on S. Also, if (a,b) € € and
c € S, then (zcay, zcby) € &, for all z,y € S'. Hence, (ca,cb) € &°. Similarly,
we have that (ac, bc) € €. Thus, & is a congruence. It is clear that & C €.

Let i be an arbitrary congruence on S contained in . Assume (a,b) € 7.

Since 1 is a congruence, then (zay,zby) € 7, for all z,y € S!, whence
(zay, zby) € &, for all z,y € S, so (a,b) € £. Therefore,  C &°. O
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Let S and T be semigroups. A mapping ¢ : S +— T is a homomorphism if
(ap)(bp) = (ab)g, for all a,b € S. Let ¢ be a homomorphism of a semigroup
S into a semigroup T. If ¢ is one-to-one, then ¢ is a monomorphism or
embedding, and then we say that S can be embeddable into T'. If ¢ is onto,
then ¢ is an epimorphism. If ¢ is bijective, then ¢ is an isomorphism and
then semigroups S and T are isomorphic, in notation S = T. It is easy
to prove that an inverse mapping of isomorphism is also an isomorphism.
Namely, two semigroups are isomorphic if and only if we can obtain one of
them from another by different notations of the elements. So, if semigroups
are isomorphic then we mean that they are the same. A homomorphism
of a semigroup S into itself is an endomorphism, and an isomorphism of §
into itself is an automorphism. If ¢ is a homomorphism of a semigroup S
into a semigroup 7', then S¢ is a subsemigroup of 7. A semigroup T is a
homomorphic image of a semigroup S, if there exists an epimorphism of S
onto T. A semigroup T' divides a semigroup S, and T is a divisor of S if T
is a homomorphic image of some subsemigroup of S.

Let A be a subsemigroup of semigroups S and 7. A homomorphism
¢: ST is an A-homomorphism if a¢ = a, for every a € A.

Let S and T be semigroups. A mapping ¢ : S — T is an anti-homomor-
phism if (ab)e = (bo)(ad), for all a,b € S. A bijective anti-homomorphism
we call anti-isomorphism. Semigroups S and T are anti-isomorphic if there
is an anti-isomorphism of S onto T'. It is evident that semigroups S <_auad T

are anti-isomorphic if and only if S is isomorphic onto a semigroup T .

A mapping ¢ : S — T is a partial homomorphism of partial semigroup S
into a partial semigroup 7' if for all a,b € S the following holds: if a product

ab is defined in S, then a product (a¢)(b¢) is defined in T" and holds (ab)¢ =
(ap)(bo). A bijective partial homomorphism is a partial isomorphism.

Let & be a congruence on a semigroup S. Then the factor set S/& by the
multiplication defined with: (a)(b¢) = (ab)¢, is a semigroup which we call
a factor semigroup, or factor for short, of a semigroup S under a congruence
&. A theorem immediately follows which gives a connection between congru-
ences and homomorphisms, and it is known as Homomorphism’s theorem.

Theorem 1.3 If¢ is a conguence on a semigroup S, then £ is a homomor-
phism of S onto S/€.

Conversely, if ¢ is a homomorphism of a semigroup S into a semigroup
T, then ker¢ is a congruence on S and a mapping ® : S/ker¢ — T defined
by: (akerp)® = a¢p, a € S, is an isomorphism.
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For congruence &, a homomorphism &% is called the natural homomor-
phism induced by congruence £, while for homomorphism ¢, a congruence
ker¢ is called the kernel of homomorphism ¢. According to Homomorphism’s
theorem, we will make no difference between terms ”factor” and ”homomor-
phic image”.

Theorem 1.4 Let & and n be congruences on a semigroup S and let £ C 1.
Then

n/€ = {(a,b¢) € 5/& x S/ | (a,b) € n}
is a congruence on S/ and (S/€)/(n/&) = S/n.

Proof. Let ¢ : S/§ — S/n be a mapping defined by: (af)¢ = an. For
a€,bE € S/€, we have that [(a€)(b€)]6 = [(ab)élo = (ab)y = (an)(bn) =
[(a&)o][(b€)¢]. Hence, ¢ is a homomorphism. Also, (af)¢ = (b§)¢ if and
only if an = bn, i.e. (a,b) € n. Thus, ker¢p = /&, so n/€ is a congruence and
by means of Theorem 1.3 we obtain that (S/€)/(n/&) = S/n. O

Let {A;|i € I} be a family of sets and let A = [[,.; A; be a Cartesian
product of family {A;|7 € I}. The elements from A we denote by (a;)icr
(a; € A;, for every i € I), or (a;) for short if the index set is well known.
For i € I, the mapping m; : A — A defined with: am; = a;, if a = (a;)jer, we
call the i-th projection, and the element a; we call the i-th coordinate of an
element a.

Let {S; |7 € I} be a family of semigroups and let S be a Cartesian product
of family {S;|i € I}. We define the multiplication on S a componentwise,
i.e. (ai)ie[(bi)iej = (aibi>i€], for (ai)iej,(bi)iej S S. Then S along with
this multiplication is a semigroup, and for every ¢ € I, a projection m; is an
epimorphism. Every semigroup isomorphic to a semigroup S we call a direct
product of the family of semigroups {S;|i € I}.

A semigroup S is a subdirect product of the family of semigroups {S;|i €
I}, if S is isomorphic to some subsemigroup 7" of a direct product [];.; S;
such that the following holds: T'w; = .5;, for every i € I.

A congruence £ on a semigroup S divides elements a and b from S if a
and b are in different ¢-classes, ie. if (a,b) ¢ & A family {&|i € I} of
non-identical congruences on a semigroup S divides elements from S if for
every pair of different elements a and b from S there is a congruence from
this family which divide it. It is easy to prove:
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Lemma 1.6 A family {&;|i € I} of non-identical congruences on a semi-
group S divides elements from S if and only if Nic1& = A.

Theorem 1.5 Let a semigroup S be a subdirect product of a family of semi-
groups {S;|i € It. Then, the family {&;|i € I} of congruences on S which
corresponds to congruences kerm;, © € I, is the family of congruences on S
which divide elements from S.

Conversely, if {& i € I} is a family of non-identical congruences on a
semigroup S which divides elements from S, then S is a subdirect product of
the family of semigroups {S/&;|i € I}.

Proof. Let {§;|i € I} be a family of non-identical congruences on a semi-
group S. We define a mapping ¢ : S +— [[,c; Si, with a¢ = (a&;)ier, a € S.
It is easy to prove that ¢ is a homomorphism and (S¢)m; = S/&;, for every
1€ 1. If a,b € S are some different elements, then there is ¢ € I such that
(a,b) & &, i.e. a& # b&;, so ap # bp. Thus, ¢ is a monomorphism. Hence,
S is a subdirect product of the family {S/&;|i € I}.

The converse follows immediately. O

According to the Homomorphism theorem, we can present Theorem 1.5
in a different way.

Corollary 1.1 Let S be a semigroup and let {S;|i € I} be a family of
semigroups. Then S is a subdirect product of the family {S;|i € I} if and
only if the following conditions hold

(i) for everyi € I there exists an epimorphism @; of S onto S;;
(ii) for a,b € S, a#b, there is i € I such that ap; # by;.

According to Corollary 1.1 we determine

Corollary 1.2 Let a semigroup S be a subdirect product of a family of semi-
groups {So | € Y}, and for every o € Y, let S, be a subdirect product of
a family of semigroups {T"|i € I,}. Then S is a subdirect product of the
family of semigroups {T* |i € I,a € Y}.

On a Cartesian product I x A of the non-empty sets I and A we define
a multiplication by

(NG, pm) = (G,p), G, 5€l, A\ peA.
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Then I x A with this multiplication is a band, I x A is isomorphic to a direct
product of a left zero and a right zero band. Every semigroup isomorphic
to a direct product of a left zero and a right zero band we call a rectangular
band.

Let € be a class of semigroups. A congruence £ on a semigroup S is a
¢-congruence on S if the factor S/¢ is from class €. Decomposition of a semi-
group S which corresponds to a €-congruence we call the €-decomposition
of a semigroup S, and a corresponding factor semigroup we call the €-
homomorphic image of S.

If € is a class of bands, then we have band congruence, band decomposi-
tion and a band homomorphic image. If € is a class of semilattices, then we
have semilattice congruence, semilattice decomposition and a semilattice ho-
momorphic image. If € is a class of rectangular bands, then we have matriz
congruence and matriz decomposition, and if € is a class of left (right) zero
bands, then we have left (right) zero band congruence and left (right) zero
band decomposition.

A congruence £ on a semigroup S is a band congruence if and only if
ata?, for every a € S, i.e. if and only if every &-class of S is a subsemigroup
of S. Let £ be a band congruence on a semigroup S and let B = S/¢.
For i € B, let S; = i(¢%)~!. Then S; is a subsemigroup of S, for every
it € B, S = UepS;, and for all 7,5 € B is 5;5; C S;;, and then we say
that S is a band B of semigroups S;, i € B. The semigroups S;, ¢ € B
are components of this band decomposition. If € is a class of semigroups
and if for every ¢ € B, S; belongs to €, then we say that S is a band B of
semigroups S;, i € B, from €. If B is a semilattice (chain, rectangular band,
left zero band, right zero band), then S is a semilattice (chain, rectangular
band or matriz, left zero band, right zero band) B of semigroups S;, i € B.
When ¢ is the smallest band (semilattice) congruence on S, S/¢ will be
called a greatest band (semilattice) homomorphic image of S. By analogy,
we introduce definitions for some other types of bands and semilattices.

Exercises

1. Every semigroup S can be embeddable into a semigroup 7,.(S!).

2. Let ¢ and ¢ be homomorphisms of a semigroup S onto semigroups 7" and U,
respectively, such that kerp C kerty. Then, there is a unique homomorphism 6 of T’
onto U such that ¢ = 1.

3. If ¢ is a relation on a semigroup S, then £# = (£°)¢ = [£°U (€)1 UAg]>°, where
§C = {(eaf) | (3I7y € Sl)(zla?b € S) (a7b) € €76 = zray, f = J?by}
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4. A semigroup S is subdirectly irreducible if whenever S is a subdirect product of
the family of semigroups {S;|¢ € I'}, then 7; is an isomorphism, for some i € I.

The following conditions on a semigroup S are equivalent:

(a) S is subdirectly irreducible;

(b) the intersection of an arbitrary family of non-identical congruences on S is a
non-identical congruence on S;

(¢) S has the smallest non-identical congruence.

5. Every semigroup is a subdirect product of subdirectly irreducible semigroups.
References
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1.4 Maximal Subgroups and Monogenic
Semigroups

A semigroup S is a group if S has an identity e and for every a € S there
exists b € S such that ab = ba = e. The element b is unique in a group G
with such properties, we denote it by a~! and call the group inverse of a,
or the inverse of a in a group G. A subsemigroup G of a semigroup S is a
subgroup of S, if G is a group. It is easy to prove that a non-empty subset G
of a semigroup S is a subgroup of §' if and only if aG = Ga = G, for every
a€G.

A subgroup G of a semigroup S is a maximal subgroup of S if there is
no subgroup H of S such that G C H. The following theorem describes a
maximal subgroup of a semigroup.

Theorem 1.6 Let e be an idempotent of a semigroup S. Then there exists
a mazimal subgroup of S with an identity e, which we denote by G., and

Ge ={a € S|a=eca=uae, (Ia € S)e=ad =da}
={aeS|laceSNSe,ecaSnSa}.

Proof. 1t is evident that every subgroup of S with an identity e is contained
in the first set and one is contained in the second. The first set is a subgroup
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of S with an identity e. Let a be an element of the second set. Then
a = ex = ye, e = az = wa, for some x,y, z,w € S. From this it follows ea =
eer = er = a, and similarly ae = a. Furthermore, eze = eeze = ewaze =
ewee = ewe, whence e = ee = aze = a(eze) and e = ee = ewa = (ewe)a.
Thus, e = aad’ = a’a, where a’ = eze = ewe, so the element a belongs to the
first set. O

Theorem 1.7 If e and f are two different idempotents from a semigroup
S, then Ge NGy = 0.

Proof. Assume a € Ge N Gy. Then a = ea = ae = fa=af, e =ad =da
and f = ad” = a"a, for some a’,a” € S. Hence e = ad’ = fad = fe =
a"ae = a"a = f. Thus, from e # f it follows G. N Gy = 0. O

If S is a semigroup with an identity e, an element a € S is invertible
if there is b € S such that ab = ba = e. Then a maximal subgroup G, is
called the group of identity, and all of its elements are invertible elements of
a semigroup S.

Lemma 1.7 An element a of a semigroup S with an identity is invertible

if and only if aS = Sa = 5.

The following result is very useful for further work and it is known as
Munn’s lemma.

Lemma 1.8 Let S be a semigroup and let x be an element of S such that
™ belongs to a subgroup G of S for some n € ZT. If e is the identity of G,
then

(1) ex = ze € Ge;
(2) 2™ € G, for anym € Z*, m > n.

Proof. (1) Let y be an inverse element of the element 2™ in G. Then

er = ymnH = yxz" = yrz"e = yxax"z"y = yx2"+1y,

2n+1

and similarly we prove that xe = yz y. Thus, ex = xe. Since ey = ye =

Yy, then

Ty = rey = exy = yxr'vy = yxx''y = yre = yexr = yw,
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whence by induction we obtain that z¥y = yz*, for every k € ZT. Assume

n—1 n—1 1

z = 2"y = yx™ . Then zxe = yz" "ze = yax"e = e, and similarly

exrz = e. Furthermore, e(ex) = (ex)e = ex, so ex = xe € G..

(2) Let m € Z*, m > n. Assume r € Z" such that nr > m, and assume

that ¥ is an inverse of the element x" in G.. Then ™~ "y" = y"z"™" ™, and

nr—m.,,”
Y

if assume that w = x , then we have

wl,m — yrxnrfmxm — y'f‘an‘ — (yxn)r = e.

In a similar way we prove that 2™w = e. On the other hand, ex™ =
ex™x™ ™" = "™ ™" = 2™, and similarly 2™e = z™. Thus, by Theorem 1.6,

™ e Ge. O

Let S be a semigroup. The cardinality |S| of a semigroup S we call the
order of a semigroup S. If | S| is a finite number, then we say that S is a finite
order or a finite semigroup. Otherwise, we say that S is an infinite order or
an infinite semigroup. A semigroup S is trivial if |S| = 1. For an element
a € S, the order of element a is the order of a monogenic subsemigroup
(a) of S. The order of an element a we denote by r(a). If (a) is a finite
semigroup, then the order of a is finite, otherwise, the order of a is infinite.

An element a of a semigroup S is periodic if there are m,n € Z*, such
that a™ = a™*". Let a be a periodic element of a semigroup S. The set {m €
Z1|(In € ZT) a™ = a™*™"} is a subset of integers, so it has the smallest
element which we call the index of the element a (index of a semigroup {(a))
and denote by i(a). The smallest element of the set {n € Z*1|a*(® = ¢* @47}
we call the period of the element a (period of a semigroup (a)) and denote it

by p(a).

Theorem 1.8 Let a be an element of a semigroup S.

If a is not a periodic element, then the order of a is infinite and the
monogenic subsemigroup (a) of S is isomorphic to the additive semigroup
(Z*,+) of integers.

If a is a periodic element, then the order r(a) = i(a) + p(a) — 1 of a is
finite, K, = {a® " @+ q/@+P(0)=11 45 o mazimal subgroup of (a),
and K, is a monogenic group whose order is p(a).

Proof. If a is non-periodic, then it is evident that the order of a is infi-
nite and the mapping ¢ : ZT — (a) defined by n¢ = a", n € Z* is an
isomorphism.
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Let a be a periodic element. According to the definition of an index
and the period of an element, it is clear that a,a?,d?,... @) +p(@)=1 are
different. Assume an arbitrary n € Z*. Then n = kp(a) + m, 0 < k, 0 <
m < pla) — 1, so @@+ = gil@)tkpla)tm — gila)tm ¢ [ Hence, (a) = {a,
a?,...,a @*P(@=1 “and the order of (a) is r(a) = i(a) + p(a) — 1. It is
evident that K, is isomorphic to the additive group of the rest of integers
modulo p(a), that the order of K, is p(a) and that K, is a maximal subgroup
of (a). O

Based on the previous theorems, monogenic semigroups are isomorphic
if and only if they are the same index and the same period. A monogenic
semigroup with an index i and period p we denote by M (i, p).

A semigroup S is periodic if each of its elements is periodic.

Exercises

1. Denote as S(X) the set of all bijective mappings of the set X. Then S(X) is a
group of identity of monoid 7, (X).

The group S(X) we call the symmetric group or the group of permutations of X.
2. Every group can be embeddable into the group of permutations of some set.
3. An element a of a semigroup S is periodic if and only if there exists n € Z* such
that a™ € E(S).
4. Every finite semigroup is periodic.
5. An infinite monogenic semigroup is a subdirect product of finite monogenic
semigroups.
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1.5 Ordered Sets and Lattices

Let us once again be reminded that a reflexive, antisymmetric and tran-
sitive relation on a set A is a partial ordering on A. Usually, we denote it
by <. A set A supplied with partial ordering is a partially ordered set. The
notion poset will be used as a synonym for the notion ”partially ordered set”.
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If partial ordering < on a set A is linear, i.e. if for all a,b € Aisa < b or
b < a, then A is a linear partially ordered set or a chain. If < is a partial
ordering on a set A, then by < we denote a relation on A defined by:

a<b & a<b A a#hb, a,b € A,

and by > and > we denote the inverse relations of < and <, respectively.

Let A and B be ordered sets and ¢ : A — B. A mapping ¢ is an isotone
(save order) if for a,b € A, from a < b it follows that ap < bp. A mapping
¢ is antitone if for a,b € A, from a,b € A it follows that ap > by. The
ordered sets A and B are isomorphic if there is a bijection ¢ : A — B such
that for every x,y € A holds

r<y < ¢ <p(y).

Let A be an ordered set. An element a € A is a minimal (mazimal)
element of the set A if there is no x € A such that x < a (z > a), i.e. if for
x € A, from z < a (z > a) it follows that £ = a. An element a € A is the
smallest (the biggest) element of a set A if a < z (a > x), for every x € A.
The smallest (the biggest) element of a set A, if it exists there, is a minimal
(maximal) element of a set A, while the opposite does not hold. A set A
can have a lot of minimal (maximal) elements, while it can have only one
smallest (biggest) element.

Let X be a non-empty subset of an ordered set A. An element a € A is
an upper bound (a lower bound) of a set X if z < a (z > a), for every z € X.
An element a € A is a least upper bound or join (a greatest lower bound or
meet) of the set X, in notation a = VX (a = AX), if the following holds:

(i) a is an upper (lower) bound of a set X;
(ii) if b € A is an upper (lower) bound of a set X, then a < b (a > b).

If X ={x;|i € I}, then we write V;crz; (Aierz;) instead of VX (AX), and
if I ={1,2,...,n},n€Z", n>2 then we write

z1VaaV---Va, (r ANxg A ANay),

instead of Verz; (Nierzi).
An ordered set A is an upper (lower) semilattice if every two-element

subsets of A have a join (a meet). Using induction in that case we prove
that every finite subset of A has a join (a meet). For infinite subsets of A
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it does not hold. An ordered set A is a lattice if A is both an upper and a
lower semilattice.

If A is an upper (lower) semilattice, then the mapping V: A x A — A
(A: Ax A~ A) defined by

(1) V:(a,b)—aVb, a,beA, (A:(a,b) —»andb, abeA),

is an associative and commutative operation on the set A. Using this lower
semilattice (upper semilattice, lattice) we can define it in some other way.

We would like to remind the reader that we use the term semilattice in the
theory of semigroups for a commutative band. Here we give an explanation
of the connection between this term and the term for lower semilattice. If
S is a semigroup, then the relation < of the set E(S) of all the idempotents
of S, defined by

e<f & ef=fe=e, e, f € E(S),

is a partial order which we call a natural partial order on E(S). If S is a
band, then we have an order on S. If S is a commutative band, then under its
natural order S is a lower semilattice. Conversely, if A is a lower semilattice,
then under the operation A, A is a commutative band. The operations V
and A we call a union and an intersection, respectively.

Now, we give an another definition of a lattice: If L is a non-empty set
and if A and V are binary operations on the set L which satisfies the following
conditions:

(L1) idempotent: x Nx =z, xVx =u;

(L2) commutative: x Ny=y ANz, zVy=yVux

(L3) associative: x AN (yANz)=(xAy)ANz, xzV(yVz)=(@xVy)Vz
(L4)

L4) absorption: x A (xVy) ==z, xV(xAy)=ux;

for all z,y,z € L, then L is a lattice. If L is a lattice in the sense of the first
definition, then under the operations A and V defined by (1) L is a lattice in
the sense of the second definition. Conversely, if L is a lattice in the sense
of the second definition, then on L we define an order by

a<b & aNb=a, a,be L,
or, equivalently, by

a<b < aVvVb=b, a,be L,
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and under this order the set L is a lattice in the sense of the first definition.
So, for a lattice we can use both definitions.

Also, we immediately prove that the definitions of a chain, as a linear
order set and as a semilattice for which is xy = x or xy = y, for all x,y, are
equivalent.

A subset K of a lattice L is a sublattice of L if x ANy, x Vy € K, for all
x,y € K. If L is a lattice and a,b € L such that a < b, then the interval [a, ]
of a lattice L is a sublattice of L defined by: [a,b] = {x € L|a <z < b}.

Let L and K be latticesand ¢ : L — K. A mapping ¢ is a homomorphism
of lattice L into a lattice K if (a V b)¢ = a¢p V bp and (a Ab)d = ap A b, for
all a,b € L. A mapping ¢ is a monomorphism or embedding of a lattice L
into K if ¢ is homomorphism and one-to-one, and then we say that a lattice
L can be embedded into K. A mapping ¢ is an isomorphism of lattices L
and K if ¢ is a homomorphism and bijection.

Theorem 1.9 Let Ly = (L1,<1) and Ly = (L2,<2) be lattices and let
@ : L1 — Lo be a bijection. Then the following conditions are equivalent

(i) ¢ is an isomorphism of lattice order sets Ly and La;
(ii) for all x,y € Ly the following holds

o(x A1 y) = () A2 0(Y), ez Viy) = o(x) V2 9(y).

Proof.  (i)=(ii) Let ,y € L;. If we want to prove the equation p(x A1 y) =
o(x) N2(y), we should prove that p(zA1y) is a meet of the set {¢(x), ¢(y)}.
Since z A1y <1 ¢ and z A y <1 y and since ¢ is isotone, we have that
p(zA1y) <2 (z) and o(z A1 y) <o (y), ie. p(rA1y) <2 ¢(x) A2 (y)

Suppose that for any a € Lo, a <9 ¢(z) and a <g ¢(y). Since ¢ is isotone,
then it follows that ¢~!(a) <1 z and ¢~ !(a) <1 y, whence ¢~ 1(a) <1 2 A1 y.
From this we obtain that a <y p(z A1y). Therefore, p(x A1 y) is the greatest
lower bound of the set {p(z), p(y)}.

Similarly, we prove that ¢(z V1 y) = ¢(x) V2 ¢(y).

(ii)=(i) Let x <; y, for some x,y € L;. Then x A\; y = x, so we have

o(x) = p(z A1y) = p(z) A2 9(y),

whence p(x) <2 p(y), i.e. p is an isotone mapping.
Now, let a <5 b, for some a,b € Lo, where z = ¢~ !(a) and y = ¢~ 1(b).
Since
oz A1y) = () A2 py) = a2 b=a,
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then it follows that

e Ha) Mo D)=z Ay =¢ He@ry) =¢ a)

1is an isotone mapping. O

Hence, o~ (a) <1 o= 1(b), so ¢~
Lemma 1.9 Any isotone bijection with an isotone inverse is a lattice iso-
morphism.

Proof. Let Li and Lo be lattices and let ¢ : L1 — Lo be an isotone
bijection with the isotone inverse Lpfl : Lo — L. Let x,y € Ly. If we want
to prove the equation p(z Ay) = ¢(x) A p(y), we should prove that ¢(x Ay)
is a meet of the set {p(x),p(y)}. Since z Ay < z and x Ay < y and since
¢ is isotone, we have that p(z A y) < ¢(x) and ¢(x Ay) < ¢(y), whence
plzAy) <) Ap(y)-

Suppose that a € Ly and let a < p(x) and a < ¢(y). Since ¢! is
isotone, then ¢~ !(a) < x and ¢~ !(a) < y, whence ¢~ '(a) < x Ay. Hence
a < o(x Ay). Therefore, p(x A y) is the greatest lower bound of the set
{e(@),0(y)}, Le. plzAy) < o) Ap(y). Thus, p(z Ay) = o(z) A p(y).

Similarly, throught duality we can prove ¢(x V y) = ¢(x) V ¢(y).

According to Theorem 1.9, ¢ is a lattice isomorphism. O

Let {L;|i € I} be a family of lattices. On a Cartesian product L =
[I;c; Li we define the binary operations V and A by means of coordinates,
i.e. by

(xi)ier V (Yi)ier = (zi V Yi)ier, (xi)ier N (Yi)ier = (zi A Yi)ier,

for (z;)ier, (yi)ier € L. Then L with such a defined operation is a lattice and
every lattice isomorphic to L we call a direct product of lattices L;, © € I.
Just like in the theory of semigroups, a projection 7; is a homomorphism of a
lattice L onto a lattice L;. Every lattice L is isomorphic to a direct product
[I;cr Li, where for some i € I a lattice L; is isomorphic to L and |L;| = 1,
for every j € I, j # i. This decomposition we call a trivial decomposition
into a direct product of lattices. A lattice L is directly indecomposable if L
only has a trivial decomposition into a direct product of lattices.

A lattice L is distributive for a meet (for a join) if

2) an(yvea)=(ry)VizAz), (@V(yrz)=@Vy AlzVz)),



1.5. ORDERED SETS AND LATTICES 25

for all x,y,z € L. It is easy to prove that a lattice L is distributive for a
meet if and only if it is distributive for a join, so a lattice for which one of
the conditions from (2) holds we call a distributive lattice.

An element 0 € L is a zero of a lattice L if t A0 =0, z V0 = z, for
every x € L. If a lattice L has a zero, then it is unique and it is the smallest
element in L, and conversely, if a lattice L has the smallest element, then it
is the zero in L. An element 1 € L is an identity of a lattice L if xt A1 = x,
xV1 =1, for every x € L. If a lattice L has an identity, then it is unique and
it is the greatest element in L, and conversely, if a lattice L has the greatest
element, then it is an identity in L. If a lattice L has a zero (an identity),
then we denote it by 0 (1). A lattice with a zero and an identity we call a
bounded lattice.

A lattice L is complete for a join (complete for a meet) if for every A C L
there exists VA (AA), and a lattice is complete if it is both complete for a
join and for a meet. If a lattice L is complete for a join (complete for a
meet), then VL (AL) is an identity (a zero) of a lattice L. If a lattice L is
complete for a join (for a meet) and has a zero (identity), then we can prove
that L is also complete for a meet (for a join).

By means of the inductive method, we prove that in a distributive lattice
L, for every a € L and every finite subset {z; |i € I} of L the following holds:

a A (Vierz;) = Vier(a A x;), aV (Nierz;) = Ner(a V ;).

If {; |7 € I} is an infinite subset, previous equations in distributive lattices
do not hold. For this reason we introduce the following definitions: a lattice
L is complete for a join (for a meet), i.e. it is infinitely distributive for a
meet (for a join) if for every a € L and every subset {x;|i € I} of L the
following holds:

a /A (Vierz;) = Vier(a A z;), (aV (Nerzi) = Ner(aV z;)).

A lattice L is infinitely distributive if it is both infinitely distributive for a
join and for a meet.

Let L be a lattice with a zero 0 and an identity 1. An element y € L is
a complement of an element x € L if t Ay =0 and = Vy = 1. In that case,
the element x is a complement of y, i.e. the relation "to be a complement”
is symmetric. If L is a distributive lattice with a zero and an identity,
then every element from L has only one complement, and a complement of
x € L we denote by z’. Boolean algebra is a bounded distributive lattice
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in which every element has a complement. An example of Boolean algebra
is a partitive set P(A) of all the subsets of the set A, under the operations
of sets union and sets intersection. The Boolean algebra P(A) we call the
Boolean algebra of all the subsets of the set A.

We immediately prove the following lemma:

Lemma 1.10 Let L be a distributive lattice with a zero O and an identity 1,
and B(L) be the set of all the elements from L which have a complement.
Then B(L) is a Boolean algebra.

If B is an arbitrary sublattice of L which is a Boolean algebra with a zero
0 and an identity 1, then B C B(L).

The Boolean algebra B(L) we call the greatest Boolean subalgebra of a
distributive lattice L.

Theorem 1.10 Every complete Boolean algebra is infinitely distributive.

Proof. Let B be a complete Boolean algebra, let a € B and let {z; |i € I}
be a subset of B. Assume u = Vier(a A z;). For every i € I'is a A z; <
a A (Vierx;), whence

u=Vier(aNx;) <aAn (Vierx;).
On the other hand, a A z; < u, for every ¢ € I, so
ri=1Az;=(aAz)V(d ANxy) <uvad,
for every 7 € I. Now, we determine that V;crz; < uV a/, whence
al(Vier) <an(uVvad)=(aAu)V(and)=aru< u.

Thus, B is infinitely distributive for a meet. Similarly, we prove that B is
infinitely distributive for a join. a

Let L be a lattice with a zero 0. An element a € L, a # 0, is an atom of
a lattice L if there is no z € L such that 0 < x < a, i.e. if a is a minimal
element in the ordered set L — {0}. A lattice L with a zero is atomic if for
every x € L, x # 0, there exists an atom a € L such that a < z.
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Theorem 1.11 Let B be a complete Boolean algebra with the set of atoms
A. Then B is atomic if and only if for every x € B there is Ay C A such
that x = VA,.

Also, the set A, is uniquely determined.

Proof. Let B be an atomic Boolean algebra and let x € B. Let A, be the
set of all the atoms contained in the interval [0,z], and let y = VA,. Let
z =1y Ax. If z # 0, then there exists b € A such that b < z. Since z < z,
then b < z, so b € A,, thus it follows that b < VA, =y, i.e. bAy=10b. On
the other hand,

b=bAz=bAyAz=bAyAy Az =0,
that contradicts the definition of atoms. Thus, z = 0, whence
r=xANl=aA@yVy)=@Ary)V(eAry)=(xAy)V0=xAvy,

so x <. Since y < x, then z =y, i.e. x = VA,.
The converse follows immediately.

Now, we will prove the second part of the theorem. Assume that VP =
V@, for some P,QQ C A. Assume ¢ € P. Then a < VP = V@, i.e. a A
(VQ) =a. If a ¢ Q, then a Ab = 0, for every b € @, because a and b are
atoms. According to Theorem 1.10 we have that B is infinitely distributive,
so a = aA (VQ) = Vyeg(a A b) = 0, which is a contradiction based on the
definition of atoms. Thus, a € @, so P C ). Similarly we prove the converse
inclusion. Therefore, P = Q. O

Corollary 1.3 Let B be a complete Boolean algebra. Then B is atomic if
and only if B is isomorphic to a Boolean algebra of subsets of some set.

Proof. If B is a complete Boolean algebra with a set of atoms A, then B
is isomorphic to a Boolean algebra P(A).

Conversely, the Boolean algebra P(A) of all the subsets of a non-empty
set A is atomic and atoms in P(A) are singleton sets {a}, a € A. |

At the end of this section we give the Axiom of choice and without the
proof of its most famous equivalent - Zorn’s lemma.
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Axiom of choice !

If A is a non-empty set, then there exists a mapping ¥ : P(A) — A such
that X4 € X, for every non-empty subset X of A.

Lemma 1.11 (Zorn’s lemma) Let A be an ordered set with the property
that every chain in A has an upper bound. Then for every element x € A
there exists at least one mazimal element a € A such that x < a.

More about the Axiom of choice and its equivalents, about the ordered
sets, the reader can find in the books by M. R. Taskovi¢ [1], [2]. For more
on the lattice theory, we suggest books by G. Birkhof [1], G. Grétzer [1] and
G. Szész [2].

The radicals R(p) and T'(p) of a binary relation ¢ on a semigroup S are
defined as follows:

(a,b) € R(p) < (Im,n € ZT) a™ob", (a,b) € T(0) & (3n € Z") a"ob™.

Consider the mappings R : o — R(p) and T : ¢ — T(p) on the lattice
B(S) of all binary relations on S. For an arbitrary ¢ € B(S) we have that
0o € T(o) € R(p), which means that 7" and R are extensive mappings.
Furthermore, for o1, 02 € B(S), 01 C o2 implies T'(01) € T'(02) and R(p1) C
R(p2). The mappings satisfying such a condition are called isotone. Also,
T(T(0)) = T(0) and R(R(p)) = R(0), for each p € B(S), so T and R are
idempotent mappings. Finally, we have that R(T(9)) = T(R(0)) = R(p),
for each o € B(S), i.e. RT = TR = R in the semigroup of mappings on
B(S). Recall that extensive, isotone and idempotent mappings on lattices
are known as closure mappings. Thus, the previous observations can be
summarized by the following lemma:

Lemma 1.12 Let S be a semigroup. Then the mappings R : o — R(o) and
T : 0 — T(o) are closure mappings on the lattice B(S) of all the binary
relations on S and RT = TR = R.

1One example of the axiom of choice can be found in The Mountain Wreath in 1847
written by the great Serbian poet Petar Petrovié¢ Njegos and published in serbian in Vienna.
The verse (2310) in Vasa D. Mihailovié’s translation is cited here:

”Various tree - barks, wings, and speed of feet, and the array of seeming disorder,
always follow some definite order”.



1.5. ORDERED SETS AND LATTICES 29

Exercises

1. The set £(A) of all the equivalence relations on the set A, ordered by inclusion,
is a lattice, where E A =¢Nnand V= (EUn)C, for all {,n € E(A). The lattice
E(A) is complete and it has the identity w4 and the zero A 4.

The lattice £(A) we call the lattice of equivalences on A.
2. Let &,n € E(A). Then £V = (&n)*>®. If &n =n€, then &n € E(A) and £V = &n.
3. The set Con(S) of all congruences on a semigroup S, ordered by inclusion, is a
lattice, where ¢ An = &Nnand €V = (EUn)¥, for all £,1 € Con(S). The lattice
Con(S) is complete and it has the identity wg and the zero Ag.

The lattice Con(S) we call the lattice of congruences on S.
4. Let L be a lattice. Then for all a,b, ¢ € L, from a < ¢ it follows that aV (bAc) <
(aVb)Ae.

5. A lattice L is modular if for all a,b,c € L, from a < ¢ it follows that aV (bAc) =
(a vV b) Ac. Prove that the lattice L is modular if and only if a V (b A (a V ¢)) =
(aVvb)A(aVe), for all a,b,c € L.

6. Let &(S) be the set of all subsemigroups of a semigroup S, and let &°(S) =

&(S)UD. Then, the set &°(S), ordered by inclusion, is a lattice, where AAB = ANB,

AV B ={(AUB), for all A,B € &(S). The empty set is the zero of this lattice.
The lattice 8°(S) we call the lattice of subsemigroups of S.

7. The set £(G) of all the subgroups of a group G, ordered by inclusion, is a lattice,
where for all A, B € £(G), ANB = ANDB and AV B is the intersection of all the
subgroups of G which contain the set A U B.

The lattice £(G) we call the lattice of the subgroups of G.

8. The relation < defined by: a < b < (3z,y € S')a = xb = by,va = a = ay,
a,b € S, is the order on an arbitrary semigroup S. This order we call the natural
order on S. The restriction of this order on E(S) (if E(S) # () is the natural order
on E(S).
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1.6 Ideals

Let S be a semigroup. A subsemigroup A of a semigroup S is a

left ideal of S, if SA C A;

right ideal of S, if AS C A,

(two-sided) ideal of S, if A is both a left and a right ideal of S, i.e. if
SAUAS C A

quasi-ideal of S, if SAN AS C A;

e bi-ideal of S, if ASA C A.

Every quasi-ideal of a semigroup is its bi-ideal, every left (right) ideal of a
semigroup is its quasi-ideal, and every ideal of a semigroup is its left (right)
ideal. Every semigroup S is its own ideal, while an (left, right, quasi-, bi-)
ideal of S different than S we call a proper (left, right, quasi-, bi-) ideal of
S. If L is a left ideal of S, R a right ideal of S and A subset of S, then LA
is a left ideal, AR is a right ideal and LR is an ideal of S. Also, RL C LNR
holds, so the intersection of a left ideal and a right ideal of a semigroup is
always non-empty. Moreover, the intersection of a left ideal and a right ideal
of a semigroup is its quasi-ideal. Conversely, if A is a quasi-ideal of .S, then
AUS A is aleft and AUAS is a right ideal of S, where (AUAS)N(AUSA) = A.
Thus, a subsemigroup A of a semigroup S is its quasi-ideal if and only if A
is equal to the intersection of a left ideal and a right ideal of .S.

Based on the aforementioned, we can determine that the intersection of
two ideals A and B of a semigroup S is non-empty, and AB and BA are
ideals of S' contained in A N B. Also, the intersection of an arbitrary finite
family of ideals of a semigroup is non-empty. For an infinite family of ideals
it does not hold. However, if so far the intersection of some family of (left,
right) ideals of a semigroup S is non-empty, then it is an (left, right) ideal
of S. Thus, if A is a non-empty subset of a semigroup S, the intersection
of all (left, right) ideals of S which contain A is an (left, right) ideal of S
which we call the (left, right) ideal of S generated by A. The set A in that
case is the generate set of that (left, right) ideal, and the elements of A are
its generate elements or the generators. For an element a of a semigroup
S, the left ideal, the right ideal, the ideal and the bi-ideal of S generated
by a we denote with L(a), R(a), J(a) and B(a), respectively, and we call
the principal left ideal, the principal right ideal, the principal ideal and the
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principal bi-ideal of S generated by a. It is easy to prove that
L(a) = S'a, R(a) = aS*, J(a) = S'aS?, B(a) = {a,d’} UaSa.
Let a and b be elements of a semigroup S. Then:

albebe Ja), aljbebeL(a), albsbe R(a).

Ifalb (al;b,alrb), then we say that a € S is a factor (a right factor, a left
factor) of the element b. The relations |, |; and |, are quasi-orders on S.
Using the previous relations we will define the following relations:

a—b < (IneZM)a|b", a— b (IneZM)al b, a—>b < (IneZ)al, b",

l
L)Z_l> N L>7 =N (_>>71’ _ :# N (_l>)71’
t l
I, Nn(——)"t, —= T n — ol po (3m,n € Z) a™ = b".

If T is a subsemigroup of S and a,b € T, then we say that a divides b
into T, in notation a|b in T or a|7b, if b = xay, for some z,y € T'.

A set Zd(S) of all the ideals of a semigroup S, ordered by the set inclusion,
is a lattice in which the operations of union and intersection are equal to
the set union and the set intersection of the ideals, and it we call a lattice of
ideals of a semigroup S. For the left ideals this does not hold, because the
intersection of two left ideals of a semigroup can be an empty set. So we can
make a distinction between two cases: if S is a semigroup with zero, then
the intersection of every two ideals of S is non-empty, because it contains
the zero. In that case, a set LZd(S), ordered by the set inclusion, is a lattice
with a union and intersection which are equal to the set union and the set
intersection. If S is a semigroup without zero, then we assume that the set
LId(S) consists of the empty set and of all the left ideals of S, then the
lattice £Zd(S) is isomorphic to the lattice £LZd(SY). In both cases, a lattice
LZd(S) we call the lattice of left ideals of a semigroup S. Similarly we define
the lattice of right ideals of a semigroup, in notation RZd(S).

Let S be a semigroup. Because that intersection of every two ideals of
a semigroup S is non-empty, and it is an ideal of S, a lattice Zd(S) can
have only one minimal element, and it is the smallest element in Zd(.S). The
smallest element of a lattice Zd(S), if it exists there, we call the kernel of
a semigroup S. It is easy to prove that a semigroup S has a kernel if and
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only if the intersection of all the ideals of S is non-empty, and in that case
the kernel is equal to this intersection. An infinite monogenic semigroup is
an example of a semigroup which has no kernel. A minimal element of the
ordered set of all the left (right) ideals of S we call the minimal left (right)
ideals of S.

If S = S then {0} is an ideal of S, which we call a null ideal and a null
ideal is a kernel of S. So, if a semigroup has a zero, then we investigate some
other important ideal: minimal elements in the ordered set of all the ideals
of § different than the null ideal we call the 0-minimal ideal of S, while the
smallest element of this set, if it exists there, we call the O-kernel of S. If
the minimal elements of the ordered set of all the left (right) ideals of S are
different, then the null ideals we call the 0-minimal left (right) ideals of S.

A semigroup S is simple (left simple, right simple) if S has no proper
ideals (left ideals, right ideals). Since a semigroup S with zero has a null
ideal, then the case when the null ideal is a unique proper two-sided (left,
right) ideal of S is very interesting. We introduce the following definitions:
a semigroup S = S is a null semigroup, if S? = 0, i.e. if ab = 0, for all
a,b € S. A semigroup S = SV is 0-simple (left 0-simple, right 0-simple) if
the following conditions hold:

(i) S is not a null semigroup;
(ii) the null ideal is the unique proper two-sided (left, right) ideal of S.

The important property of a 0-minimal left ideal of a semigroup with
Zero gives

Theorem 1.12 Let L be a left 0-minimal ideal of a semigroup S = S°.
Then one of the following conditions holds:

(i) Sa= L, for every a € L*®;

(i) L ={0,a} and Sa = 0.
Proof. For a € L®, Sa is a left ideal of S contained in L, so Sa = L or
Sa = 0. If Sa = L, for every a € L®, then (i) holds. Let Sa = 0, for some

a € L*. Then {0,a} is a left ideal of S contained in L, whence L = {0,a},
so (ii) holds. O

Based on Theorem 1.12, what immediately follows is

Corollary 1.4 A semigroup S = S is a left 0-simple if and only if Sa = S,
for every a € S°.
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If S is a semigroup without zero, by using Corollary 1.4 on a semigroup
59, we obtain

Corollary 1.5 A semigroup S is a left simple if and only if Sa = S, for
every a € S.

The following result gives one very important characteristic of 0-minimal
ideals.

Theorem 1.13 Let M be a 0-minimal ideal of a semigroup S. Then M? =0
or MaM = M, for every a € M?*.

Proof. Let M? # 0. Since M? is an ideal of S contained in M, then
M? = M, whence M3 = M. Let a € M*®. Then J(a) = S'aS! is a non null
ideal of S contained in M, so M = S'aS'. Thus, M = M3 = MS'aS'M C
MaM C M, so M = MaM. O

As a consequence of Theorem 1.13 we determine the following

Corollary 1.6 A semigroup S = S° is a 0-simple if and only if SaS = S,
for every a € S°.

Theorem 1.14 A minimal two-sided (left, right) ideal of a semigroup S is
a simple (left simple, right simple) subsemigroup of S.

Proof. Let K be a minimal two-sided ideal of S and let A be an ideal of
K, A+# K. Then KAK is an ideal of S. Since K is minimal, then we have
that K = KAK C A, which is not possible.

The remaining cases can be proved in a similar way. O

Corollary 1.7 Let M be a 0-minimal ideal of a semigroup S. Then M? =0
or M is a 0-simple subsemigroup of S.

If S is a semigroup without zero, using Corollary 1.7 on a semigroup S°,
we find

Corollary 1.8 A semigroup S is simple if and only if SaS = S, for every
a€s.



34 CHAPTER 1. INTRODUCTION

Corollary 1.9 Let K be an ideal of a semigroup S. Then K 1is the kernel
of S if and only if K is a simple semigroup.

Proof. Let K be the kernel of S. For an arbitrary a € S, KaK is an
ideal of S contained in K, so since K is the kernel, then K = KaK. Thus,
according to Corollary 1.8, K is a simple semigroup.

Conversely, let K be a simple semigroup. For an arbitrary ideal A of .S,
AN K is an ideal of K, so since K is simple, then AN K = K, ie. K C A.
Therefore, K is the kernel. O

A maximal element of the ordered set of all the proper left (right) ideals
of S we call the mazimal left (right) ideal of S. Based on the following
theorem we describe a maximal left ideal of a semigroup.

Theorem 1.15 Let L be a proper left ideal of a semigroup S. Then L is
mazximal if and only if one of the following conditions holds:

(i) S—L={a} and a® € L;
(il) S — L C Sa, for everya € S — L.

Proof.  Let L be a maximal left ideal of S. Then we have two cases:

(i) there exists a € S — L such that Sa C L, then L U {a} = S, whence
S—L={a},ad%€L;

(ii) for every a € S — L, Sa Z L, then L U Sa = S, whence S — L C Sa,
for every a € S — L.

The converse follows immediately. O

Let L(S) be the union of all the proper left ideals of a semigroup S.

Theorem 1.16 Let L(S) be as same as (ii) in Theorem 1.15. Then S —
L(S)={aeS|Sa= S} and S — L(S) is a subsemigroup of S.

Proof. For a € S— L(S) we have that S = L(S)U (S — L(S)) = aU Sa, so
L(S) C Sa. From this and from S — L(S) C Sa we have that S = Sa, for
every a € S — L(S5).

Conversely, let S = Sa, for every a € S — L(S). Then S — L(S) C Sa,
a€S—L(S). Thus, S — L(S) = {a € S|Sa = S}, and it is evident that
S — L(S) is a subsemigroup of S. a
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Corollary 1.10 Let A be a proper ideal of a semigroup S which is not a
proper subset of any one left ideal of S. Then one of the following conditions
holds:

(i) S — A is a left simple semigroup;
(i) S— A= {a} and a® € A.

Proof. Let (i) S — A =T have at least two elements. Then by Theorem
1.16, T' is a subsemigroup of S. Since AUSa =AU (AUT)a=AUT =S5,
for every a € T, and ANT = (0, then T C Ta C T, i.e. Ta = T, for every
a € T,so T is a left simple semigroup. Hence, in this case (i) holds.

Let S — A = {a}. Then a®> = a and S — A is a group, so (i) holds, or
a’ # a, ie. a®> € A, so (ii) holds. O

If A is a minimal element of the set of all the bi-ideals of a semigroup S,
then we it call the minimal bi-ideal of S.

We prove the following lemma immediately.

Lemma 1.13 Let A be a bi-ideal of a semigroup S and let x,y € S. Then
xAy is also a bi-ideal of S.

Lemma 1.14 Let M be a minimal bi-ideal of a semigroup S, let x,y € M
and let A be a bi-ideal of S. Then M = xAy.

Proof.  According to Lemma 1.13, xAy is a bi-ideal of S. Since xAy C
MAM C MSM C M and since M is a minimal bi-ideal, then zAy = M. O

Lemma 1.15 Let M be a minimal bi-ideal of a semigroup S, let x,y € S.
Then xMy is also a minimal bi-ideal of S.

Proof.  According to Lemma 1.13, xMy is a bi-ideal of S. Assume that
A is a bi-ideal of S contained in #My. Then A = {zay|a € H}, where
H C M. Assume a,b € H, u € S. Then zayuzby € A, so ayuxb € H.
Hence, aySxb C H. Since a,b € M and ySx is a bi-ideal of S, then by
Lemma 1.14, M = aySxb C H. Thus, M = H, whence A = My, so zMy
is a minimal bi-ideal of S. O

By Lemmas 1.14 and 1.15 we determine
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Lemma 1.16 Let M be a minimal bi-ideal of S. Then every minimal bi-
ideal of S is of the form xMy, for x,y € S.

A minimal bi-ideal we characterize by means of the following lemma.

Lemma 1.17 A bi-ideal M of a semigroup S is minimal if and only if M
1S a4 group.

Proof. Let M be a minimal bi-ideal of S. For x,y € M, by Lemma 1.14,
M = xMy, whence M = aM = Ma, for a € M, so M is a subgroup of S.

Conversely, let M be a group. Let A be a bi-ideal of S contained in M.
Assume a € M, z,y € A. Let 2! and y~! be the inverse of z and y in a
group M, respectively. Then a = x(z tay~!)y € ASA C A. Thus, M = A,
so M is a minimal bi-ideal of S. O

Theorem 1.17 Let K be the union of all the minimal bi-ideals of a semi-
group S. If K # (), then K is the kernel of S.

Proof. Let M be a minimal bi-ideal of S. According to Lemma 1.16,
K =U{zMy|z,y € S} = SMS, so K is an ideal of S. Assume a,b € K.
Then a € M, b € N, for some minimal bi-ideals M and N of S, and by
Lemma 1.16, N = My, for some x,y € S, whence b = zcy, for some c € M.
Since M is a group, then ¢ = caa™!, so b = zcy = (zc)a(a™ly) € KaK.
Thus, KaK = K, for every a € K, so by Corollaries 1.8 and 1.9, K is the
kernel of S. a

Let A and B be the subsets of a semigroup S, and let A C B. Then
A is a consistent (right consistent, left consistent) subset of B, in notation
A<¢c B (A <grc B, A <i¢c B), if for x,y €B

rye A==€ ANyecA (zye A=>ye A, zye A=z A).

The empty set is also a consistent subset of B. If A <¢ S (A <pc S, A <pc
S), then we say, in short, that A is a consistent (right consistent, left con-
sistent) subset.

The proofs of the following lemmas are elementary.

Lemma 1.18 The relation <¢ is a partial order on a partitive set P(S) of
a semigroup S, <c=<rc N <pc, <rc - <c=<pc and <pc - <c=<Lc,

».”»

where is a multiplication of binary relations.
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Lemma 1.19 The intersection and union of an arbitrary family of consis-
tent (right consistent, left consistent) subsets of a subset A of a semigroup
S are consistent (right consistent, left consistent) subsets of A.

Lemma 1.20 Let A be a subset of a semigroup S different from S. Then

(i) A<re S (A<pc S) if and only if S — A is a left (right) ideal of S;
(i) A <¢ S if and only if S — A is an ideal of S.

A subset A of a semigroup S is a completely prime subset of S if for
x,y €S
zyeA = (r€AV yecA).

A subset A of a semigroup S is a completely semiprime subset of S if for
r € 8, from 22 € A it follows that x € A. It is evident that every com-
pletely prime subset of S is completely semiprime. The empty set is also a
completely prime subset of S.

A subsemigroup A of a semigroup S is a filter (left filter, right filter)
of S if A is a consistent (right consistent, left consistent) subset of S. For
an element a of a semigroup S, the intersection of all the filters of S which
contain a we call the principal filter of S generated by a, and denote by N(a).
It is the smallest filter containing an element a of a semigroup S.

We immediately prove

Lemma 1.21 Let A be a non-empty subset of a semigroup S different from
S. Then

(i) A is a completely prime subset of S if and only if S — A is a subsemi-
group of S;
(i1) A is a completely prime left (right) ideal of S if and only if S — A is a
left (right) filter of S;
(iii) A is a completely prime ideal of S if and only if S — A is a filter of S.

Lemma 1.22 The intersection of an arbitrary family of completely semipri-
me subsets of a semigroup S is a completely semiprime subset of S.

Corollary 1.11 The intersection of an arbitrary family of completely prime
(completely semiprime) ideals of a semigroup S, if it is non-empty, is a
completely semiprime ideal of S.



38 CHAPTER 1. INTRODUCTION

Let A be an ideal of a semigroup S. The ideal A is a semiprime ideal
of S if for a € S, from aSa C A it follows that a € A. The ideal A is a
prime ideal of S if for a,b € S, from aSb C A it follows that a € A or b € A.
The ideal A is a completely semiprime ideal of S if for a € S, from a? € A
it follows that a € A. The ideal A is a completely prime ideal of S if for
a,b e S, from ab € A it follows that a € A or b € A. By Zd*(S) will denote
the lattice of all the completely semiprime ideals of S.

The following lemma gives another definition of prime ideals.

Lemma 1.23 Let A be an ideal of a semigroup S. Then A is a prime ideal
of S if and only if for ideals M, N of S, from MN C A it follows that M C A
or N C A.

Proof. Let A be a prime ideal of S, and let M and N be the ideals of S
such that M N C A. Assume that there exists x € M — A and y € N — A.
Then xSy C MSN C MN C A, sox € Aory € A, because A is a prime
ideal. So, it is a contradiction. Hence, M —A =0 or N—A=0,ie. M C A
or N C A.

Conversely, for ideals M and N of S, from MN C A, let it follow that
M C Aor N C A. Assume z,y € S such that xSy C A. Then J(x)J(y) C A,
whence J(z) C Aor J(y) C A, ie. € Aoryec A Therefore, A is a prime
ideal of S. a

Exercises

1. Let ¢ be a homomorphism of a semigroup S into a semigroup 7. If A is a left
(right) ideal of S, then A¢ is a left (right) ideal of T'. If B is a left (right) ideal of
T, then By~ is a left (right) ideal of S.

2. If X is a finite set, then every ideal of a semigroup 7,(X) is principal. If X is
an infinite countable set, then the unique non-principal ideal of 7,.(X) is the set of
all mapping from 7,(X), such that its image is the finite subset of X.

3. A semigroup S is left (right) O-simple if and only if S® is a left (right) simple
subsemigroup of S.

4. Let M be a 0-minimal ideal of a semigroup S = S° which contains at least one
0-minimal left ideal of S. Then M is the union of all 0-minimal left ideals of §
contained in M.

If, also, M2 # 0, then every left ideal of M is a left ideal of S.
5. A semigroup S has no proper quasi-ideals (bi-ideals) if and only if S is a group.

6. If L is a left and R is a right ideal of a semigroup S, and if B is a subset of S
such that RL C B C RN L, then B is a bi-ideal of S.
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7. A semigroup S is a group if and only if S is left simple and right simple.

8. Prove that in a monogenic semigroup S = (a) = M(i,p), the group K, =
{a%, a1, ... a"*PT1} is the kernel of S.

9. A semigroup cannot have the proper left consistent left ideals and cannot have
the proper consistent ideals.

10. If B is a bi-ideal of a semigroup S, then P(B) is a bi-ideal of P(S5).
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1.7 1Ideal and Retractive Extensions of Semigroups

Let T be an ideal of a semigroup S. We define a relation 6 on S with:
abb & a=b V a,beT, a,bes,

ie. 8 =AgUT xT. It is evident that 6 is a congruence on S, and we call it
Rees’s congruence determined by the ideal T'. A factor semigroup S/6 we call
Rees’s factor semigroup under the ideal T, and denote it by S/T. Assume
that S/T = Q. According to the definition of Rees’s congruence, T' is one of
f-classes of S, which is a zero in (). Hence, a Rees’s factor semigroup is a
semigroup with zero. For a € S —T, a 6-class of the element a is a singleton.
Thus, we can informally discuss, a semigroup () as a semigroup obtained from
S contracting the ideal T into one element (zero), while a partial semigroup
S — T stays the same. Formally, a semigroup @ is isomorphic to the zero
extension of a partial semigroup S — 7. So, we usually identify partial
semigroups @Q°® and S —T.

A semigroup S is an ideal extension of a semigroup T by a semigroup
Q with a zero if T is isomorphic to an ideal T” of S and a factor semigroup
S/T is isomorphic to (. In that case we identify semigroups 7' and 77,
semigroups S/T" and @, and semigroups S — T and Q°. One of the main
problems with an ideal extension is: If there is a given semigroup 7" and a
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semigroup ) with zero, how do we construct an ideal extension S of T by
a semigroup ()7 Namely, if we assume that S = T U Q°®, the question is:
How do we define a multiplication * on S such that S is a semigroup, 7" an
ideal of S and a factor semigroup S/T is isomorphic to @, i.e. such that the
following conditions hold:

(M1) z*xy =y, if xy # 0; (M2) zxy €T, if zy = 0;
(M3) ax*b=ab; (M4) axxz € T; (M5) xxa €T,

for all z,y € Q°, a,b € T'? One very useful method for the construction of
some ideal extension gives us partial homomorphisms. We defined partial
homomorphisms in Section 1.3. The following lemma gives its role in the
construction of some ideal extensions.

Lemma 1.24 Let T and Q = Q° be the semigroups, and let ¢ : Q® +— T be
a partial homomorphism. We define a multiplication x on S =T U Q*® with:

_ zy, ifxy#0in Q
a*y_{ (zo)(yp), ifry=0inQ °

axx=a(xzp), rxa=(zyp)a, axb=ab,

for x,y € Q°, a,b € T. Then S with this operation x is a semigroup and S
1 an ideal extension of T by Q.

Proof. Follows immediately. O

An ideal extension constructed in Lemma 1.24 we call an extension of T
by Q determined with partial homomorphism.

Retractive extensions are in very close relation with ideal extensions de-
termined by partial homomorphisms, which we are about to discuss.

An endomorphism ¢ of a semigroup S is a retraction if ©? = ¢, i.e. if
(xp)p = zp, for every x € S. If ¢ is a retraction of a semigroup S, then
a subsemigroup T = S¢ of § we call a retract of S and say that ¢ is a
retraction of S onto T. Namely, a subsemigroup 7" of a semigroup S is a
retract of S if there exists a retraction of S onto T, i.e. if there exists a
homomorphism ¢ of S onto T such that xp = x, for every z € T'.

Here we are especially interested in the retracts of the given semigroup
which are equal to its ideals. If T is both, a retract of a semigroup S and an
ideal of S, then T is a retractive ideal of S and the corresponding retraction
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of S onto T is an ideal retraction. Namely, a retraction ¢ of a semigroup
S is an tdeal retraction of S if S is an ideal of S. Based on the following
lemma we give one characterization of ideal retractions:

Lemma 1.25 A retraction ¢ of a semigroup S is an ideal retraction of S if
and only if (zy)p = x(yp) = (xp)y, for all x,y € S.

Proof.  Let ¢ be an ideal retraction of S, i.e. let T'= S be an ideal of S.
Assume z,y € S. Since yp € T, then z(yp) € T, whence

z(ye) = [2(ye)le = (z9)(y9°) = (z0)(yp) = (zy)ep.

Similarly, we prove that (zp)y = (zy)e.

Conversely, let (zy)p = z(yp) = (xp)y, for all z,y € S, and let T' = Sp.
Assume a € T, x € S. Then ax = (ap)xr = (ax)p € T, and similar, xa € T.
Hence, T is an ideal of S. O

Lemma 1.26 Let T be a semigroup. To every element a € T we associated
the set Y, such that

a€Y, Y.NY,=0 ifa#b abeT.

Fora,be T, let p(® .Y, x Y} — Yy, be a mapping for which
(1) (2,0)¢ " = (a,y)'*? = ab,
forallx €Y, ye Yy, a,beT, and
(2) (2 )", 2)p ) = (x, (y, )" ) ("),
forallz € Yo —{a}, y € Yy, — {b}, z € Yo — {c}, a,b,c € T. We define a
multiplication x on S = UgerY, with:

TRy = (a;,y)go(“’b), ifxeY,yeYy,abel.

Then S with this multiplication is a semigroup, in notation (T;Y,, p(@).

Proof. Assume z,y,z € S,z €Yy, y €Yy, 2 €Y, a,b,c €T. According
to (2) we obtain that

(@ xy) 2= (2,9) 0" 5 2 = ((z,y) "), 2)p(*)
= (z, (y, 2)p" )Pl =z % (y, 2) ") = w % (y * 2).

Thus, S is a semigroup. O
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A subset A of a semigroup S is a transversal of S if a congruence £ on S
exists such that every £-classe contains only one element from A.

By the following theorem we give a characterization of a retractive ex-
tension, i.e. of an ideal extension determined by partial homomorphisms.

Theorem 1.18 Let T be an ideal of a semigroup S. Then the following
conditions are equivalent:

(i) S is an ideal extension of T determined by partial homomorphism;
(ii) S is a retractive extension of T';
(iii) T is a transversal of S;
(iv) S is isomorphic to some semigroup (T;Y,, o).

Proof.  (i)=-(ii) Let ¢ be a partial homomorphism which determined a
multiplication on S. We define a mapping v : S — T with

| oz, itxeS/T
m/)—{ xz, ifxeT

It is easy to prove that 1 is a retraction of S onto T.

(ii)=(i) Let ¢ be a retraction of S onto T". Then, by the usual identifica-
tion of partial semigroups S — 7T and @Q°, where Q = S/T, a retraction ¢ of
a retraction ¢ on Q°® is a partial homomorphism of @*® into T" and multipli-
cation on S is determined by this partial homomorphism, in the way which
we saw in Lemma 1.24.

(ii)=>(iv) Let ¢ be a retraction of S onto T. For a € T, let Y, = ap~! =

{z € S|zp =a}. Then S = UyerYy, and for sets Yy, a € T the conditions
of Lemma 1.26 hold.

For an arbitrary z,y € S there are a,b € T such that x € Y,, y € Y}, i.e.
xp = a, yp = b, whence (zy)p = (zp)(yp) = ab € Y. It is easy to prove
that for a,b € T, a mapping ¢(@? : Y, x Y} — Y, defined by

(2, 9)¢ " = (zy)e,
satisfied the condition (2) and a multiplication on S is defined the same as
in Lemma 1.26. Since T is an ideal of S, then (1) holds.
(iv)=(ii) Let S = (T;Y,, p(*"). We define a mapping ¢ : S — T with
zp=uaif x€Y,, a €T. It is easy to prove that ¢ is a retraction of S onto 7'

(iii)=(ii) Let & be a congruence on S such that in every &-classe there is
only one element from 7. For a € T, let C, = {x € S|alz}, and we define
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a mapping ¢ : S — T with xp =a if x € Cy, a € T. Tt is evident that ¢ is
a retraction of S onto T'.

(ii)=(iii) Let ¢ : S — T be a retraction. Then £ = kery is a congruence
on S. Let C be an arbitrary &-class of S, and let a,b € C NT. Then
a = ayp = by = b. Therefore, T is a transversal of S. O

Theorem 1.19 A semigroup T is a retract of every one of its ideal exten-
sions if and only if T has a unit.

Proof. Let T be a retract of every one of its ideal extensions. Then T is
also a retract of a semigroup S = T'. Let ¢ be a retraction of S onto 7.
Then for an arbitrary x € T we have

z(lp) = (xp)(lp) = (¢1)p = o = v = (lx)p = (1p)(z¢) = (1p)z,
so 1y is an identity in 7.

Conversely, let T' be a semigroup with an identity e. Let S be an arbitrary
ideal extension of T'. Then it is easy to prove that the mapping ¢ : S — T

defined by
TP = xe, x €S,

is a retraction of S onto T O

Lemma 1.27 Let £ be a congruence on a semigroup S. For every congru-
ence n on S which contains & we define a relation n' on S/€ with

(z&n' (y€) < any, zyes.

Then 1 is a congruence on S/& and a mapping n — n' of the set of all con-
gruences on S which contains & into the set of all congruences of a semigroup
S/€ is a bijection which preserves an order.

Proof.  The proof follows immediately. O

Let T be an ideal of a semigroup S. A congruence £ on S is a T-
congruence if its restriction on 7" is Ar. An ideal extension S of a semigroup
T is a dense extension of T if the equality relation is the unique 7T-congruence
on S.

Lemma 1.28 Let S be an ideal extension of a semigroup T, let € be a T'-
congruence on S and let S/& be an ideal extension of T. Then S/ is a dense
extension of T if and only if & is a mazimal T-congruence on S.
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Proof. Follows from Lemma 1.27. O

Theorem 1.20 Let D be an ideal extension of a semigroup T, and let () =
Q" be a semigroup such that TN Q = 0. Let ¢ : Q* — D be a partial
homomorphism such that (ap)(bp) € T, whenever ab = 0 in @, a,b € Q.
We define a multiplication * on S =T U Q® with

(ap)b, ifa€Q®beT,
a(bp), ifacT,beQ®,
(ap)(byp), ifa,b€ Q% ab=0 in Q,

ab, otherwise.

axb=

Then S is an ideal extension of T by Q.

Conversely, every ideal extension of a semigroup T by a semigroup @
can be constructed in the previous way, for any extension D of T and any
partial homomorphism ¢ from Q°® into D, where we can choose that D is a
dense extension of T and that is D =T U Q%p.

Proof. Let S be an ideal extension of T" by ). In a partially ordered set
of all T-congruences on S, by Lemma 1.11, there exists a maximal element,
i.e. there exists a maximal T-congruence { on S. Let D = S/¢ and let ¢ be
a restriction of a natural homomorphism ¢f on Q® = S — T..

If a,b € Q* and ab # 0 in Q, then (ap)(bp) = (a&?)(b¢f) = (ab)¢? =
(ab)p, so ¢ is a partial homomorphism. If a,b € Q°® and ab = 0 in Q, i.e.
ab € T in S, then (ayp)(bp) = (a&?)(b€") = (ab)&® = ab € S. Furthermore,
D = S¢8 =T U Q*p. Based on Lemma 1.28, D is a dense extension of 7.

Fora € S,bc Q® abc S, soab= (ab)&! = (a&?)(b&?) = a(by). Similarly
we prove the other cases from the multiplication . Thus, a semigroup S
can be constructed in this the way from the formulation of a theorem.

The converse follows immediately. O

Let S = S°. An element a € S is nilpotent if there is n € Z* such that
a™ = 0. The set of all nilpotent elements from a semigroup S we denote by
Nil(S). A semigroup S is a nil-semigroup if S = Nil(S). An ideal extension
S of a semigroup T is a nil-extension of T if S/T is a nil-semigroup, i.e. if
VT = 5. A semigroup S = S° is nilpotent if there is n € ZT such that
Sl = 0. If S"*! = 0, then we say that S is (n + 1)-nilpotent. A semigroup
S is nilpotent, the class of nilpotency n + 1, if S is (n + 1)-nilpotent and it
is not n-nilpotent. Let n € Z*. An ideal extension S of a semigroup T by
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nilpotent ((n+ 1)-nilpotent) semigroup we call a nilpotent ((n+ 1)-nilpotent)
extension of T. A retractive (n+ 1)-nilpotent extension of a semigroup 1" we
call n-inflation of a semigroup 7', 1-inflation is an inflation, and 2-inflation
is a strong inflation.

Exercises

1. Let I and J be the ideals of a semigroup S. Then I N J and I U J are ideals of
Sand (IUJ)/J=I/(INJ).

2. A semigroup S is a semigroup with unique decomposition if every non-zero

element from S has a unique decomposition into a product of the elements from
S — 82

Let T =TY and S be semigroups. Then

(a) there exists a semigroup U with a unique decomposition and a homomorphism
¢ of U onto T such that [0¢71| = 1;

(b) if v is a partial homomorphism of U® into S such that ker¢ C kera on U®,
then the mapping o/ : T* — S defined by ya' = xc, where x € y¢p~t, y € T®,
is a partial homomorphism of 7' into S.

Conversely, every partial homomorphism of T'® into S is determined in this way.
Also, the mapping a — o’ is injective.

3. Let TR(S) be the set of all ideal retractions of a semigroup S and let RI(S) be
the set of all retractive ideals of S. Then

(a) If TR(S) is a semilattice under the product of mappings, then RI(S) is a
semilattice under the intersection and RI(S) is the homomorphic image of
IR(95);

(b) If S? = S or for all a,b € S, from a? = b*> = ab = ba it follows that a = b,
then IR(S) is a semilattice and RI(S) = IR(S).

4. Let S be a semigroup such that S2 = S or for all a,b € S, from a® = b = ab = ba
it follows that a = b, and if 1 is an ideal of .S, then there exists at most one retraction
of S onto I.

5. Let T be a semigroup, let @ be the non-empty set and let ¢ be an arbitrary
mapping from @ into 7. Then S = @ U T with the multiplication defined by:
xxy = (xp)(yp), x+xa=(ap)a, axx = a(ry), axb=ab, for z,y € Q, a,beT,is
a semigroup and S is an inflation of T. Conversely, every inflation of a semigroup
T can by constructed in this way.
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1.8 Green’s Relations

On a semigroup S we define the relations £, R, J, H and D in the
following way

alb & L(a)=L(b), a,be S;
aRb < R(a) = R(b), a,be S
aJb < J(a)=J(b), a,beS;

H=LNR, D=CLR.

These relations are equivalence relations and we call them Green’s relations
or Green’s equivalences. By Lg (Ra, Jo, Hay, D,) we denote a L- (R-, J-,
‘H-, D-) class containing a fixed element a € S.

Lemma 1.29 Let a and b be the elements of a semigroup S, then

alb & (Fr,ycS') za=0b, yb=a;
aRb < BuveSHau=0b, bv=a;
aJb & (3z,y,u,ve St zay=0b, ubv = a.
According to Lemma 1.29 it is evident that the following corollary holds.

Corollary 1.12 FEwvery idempotent e of a semigroup S is a left identity ele-
ment of Re and a right identity element of L..

Lemma 1.30 On a semigroup S, L is a right and R is a left congruence
relation.

Lemma 1.31 On a semigroup S the relations £ and R commute.
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Proof.  Assume aLRb, a,b € S. Then there exists ¢ € S such that aLc and
c¢Rb. According to Lemma 1.29 we have that a = x¢, b = cy, ¢ = ua = bv,
for some z,y,u,v € S'. Let d = ay. Then

d=xzcy=2xb, a=xzc=zxzbv=dv, b=cy=uay=ud.

Hence, aRd and dLb, so LR C RL. Similarly, we can prove that RL C LR.
Therefore, LR = RL. O

It is evident that £ U R C J and D C J. There are semigroups on
which some Green’s relations are equal. For instance, if S is a commutative
semigroup then all of Green’s relations are equal to each other. There are
semigroups on which the relation D is the proper subset of the relation 7.
Here, we will prove that the relations D and J are equal to each other
on an important class of semigroups, on the class of completely m-regular
semigroups.

An element a of a semigroup S is regular if there exists x € S such that
a = azxa. A semigroup S is regular if all its elements are regular.

An element a € S is w-regular if there exists n € Z™ and x € S such that
a™ = a"za". A semigroup S is w-reqular if all its elements are w-regular.

An element a € S is completely m-regular if there exists n € Z* and
x € S such that a” = a"za™ and a"x = xa™. A semigroup S is completely
m-regular if all its elements are completely w-regular.

Lemma 1.32 If S is a completely w-reqular semigroup, then D = J.

Proof. Let S be a completely m-regular semigroup. Assume a,b € S such
that aJb. Then a = xby and b = wav, for some z,y,u,v € S*. So, a =
z(uav)y = (zu)a(vy), whence a = (zu)ma(vy)™, for all m € Z*. Assume
n € ZT and z € S such that (zu)” = (zu)"z(zu)" and (zu)"z = z(zu)".
Then a = (zu)"a(vy)" = (zu)"z(zu)"a(vy)" = (zu)"za = z(xu)"a € Stua.
Thus aLua. Similarly, we prove that aRav. Since L is a right congruence
if follows that b = uavLav. Therefore, aDb, i.e. J C D. Since the opposite
inclusion always holds we have that J = D. O

More will be said about completely w-regular semigroups in Section 2.1.

Let p be an equivalence relation on a semigroup S, let A and B be a
subset of S and let ¢ : A — B be a mapping. We say that the mapping ¢
preserves the p-classes if x p (zg) for all z € A.

The next two results are well known as Green’s lemmas.
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Lemma 1.33 Let a and b be R-equivalent elements of a semigroup S and
let u,v € St such that au = b and bv = a. Then the mappings

(1) T xu, T € Ly, y=yv, yE Ly,

are mutually inverse bijections, R-class preserving, of L, onto Ly and of Ly
ontp Lg, respectively.

Proof.  First, we note that the given mappings (1) are right translation p,
and p, restricted to L, and L, respectively. For x € L,, from zLa we get
zulau = b, because L is a right congruence. Thus p, maps L, into L.
Similarly, p, maps L into L,. Also, for x € L, from xLa it follows that
x = wa for some w € S, whence zp,p, = zuv = wauv = whv = wa =
x. Similarly, we prove that yp,p, = y for every y € L;. Therefore, the
mappings (1) are mutually inverse bijections of L, onto L; and of L; onto
L, respectively.

For x € L, we have that x = xp,p, = (xu)v, whence zRxu. Similarly,
we prove that yRyv, for every y € L. Thus, the mapping (1) preserves
R-classes. a

Lemma 1.34 Let a and b be L-equivalent elements of a semigroup S and
let s,t € S such that sa =b and tb = a. Then the mappings

(2) TV sr, T € R, y—ty, y€E Ry,

are mutually inverse bijections, L-class preserving, of R, onto Ry and of Ry
onto R,, respectively.

Lemma 1.35 Let a and b be the elements of a semigroup S, then:

(i) If ab € H,, then the mapping x — xb, © € H, is a bijection from H,
onto Hg;

(ii) If ab € Hy, then the mapping x — ax, x € Hy is a bijection from Hy
onto Hy.

Proof. (i) From ab € H, it follows that abRa, whence a = (ab)u for
some u € S, so by Lemma 1.33 the mappings £ :  — b, € L, and
&y yu, y € Ly = L, are mutually inverse bijections from L, onto
itself which preserve R-classes. Let n and 1’ be the restrictions of £ and &'
on H,, respectively. For x € H, we have that an = x{ € L,. On the other
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hand, since & preserves R- classes, then zRx{ = xn, i.e. zn € Ry = R,.
Thus on € L, N Ry = H,, so n maps H, into itself. Similarly, we prove
that n’ maps H, into itself. It is evident that n and 7’ are mutually inverse
bijections from H, onto H,.

(ii) This is proved in a similar way as (i). O
The following result is as famous as Green’s theorem.

Theorem 1.21 Let H be an H-class of a semigroup S, then H> N H = ()
or H> = H.

If H? = H holds, then H is a (mazximal) subgroup of S.

Proof. Assume that H> N H # (), then there exist a,b € H such that
ab € H. According to Lemma 1.35 the mappings

z — xb, x € H, y— ay, y <€ H,

are bijections from H onto itself. Thus ah,hb € H for every h € H and
again by Lemma 1.35, for every h € H, the mappings

x — zh, x € H, y — hy, y € H,

are bijections from H onto itself. Hence, hH = Hh = H for every h € H,
so, we have that H?> = H and H is a subgroup of S. It is easy to prove that
H is a maximal subgroup of S. O

Corollary 1.13 If e is an idempotent of a semigroup S, then H. is a sub-
group of S. Also, the H-class cannot contain more than one idempotent
element.

Lemma 1.36 If a D-class D of a semigroup S contains a reqular element,
then every element of D is reqular.

Proof. Let a be a regular element of a class D and let b € D. Then aDb,
i.e. ua =c, ve =a, cs = b and bt = c for some ¢ € S and u,v,s,t € St. If
x € S such that a = axa, then we have that

b= cs = uas = uaras = cras = cxrvcs = cxvb = btxvb.

Therefore, b is a regular element too. O
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According to Lemma 1.36 a D-class of a semigroup S which contains a
regular element (i.e. whose elements are all regular) we call a reqular D-class.

Lemma 1.37 If D is a reqular D-class, then every L-class and every R-
class contained in D contains an idempotent.

Proof. 1If a € D and a = aza, for some = € S, then az,za € E(S5), and
ar € R, and xza € L. O

Let A and B be the ideals of a semigroup S such that A C B. It is easy
to prove that the factor set B/A can be embedded into a factor set S/A, and
usually we assume that B/A is a subsemigroup of S/A.

According to Theorem 1.4 and Lemma 1.27 the next result immediately
follows:

Lemma 1.38 Let A be an ideal of a semigroup S':

(i) If B is an ideal of S such that A C B, then B/A is an ideal of S/A
and (S/A)/(B/A) = S/B.

(ii) The mapping 0 : B — B/A is a bijection from Id(S) onto Id(S/A)
which preserves the partial order.

Let a be an element of a semigroup S. Based on I(a) we denote the set

I(a)=J(a) —Jo={x € S|J(z) C J(a)}.

Lemma 1.39 Let a be an element of a semigroup S such that I(a) # (.
Then I(a) is an ideal of S. Moreover, I(a) is the greatest element in the
partial ordered set of all the ideals of S which are strictly contained in J(a).

Proof. Assume b € I(a) and x € S. Then J(bx) C J(b) C J(a) and
bx € J(a), so bx € I(a). Similarly, we prove that b € I(a). Thus, I(a) is
an ideal of S.

Let A be an arbitrary ideal of S strictly contained in J(a). For z € A
we have that J(z) C A C J(a) and = € J(a), so, x € I(a). Thus, A C I(a).
Therefore, I(a) is the greatest ideal of S strictly contained in J(a). a

For reasons of simplicity we use the following notation: the factor set

S/0is S.
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For an element a of a semigroup S, the factor semigroup J(a)/I(a) we
call the principal factor of a semigroup S which contains the element a.

The important characteristics of the principal factors give the following
result.

Theorem 1.22 Let a be an element of a semigroup S. Then one of the
following statements holds:

(i) J(a) is the kernel of a semigroup S;
(i1) I(a) # 0 and the principal factor J(a)/I(a) is a 0-simple semigroup or
a zero-semigroup.

Proof. Let J(a) be the kernel of a semigroup S. Then there exists an ideal
A of S such that A C J(a). For z € A we have that J(z) C A C J(a), so
x € I(a). Therefore, I(a) # 0.

Let A be a non zero ideal of a semigroup S/I(a). Using the bijection
from Lemma 1.38, the ideal B corresponds to the ideal A such that I(a) C
B C J(a). According to Lemma 1.39, it follows that B = J(a), whence
A = J(a)/I(a). Thus J(a)/I(a) is a O-minimal ideal of S/I(a) and by
Corollary 1.7 J(a)/I(a) is a O-simple semigroup or a zero-semigroup. O

Exercises

1. Let T be a monoid and let H be a group of its identity. Let 8 be a homomorphism
of T into H, and let N be the set of all non-negative integers. Then, S = N xT x N
with the multiplication defined by:

(m;a;n)(p;biq) = (m —n+t; (a8 ") (00" P); g — p + 1),
for (m;a;n), (p;b;q) € S and t = max{n,p}, is a semigroup, in notation S =
BR(T,0), which we call the Bruck-Reilly’s extension of T by 6.
Prove the following conditions:
(a) S is a simple semigroup;
(b) (m;a;n)Ds(p;bsq) < aDrb,  (m;a;n), (p;biq) € S;
(c) every semigroup T can be embedded into BR(T",0), where 6 : Tt +— {1};
)

(d) if T is a semigroup without an identity, 6 : T* — {1} and S = BR(T*,6),
then D #£ 7 on S.

2. If o, 8 € 7.(X), then

(a) aLf e Xa=Xp;
(b) aRp < kera = kerf3;
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(c) oD & [Xa| = |XB];
(d) D=J.

3. Let a and b be the elements of a semigroup S. Then (a,b) € L' if and only if a
and b are L-equivalents in any semigroup of S. The relation £ is the generalization
of Green’s relation £. Dually, we define the relation Rf. By H! we denote the
intersection of relations £ and Rf. Prove the following conditions:

(a) alfb < ((Vo,y € SY) ax = ay < bx = by);

(b) aR'b & ((Vz,y € SY) za = ya & b = yb);

(c) LT (RT) is a right (left) congruence on S;

(d) HT-class which contains an idempotent is a cancellative monoid.

4. If e and f are the idempotents of a semigroup .S, then

eLfoe=ef f=fe and eRf s e= fe, f=ef.
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Chapter 2

Regularity on Semigroups

The notion of the regularity in semigroups and rings was introduced by
J. von Neumann, in 1936, who defined an element a of a semigroup (ring) S
a being regular if the equation @ = axa, with a variable z, has a solution in
S. His work initiated an investigation of many other types of regularity.

R. Croisot, in 1953, stated a very interesting problem of the classification
of all types of the regularity of semigroups defined by equations of the type
a=amza", with m,n > 0, m+n > 2. He proved that any of these equations
determines either ordinary regularity, left, right or complete regularity (see
also the book by A. H. Clifford and G. B. Preston, Section 4.1). A simi-
lar problem, concerning all types of the regularity of semigroups and their
elements defined by equations of the type a = aPxalya”, with p,q,r > 0,
was treated by S. Lajos and G. Szdsz, 1975. S. Bogdanovi¢, M. Ciri¢, P.
Stanimirovi¢ and T. Petkovié¢, 2004, determined all types of the regularity
of elements defined by linear equations, and proved that there are exactly
14 types of the regularity of semigroups defined by such equations.

R. Arens and I. Kaplansky, in 1948, introduced the notion of w-regularity
which is a generalization of regularity. m-regularity is in very close connection
with the nil-extensions of semigroups, about which we will talk throughout
this book. In particular, we will investigate completely m-regular semigroups
which M. P. Drazin, in 1958, called pseudo-inverse semigroups, while L. N.
Shevrin and his students, for a short time, called them epigroups. These
semigroups we meet as eventually regular or quasi-periodic semigroups.

53
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2.1 m-regular Semigroups

In this section we outline the general characterizations of w-regular semi-
groups. The set of all the regular elements of a semigroup S we denote by
Reg(S) and we call it the regular part of S. A semigroup S is regular if
S = Reg(S). We remind the reader that a semigroup S is called 7-regular
if for every a € S there exists n € Z™ such that a™ is a regular element.

Lemma 2.1 The following conditions for an element a of a semigroup S
are equivalent:

(i) a is w-reqular;
(ii) there exists n € Zt such that R(a"™) (L(a™)) has an idempotent as a
generator;

(ili) there exists n € ZT such that R(a™) (L(a™)) has a left (right) identity.

Proof.  (i)=-(ii) Let a be a m-regular element, i.e. let there exists n € Z*
and x € S such that a™ = a"za”. Assume e = a"x. Then R(a") = R(e) and
e € E(S5), so (ii) holds.

(ii)=-(i) If (ii) holds, then R(a™) = R(e) for some n € Z™ and e € E(S),
so there are z,y € S such that a” = ex, e = a"y whence we have that

Thus, a is w-regular.
(i)=-(iii) Let a™ = a"za™, for some n € Z* and z € S and let e = a"x.
Assume an arbitrary b € R(a™). Then b = a™y for some y € S, so

eb=a"xzb=a"za"y = a"y = 0.

Therefore, e is a left identity of R(a™).
(iii)=(i) Let n € Z* such that R(a™) has a left identity e. Then e = a"x,
for some = € S', so a™ = ea” = a"xa™. Thus, a is 7T-regular. O

Corollary 2.1 The following conditions on a semigroup S are equivalent:

(i) S is a w-regular semigroup;
(ii) for everya € S there existsn € ZT and e € E(S) such that R(a™) = eS
(L(a™) = Se);
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(iii) for every a € S there exists n € Z" such that R(a™) (L(a™)) has a left
(right) identity.

Corollary 2.2 An element a of a semigroup S is reqular if and only if there
is an idempotent e € E(S) such that aS' = eS.

Theorem 2.1 The following conditions on a semigroup S are equivalent:

(i
(ii

(iii

S is simple and w-reqular;
S is simple and reqular;
(Va,b € S) a € aSbSa;

every bi-ideal of S is a simple semigroup.

~— — ~— —

(iv

Proof.  (i)=-(ii) Suppose that S is m-regular and simple. Let a € S. Then
there exist z,y € S such that a = zay = 2"ay", for every n € Z*. For some
n € ZT and v € S we have y" = y"vy", and then a = 2"ay"vy" = avy™,
so based on the simplicity of S we obtain that a € aSa?S. From this it
follows that a = apa?q, for some p,q € S, whence a = (apa)"aq™, for
every n € Z*. Since S is m-regular, then we have that a = (apa)"aq" =
(apa)"u(apa)*aq™ = (apa)"ua, for some n € Z*T and u € S. Therefore,
a € aSa and we have proved that S is a regular semigroup.

(ii)=(i) This is obvious.

(ii)=-(iii) Let a,b € S. Then a € SbS, and also, there exists z € S such
that a = axa. But, then we have that a = azaxa € axSbSxza C aSbSa.

(iii)=-(ii) This is obvious.

(iii)=-(iv) Let B be a bi-ideal of S and let a,b € B. According to (iii)
we have that a € aSb?Sa, which yields

a € aSb?Sa = (aSh)b(bSa) C (BSB)b(BSB) C BbB.

Thus, we have proved that B is a simple semigroup.

(iv)=-(iii) Consider the arbitrary elements a,b € S and the principal bi-
ideal B = B(a) = {a} U {a?} UaSa. Based on the hypothesis, B is a simple
semigroup, and a,aba € B, so we have that

a € BabaB C aS'abaS'a C aSbSa.

Therefore, (iii) holds. |
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The element = of a semigroup S is the inverse of an element a € 5 if
a = azra and r = xax. The set of all the inverse elements of the element
a we denote by V(a). We mention that it must make a difference between
the notion of the "inverse of an element a” and the ”inverse of an element a
in a subgroup - group inverse”. A semigroup S is inverse if every one of its
elements has an unique inverse element.

Lemma 2.2 An element a of a semigroup S has an inverse element if and
only if a is a reqular element.

Proof.  Assume that a is a regular element. Then a = axa for some x € S,
so the element y = zax is an inverse of the element a.

The converse follows immediately. a

Lemma 2.3 Let £ be a congruence relation on a m-regular semigroup S and
let A,B € S/¢ such that A= ABA and B = BAB in S/§. Then there exists
a,b €S such thata € A, b€ B, and a = aba and b = bab in S.

Proof. Letx € A,y € B. Also, let n € Z* such that (zy)?® € Reg(S) and

let z be the inverse element of (zy)?". If we assume that a = zyz(zy)?" 'z,

b= yz(zy)?>"~! then we have a = aba and b = bab. On the other hand, from
A= ABA, B= BAB in S/¢ we have that x&xyx, ySyzy, so

zyé(zy)*, for every k € Z7T.
Hence, it follows that
wyzE(zy) 'z, (xy)* et (zy)* e,
and by Lemma 1.5 we have that
a = xyz(zy)*" wt(zy)* 2 (vy) e = (vy) " wboyata.

Thus, a € A. Similarly we prove that b € B. a

The following corollary is famous in the literature as the Lallement
lemma. In the Section 6.6 we give some new generalizations on Lallement’s
lemma.

Corollary 2.3 Let £ be a congruence relation on a w-regular semigroup
semigroup S. Then every §-class which is an idempotent in S/, contains
an idempotent from S.
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Proof. Let E be an arbitrary idempotent from S/¢. Since F = EFEFE in
S/€ then there exists a,b € E such that a = aba and b = bab (by Lemma
2.3). Now we have that ab € EE = E and ab is an idempotent in S. |

Theorem 2.2 Let ¢ be a congruence on a w-reqular semigroup S, letn € Z+
and let A, By, Ba, ..., B, € S/§ such that A = AB;A and B; = B;AB;, for
all i € {1,2,...,n}. Then there exist a,by,ba,...,b, € S such that a € A,
bi € B; and a = aba, b; = bab;, for alli € {1,2,...,n}.

Proof.  The theorem we will prove by induction. According to Lemma 2.3
the statement of the theorem is true for n = 1. Assume that the statement
of theorem is true for some positive integer £ < n. Then there are elements
T,Y1,Y2,---, Yk € S such that x € A, y; € By, © = zy;x and y; = y;2y;
for i € {1,2,...,k}. Assume that the element yx 1 € Bgy1. Since S is a
m-regular then there exists m € Z% such that (zyg, i)™ € Reg(S). Let
z € V((zyre1)®™) and let

U= rYpp12(yps1) ",
Ukt1 = Yrr12(@yrg)?"
vi = Yiryp 12 (wypn) " oy, ford € {1,2,.. k.
It is easy to prove that u € A, v; € B;, u = uv;u and v; = v;uv;, for all

ie{l,2,...,k+1}. O

Exercises

1. A semigroup S is regular if and only if L N R = RL, for every left ideal L and
every right ideal R of S.

2. Let S be a regular subsemigroup of a semigroup 7. Then Green’s relations L,
R and H on S are restrictions of the corresponding relations on 7.

3. The statement that a full semigroup of transformations 7,(X) is regular, for
every set X, is equivalent to the axiom of choice.

4. A semigroup satisfies the conditions T'C' (term conditions) if

(Cl) zy =2z = wuy = uz;

(C2) yxr =z2a = yu=zu;

(C3) yizys = 21220 = Yruys = z1uzs.

A semigroup S which satisfies the T'C' conditions we call a T'C-semigroup.

Let G be a commutative group, I, A and @) be non-empty sets and ¢, A and 3
be mappings from G into I, A and @, respectively. Then the set S = QU (G x I x A)
with a multiplication defined by

pxq = ((p)(gd);pa,qB), (a;i,\)*(b;j,pu) = (ab;i, p),
p*(a;i, ) = ((pd)a; pa, \) (a;4,A) *p = (a(po);i,pB),
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for p,q € Q, (a;i,A), (b;j, 1) € G x I x A, is a m-regular T'C-semigroup.
Conversely, every m-regular T'C-semigroup can be constructed in this way.
5. A semigroup S is a periodic T'C-semigroup if and only if S is isomorphic to some
semigroup constructed in Exercise 4., where G is a periodic group.
6. Let Z(X) be the set of all injective partial mappings of a set X, including the
empty relation. Prove that Z(X) is an inverse subsemigroup of B(X).
A semigroup Z(X) we call a symmetric inverse semigroup of the set X.
7. Every inverse semigroup can be embedded into some symmetric inverse semi-
group.
8. A congruence & on a semigroup S divides idempotents if for all e, f € E(S5), from
e f it follows that e = f. On an arbitrary semigroup S we define a relation p with

w={(a,b) € S xS|(VxeReg(9))((zRxaV xRxb) = xaHxb A
(xLax V xLbx) = axHbx)}.

Prove that p is a congruence which divides idempotents. If S is a w-regular semi-
group, then p is the greatest congruence which divides idempotents.

9. The following conditions for the congruence p, from Exercise 8., on a semigroup
S are equivalent:

(a) € C
(b) (Ve gE(S))(Vb € S5) e€b= L(e) C L(b) A R(e) C R(b);
(¢) (Va € Reg(S))(Vb € S) alb = L(a) C L(b) A R(a) C R(b).

If S is a m-regular semigroup, then every one of given conditions are equivalent with

(d) ¢ divides idempotents.
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2.2 Completely m-regular Semigroups

As we know, an element a of a semigroup S is completely regular if there
is x € S such that a = axa and ax = za. A semigroup S is completely
regular if all its elements are completely regular.

The set of all the completely regular elements of a semigroup S we denote
by Gr(S) and we call it the group part of S. This name is justified from the
following lemma.

Lemma 2.4 The following conditions for an element a of a semigroup S
are equivalent:

(i) a is completely regular;
(ii) a has inverse which commutes with a;
(iii) a € a%Sa?;
(iv) a is both right and left reqular;
(V) a is contained in some subgroup of S.

Proof.  (i)=-(ii) Assume z € S such that a« = axa and ax = za. Then for
y = xax we have that y € V(a) and ay = ya.

(ii)=-(iii)=-(iv) This follows immediately.

(iv)=>(v) Let a € a®2S N Sa®. Then we have a = a’*r = ya?, for some

22 = ya. Let e = ax = ya. Since €? = yaaxr =

2

x,y € S, whence ax = ya
ya’r = ya = e, e € aS N Sa, ae = a(ax) = a’z = a, ea = (ya)a = ya® = a,
then a € eS N Se, so by Theorem 1.6 we have that a € G..

(v)=(i) This follows immediately. |

An element a of a semigroup S is completely m-regular if there exists
n € Z* and x € S such that a” = a"za™ and a"x = za", i.e. if some power
of the element a is completely regular. A semigroup S is completely m-regular
if all its elements are completely m-regular.

An element a of a semigroup S is pseudo inverse if there exists x € §
and n € ZT such that a” = a"t'z, ar = za and z = z%a. In that case z is
the pseudo inverse of a. A semigroup S is pseudo inverse if all its elements
are pseudo inverse.

An element a of a semigroup S is left (right) reqular if a € Sa? (a € a%9).
A semigroup S is left (right) regular if all its elements are left (right) regular.
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The set of all left (right) regular elements of a semigroup S we denote by
LReg(S) (RReg(9)).

An element a of a semigroup S is left (right) w-reqular if there is n € Z™
such that a™ € Sa"*! (a™ € a"*1S). A semigroup S is left (right) T-regular
if all its elements are left (right) m-regular.

Theorem 2.3 The following conditions on a semigroup S are equivalent:

(i) S is completely w-regular;

(ii) for every element from S some of its power is in some subgroup of S;
(iii) for every a € S there exist n € Z* such that a™ € a™Sa™*!;
(iii’) for every a € S there exist n € ZT such that a™ € a™*1Sa";

(iv) S is w-regular and left w-reqular;

(v) S is pseudo inverse.

Proof.  (i)=-(ii)=-(iii) This follows by Lemma 2.4.

(iii)=(iv) This is evident.

(iv)=(i) Let (iv) hold. Assume a € S. Since a is left m-regular, then
there exists m € ZT and = € S such that a™ = za™*!, whence

(1) a™ = g™tk

for every k € ZT. Since a™ is w-regular, then there exists p € Z* and

y € S such that a™? = a™Pya™P. Then from (1) we have that o =
a™Py(z2mPgmT2mPYP € gMPSa™P e

(2) a" = a"za*",
for n = mp and some z € S. By (2) it is easy to prove that
(3) a = an(Zan)kank7

for every k € Z*. Since za" is left m-regular, then there exists ¢ € Z* and
u € S such that (za™)? = u(za™)4*L. Then (2a™)? = u?(za™)?*2, so by (3)
we have

a" = a"(za")9a™ = a"u?(za™)92a™ = a"u?za"z[a" (za™)1a™)
= a"u?za"za" = a"u?(za")?,

whence it follows that

a’"za" = a"(a"za") = a"u?(za™)?(a"za") = a"u?z(a"za*") za"
= a"u’za"za" = a".

zZa
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From this and (2) using Lemma 2.4 we get that a is a completely m-regular
element. Thus (i) holds.

(ii)=(v) Let a be an arbitrary element from S. Then a" € G, for some
e € E(S) and n € Z*. According to Lemma 1.8, ae = ea € G, so there is
z € G, such that rea = aex = e. Since x+ = xe = ex then za = ax = e and

ntly Thus a is pseudo inverse.

r = ze = x?a. Finally, a" = a"e = a
(v)=(iii) Let a be a pseudo inverse element of S. Then there are x € S

and n € ZT such that

n n+1

a" =a"Mr =a"0? = = 0¥ = a"2?"a™ € a"Sa" .

O

Lemma 2.5 Let S be a completely w-reqular semigroup. If K is a subsemi-
group of S and completely w-reqular, then

Gr(K) = KN Gr(S).

Proof. 1If g is a group element of a completely m-regular semigroup, then
its group inverse belongs to the same maximal subgroup as g. O

Thus, that the pseudo inverse is unique proves the following lemma.

Lemma 2.6 The element a of a semigroup S has at most one pseudo in-
verse. If x is a pseudo inverse of a then x commutes with every element
from S which commutes with a.

Proof. Let x and y be two pseudo inverses of the element a and let & and
m be corresponding integers from the definition of pseudo inverse. Assume
that n = max{k, m}. Then

za" ! =" = a”+1y, T = 1‘2@, Y= ay2.
Hence
r=212%a=2%%= - =2"a" = 2" 0"ty = zay = raay?®
— $a2y2 - .= xan—&—lyn—l-l — anyn+1 =...=q.

Thus, a has at most one pseudo inverse x.

Now, assume u € S such that au = ua. Then za™u = zua™ = zua" 'z =

za" M uzr = a"uzr whence we have 2" 'a"u = a"ua™t!. Namely, since z =

2" ta” then zu = 2" Ha™u = a"ua™ ! = ua"a" = ux. O



62 CHAPTER 2. REGULARITY ON SEMIGROUPS

A pseudo inverse is a generalization of a group inverse. Using Lemma
1.8 and Theorem 2.3, pseudo inverses can be represented in another way.
Namely, if x is pseudo invertible, or equivalently, a completely m-regular
element of a semigroup S, then z" € G, for some n € Z* and ze € G,
and the pseudo inverse Z of z is given by T = (ze)~!, i.e. T is the group
inverse of the element xe in the group G.. If z is an element of a completely
m-regular semigroup S and z" € G,, for some n € Z" and e € E(S), then
20 denotes the identity of G, ° = e. A pseudo inverse is in fact Drazin’s
inverse.

An element a of a semigroup S is intra reqular if a € Sa®S. The set of
all intra regular elements of a semigroup S we denote by Intra(S) and we
call it the intra regular part of S. A semigroup S is intra reqular if all its
elements are intra regular.

An element a of a semigroup S is intra w-regular if there is n € Z* such
that a” € Sa®"S, i.e. if some its power is intra regular. A semigroup S is
intra w-regular if all its elements are intra m-regular.

Theorem 2.4 A semigroup S is left w-reqular if and only if it is intra -
regular and Intra(S) = LReg(S).

Proof.  Let S be left m-regular. Clearly, S is intra m-regular and LReg(.S) C
Intra(S). Assume a € Intra(S). Then a = wa®y, for some z,y € S, whence
a = (za)"ay", for each n € Z*. Since S is left 7-regular, then (za)" =
z(xa)*", for some n € Z* and z € S, whence

a = (za)"ay™ = z(za)*"ay" = z(xa)"a € Sa’.

Therefore, a € LReg(S), so Intra(S) = LReg(5).

The converse follows immediately. O

Lemma 2.7 Let € be one of the following classes of semigroups: reqular,
w-reqular, intra regular, intra mw-reqular, completely regular, completely -
reqular, left w-reqular, right w-regular, and let £ be a semilattice congruence
on a semigroup S. Then S is from a class € if and only if every £-class of
S is from €.

Proof. We will prove only for a class of w-regular semigroups, in the other
cases the proofs are similar.

Let S be a m-regular semigroup, let A be an arbitrary &-class of S and
let @ € A. Then there are n € ZT and = € S such that a" = a"za"
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and z = za"z. Since z€ = (za"z){ = (x€)((a™)€)(z€) = (x€)(al) =
((@™)&)(x€)((a™)€) = (a™)€ = a&, so a € A. Thus, A is a m-regular semi-
group.

The converse follows immediately. O

Similarly we prove the following result.

Lemma 2.8 Let € be a class of completely regqular semigroups or a class
of a completely w-reqular semigroups, and let £ be a band congruence on a
semigroup S. Then S is from a class € if and only if every £-class of S is
from €.

Exercises

1. Let N be the set of all non-negative integers. Then S = N x N with a multipli-
cation defined by

(m,n)(p, Q) = (m —-n+ maz{n,p}, q—p+ ma:c{n,p}), (mvn)v (p7 q) €5,

is a semigroup which we call a bi-cyclic semigroup. Prove that a bi-cyclic semigroup
is simple and inverse, and it is not completely simple, i.e. it is not completely m-
regular.

2. The following conditions on a semigroup S are equivalent:

(a) S is completely m-regular;
(b) S is left and right m-regular;
(c) every proper bi-ideal of S is w-regular.

3. Let S be a m-regular semigroup and m € Z*. If every D-class of S contains at
most m L-classes, then S is completely m-regular and for every a € S, a™" belongs
to some subgroup of S, where n € Z™ is the smallest number for which a™ € Reg(S).

4. Every ideal of a m-regular (completely w-regular, regular, completely regular)
semigroup is m-regular (completely m-regular, regular, completely regular).

5. Let S be a completely m-regular semigroup, and for e € E(S) let T. = /G..
Then G, is an ideal of (T¢), xe = ex for every x € (T.), and M, = {u € S|(Fx €
(Te))zu € (Te)} = {u € S| (Fx € Ge)zu € G.} is a subsemigroups of S with the
ideal G,.

6. Let e, f € E(S) and (ef)™, (fe)™ € G, for some ne Zt. Then (ef)"= (fe)" = g.

7. The following conditions on a semigroup S are equivalent:
(a) S is completely m-regular and E(S) = Gr(S5);

(b) S is a union of nil-semigroups;
(¢) Va€S)(IneZT)a” =a™tl.
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8. A semigroup S is inverse if and only if S is regular and its idempotents commute.
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2.3 The Union of Groups

An idempotent e of a semigroup S without zero is primitive if it is the
minimal element with respect to the natural partial order < on E(S), i.e. if

fP=f=ef=fe = f=e

A semigroup S is completely simple if S is simple and if contains a primitive
idempotent.

The next result, is a known as Munn’s theorem in the relevant literature.

Theorem 2.5 Let S be a simple semigroup. Then S is completely simple if
and only if S is a completely w-regular semigroup.

Proof. Let S be a completely simple semigroup, let a € S be an arbitrary
element and let e € F(S) be an primitive idempotent. Then S = SeS =
Sea3eS, because S is simple, so there are u,v,x,y € S such that a = uev
and e = z(ea®e)y. Assume f = evaeyexeaue. Then

f? = evaeyereaucevaeyereaue = evaeyerea(uev)aeyereaue
= evaeye(zeadey)exeaue = evaeyeeexeaue = f,

and since f < e then we have f = e. Thus
2

a = uev = ufev = (uev)(aeyerea)(uev) = a’(eyexe)a® € a>Sa?,

and by Lemma 2.4 a is a completely regular element.
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Conversely, let S be completely m-regular and let @ € S. Since S is simple
then a = way for some x,y € S. It is clear that a = 2"ay", for every r € Z™.
Since S is completely m-regular then z° € G, for some s € Z* and e € E(S).
We will prove that e is primitive. Assume that ef = fe = f. Since S is
simple then e = pfq for some p,q € S. Let h = epf and k = fge. Then we
have that eh = h = hf = hfe = he and ke = k = fk = efk = ek. Also,
hk = epf?qe = €3 = e, so

e = hk = hek = h(hk)k = h*k* = h3k3 = - .. = h"k",

for every r € Z*. Since S is completely m-regular then h" € G, for some
n € Z* and g € E(S). Assume that u = h", v = k" and let w be the group
inverse of u in G4. Then

eu=u=ue, ev="0=uve, e=uv=uv? gu=u=ug, Wu=g=uw,

whence we have that gv?u? = w?u?v?u? = w?eu® = w?u? = g so

2

e = uv = ugv = ugv?u®v = (ugv)(vu)(w) = e(vu)e = vu.

On the other hand, fv = fk™ = k™ = v because fk = k. Thus, f = fe =

fou=vu =ce. O

Corollary 2.4 A semigroup S is completely simple if and only if S is simple
and a completely regular semigroup.

The following theorem offers the structural characterization of intra reg-
ular semigroups.

Theorem 2.6 A semigroup S is intra reqular if and only if S is a semilattice
of a simple semigroup.

Proof. Let S be an intra regular semigroup. Assume a € S. Then a = za?y
for some z,y € S, so J(a) C J(a?). Since the opposite inclusion always holds
we have that J(a) = J(a?) for every a € S.

Assume a,b € S. Then, based on the previous it follows that J(ab) =
J(abab) C J(ba) and J(ba) C J(ab). Thus J(ab) = J(ba) for every a,b € S.

Assume a,b € S such that J(a) = J(b) and assume = € S. Then a = ubv
for some u,v € S so

J(az) = J(ubvz) C J(bvzx) = J(bvabvz) C J(xb) = J(bx).
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Similarly we prove that J(bxz) C J(ax) whence J(az) = J(bz) and J(xa) =
J(xb). Thus J is a semilattice congruence on S.

It is evident that J, is a subsemigroup of .S, for all ¢ € S. Assume a € S
and x,y € J,. Then J(y) = J(x) = J(23) so we have y = uz®v = (ux)x(av)
for some u,v € S'. Since

Jo = Jy = JueJzJzv = JuzJaJzv
is in S/J, then we have that
Jo = JuzJo = JudeJo = Judy = v]ua:a

and similarly J., = J,. Thus, y € JyxJ,, so J, is a simple semigroup.
Therefore, S is a semilattice of simple semigroups.

The converse follows based on the fact that every simple semigroup is
intra regular and by Lemma 2.7. a

A semigroup S is a union of groups if S can be represented as a union of
its maximal subgroups. According to Theorem 1.7 this union is disjoint.

Theorem 2.7 The following conditions on a semigroup S are equivalent:

(i) S is completely regular;

(ii) S is a union of groups;

(
(iv) (Va € S) a € aSa?;

)
)
iii) S is a semilattice of completely simple semigroups;
iv)
(iv’) (Va € 9) a € a®Sa.

Proof.  (i)=-(ii) and (ii)=-(iv) This follows from Lemma 2.4.

(iv)=-(iii) Let a = axa?® for some x € S. Then
a = aza® = (azx)aa = (az)(aza®)a € Sa®8,

so S is intra regular. According to Theorem 2.6 S is a semilatice of simple
semigroups, and now by Theorem 2.3, Lemma 2.7 and Theorem 2.5, S is a
semilattice of completely simple semigroups.

(iii)=-(i) This follows from Corollary 2.4 and Lemma 2.7. a
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The condition (iv) from the previous theorem can be replaced with: S is
a regular and a left (right) regular semigroup.

Exercises

1. A semigroup S is intra regular if and only if R(J) = J.
2. The following conditions on a semigroup S are equivalent:
(a) S is a union of groups;
(b) R(L) =L, R(R)=TR;
(¢) R(H)=H.
3. A semigroup S is a semilattice of groups if and only if R(L) = R.
4. The following conditions on a semigroup S are equivalent:
(a) S is a union of groups;
(b) S is left and right regular;
(c) S is regular and left (right) regular;
(d) every H-class of S is a group.
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2.4 7 -inverse Semigroups

A semigroup S is right (left) m-inverse if S is w-regular and if for all
a,x,y € S the following implication holds

a=azra=aya = za=ya (ax = ay).

Theorem 2.8 The following conditions on a semigroup S are equivalent:

(i) S is right w-inverse;
(ii) S is w-regular and for all e, f € E(S) there exists n € Z" such that
(ef)" = (fef)";
(iii) for every a € S there exists n € ZT such that L(a™) has a unique
idempotent as a generator;
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(iv) for every a € S there exists n € Z" such that L(a™) has a unique right
identity;

(v) S is w-regular and for every e, f € E(S) there exists n € Z™ such that
(ef)"R(fe)".

Proof.  (i)=-(ii) Let e, f € E(S) and let a be an inverse element of the
element (ef)", for some n € Z*. Then

(ef)" = (ef)"alef)" = (ef)" falef)",

and by supposition we have that a(ef)” = fa(ef)", so a(ef)"a = fa(ef)"a
Thus

(4) a= fa.
Now we have
(5) a=alef)"a=a(efe)" ' fa = alefe)" 'a.

Hence, based on (4)

alefe)"! =a(efe)" ta(efe)* la(efe) !
=alefe)" Lefalefe)" La(efe)

so by supposition we have that
aefe)"alefe)" ™' = efalefe)" " alefe)" ",
ie.
alefe)" ! = efa(efe)" L.
Hence and according to (5) it follows that a = efa and from (4) we get
(6) a = ea.
Using (4) and (6) we have that
(ef)" = (ef)"alef)" = (ef)"ealef)" = (ef)"efalef)"
= ef(ef)"alef)" = ef(ef)" = (ef)"".

Now, we have (ef)" = (ef)"ef(ef)" = (ef)"f(ef)", so ef(ef)" = f(ef)".
Thus, (ef)" = (fef)™, i.e. (ii) holds.

(ii)=(i) If @ = axa = aya then (raya)" = (yaxaya)™ for some n € Z+,
so za = ya. Thus, S is a right m-inverse.
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(i)=(iii) Let a" = a™za" for some n € Z* and x € S. Then by Lemma
2.1, L(a™) has an idempotent e as a generator. Assume f € E(S) such that
L(a™) = Sf. Then Se = Sf, so e = yf, f = xe for some z,y € S. Now we
have ef = (yf)f = yf = e, fe = f whence e = efe = e(efe)e. From this,
by supposition, we have that fe = efee = efe. Thus, f = fe = efe = e.
Therefore, L(a™) has a unique idempotent as a generator.

(iii)=(iv) Let L(a™) have a unique idempotent e as a generator. Then
by Lemma 2.1 L(a™) has a unique right identity.

(iv)=(i) Let L(a™) have a unique right identity. According to Lemma
2.1 a is m-regular. Assume a = axa = aya. Then since the identity is unique
we have za = ya. Thus, S is right m-regular.

(ii)=-(v) For an arbitrary e, f € E(S) there exists m,n € Z" such that
(efe)™ = (fe)™ and (fef)™ = (ef)™. Hence

(ef)™e=(fe)™ and (fe)™"f = (ef)™"

Thus (ef)*R(fe)* for k = mn.

(v)=(ii) For e, f € E(S) let (fe)"R(ef)" for some n € Z*. Then
(fe)"u = (ef)" for some u € S, so f(ef)" = f(fe)"u= (fe)"u= (ef)", i.e
(fef)" = (ef)" u

A semigroup S is right (left) completely m-inverse if S is completely -
regular and for all a,z,y € S, a = axa = aya implies za = ya (ax = ay),
i.e. if S is completely m-regular and right (left) m-inverse.

Theorem 2.9 The following conditions on a semigroup S are equivalent:

(i) S is right completely m-inverse;
(ii) S is w-regular and for all a € S, f € E(S) there exists n € Z" such
that (af)" = (faf)";
(iii) S is w-regular and for all a € Reg(S), f € E(S) there exvists n € Z*
such that (af)" = (faf)™.

Proof.  (i)=(ii) Assume a € S and f € E(S). According to Theorem 2.3
there exist k,m € Z7T such that (af)® € G, and (faf)™ € Gy, for some
g,h € E(S). According to Lemma 1.8 there is n € Z* such that (af)" € G
and (faf)" € Gj,. Now we have

= ((af)")"Haf)" = (af)")"(af)"f = gf.
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Similarly, we prove that h = hf = fh. Since f(af)" = (af)"f = (faf)", for
all r € ZT, then f(af)" = (faf)™ = h(faf)" = hf(af)" = h(af)™. Thus

Faf)"((af)") " = hlaf)"((af)")~",

i.e. fg = hg, whence g(fg) = g(hg). Since gf = g then g = ghg = ¢ and
since S is right m-inverse then hg = g. Thus, the following holds

(7) fg=hg=g.
Also, we have

h=nf = ((faf)" ) (faf)"f = ((faf)") " faf)"f
= ((faf)y") " f(af)"gf = ((faf)") " (faf)"gf = hgf = hg.

Hence, using (7) it follows that g = h. Thus, the elements (af)™ and (faf)"
belong to the same subgroup G4 of S and since gf = g then

(faf)" = g(faf)" = gf(af)" = g(af)" = (af)".

(ii)=-(iii) This follows immediately.

(iii)=(i) We will prove that S is completely m-regular. Let a = aza for
some x € S. Then based on the hypothesis of the theorem there is r € Z*
such that

a” = (a(za))" = ((za)a)" = (za®)" = za" L.

Thus, every regular element from S is left w-regular. Since S is m-regular
then for every a € S there exists m € Z™ such that a™ € Reg(S). From this
it follows that there are r € Z™ and x € S such that (a™)" = x(a™)" "1, i.e.
a™ € Sa™ 1. Thus, S is m-regular and left 7-regular, so by Theorem 2.3,
S is a completely m-regular semigroup. Based on Theorem 2.8, S is a right
m-inverse. O

A semigroup S is a m-inverse if S is m-regular and for every a € Reg(5)
there is a unique = € S such that a = aza and © = xaz, i.e. if every regular
element has a unique inverse.

Theorem 2.10 The following conditions on a semigroup S are equivalent:

(i) S is w-inverse;
(ii) S is m-regular and for all e, f € E(S) there exists n € ZT such that
(ef)" = (fe)";
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(iii) S is left and right w-inverse.

Proof.  (i)=(ii) For an arbitrary e, f € E(S) there exists z € S and k € Z"
such that (ef)* = (ef)*z(ef)* and z = z(ef)*z. Hence (ef)* = (ef)kze(ef)*
and ze = ze(ef)¥ze. Now, since z is unique, we have that z = ze, and
similarly z = fz. There are two cases.

Assume that & > 1. Then

z=z(ef)'z = ze(fe)* ' f2 = 2(fe)* 'z,
and if t = (fe)*"12(fe)*~! then we have 2tz = z and tzt = t. From this,
based on uniqueness we have that (ef)* =t = (fe)*~1z(fe)*~1, so
(ef)fe = (fe)* " a(fe) Te = (ef)".

Now, (ef)fef = (ef)*f, ie. (ef)*! = (ef)* € E(S), and based on unique-
ness we have that z = (ef)*.
If k=1 then

22 = 2z = (ze)(f2) = z(ef)z = 2,

i.e. z € E(S). Hence, based on uniqueness z = ef.

Thus in both cases we have that

2= (ef)F = (ef)H.
Since z = ze = fz we have that (ef)* = z = fze = f(ef)fe = (fe)F+L.
Therefore, for n > k+ 11is (ef)” = (fe)™.
(ii)=-(iii) This follows from Theorem 2.8 and its dual.
(iii)=(i) Assume that a € Reg(S) has two inverse elements b and ¢. Then

abS = aS =acS and Sbe= Sa = Sca.

According to Theorem 2.8 and its dual, L(a) and R(a) have a unique idempo-
tent as a generator, so ab = ac and ba = ca, whence b = bab = bac = cac = dJ

A semigroup S is completely m-inverse if S is completely m-regular and a
m-inverse semigroup. Based on Theorems 2.9 and 2.10 we immediately have
the following result.



72 CHAPTER 2. REGULARITY ON SEMIGROUPS

Theorem 2.11 The following conditions on a semigroup S are equivalent:

(i) S is completely m-inverse;
(i) S is w-reqular and for all a € S, f € E(S) there exists n € Z such
that (af)” = (fa)";
(iii) S is m-regular and for all a € Reg(S), f € E(S) there exists n € Z"
such that (af)" = (fa)™.

A semigroup S is strongly m-inverse if S is w-regular and if its idempotents
commute each other.

Theorem 2.12 The following conditions on a semigroup S are equivalent:

(i) S is strongly T-inverse;
(ii) S is w-regular and Reg(S) is an inverse subsemigroup of S;
(iii) S is w-inverse and the product of every two idempotents from S is also
an idempotent.

Proof.  (i)=-(ii) Let a,b € Reg(S). Then there are x,y € S such that
a = azxa and b = byb. Now we have

ab = (axa)(byb) = a(xa)(by)b = a(by)(xa)b = (ab)(yx)(ab).

Thus Reg?(S) = Reg(S). Let a € Reg(S) and z,y € V(a). Since idempo-
tents from Reg(S) commute then we have

x = zar = z(aya)r = z(ay)(ax) = z(ax)(ay) = zay.
Similarly, we have z = yax. So, it follows that
xr = zaxr = (yax)a(zay) = y(arara)y = yay = y.

Thus, Reg(S) is an inverse semigroup.
(ii)=-(i) Assumee, f € E(S) C Reg(S) then ef € Reg(S). Let x € V(ef)
then

(8) z=ux(ef)r and (ef) = (ef)z(ef).

From this we have

fre= f(zefr)e = (fre)(ef)(fre) and (ef) = (ef)(fre)(ef),
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ie. frxe € V(ef). Since in Reg(S) the inverse element is unique then

r = fre. Now, we have 22 = (fwxe)(fze) = f(zefr)e = fre = x, whence
x € E(S) C Reg(S). So, for x € E(S) and based on (8) it follows that
xz € V(z) and ef € V(z), and since an inverse is unique we have that
x=ef € E(S) and ef € V(ef). Similarly, we prove that fe € E(S). For

this element the following also holds

ef = (ef)? = (ef)(ef) = (ef)(fe)(ef),
fe=(fe)* = (fe)(fe) = (fe)(ef)(fe),

ie. fee Vef). Thus, ef € V(ef) and fe € V(ef) and since the inverse is
unique then we have ef = fe. Therefore, S is w-regular and its idempotents
commute, so S is strongly m-regular.

(i)=(iii) This follows from Theorem 2.10.

(iii)=-(i) Let (iii) hold, then S is m-regular and for all e, f € E(S) there
exists n € ZT such that (ef)"” = (fe)”. From this, for n = 1 we have
ef = fe, for all e, f € E(S). Thus, S is strongly m-inverse. O

A semigroup S is Clifford’s semigroup if S is regular and E(S) C C(5). It
is evident that every Clifford’s semigroup is inverse and completely regular.
The following concept is more general: element b of a semigroup S is the
o-inverse of an element a € S if a = aba and b = bab and there is n € Z*
such that ab = ba™. A semigroup S is a o-inverse if all its elements have a
unique o-inverse.

Theorem 2.13 The following conditions on a semigroup S are equivalent:

(i) S is o-inverse;
(ii) S is inverse and completely m-regular;

(iii) S is regular and for all a € S, e € E(S) there exists n € Z such that
(ae)™ = (ea)™.

Proof.  (i)=(ii) Let (i) hold, then S is inverse and regular. Assume a € S
then there exists a unique b € S and n € Z* such that a = aba, b = bab and
a"b = ba™. From this we have a” = aba” = a"t'b = ba"t! whence S is left
m-regular. Since S is regular and left m-regular then by Theorem 2.3, S is
completely m-regular.

(ii)=-(i) Assume a € S. Then there exists x € S such that a = azxa
and x = zazx. Also azx,za € E(S). According to Theorem 2.11 there exist
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n,m € ZT such that

(aax)" = (axa)" = a" and (zaa)™ = (axa)™ = a™

Then (a?x)! = o' = (xa?)! for t = nm, so we have that

2

(a*z)" = a(aza) =1

t—1 t+1

ax = a(aza)' ™ lazar = a(aza)'z = ad's = o' 2.

Similarly, we prove (za?)! = za'*!. Thus a'*'z = za’™!. Therefore, S is a
o-inverse semigroup.

(ii)«<(iii) This follows from Theorem 2.11. a

Recall that a subsemigroup B of a semigroup S is a bi-ideal of S if
BSB C B. For a € S, B(a) = {a} U {a%} U aSa is the smallest bi-ideal
containing a, and it is called the principal bi-ideal of S generated by a.

Recall also that a semigroup S is called globally idempotent if S? = S
(i.e. every element of S is decomposable).

Exercises

1. If for every a € S there exists m € Z* such that L(a™) has an identity, then S
is a completely m-regular and right m-inverse semigroup.

2. A semigroup S is m-inverse if and only if S is 7-regular and from a = aza = aya
it follows that zax = yay.

3. If S is a w-inverse semigroup, then for all e, f € E(S) there exists n € ZT such
that (ef)™ € E(S).
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2.5 Quasi-regular Semigroups

The following lemma establishes an interesting connection between intra
quasi-regular and intra regular, left quasi-regular and left regular, and right
quasi-regular and right regular elements.

An element a of a semigroup S is intra quasi-reqular if a = xayaz, for
some x,y,z € S. A semigroup S is intra quasi-regular if all its elements are
intra quasi-regular.
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An element a of a semigroup S is left (right) quasi-regular if a = zaya
(a = azay), for some z,y € S. A semigroup S is left (right) quasi-reqular if
all its elements are left (right) quasi-regular.

Lemma 2.9 The following conditions on a semigroup S are true:

(a) S has an intra quasi-reqular element if and only if it has an intra
reqular element;

(b) S has a left quasi-reqular element if and only if it has a left reqular
element;

(¢) S has a right quasi-regular element if and only if it has a right reqular
element.

Proof.  (a) Let a be an intra quasi-regular element of S, i.e. a = zayaz,
for some z,y,z € S. Then

yaz =y(rayaz)z = (yr)a(yaz*) = (yr)(rayaz)(yaz®)
— (ya%a)(yaz)*= € S(yaz)?s,
so we have that yaz is an intra regular element of S. The converse is clear.

Further, let a be a left quasi-regular element of S, i.e. a = zaya, for
some x,y € S. Then

ya=y(zaya) = (yr)a(ya) = (yr)(raya)ya)
= (yz*a)(ya)® € S(ya)?,

so ya is a left regular element of S. The converse is evident.

The assertions (b) and (c¢) can be proved similarly. |

It is well-known that an element a of a semigroup S is regular if and
only if the principal left ideal L(a) (or the principal right ideal R(a)) has an
idempotent generator. In a similar way we characterize the left, right and
intra quasi-regular elements.

Theorem 2.14 Let a be any element of a semigroup S. Then the following
assertions are true:

(a) a is intra quasi-regular if and only if the principal ideal J(a) of S has
an intra reqular generator;

(b) a is left quasi-regular if and only if the principal left ideal L(a) of S
has a left reqular generator;
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(¢) a is right quasi-regular if and only if the principal right ideal R(a) of
S has a right regular generator.

Proof.  (a) Let a be an intra quasi-regular element. Then a = zayaz, for
some x,y,z € 5, so J(a) = J(yaz). According to Lemma 2.9 it follows that
yaz is an intra regular element, so we have proved that J(a) is generated by
an intra regular element.

Conversely, let J(a) be generated by an intra regular element b. Then
J(a) = J(b) and b = pb?q, for some p,q € S, from which it follows that
a € J(b) = J(pb?q) =C Sb2S. On the other hand, from b € J(a) it follows
that b2 € SaSaS. Therefore, a € SaSaS, which has to be proved.

The assertions (b) and (c¢) can be proved similarly. a

By LQReg(S), IQReg(S) and TReg(.S) we denote respectively the sets of
all the left quasi-regular, intra quasi-regular and intra regular elements of a
semigroup S.

Theorem 2.15 A semigroup S is left quasi-m-regular if and only if it is
intra quasi-m-regular and IQReg(S) = LQReg(S).

Proof.  Let S be left quasi-m-regular. Then it is also intra quasi-m-regular
and LQReg(S) C IQReg(S). To prove the opposite inclusion, consider an
arbitrary a € IQReg(S). Then a = zayaz for some x,y,z € S, so a =
(zay)"az", for every n € ZT. On the other hand, since S is left quasi-7-
regular, then there exists n € Z* and p,q € LQReg(S) such that (zay)™ =
p(zay)"q(zay)". Now

a = (zay)"az" = p(zay)"q(zay)"az" = p(xay)"qa € SaSa,

so a € LQReg(S). Thus, LQReg(S) = IQReg(S), which has to be proved.

The converse is obvious. O
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2.6 Idempotent-Generated Semigroups

In this section we give some properties of semigroups and subsemigroups
generated by idempotent elements. These results will be useful in the further
discussion. We remind the reader that by (E(S)) we denote the idempotent-
generated subsemigroup of a semigroup S. This subsemigroup is the core of
S. Also, based on V(E™), n € Z*, we denote the set {V(a)|a € E"}, where
E = E(S) and V(a) is the set of all the inverse elements of the element
a€sS.

Theorem 2.16 Let E(S) # (), then the following conditions are equivalent
on a semigroup S':

(i) Reg(S) is a subsemigroup of S;

(ii) (E(S)) is a regular subsemigroup of S;
(iii) V(E) = E?%;
(iv) V(E™) = E"*Y, for every n € Z+.

Proof. (i)=(ii) Let a = ejea... e, € (E(S)), e; € E(S),i=1,2,...,n and
let b be an inverse of a in Reg(S). If n = 1, then b = bab = ba’b = (ba)(ab) €
(E(S)). Let n > 1. For every i = 1,2,...,n assume that

ti=eiea - €, U =e€ieiy1-en, fi=uibti1, 1> 1.
Then tiui =a= tn = U1 and ti_lui = a, fz2 = uibabti_l = fz Thus

b = b(ab)" = b(tnunb) (tnflunflb) e (tQUQb) (tlulb)
= (btn)(unbtn_1> e (qutl)(ulb)
= (ba) fu -+ fa(ab) € E"*(S) C (E(S)).
Hence, (E(S)) is regular.

(ii)=(i) Assume a,b € Reg(S). Then a = aza and b = byb, for some
x,y € S. Based on the hypothesis there is a z € (F(S)) such that (za)(by) =
(za)(by)z(za)(by). Thus

ab = axabyb = a(xabyzraby)b = (aza)(byzza)(byb)
= abyzxab € abSab.
Hence, ab € Reg(59), i.e. Reg(9S) is a subsemigroup of S.

(i)=(iv) This follows from the proof of (i)=-(ii).

(iv)=-(iii) This is evident for n = 1.

(iii)=-(i) This is like (ii)=(i). O
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Lemma 2.10 If S is a completely simple semigroup, then (E(S)) is com-
pletely simple.

Proof.  According to Theorem 2.16, (E(S)) is a regular semigroup and since
its idempotents are primitive, because it is primitive in S, then (F(S)) is a
completely simple semigroup. O

Lemma 2.11 If a semigroup S is (completely) m-regular, then (E(S)) is
(completely) m-regular.

Proof. Ifz € (E(S)) and 2", n € ZT, is regular in S, then by Theorem 2.3
2", n € Z%, is regular in (E(S)). If 2"H%e, where H° is Green’s relation
with respect to S, then the inverse of 2" contained in the H°-class of e is
contained in (F(S)), so that also 2"H{¥(5)e. Thus the lemma follows. O

Theorem 2.17 For a m-inverse semigroup S, (E(S)) is a periodic semi-
group.

Proof. Let ey, ea,...e, € E(S),i=1,2,...,n with n € ZT. Since S is a
m-inverse semigroup, there exists m € Z™ and a unique z € S such that

x=ux(erea...en)"x, (er1€2...€,)" = (e162...€,)"x(e1€2... ).

Clearly,
zei(erey...en)"xer = wey,

(e1€2...en)"wer(er1e2. .. en)™" = (e162...n)™"

Based on the definition of a m-inverse semigroup, we have xe; = x. Sym-
metrically, we have e,z = x.

If m=1,thenx =zejes...e,z =xea...e,x. Lety =eg...e,x€9...6€,.
Then xyxr = z, yry = y. Based on the uniqueness of inverses of z, we have

Y = €2€3...€ERTEQE3...Ep = €1€2...€p.
Hence, eay =y = ea(erey. .. ey,). It follows that
xeg(erey. .. en)xes = xeg,

e1€a...en = (e1€2...ep)xez(e1€9. .. €y).

Based on the uniqueness of inverses ejes...e,, we have res = .
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Repeating this process, we have that
rey = xeg = -+ = Ty = T

Symmetrically
EnT = €p_1T =+ = €T = e1T = X.

Hence

€1€2...6n =€1€2...epTe1€2 ..., =T = x(€1€9...€,)T = z2,
and so ejes ... e, is an idempotent of S.
If m > 2 let y = 62...en(eleg...en)m_Qeleg...en,l, then zyxr = x.
Hence yxy is an inverse of x. Since S is a m-inverse semigroup, then

yry = (erez...en)™

=ey...ep(e]...€p) m=2

—2
Mm=2e1 ... ep_1x€...ep(e1...€n) €1...Cn_1-

m m

= (e1ea...e,)™ey—1 and so

Thus ex(erez...e,)™ = (e1€2...€p)

zeg(erey...en) ey = ey,

(e1e2...€,)™" = (e1€2...en) " xes(E102 ... €)™,

Based on the uniqueness of the inverses of (ejes...e,)™, we have xes = x.
Symmetrically, e,,_12 = . Hence

x=ux(eres...e,)"x =x(ezeqs...epn)(e1ea. .. en)m_2

€1€2...€6n_92.
Repeating the abovementioned process, we have
Irep =xeg = -+ ==T€p =T =€, =€pn_1Lx = -+ =¢€12.
Hence
2

(e1e2...e,)™" = (e1€62...ep)"x(e169...6,)" =z =x(€169...6,)"x =2

and so (e1ez...e,)™ is an idempotent of S.

Thus we have proved that ejes...e, is a periodic element of S and so
(E(5)) is a periodic semigroup. |

In view of Theorem 2.17 we have the following corollary.
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Corollary 2.5 For a m-inverse semigroup S, Reg(S) N (E(S)) = E(S) and
(E(S)) is a m-inverse subsemigroup of S.

Exercises

1. A semigroup S is a semiband if it is idempotent-generated.

An ideal of a regular semiband is itself a regular semiband.
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2.7 Left Regular Semigroups

In this section, we will give various structural characterizations of left
regular semigroups.

A semigroup S is a band Y of left (right) ideals Lo, € Y if

S=JLa LanLsg=0, a#8B
acY

Lemma 2.12 A semigroup S is a left (right) zero band of a semigroup from
the class K if and only if S is a band of right (left) ideals from K.

Proof. Let S be a left zero band Y of semigroups Sy, € Y and S, € K.
Then for each o € Y we have that

SaS =50 | |JSs]=1J %Ss € | Sas C Sa-
Bey BeY BeY
Hence, S is a band of right ideals from K.

Conversely, let S be a band of right ideals S, € I, « € Y. Let 7 be the
congruence relation on S induced by the decomposition of S. For a € S,,
b € Sg we have ab € 5,53 C S, and ab € 5,53 C Su. So Sap = S, and
therefore 7 is a left zero band congruence. O
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A semigroup S will be called left (right) completely simple if it is simple
and left (right) regular. It is well-known that a semigroup S is completely
simple if and only if it is simple and completely regular, whence we have
that S is completely simple if and only if it is both left and right completely
simple.

Now we will characterize left completely simple semigroups.

Theorem 2.18 The following conditions on a semigroup S are equivalent:

(i) S is left completely simple;
(ii

(iii

S is simple and left w-reqular;
every principal left ideal of S is a left simple subsemigroup of S;

)
)
)
(iv) S is a right zero band of left simple semigroups;
(v) (Va,b e S)a e Sha;
(vi) S is a matriz of left simple semigroups;
(vii) |; is a symmetric relation on S;
(viii) S/L is a discrete partially ordered set.
Proof.  (i)=-(ii) This is obvious.
(ii)=-(i) Since S is simple, then S = Intra(S). Now by Theorem 2.4 we

obtain that S = Intra(S) = LReg(S), so S is left regular.

(iii)=(iv) If all the principal left ideals of S are left simple, then the
principal left ideals are minimal, so the principal left ideals are disjoint.
From this and Lemma 2.12 it follows that S is a right zero band of left
simple semigroups.

(iv)=(v) If S is a right zero band Y of left simple semigroups Sy, € Y,
then for a € S, b € Sg we have that

ba € S3Sa € Sga € Sa, so a € Syba C Sba.

(v)=-(iii) Let condition (iii) hold. Assume a € S and z,y € L(a). Then
we have

(a) x =a, y =a. Then x = a € Saa C L(a)y. Hence,
L(a) = L(a)y for every y € L(a). (%)

(b) * = za, y = a. Then v = za € zSaa C L(a)y, i.e. condition (x)
holds.



82 CHAPTER 2. REGULARITY ON SEMIGROUPS

(¢c) z =a, y =wua. Then z = a € S(au)a C L(a)ua C L(a)y, i.e. (%)
holds.

(d) z = za, y = ua. Then x = za € zS(au)a C L(a)ua = L(a)y i.e. (%)
holds. By (a), (b), (c) and (d) we have that L(a) is a left simple.

(vi)=-(iv) If S is a matrix of left simple semigroups, then it is a right zero
band of semigroups that are left zero bands of left simple semigroups. Since
a left zero band of left simple semigroups is also a left simple semigroup,
then we obtain (iv).

(iv)=-(vi). This is clear.

(i)=(v) For a,b € S we have that a = zby, for some x,y € S!, and
xb = z(xb)?, for some z € S, whence

a = xby = z(xb)?y = zab(xby) = zxba € Sba.

(v)=(i) This is immediate.

(iv)=-(vii) Let S be a right zero band I of left simple semigroups S;, i € I.
Assume a, b € S such that a|; b, i.e. b = za, for some x € S'. Then a,b € S;,
for some i € I, and 5; is left simple, whence b|; a.

(vii)=(v) For all a,b € S, a|; ba, and based on the hypothesis, ba |; a, i.e.
a € S'ba, which yields a € Sha.

(vil)=-(viii) Assume L, L, € S/L such that L, < Ly, i.e. such that
a € S'b. Then b|;a, so by (vi) we obtain that a|;b, i.e. b € S'a, whence
Ly < L. Thus, L, = Ly. This proves (vii).

(viii)=(vii) Assume a,b € S such that a|;b. Then L, < L,, and from
(vii) it follws that Ly = L,, whence b|; a. Hence, |; is symmetric. O

An element a of a semigroup S is left (right) reproduced if a = za (a =
ax), for some z € S. A semigroup S is left (right) reproduced if all its
elements are left (right) reproduced.

Note that several known characterizations of completely simple semi-
groups can be obtained immediately from the previous theorem and its dual.

Here we give some new characterizations of left regular semigroups.
Theorem 2.19 The following conditions on a semigroup S are equivalent:

(i) S is left reqular;

(ii) S is intra regular and left m-regular;
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(iii) S is a semilattice of left completely simple semigroups;
(iv
(v

(vi

S is a union of left completely simple semigroups;
S is a semilattice of right zero bands of left simple semigroups;
(Va,be S)al|b = ab|;b;

(vil) every left ideal of S is a left quasi-reqular semigroup;

~— — — ' N

(viii) every left ideal of S is a left reproduced semigroup.

Proof.  (i)=(ii) This is clear.
(ii)=>(iii) According to Theorem 2.6, S is a semilattice of simple semi-

groups S, @ € Y. For any a € Y, S, is also left m-regular, so by Theorem
2.18, it is left completely simple.

(iii)=-(vi) Assume a,b € S such that a | b. Based on the hypothesis, there
exists a left completely simple subsemigroup A of S such that b, ba € A, and
by Theorem 2.18, b € Abab C Sab.

(vi)=-(i) This is obvious.

(i)« (iv)«<(v) This follows immediately from Theorem 2.18.

(i)=(vii) Let L be a left ideal of S and let @ € L. Based on the left
regularity of S we have that a = za? for some z € S, so

a = za®> = 23a* = (¢3a)aaa € LaLa.
Hence, L is a left quasi-regular semigroup.

(vii)=-(viii) This implication is evident.

(viii)=(i) Consider an arbitrary a € S and the principal left ideal L =
L(a) = S'a. Based on the hypothesis, L is a left reproduced semigroup, so
a € La C S'aa. Accordingly, we easily conclude that a € Sa?. Thus, S is a
left regular semigroup. O

Similarly, we prove the following theorem.

Theorem 2.20 The following conditions on a semigroup S are equivalent:

(i) S is completely regular;

(ii) S is left (resp. right) regular and right (resp. left) quasi-reqular;
(iii) S is left (resp. right) regular and right (resp. left) quasi-m-reqular;
(iv) every left (resp. right) ideal of S is a right (resp. left) reqular semi-
group;
(v) every left (right) ideal of S is a completely quasi-reqular semigroup;
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(vi) every bi-ideal of S is a left (right) quasi-regular semigroup.
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Chapter 3

(0)-Archimedean Semigroups

In 1928, A. K. Suskevi¢ gave the construction of a semigroup kernel, i.e.
the construction of the smallest ideal of a finite semigroup. What we are
dealing with a simple semigroup, i.e. a simple semigroup with a primitive
idempotent. In 1941, D. Rees proved the structural theorem for completely
0-simple semigroups. This theorem, which we call the theorem of Suskevic-
Rees, was later used as one of the most explored models for "making” new
classes of semigroups. Studying the decompositions of commutative semi-
groups T. Tamura and N. Kimura, and independently G. Thierrin in 1954,
gave the definition of the notion of an Archimedean semigroup. What we
are dealing with is a semigroup in which for every two elements, any one of
them divides some power of the others. Simple semigroups, i.e. semigroups
with no proper ideals are Archimedean semigroups. The converse does not
hold, an Archimedean semigroup with a primitive idempotent is a completely
Archimedean semigroup. These semigroups will play an important role in a
semilattice decomposition of completely m-regular semigroups (Chapter 4).
By analogy to Rees’s construction of a completely 0-simple semigroup using
a completely simple semigroup, S. Bogdanovi¢ and M. Ciri¢ in 1993 intro-
duced the notion of a (weakly) 0-Archimedean semigroup. It is a structural
reach class of semigroups. Archimedean and (weakly) 0-Archimedean semi-
groups will be discussed later in this chapter. At the end of the chapter we
will give the results regarding the semigroups, whose proper (left) ideals are
Archimedean semigroups.
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3.1 Completely 0-simple Semigroups

An idempotent e of a semigroup S = S? is called 0-primitive if it is mini-
mal in the set of all the non-zero idempotents of a semigroup S with respect
to the natural partial order on E(S). A semigroup S = S is completely
0-simple if S is O-simple and if it contains an 0-primitive idempotent.

As in the case of Theorem 2.5, we prove another form of Munn’s theorem.

Theorem 3.1 Let S be an 0-simple semigroup. Then S is completely 0-
simple if and only if S is completely m-regqular.

Lemma 3.1 Let e be an 0-primitive idempotent of an 0-simple semigroup
S. Then LY = Se.

Proof. 1t is evident that Lg C Se. Assume b € Se, b # 0. Then b = be and
since S is O-simple we have that e = xby for some x,y € S. For f = eyexb it
follows that ef = fe = f and f? = eyexbeyexb = eyexbyexrb = eyexb = f,
and since e is an O-primitive idempotent we have that f = e or f = 0. If
f =0, then 0 = xbfy = xbeyexby = e which is impossible. Hence, f = ¢, i.e.
e = eyexb € Sb. Thus, eLb, i.e. b € L2. So, we have Se C LY. Therefore,
Se = L9. a

Lemma 3.2 Let S be a completely 0-simple semigroup and let L be an ar-
bitrary L-class of S. Then LY is a 0-minimal left ideal of S.

Proof.  Assume that L = L.,z # 0. According to Lemma 3.1 we have that
S = 8SeS = L%S so x = ua for some v € LY and a € S.

Assume y € L. Then y = sz for some s € S* whence y = sua € L%
because su € LY and since by Lemma 3.1 LY is a left ideal of S. Thus
L C LY%. Assume y € L%. Then y = va for some v € LY. If v = 0,
then y = 0 € L%, If v # 0, then vLu whence valua, because £ is a right
congruence, i.e. yLx. Thus, y € L i.e. Loa C LY. Therefore, by Lemma 3.1
LY = L% C Sea. So LY is a left ideal of S.

Assume that A C L% A # 0 is a left ideal of S. Let a € A,a # 0 and
assume x € L. Then zLa, whence x = ua € A for some u € S. Thus,
A = LY. Therefore, LY is a 0-minimal left ideal of S. a

From Lemma 3.2 we have the following
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Corollary 3.1 Let S be a completely 0-simple semigroup and let a € S.
Then LY = Sa.

Lemma 3.3 Let S be a completely 0-simple semigroup. For all a,b € S
from aSb =0 it follows that a =0 or b = 0.

Proof. Let aSb =0 and let a # 0 and b # 0. According to Corollary 1.6
we have SaS = SbS = S, whence S = S? = SaSSbS = SaSbS = 0, which
is impossible. Thus, a =0 or b = 0. O

A semigroup S is 0-bi-simple if S has only one non-zero D-class.

Lemma 3.4 Fvery completely 0-simple semigroup is 0-bi-simple.

Proof. Assume a,b € 5°. According to Lemma 3.3 we have that a.Sb # 0.
Let x € aSb and x # 0. Based on Corollary 3.1 we have that = € aSb C
Sb = Lg, so xLb. Similarly we can prove that xRa. Thus, aDb, i.e. S is
0-bi-simple. O

From Lemmas 3.4 and 1.36 immediately follows
Corollary 3.2 FEvery completely 0-simple semigroup is a reqular semigroup.

Lemma 3.5 Let H be an H-class of a completely 0-simple semigroup S.
Then, H> =0 or H is a group.

Proof. Assume H # Hy =0 and a € H. There are two cases:

(i) Let a®? = 0. Assume x,y € H. Then zLa and yRa, whence x = ua
and y = av for some u,v € S', so vy = ua?v = 0. Thus H? = 0.

(ii) Let a? # 0. According to Lemma 3.2, LY is a left ideal of S whence
a? € LY and by assertion we have that a® € L,. Thus aLa?. In the same way
we prove that aRa?. Therefore, from aHa? and Green’s theorem it follows
that H = H, is a group. O

A semigroup S = S is a 0-group if S*® is a group.

Let G be a group, let I, A be non-empty sets and let P = (py;) be a
A x I matrix over a 0-group G°. On S = (G x I x A) U {0} we define the
multiplication by

. ooy (apajbsisp), i pay # 0
(CL,Z,)\) (bajmu’) - { O7 1f p)\j — O N
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(a;i,A)-0=0-(a;i,A) =0-0=0.

It is easy to see that (S, -) is a semigroup which we denote by S = M%(G; I, A;
P) and which we call Rees’s matriz semigroup of the type Ax I over a 0-group
G° by a sandwich matriz P.

A matrix P of the type A x I over a 0-group G is regular if
(Vie I)(IN € A) py #0, (VA e A)(FieI) py #0,

i.e. if every row and every column of a matrix P contains a non-zero element.

Lemma 3.6 A Rees’s matriz semigroup S = MOY(G; 1, A; P) is regular if
and only if the matriz P is regqular.

Proof.  Let S be a regular semigroup, let i € I, A € A and let a € G. Let
(b; j, ;) € S be the inverse element of the element (a;i,A). Then py;bpu; =
a~! where pyj 7 0 and p,; # 0. Thus, P is a regular matrix.

Conversely, let P be a regular matrix. Assume (a;i,\) € S®. Then
there exist j € I and p € A such that py;,p. € G and the element
(p)_\jlaflp;il;j, @) is an inverse element of the element (a;i,\), so (a;i,\)
is a regular element. It is evident that 0 is a regular element. Therefore, S
is a regular semigroup. O

Lemma 3.7 Let S = M°(G; 1, A; P) be a regular Rees’s matriz semigroup
and let (a;i,\), (b;j,n) € S. Then

(a;3, \) L(b;j, ) = A=p,
(a;4, )R (b;j, 1) = i=].

Proof.  Assume (a;i,\)L(b;j, ). Then (a;i,\) = (b;j, ) or there exists
(x; k,v) € S such that (a;i,\) = (x; k,v)(b; 4, n) = (xpy;b; k, 1), where p,; #
0 because (a;i,\) # 0. Therefore, A = p.

Conversely, let A = p and let v, € A such that p,; # 0 and p,; # 0
(these elements exist because P is a regular matrix). Then we have that

(ba‘lp;ill;ﬂ v) - (a;i,N) = (b;4,\),
(ab~'p,jiim) - (b55,A) = (a3, ).

Thus, (a;i, A\)L(b; 7, A). The similar proof exists for the R relation. O
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Corollary 3.3 Let S = MY(G;1,A; P) be a regular Rees’s matriz semi-
group. Then {Lx|\ € A} is the set of all non-zero L-classes of S and
{R;|i € I} is the set of all non-zero R-classes of S, where

Ly={(a;i,\)|a€ G i€}, Ri={(a;i,\)[a€G €A}

and {H;y|i € I, € A} is the set of all non-zero H-classes of S, where
H)y=R,NLy)= {(a;i,/\)\a S G}

Theorem 3.2 A Rees’s matriz semigroup S = M°(G;I,\; P) is 0-simple
if and only if S is regular, and in that case S is completely 0-simple.

Proof. Let S be a 0-simple semigroup. Suppose that S is not regular.
Then by Lemma 3.6 there exists some row or some column of a matrix P all
of whose elements are equal to zero. Generally speaking we can assume that
there exists A € A such that py; = 0 for all j € I. Let A = {(a;i,)\)|a €
G,i € I} U{0}. Then for (a;i,\) € A and (b;j,p) € S® we have that
(asi,A)(b; 7, 1) = 0, because py; = 0, and

. . ; _ (bpuia§j7/\) €A ifp,ui?éo
i) iy = { PS4 R A

Thus, A is an ideal of S and A # {0}, A # S, which is a contradiction
according to the hypothesis that S is a 0-simple semigroup. Therefore, S is
a regular semigroup.

Conversely, let S be a regular semigroup. Assume (a;i, ), (b;j, 1) €
G x I x A. According to Lemma 3.6 there exist k € I and v € A such that
pui 7 0 and pyp # 0. Then

(b(puiapar) "5 4. v) (as i, N (es ky 1) = (b 4, ),

where e is the identity of a group G, so from Corollary 1.6 it follows that S
is a 0-simple semigroup.

Since E(S) = {(py;;i,\)|i € I,A € A} U{0}, it is easy to prove that
every non-zero idempotent of a semigroup S is O-primitive. Thus, S is 0-
simple, i.e. S is completely O-simple. O

The basic structural characterization of a completely 0-simple semigroup
was given by means of the following theorem, which we call the Suskevic-Rees
theorem.
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Theorem 3.3 A semigroup S is completely 0-simple if and only if S is
isomorphic to some reqular Rees’s matriz semigroup over a 0-group.

Proof. Let S be a completely O-simple semigroup. According to Lemma
3.4, S is 0-bi-simple, i.e. D =S —0is a D-class of S. Let {R;|i € I} and
{Lx| X € A} be the sets of all R-classes and all L-classes of S contained in
D. Based on this notation the set of all the H-classes of S contained in D
is the set {H;\ |i € I, A € A}, where H;y = R; N L.

Let e be an arbitrary idempotent from D. According to Corollary 1.13
we have that H. is a group. Denote R, by Ry, L. by L1 and H. by Ry N L1.
Thus, here we take that sets I and A have element 1 in common, what no
make mistake and without loss of generality.

For every i € I and A\ € A fix the element r; € H;; and the element
qr € Hy1. Since r;Le, by Corollary 1.12 we have that r;e = r; and by Lemma
1.34 the mapping x — r;x is a bijection from Hi; onto H;j. Similarly, we
have that eqy = ¢) and based on Lemma 1.33 the mapping y — yq) is a
bijection from H;; onto H;). Thus, the mapping a — r;aq) is a bijection
from Hi;, onto H;y, so, every element of Hq; has the unique representation
of the form r;aqy, where a € Hyy. Since D = U{H;) |i € I, X € A} and since
this union is disjointed, the mapping ¢ : (H11 X I x A) U0 — S defined by

((l; /iv )‘)¢ = Tiagx, 0¢ = 07
is a bijection. Let M = MY(Hyy; I, A; P), where the matrix P is defined by
pi=aqri (€I,NEN).

Assume i € I and A\ € A and prove that py; € HY,. According to Lemma
3.5 we have that Hf)\ = 0 or H;) is a group. First assume that Hf)\ = 0.
Then for ¢ € H;y there exist u,v € S such that ¢y = uc and r; = cv so
pai = uc’v =0 € HY,. Let H;y be a group and let f be its identity. Then
from Corollary 1.12 we have fr; = r; and by Lemma 1.33 it follows that the
mapping x — xr; is a bijection from L) onto L1 which is R-class preserving.
Hence py; = q)r; € Hi1. Thus P is a matrix over H ?1. Also, we proved that
pxi = 0 if and only if HZ?/\ = 0. Since by Lemma 1.37 we have that every
L-class Ly and every R-class R; of S contained in D has an idempotent,
then for every ¢ € I there exists A € A such that H;) is a group, i.e. py; # 0.
We prove the second condition for regularity of the matrix P in a similar
way.
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It is easy to prove that ¢ is an isomorphism. Therefore, a semigroup S
is isomorphic to a Rees’s matrix semigroup M.

The converse follows immediately from Theorem 3.2. O

As we can see from the proof of Theorem 3.3, the representation of a
completely O-simple semigroup by a semigroup M°(Hiy; I, A; P) we get by
means of the arbitrary election of a subgroup Hj; and the sets {r; | i € I} and
{gx| A € A}. The natural question is: How do we make the selection which
does not influence (up to the isomorphism) the structure of a semigroup
MO (Hyq; 1, A; P)? The answer to this question is provided by the following
theorem, which we give without proof.

Theorem 3.4 Two regular Rees’s matriz semigroups S = MY(G; 1, A; P)
and T = M°(H; J,M;Q) are isomorphic if and only if there is an isomor-
phism 0 : G — H, bijections ¢ : [ — J, b : A — M and sets {u;|i€ I},
{ua|A€A}C H such that prif = vaqryipti, for all N\€A, i€ 1.

Let G be a group and I a non-empty set. If P is an I x [-matrix over
a 0-group G° such that p; = 1 for every i € I, where 1 is the identity of
a group G, then P is called the identity I x I-matriz. A semigroup S is
a Brandt semigroup if it is isomorphic to some semigroup M°(G; I, I; P),
where P is an identity I x I-matrix. From Theorems 3.3 and 3.4 we have

Corollary 3.4 A semigroup S is a Brandt semigroup if and only if S is
completely 0-simple and an inverse semigroup.

Proof. Let S = M%G;I,I;P) be a Brandt semigroup. For an arbitrary
element (a;i,75) € S°, from (b;k,1) € V((a;4,j)) it follows that k = j, | =1
and b = a~!, whence S is an inverse semigroup. According to Theorem 3.3,
S is a completely 0-simple semigroup.

Conversely, let S be a completely 0-simple and an inverse semigroup.
From Theorem 3.3 S = M%(G; I, A; P), where P is a regular matrix. Now
((pxH)?; i, A) € V((1;4,A)). If u € A such that p,; # 0, then (p;ilp;il; i, p) €
V((1;4,A)) which is contradicted by the hypothesis that S is an inverse
semigroup. Thus for every ¢ € I there exists only one A € A such that
pxi # 0. Similarly, we prove that for every A € A there exists only one
i € I such that py; # 0. Thus, the mapping ¢ : A — I, defined as \ip = i
if and only if is py; # 0, is a bijection. If we now assume that ) is an
identity I x I-matrix over a group G then by Theorem 3.4 we have that



92 CHAPTER 3. (0)-ARCHIMEDEAN SEMIGROUPS

MO(G; I, A; P) =2 MY(G;1,1;Q) (where, for example, we assume vy = 1,
for all A € A, u; = p;y—1,, for all i € I and 6 is an identical automorphism of
a group G). O

Let G be a group, I, A be the non-empty sets and P = (p);) be a A x I-
matrix over a group G. On the set S = G x I x A we define the multiplication
by

(a;2,A) - (b5 4, 1) = (apxibs i, ).
Then S is a semigroup which we denote by S = M(G; 1, A; P) and which

we call the Rees’s matrixz semigroup of the type A x I over a group G with a
sandwich matrix P.

It is evident that such a constructed semigroup can be obtained from
Rees’s matrix semigroup S = M%(G;I,A; P). Namely, since all the ele-
ments of a matrix P are different from zero, then S — 0 is a subsemigroup
of S isomorphic to M(G;I,A;P). So, the proof of the following theorem
immediately follows by Theorem 3.3.

Theorem 3.5 A semigroup S is completely simple if and only if S is iso-
morphic to a Rees’s matrix semigroup over a group.

A semigroup which is isomorphic to a direct product of a rectangular
band and a group is a rectangular group. The next lemma immediately fol-
lows:

Lemma 3.8 If a rectangular group S is a direct product of a group G and
a rectangular band E, then E(S) is a rectangular band isomorphic to E.

Theorem 3.6 A semigroup S is a rectangular group if and only if S is a
completely simple semigroup in which E(S) is a subsemigroup.

Proof. Let S be a completely simple semigroup in which E(S) is a sub-
semigroup and denotes F(S) with E. Then S = M(G;I,A;P). Since
E = {(p;il; i,A)|i € I,\ € A} from the hypothesis we have that

(P36 A) - (D390 1) = (Pi' 35 1),

SO
-1 1 -1 . 1 o1
Dy PXjPuj = Ppis 1€ Py Pxj = Ppi Puj-
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Choose and fix an arbitrary element 1 € I. Then we have
PxiPxi = Pt Pis
for all i € I, A\, u € A. Define the mapping ¢ : S — E X G with
(a;, M) = ((p3; 4, A)s Pyy PriapAL)-

It is easy to prove that ¢ is an isomorphism from a semigroup S onto a
rectangular group E x G.

The converse follows immediately. O

From Theorem 3.6 we have the following

Corollary 3.5 A band S is completely simple if and only if S is a rectan-
gular band.

Based on Theorem 2.7 and Corollary 3.5 we have:
Corollary 3.6 Every band is a semilattice of rectangular bands.

Corollary 3.7 Let S be a band B of semigroups S;, i € B and let B be a
semilattice Y of rectangular bands By, oo € Y. Then S is a semilattice Y of

semigroups Sq, o € Y and for all a € Y, S, is a matriz By of semigroups
Si, 1€ B,.

A semigroup S is right (left) cancellative if for all a,b € S from ac = bc
(ca = cb) it follows a = b. A semigroup S is cancellative if it is both left and
right cancellative. A semigroup S is a left (right) group if S is isomorphic to
a direct product of a group and a left (right) zero band.

Theorem 3.7 The following conditions on a semigroup S are equivalent:

(i) S is a left group;
(ii) S is a left zero band of groups;
(iii) (Va,z € S) z € xSa;
(iv) S is regqular and E(S) is a left zero band;
(v) S is left simple and right cancellative;
)

(vi) for all a,b € S there exists only one x € S such that za = b;
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(vil) S is left simple and contains an idempotent;
(viil) S has a right identity e and e € Sa, for alla € S.

Proof.  (i)=-(ii) If S = G x F' is a direct product of a group G and a band
E, then S is a left zero band E of a group G. = G x {e}, e € E.

(ii)=-(iii) Let S be a left zero band E of groups G, e € E. Assume
z,a € §. Then z € G, a € Gy for some e, f € E, whence z,za € G, and
since G is a group we have that = € zGexa C zSa.

(iii)=-(iv) If (iii) holds it is clear that S is a regular semigroup. Assume
e, f € E(S). Then e € Sf whence ef = e. Thus, E(S) is a left zero band.

(iv)=-(v) Let S be a regular semigroup and let E(S) be a left zero band.
Assume a,b € S. Then for z € V(a), y € V(b) we have that b = byb =
bybxa € Sa. Thus, by Corollary 1.5, S is left simple.

Assume a,b,c € S such that ac = be. Then for z € V(a), y € V(b) and
z € V(c) we have that

a = axa = axacz = acz = bcz = bybcz = byb = b.

Thus, S is right cancellative.
(v)=-(vi) This follows immediately.

(vi)=-(vii) Let (vi) hold. Then by Corollary 1.5, S is a left simple semi-
group. Assume an arbitrary a € S. By (vi) there exists only one z € S such
that za = a. Hence we get z2a = ra = a and since z is unique, then 2% = x.

Thus, S contains an idempotent.

(vii)=-(viii) Let S be a left simple and let S contains an idempotent.
Assume an arbitrary e € FE(S). Then by Corollary 1.5 for an arbitrary
a € S, we have that e € Sa and a € Se. From a € Se we have that ae = a,
so e is a right identity.

(viii)=(vii) Let (viii) hold. Then for arbitrary a,b € S we have that
b=be € bSa C Sa, so S is left simple. Since e € E(S) then (vii) holds.

(vii)=(i) Let S be a left simple semigroup and let S contain an idempo-
tent. Then it is evident that S is simple. Also, for arbitrary e, f € E(S) from
e € Sf we have that ef = e, so E(S) is a subsemigroup of S and since F(S)
is a left zero band, then it immediately follows that all idempotents from
S are primitive. Thus, S is completely simple, and by Theorem 3.6, S is a
rectangular group, i.e. S is a direct product of a group G and a rectangular
band E. Since E(S) is a left zero band, based on Lemma 3.8 E is a left zero
band. Therefore, S is a left group. O



3.1. COMPLETELY 0-SIMPLE SEMIGROUPS 95

Theorem 3.8 Let S = M(G;1,A; P). Then:
(i) S is a disjoint union of minimal left ideals
Ly={(a;i,\)|ae G,iel}, (NeAl),

which are left groups;
(i1) S is a disjoint union of minimal right ideals

Ri={(a;i, M) |ae G, Ae A}, (i),

which are right groups;
(iii) S is a disjoint union of bi-ideals

Hix={(a;i,\) |a e G}, (GFel,AeN),

which are groups with an identity (p;il;i,)\); moreover, S is a matric
(rectangular band) I x A of groups H;.

Corollary 3.8 On a semigroup S the following conditions are equivalent:

(i) S is completely simple;

(ii) S is a left zero band of right groups;
(iii) S is a right zero band of left groups;
(iv) S is a matriz of groups.

Exercises

1. A semigroup S = S° is a O-group if and only if S is a left O-simple and right
0-simple.
2. The following conditions on a semigroup S are equivalent:

(a) S is completely simple;

(b) S is regular and for any a,x € S, a = axa implies z = zax;

(¢) (Va,beS) a € aSha.

3. A semigroup S is a left group if and only if (Va € S)(312 € S) a = za®.
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3.2 0-Archimedean Semigroups

In this section we consider (completely) 0- Archimedean semigroups as a
generalization of (completely) 0-simple and (completely) Archimedean semi-
groups. We describe nil-extensions of (completely) 0-simple semigroups.

Recall that, an element a of a semigroup S = S is a nilpotent if there
exists n € Z* such that a” = 0. The set of all nilpotent elements of S
is denoted by Nil(S). S is a nil-semigroup if S = Nil(S), otherwise it is
non-nil. An ideal I of S is a nil-ideal of S if I is a nil-semigroup. Based
on R(S) we denote Clifford’s radical of a semigroup S = S, i.e. the union
of all nil-ideals of S (it is the greatest nil-ideal of S). An ideal extension S
of a semigroup K is a nil-extension of K if S/K is a nil-semigroup. Some
characterizations of a Clifford’s radical give the following lemmas.

Lemma 3.9 For an arbitrary semigroup S = S°, R(S/R(S)) = 0.

Proof. Let S/R(S) = Q, let ¢ : S — @ be a natural homomorphism and
let I be a nil-ideal of Q. Let J = {z € S|¢(x) € I}. Then it is evident that
J is a nil-ideal of S, whence J C R(S5), so I is a zero ideal of Q. a

Let S be a semigroup. For a,b € S, a|bif b € J(a) and a — b if a|b",
for some n € Z*. For a € S, ¥1(a) = {x € S | a — z} and an equivalence
o1 on S is defined by: a o1 b if and only if ¥1(a) = ¥1(b), a,b € S. More
will be said about sets ¥, (a) and relations o,,,n € Z* in Chapter 4.

An ideal I of a semigroup S is prime if for all a,b € S, aSb C I implies

that either a € I or b € I, or, equivalently, if for all ideals A, B of S, AB C I
implies that either A C I or B C I.

The purpose of this section is to give some generalizations of (completely)
O-simple semigroups and of (completely) Archimedean semigroups and to
describe some of their characteristics.

First we will give a connection between Clifford’s radical of a semigroup
with zero and the relation oy.

Lemma 3.10 The Clifford radical R(S) of a semigroup S = S° is equal to
the o1-class containing the zero 0.
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Proof.  Let C be the g1-class of S containing the zero 0, and let a € C, = €
S. Then ¥1(a) = ¥1(0) = Nil(5). Since ab — = implies that a — z and
b — z, then we have that

Yi(az) € Xi(a) = Nil(S5), Xi(za) C Xi(a) = Nil(5).

Since Nil(S) C ¥ (u) for allu € S, then ¥ (ax) = ¥1(za) = Nil(S) = £,(0),
so ax,za € C. Hence, C is an ideal of S. It is clear that C' C Nil(5), so C
is a nil-ideal, whence C' C R(S).

Let a € R(S) and = € ¥1(a), i.e. " € SaS for some n € Z*. Since
SaS C SR(S)S C R(S) C Nil(S), then x € Nil(S) = 31(0). Thus, ¥1(a) C
¥1(0). It is clear that ¥1(0) C X1(a). Therefore, a € C so R(S) = C. |

Let A be a subsemigroup of a semigroup S. By Z(A) we denote the set of
all elements = € S which satisfied the condition zAU Az C A. The set Z(A)
we call an idealizer of a subsemigroup A into a semigroup S. It is evident
that Z(A) is the greatest subemigroup of S containig A as an ideal.

Lemma 3.11 Let A be a proper subsemigroup of a semigroup S. If A™ is
an ideal of S, for some n € ZT, then A # Z(A).

Proof.  Assume z € S—A. If x € Z(A), then the lemma holds. If x ¢ Z(A),
then there is an element a; € A such that z; = za; ¢ A (or a1z ¢ A). The
same holds for element x71 as for element xz. Hence, if we continue this
procedure for elements z;, then in no more than 2(n — 1) steps, multiplying
(left or right) by elements a; from A we obtain that xj € Z(A) — A. |

Corollary 3.9 If A is a proper nilpotent subsemigroup of a semigroup S
and the zero of A is the zero of S, then A # Z(A).

Theorem 3.9 A nil-semigroup is nilpotent if and only if the class of nilpo-
tency of all its nilpotent subsemigroups is bounded.

Proof. Let n be an upper bound of classes of nilpotency of all the nilpotent
subsemigroups of a nil-semigroup S. Since the union of the increasing family
of nilpotent semigroups of the class < n is also a nilpotent semigroup of the
class < n, then in S there is a maximal nilpotent subsemigroup A. If A = S,
then the statement of the theorem holds. Let A # S. Then, by Lemma 3.11
A # I(A). Let z be an arbitrary element from Z(A) — A and k € ZT such
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that 2* ¢ A, then z**! € A. Let I be a subsemigroup of S generated by
A and zF, F = (A,2%). It is evident that F is nilpotent, F is not a proper
subsemigroup of S, because A is a maximal. Hence, F' = S.

The converse follows immediately. O

In the following lemma we describe the identities which should satisfy
the nil-semigroup to be nilpotent.

Lemma 3.12 A nil-semigroup with the identity w = z1x9--- T, where
|u| > m + 1, is nilpotent.

Proof. Let a nil-semigroup S satisfies the identity u = zi29 - - - T, Where
|u| > m + 1. Then every nilpotent subsemigroup 7" of S has the power of
nilpotency not more than m. Suppose that the equation xixo---xp = 0,
k > m + 1 is satisfied in T and let y1,y2,...,%m € T. Then y1 -+ -y, =
w(y1,...,Ym). If on the letter u we apply the equation z - - -z, = u(zq,. ..,
Zm), then we obtain yq -« ym = u1(y1, - - ., Ym), where |ui| > m + 2. If this
procedure we apply again we obtain the equation y; - -+ Y = wi(y1,. -+, Ym),
where |u;| > k. Hence, y1y2 -+ ym = 0, for all y1,y2,...,ym € T. According
to Theorem 3.9 the rest of the proof follows immediately. a

Note that a semigroup S = SY is 0-simple if and only if a|b, for all
a,b € §°. Using the relation —, we can introduce a generalization of 0-
simple semigroups. A semigroup S = S° is 0-Archimedean if a — b, for
all a,b € S®°. Also, we can introduce a more general notion: A semigroup
S = S0 is weakly 0-Archimedean if a — b, for all a,b € S — R(S).

A relationship between weakly 0-Archimedean and 0-Archimedean semi-
groups is given in the next theorem. Since every nil-semigroup is (weakly)
0-Archimedean, then a consideration of nil-semigroups will be omitted.

Theorem 3.10 The following conditions on a non-nil semigroup S = S
are equivalent:

(i) S is weakly 0-Archimedean;
(ii) S is an ideal extension of a nil-semigroup by a 0-Archimedean semi-
group;

(iii) S contains at most two o1-classes.
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Proof.  (i)=(ii) Let S be weakly 0-Archimedean. Then S is an ideal ex-
tension of a nil-semigroup R = PR(S) by a semigroup (). Assume a,b € Q°.
Then a,b € S — R, so there exists x,y € S and n € Z* such that b" = zay,
since S is weakly O-Archimedean. If x € R or y € R, then 0" € R, whence
b" =0 € QaQ in Q, so a — bin Q. Assume that z,y € S — R = Q°®. Then
" = zay € QaQ in Q, so a — b in Q. Thus, @ is 0-Archimedean.

(ii)=(i) Let S be an ideal extension of a nil-semigroup R by a 0-Archime-
dean semigroup Q. Assume a,b € S — R(S). Since R C R(S), then a,b €
S — R = Q°. Thus, there exist z,y € Q and n € ZT such that " = xay.
If x =0o0ry =0, then b = 0 in @, whence b” € R C Nil(S) in S, so
bk = (b")* =0 € SaS in S, for some k € Z*, ie. a — bin S. Assume
that x,y # 0in . Then z,y € Q* =S — R, so b" = zay € SaS in S,
whence a — b in S. Thus, S is weakly 0-Archimedean.

(i)=(iii) Let S be weakly 0-Archimedean. According to Lemma 3.10
we obtain that 93(5) is equal to the oj-class containing 0. Assume a,b €
S —MR(S). Let us prove that ac1b. Let = € ¥1(a), i.e. let 2" = uav for
some n € ZT, u,v € S. If uav € R(S), then z € Nil(S), so b — x, i.e.
z € X1(b). Let uav € S — R(S). Then (uav)* € SbS for some k € Z7,
whence 2™ € SbS, i.e. € X1(b). Thus, ¥1(a) C X1(b). Similarly we prove
the opposite inclusion. Therefore, (iii) holds.

(iii)=-(i) This follows from Lemma 3.10. |

Lemma 3.13 Let S=S° be a nil-extension of a 0-simple semigroup K. Then
R(S)={zxeS| SzSNK =0}.

Proof. Let A={zx eS| SxSNK =0}. Assumea € A, x € S. Then
SaSNK =0 so

SaxSNK CSaSNK =0, SzxaSNK CSaSNK =0,

whence ax,za € A. Thus, A is an ideal of S. It is clear that A is a nil-
semigroup. Assume a nil-ideal I of S. Then I N K is an ideal of K, whence
INK =0o0or INK = K. Since K contains a non-nilpotent element, then
INK =0, S5SNK CSISNK CINK =0, for every a € I. Therefore,
I C A, whence R(S) = A. |

Note that the smallest ideal, if it exists, of a semigroup S is called a
kernel of S. But, in a semigroup with zero, this notion degenerates, since
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the zero ideal is the kernel, so we introduce the following notion: the smallest
element of a set of all nonzero ideals of a semigroup S = S, if it exists, is
called the 0-kernel of S.

Let S = S° and K be the 0-kernel of S. According to Corollary 1.7,
K? = 0, and then we say that K is a nilpotent 0-kernel, or K is O-simple,
and we call it a 0-simple 0-kernel.

Recall that, if a semigroup S is an ideal extension of a semigroup T by

a semigroup , then we usually identify the partial semigroups S — T and
Q@°*. This fact will be used in the following:

Theorem 3.11 A semigroup S = S° is a nil-extension of a 0-simple semi-
group if and only if S is an ideal extension of a nil-semigroup R by a 0-
Archimedean semigroup Q with a 0-simple 0-kernel K and the following
conditions hold:

(a) forallae K*, be S—R
ab=0 in Q =ab=0 in S
ba=0 in Q@ =ba=0 1in S;
(b) ab=ba =0, for alla € K°*, b€ R.

Proof. Let S be a nil-extension of a O-simple semigroup 7" and let R =
R(S). Then R is a nil-semigroup and S is an ideal extension of R by a
semigroup (. Since T is O-simple, then RNT = 0.

Assume a € T®, b € S — R. Then ab € T, since T is an ideal of S. If
ab=0in @, then ab € Rin S, so ab=0in 5, since RNT = 0. Thus,

ab=0€Q =ab=0€ 5.

Similarly we prove the second implication from (a).

Assume a € T®, b € R. Then ab = ba = 0, since ab,ba € RNT = 0.

Let K =T*U0 C Q. Then K is a subsemigroup of @ isomorphic to
T, whence K is O-simple. Therefore, from the aforementioned we obtain (a)
and (b).

Let I be an ideal of @), I # 0. It is easy to verify that I®* U R is an ideal
of S and I*UR # 0, whence T C I*UR, so K* =T* C I* ie. K CI.
Thus K is a 0-simple 0-kernel of Q.

Assume a,b € S — R. Based on Lemma 3.13 we obtain that SaSNT # 0,
whence T C SaS. Thus, there exists n € Z1 such that b” € T C SaS, i.e.
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a — b. Hence, S is a weakly 0-Archimedean, so by the proof of Theorem
3.10 we obtain that @ is 0-Archimedean.

Conversely, let S be an ideal extension of a nil-semigroup R by a 0-
Archimedean semigroup @ with a 0-simple 0-kernel K and let (a) and (b)
hold. From (a) it follows that 7" = K* U0 C S is a subsemigroup of S
isomorphic to K, so T is 0-simple. From (a) and (b) it follows that T is an
ideal of S. According to Theorem 3.10, S is a weakly 0-Archimedean. Assume
r € S. If x € R(S), then z € Nil(S), so 2" = 0 € T for some n € Z*.
Let x € S —R(S) and assume a € T — Nil(S). Then a — =z, whence
2" € SaS C T, for some n € ZT. Therefore, S is a nil-extension of 7. O

As we have seen, a 0-Archimedean semigroup is a generalization of a
0-simple semigroup. Similarly we generalize the notion of completely 0-
simple semigroups. An idempotent e of a semigroup S = S is a 0-primitive
idempotent of S if it is a minimal element in the partially ordered set of
all nonzero idempotents of S. A 0-Archimedean semigroup containing a
0-primitive idempotent is called a completely 0-Archimedean semigroup.

Lemma 3.14 Every completely 0-Archimedean semigroup contains a (com-
pletely) 0-simple 0-kernel.

Proof.  Let S be a completely 0-Archimedean semigroup and let e € E(S)
be a O-primitive idempotent. Let K be an intersection of all non zero ideals
of a semigroup S. It is clear that 0 € K, so K is a non-empty set, and also
it is evident that K is an ideal of S. Assume an arbitrary non-zero ideal I
of S and assume an arbitrary element a € I°®. Since S is a 0-Archimedean
and a,e € S°, then a — ¢, i.e. e € SaS C I. Thus, e is an element of
all non-zero ideals of S, so e € K. Hence, K is a 0-minimal ideal of S and
K? # 0 and by Corollary 1.7 we have that K is a 0-simple semigroup. Since
e is a O-primitive, then K is a completely O-simple semigroup, i.e. K is a
completely 0-simple 0-kernel of S. O

Based on Lemma 3.14 and Theorem 3.11 we obtain the following:

Corollary 3.10 A semigroup S = S° is a nil-extension of a completely 0-
simple semigroup if and only if S is an ideal extension of a nil-semigroup R
by a completely 0-Archimedean semigroup @, and the conditions (a) and (b)
hold, where K 1is the 0-kernel of Q).
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Theorem 3.12 The following conditions on a non-nil semigroup S = S°
are equivalent:

(i) S is a 0-Archimedean semigroup with a 0-simple 0-kernel;
(ii) S is a 0-Archimedean semigroup with a 0-minimal ideal;
(iii) S is a weakly 0-Archimedean semigroup with a 0-simple 0-kernel;

)
)
)
(iv) S is a 0-Archimedean intra-m-regular semigroup;
(v) S is a nil-extension of a 0-simple semigroup and R(S) = 0;
(vi) S is a nil-extension of a 0-simple semigroup and 0 is a prime ideal of

S.

Proof.  (i)=-(ii) This follows immediately.

(ii)=(i) Let S be a 0-Archimedean semigroup with a non-nil 0-minimal
ideal M. Let I # 0 be an ideal of S, let x € I*® and let a € M —Nil(S). Then
xr — a, i.e. a® € SzS C I for some n € ZT, whence a™ € I N M, a™ # 0.
Thus I N M # 0 is an ideal of S contained in M, and since M is 0-minimal,
we obtain that INM =M, ie. M CI. Hence, M is a 0-simple 0-kernel of S.

(i)=(v) Let S be a 0-Archimedean semigroup with a O-simple 0-kernel
K. Then K is 0-simple semigroup. Let ¢ € K*® and assume z € S°. Then
a — x,ie. 2" € SaS C SKS C K, for some n € Z*. Thus S is a nil-
extension of K. If R(S) # 0, then K C 9R(S), which is not possible, since
K # Nil(K). Thus R(S) = 0, so (v) holds.

(v)=(iv) Let S be a nil-extension of a 0-simple semigroup K and let
R(S) = 0. Then it is clear that S is intra-m-regular and from the proof of
Theorem 3.11 we obtain that S is a 0-Archimedean.

(iv)=-(i) Let S be a non-nil 0-Archimedean intra 7-regular semigroup.
Assume a € S — Nil(S). Then there exists m € Z* and z,w € S such that
a™ = za*™w € Sa™S. Let K =Sa™S and let ¢,d € K*. Then c=xa™y for

some x,y€S. On the other hand, by a™=za*"w=za™(a™w) it follows that

a™ = z"a"(a™w)", (1)

for all n € Z™. Since d,a™w € S*® and S is 0-Archimedean, then there exists
k € ZT and u,v € S such that (a™w)* = udv. Now, from (1) we obtain that

c =xa™y = (z2"a™) (@™ w)k (@M wy) = (x2Fa™ ) udv(amwy)
= (z2"1a™u)d(va™wy) € KdK.

Thus, by Corollary 1.6 we obtain that K is a 0-simple semigroup.
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Let I # 0 be an ideal of S. Let I C Nil(S). Assume x € I°®. Then
r — a, ie. a® € SxS C I, for some n € ZT, and since I C Nil(5),
then a € Nil(S), which leads to a contradiction. Thus, there exists b €
I —Nil(S) C S°, so there exists n € Z* such that b" € Sa™S = K, whence
" e INK, b" #0,s0 INK # 0. Now, since K is 0-simple, then INK = K,
so K C I. Thus, K is a O-simple 0-kernel of S.

(iii)=-(i) Let S be a weakly 0-Archimedean semigroup with a 0-simple
0-kernel K. Since K is O-simple, then K ¢ Nil(S) so K ¢ R(S), whence
M(S) =0, so by the proof of Theorem 3.10 we obtain that S is 0-Archimedean.

(i)=-(iii) This follows immediately.

(v)=(vi) Let S be a nil-extension of a 0O-simple semigroup K and let
M(S) = 0. Let A and B be nonzero ideals of S and let a € A®, b € B°.

According to Lemma 3.13 we obtain that K C SaS C A and K C SbS C B,
whence K = K? C AB. Thus AB # 0. Therefore, 0 is a prime ideal of S.

(vi)=(v) Let S be a nil-extension of a 0-simple semigroup K and let 0
be a prime ideal of S. Let R = fR(S). From the proof of Theorem 3.11 we
obtain that RK = 0, whence R = 0 or K = 0. Since K is 0-simple, then
R =0, so (v) holds. |

In the following theorem a consideration of nil-semigroups will be omitted
once again.

Theorem 3.13 The following conditions on a non-nil semigroup S = S°
are equivalent:

(i) S is a completely 0-Archimedean semigroup;
(ii)
)
)

(iii
(iv) S is a nil-extension of a completely 0-simple semigroup and 0 is a
prime ideal of S.

S is 0-Archimedean and completely m-regular;

S is a nil-extension of a completely 0-simple semigroup and R(S) = 0;

Proof.  (i)=-(iii) Let S be a completely 0-Archimedean semigroup. Ac-
cording to Lemma 3.14, S has a completely O-simple 0-kernel K, and it is
clear that S is a nil-extension of K. Now, by Theorem 3.12 we have that
M(S) = 0. Thus, (iii) holds.

(ii)=-(iii) This follows from Theorem 3.12 and Theorem 2.5.

(iii)=(i), (iii)=-(ii) and (iii)<(iv) This follows from Theorem 3.12. O
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Exercises

1. A semigroup S = SY is a weakly 0-Archimedean and has a 0-primitive idem-
potent if and only if S is an ideal extension of a nil-semigroup by a completely
0-Archimedean semigroup.

2. Every periodic (finite) 0-Archimedean semigroup is completely 0-Archimedean.

3. Let S = SY be a 0-Archimedean semigroup. Then S has no divisors of zero if
and only if S has no non-zero nilpotents.
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3.3 Archimedean Semigroups

A semigroup S is Archimedean if a — b for all a,b € S. It is clear that a
semigroup S is Archimedean if and only if S is a 0-Archimedean semigroup.
The Archimedean semigroups with kernels were described by the following
theorem:

Theorem 3.14 On a semigroup S the following conditions are equivalent:
(i) S is a nil-extension of a simple semigroup;

(ii) (Va,b € S)(In € Z) a" € SH*"S;
(iii) S is an Archimedean intra mw-regular semigroup.

Proof.  (i)=-(ii) Let S be a nil-extension of a simple semigroup K. Assume
a,b € S. Then there exists n € ZT such that a”,b*" € K and since K is a
simple semigroup then a” € K"K C Sb*"S. Thus, (ii) holds.

(ii)=-(iii) This follows immediately.

(iii)=-(i) This implication we prove using Theorem 3.12 on a semigroup
S9. O

Corollary 3.11 On a semigroup S the following conditions are equivalent:

(i) S is a nil-extension of a left simple semigroup;
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(i) (Va,b€ S)(3n € ZT) a™ € Sb*";

(iii) S is a left Archimedean and left w-regular semigroup.

Theorem 3.15 The following conditions on a semigroup S are equivalent:

(i) S is w-regular and an Archimedean semigroup;
(ii) S is a nil-extension of a simple reqular semigroup;
(iii) (Va,b€ S)(In € ZT) a™ € a™SbSa".

Proof.  (i)=-(ii) If S is a m-regular Archimedean semigroup, then E(S) # 0.
Assume e € E(S) and let I be an ideal of S and let b € I. Then e € SbS C I.
Hence the intersection K of all the ideals of S is the non-empty set and by
Corollary 1.7, K is a simple kernel of S. Since S is Archimedean, we have
that for every a €S there exists m € Z* such that a™ € K. Thus, S is a nil-
extension of a simple and clearly m-regular semigroup K. Hence, by Theorem
2.1 we have that S is a nil-extension of a simple regular semigroup K.

(ii)=(i) Let S be a nil-extension of a simple regular semigroup K. Ac-
cording to Theorem 3.14, S is an Archimedean semigroup. For a € S there
exists n € Z™ such that " € K. But K is a regular semigroup, so we have
a” € a"Ka" C a"Sa", and S is a w-regular semigroup.

(ii)=-(iii) Let S be a nil-extension of a simple regular semigroup K and let
a,b € S. Then there exists n € ZT such that a”,a"b € K, so a" € Ka"bK,
and there exists x € K such that

a" =a"za" = a"za"za" € a"rzKa"bKza" C a"KbKa" C a"SbSa",

which has to be proved.

(iii)=-(i) It is obvious that S is a m-regular semigroup. Assume a,b € S.
Then there exists n € ZT such that a” € a™SbSa™ C SbS, so S is an
Archimedean semigroup. O

Lemma 3.15 Let S be a w-regular semigroup in which all the idempotents
are primitive. Then S is completely m-reqular, and mazimal subgroups of S
are of the form

Ge = eSe, e € E(S).

Proof. For a € S there exist x € S and m € Z™ such that a™ = a™xa™.
For a”, where k > m, there exist y € S and n € Z* such that a*" = a*"ya*".
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Assume that e = za™ and f = za™ya*". Then e? = e and

kn—m _ m,, kn

f? = za™ya*"za™ya" = xa™yad* ™ (@M xa™)ya" = xamya aya
— xamyaknyakn — xamyakn — f;
fe = za™ya za™ = zamya" " aMza™ = zaMya " ma™ = f = ef.

Thus ef = fe = f and since idempotents in S are primitive we have that
e = f. Whence

a™ = amza™ = a"e = " f = a™xaMya"™" € a™Sa™ Y,

and by Theorem 2.3, S is a completely 7-regular semigroup.

Let e € E(S) and u € G.. Then u = eue € eSe, so G, C eSe. On the
other hand, assume u € eSe, i.e. let u = ebe for some b € S. Since S is a
completely regular semigroup then u? € Gy for some p € Z* and f € E(S).
Now, we have that

ef = euP (uP)~! = e(ebe)P(uP) ™! = (ebe)P(uP) ! = f,

where (uP)~! is a group inverse of u” in Gy, and dually we get fe = f, so
based on the primitivity of idempotents from S we have that e = f. Thus
uP € G, and based on Lemma 1.8 u = ebe = e(ebe) = eu € G.. Therefore,
eSe C G. O

As completely 0-Archimedean semigroups are one generalization of com-
pletely 0-simple semigroups, in a similar way we can introduce one new
generalization of completely simple semigroups.

A semigroup S is completely Archimedean if S is Archimedean and if it
has a primitive idempotent.

Theorem 3.16 The following conditions on a semigroup S are equivalent:

(i) S is a completely Archimedean semigroup;

(ii) S is a nil-extension of a completely simple semigroup;

(iii) S is Archimedean and completely m-regqular;

v) (Va,b€ S)(In € ZT) a™ € a"Sba™;
(v’) (Va,be S)(3n € Z1) a™ € a"bSa";
(vi) S is completely w-reqular and (E(S)) is a (completely) simple semi-
group.

)
)
)
(iv) S is w-regular and all idempotents from S are primitive;
)
)
)
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Proof.  (i)=-(ii)=(ili)=-(i) These implications hold by Theorem 3.13 if a
semigroup S adds zero.

(ii))=-(v) Let S be a nil-extension of a completely simple semigroup K.
Assume arbitrary a,b € S. Then there exists n € Z* such that a” € K, so
by Corollary 3.8 K is a matrix of groups, whence there exists e € F(S) such
that a™, aba™ € G.. Thus xa™ba™ = e for some = € G., whence

a” =a"e = a"za"ba" € a"Sba".

(v)=(iv) If (v) holds, then it is evident that S is a 7-regular semigroup.
Assume e, f € E(S) such that ef = fe = f. From (v) we have that e €
efSe = fSe, whence e = fe = f. Thus, all the idempotents from S are
primitive.

(iv)=-(ii) Based on Lemma 3.15, S is completely m-regular and all the
maximal subgroups of S are of the form G, = eSe, e € E(S). Accord-
ing to Lemma 1.17, a subgroup G, e € E(S) is a minimal bi-ideal of S.
Now, by Theorem 1.17 the union K of all the minimal bi-ideals of § i.e.
K = U.cg(s)Ge, is the kernel of S. Based on Corollary 1.9, K is a simple
semigroup and since K is a union of groups, then by Corollary 2.4 K is
completely simple. In the end, since S is completely m-regular, then S is a
nil-extension of K.

(i)=(vi) Let S be a completely Archimedean semigroup. Based on
(i)<(ii) S is a nil-extension of a completely simple semigroup K. Since
(E(S)) € K we then have by Lemma 2.10 that (E(S)) is completely simple.
It is clear that .S is completely m-regular.

(vi)=(i) If S is completely m-regular and (E(S)) is a simple semigroup,
then by Lemma 2.11, (F(S)) is completely m-regular. According to Theorem
2.5, (E(S)) is completely simple, from where it follows that idempotents are
primitive, so S is completely Archimedean. O

Corollary 3.12 A semigroup S is a nil-extension of rectangular group if
and only if S is w-reqular and E(S) is a rectangular band.

Proof.  Let S be a nil-extension of a rectangular group K. Then E(S) =
E(K) and by Lemma 3.8, E(S) is a rectangular band.

Conversely, let S be m-regular and let E(S) be a rectangular band. Then
all the idempotents from S are primitive and by Theorem 3.16, S is a nil-
extension of a completely simple semigroup K. Since E(K) = E(S) based
on Theorem 3.6, K is a rectangular group. O
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A semigroup S is left (right) Archimedean if a LIS (a - b), for all
a,b € S. Left (right) Archimedean semigroups are the generalizations of left
(right) simple semigroups.

In the following theorem we describe a left Archimedean semigroup which
has an idempotent.

Theorem 3.17 The following conditions on a semigroup S are equivalent:

(i) S is left Archimedean and it has an idempotent;

(ii) S is w-regular and E(S) is a left zero band;

(
(iv) (Va,be S)(3m e ZT) a™ € a™Sa™b;

)
)
iii) S is a nil-extension of a left group;
)
(iv’) (Va,b € S)(Im € ZT) a™ € ba™Sa™.

Proof.  (i)=(ii) Let S be a left Archimedean semigroup and let e € E(S).

Assume a € S. Then from a — e and e — a we have that e € Sa and
a™ € Se for some n € ZT, whence a” = a"e € a"Sa". Thus, S is w-regular.
Assume f,g € E(S). Then from g LN f we have that f € Sg, whence
fg = f. Therefore, E(S) is a left zero band.

(ii)=(iii) Let S be m-regular and let E(S) be a left zero band. Then
all the idempotents from S are primitive and by Theorem 3.16, .S is a nil-
extension of a completely simple semigroup K. It is clear that E(S) = E(K),
i.e. E(K) is a left zero band and since K is a regular semigroup then by
Theorem 3.7 K is a left group.

(iii)=(iv) Let S be a nil-extension of a left group K. Assume a,b € S.
Then there exists n € Z* such that ¢" € K, whence a"b € K and by
Theorem 3.7 we have that a™ € a"Ka"b C aSa™b. Thus, (iv) holds.

(iv)=-(i) If (iv) holds then it is evident that S is a left Archimedean
semigroup. Since from (iv) it immediately follows that S is a m-regular, then
S has an idempotent. O

A semigroup S is a two-sided Archimedean, t- Archimedean for short, if S
is both a left and right Archimedean semigroup. A semigroup S is a m-group
if S is m-regular and if it has only one idempotent.

Theorem 3.18 The following conditions on a semigroup S are equivalent:

(i) S is t-Archimedean and it has an idempotent;
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(ii) S is a w-group;
(iii) S is a nil-extension of a group;

(iv) (Va,b e S)(Im € ZT) a™ € ba™Sa™b.

Proof.  (i)=(ii) Let S be a t-Archimedean semigroup and let S have an
idempotent. Then by Theorem 3.17 and it dual we have that S is a n-
regular semigroup, E(S) is a left zero band and E(S) is a right zero band.
Thus, E(S) contains only one element, so S is a mw-group.

(ii)=-(iii) If S is a m-group then by Theorem 3.17, S is a nil-extension of
a left group K. Since K has only one idempotent then K is a group.

(iii)=-(iv) Let S be a nil-extension of a group G. Assume a,b € S. Then
there exists n € Z™ such that a™ € G whence ba",a™b € G and since G is a
group, then we have a™ € ba"Ga™b C ba™Sa"b.

(iv)=-(i) If (iv) holds, then it is evident that S is a ¢-Archimedean semi-
group. Also, it is clear that S is m-regular, so S has an idempotent. O

A semigroup S is power-joined if for all a,b € S there exist m,n € ZT
such that a™ = b". It is clear that every power-joined semigroup is t-
Archimedean.

Corollary 3.13 The following conditions on a semigroup S are equivalent:

(i) S is power-joined and it has an idempotent;
(ii) S is t-Archimedean and periodic;
(iii) S is periodic and it has only one idempotent;
)

(iv) S is a nil-extension of a periodic group.

Exercises

1. A semigroup S is completely Archimedean if and only if S is Archimedean and
S contains at least one minimal left and at least one minimal right ideal.

2. The following conditions on a semigroup S are equivalent:
(a) S is periodic and Archimedean;

(b) S is w-regular and for all a,b € S, ab = ba implies a™ = b", for some n € Z™;
(c) S is a nil-extension of a periodic simple semigroup.

3. A semigroup S is a nil-extension of a left simple semigroup if and only if S is a
left Archimedean and left 7-regular.
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4. The following conditions on a semigroup S are equivalent:

(a) S is m-inverse Archimedean;
(b) S is a nil-extension of a simple 7-inverse semigroup;
(¢) S is a nil-extension of a simple inverse semigroup.

5. A semigroup S is a nil-extension of a rectangular band if and only if for every
a,b € S there exists n € Z* such that a = a"ba".

6. If for every element a € S there exists n € Z* and there exists exactly one z € S
such that a™ = za™*!, then S is a nil-extension of a left group. Does the converse
hold?

7. A semigroup S is a nil-extension of a periodic left group if and only if for every
a,b € S there exists n € Z* such that a = a™b"™.
8. A semigroup S is a m-group if and only if S is Archimedean with only one
idempotent.
9. Let £ be a congruence on a m-regular semigroup S. Then e f, for all e, f € E(S)
if and only if S/ is a m-group.
10. The following conditions on a semigroup S are equivalent:

(a) S is a group;

(b) S is regular and has only one idempotent;

(¢) Vae€ S)(Fix e S) a=azxq

(d) (Va,be S)acbSh.

11. A semigroup S is a subdirect product of nilpotent semigroups if and only if
|ﬁn€ZJr Sn' <L

12. A semigroup S is a subdirect product of nil-semigroups if and only if N, cz+J(@")
=0, foralla e S.

13. Let S be a subsemigroup of an Archimedean semigroup without intra-regular
elements. Then S is a subdirect product of countable many nil-semigroups.

14. The following conditions on a semigroup S are equivalent:
(a) S is a m-group;
(b) S is a subdirect product of a group by a nil-semigroup;
(c) S is completely m-regular with the identity 20 = 4/°.

15. A semigroup S is a nil-extension of a left group if and only if S is an epigroup
with the identity x%9y° = 0.
16. The following conditions on a semigroup S are equivalent:

(a) S is completely Archimedean;

(b) S is completely w-regular satisfying some heterotypical identity;

(c) S is completely m-regular with the identity (a"6°a®)° = a°.

17. The following conditions on a semigroup S are equivalent:

(a) P(S) is Archimedean;
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(b) P(S) is a nilpotent extension of a rectangular band;
(¢) S is a nilpotent extension of a rectangular band.

18. A semigroup S is a nilpotent extension of a left zero band if and only if P(.5)
is left Archimedean.

19. A semigroup S is nilpotent if and only if P(S) is t-Archimedean.

20. A semigroup S is Archimedean if and only if any its bi-ideal is Archimedean.
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3.4 Semigroups in Which Proper Ideals are
Archimedean

Denote by A (LA, RA, TA,PJ) the class of Archimedean (left Archi-
medean, right Archimedean, ¢-Archimedean, power-joined) semigroups. As
we have already noticed, the following relations between these classes hold

PTCTA=LANRAC LAURAC A.

Let 1(S) (L(S)) denote the union of all proper two-sided (left) ideals of
a semigroup S.

Theorem 3.19 FEwvery proper ideal of a semigroup S is an Archimedean
subsemigroup of S if and only if I1(S) is an Archimedean subsemigroup of S.
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Proof.  Let all proper ideals of S be Archimedean semigroups and let a,b €
I(S). Then there exists a proper ideal A of S such that a,aba € A and there
exists n € Z* such that

a" € AabaA C I(S)bI(S).

Thus I(S) is an Archimedean semigroup.

Conversely, let I(S) be an Archimedean semigroup and let A be a proper
ideal of S. Then for a,b € A there exists n € Z™ such that a” = by for some
x,y € 1(S). Thus a"*? = axbya where azx,ya € A, so A is an Archimedean
semigroup. d

Lemma 3.16 Every left ideal of an Archimedean (left Archimedean, right
Archimedean, t-Archimedean, power-joined) semigroup S is an Archimedean
(left Archimedean, right Archimedean, t-Archimedean, power-joined) sub-
semigroup of S.

Proof.  We will only prove the case when S is an Archimedean semigroup,
the other cases are proved similarly. Let L be an arbitrary left ideal of §
and let a,b € L. Then there exist z,y € S and n € Z* such that a” = zb%y.
Hence, it follows that a"* = axbbya and zb,ya € L. O

In the following theorem we will give the characterization of a semigroup
whose every proper left ideal is an Archimedean semigroup.

Theorem 3.20 The following conditions on a semigroup S are equivalent:

(i) every proper left ideal of S is an Archimedean subsemigroup of S;
(ii) L(S) is an Archimedean subsemigroup of S;
(iii) S satisfies one of the following conditions:
(a) S is Archimedean;
(b) S has a mazimal left ideal M which is an Archimedean semigroup

and M C Ma, for everya € S — M.

Proof.  (i)=(ii) If S is a left simple semigroup then S is Archimedean.
Assume that S is not left simple. For arbitrary a,b € L(S) there exists a
proper left ideal L of S such that a,ba € L whence

a" € LbaL C L(S)bL(S),

for some n € Z™, and thus L(S) is an Archimedean subsemigroup of S.
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(ii)=-(iii) If L(S) # S then M = L(5) is a maximal left ideal of S and by
Theorem 1.15, S — M = {a}, a®> € M, or S — M C Sa, for every a € S — M.
If S— M = {a}, a® € M, then S is Archimedean. If S — M C Sa, for every
a € §— M, then by Theorem 1.16 T'= S — M is a subsemigroup of S. From
Sa=5,a €T it follows that S = MaUTa C MaUT C S,ie. S=MaUT.
Thus, M C Ma, for every a € S — M.

(iii)=(i) If (a) holds, then by Lemma 3.16 every left ideal of S is an
Archimedean subsemigroup of S. Let (ii) hold and let L be a proper left
ideal of S. If L C M then by Lemma 3.4, L is an Archimedean subsemigroup
of S. If L ¢ M then LN(S—M) # 0 and fora € LN(S—M)is M C Ma C L
which is impossible. O

Theorem 3.21 FEwvery proper left ideal of S is a left Archimedean subsemi-
group of S if and only if S satisfies one of the following conditions:

(a) S is left Archimedean;

(b) S contains only two left ideals L1 and Lo which are left simple semi-
groups and S = L1 U Lo;

(¢) S has a mazimal left ideal M which is a left Archimedean semigroup
and M C Ma, for everya € S — M.

Proof.  Let all proper left ideals of S be left Archimedean. If L(S) # S
then M = L(S) is a maximal left ideal of S which is a left Archimedean
semigroup. Based on Theorem 1.15, we have that S — M = {a},a? € M or
S — M C SaforeveryacS— M. If S— M = {a},a® € M then S is a left
Archimedean semigroup. If S — M C Sa for every a € S — M, then as in
the proof of Theorem 3.20, we have that S is type (c).

If L(S) = S and for every two proper left ideals Lj and Ly of S, L1NLy #
(), then S is left Archimedean. On the other hand, there exist left ideals L
and Lo of S such that L1 N Ly = (. In that case, L1 U Ly = S, because
L1 U Ly is not a left Archimedean semigroup (since Ly N Ly = (). Let L3 be
a left ideal of S such that Ls C Ly, Ls # L1. Then Lo U L3 is a proper left
ideal of S and for a € L3, b € Ly we have that a™ = xb € Sb C Lo, for some
n € Z" and x € S. Thus, Ly N Ly # () which is not possible. Hence, L is
a minimal left ideal of S and by Theorem 1.14, it is left simple. Also, Lo is
a left simple semigroup of S. Thus, if every proper left ideal of S is a left
Archimedean semigroup, then one of the conditions (a), (b) or (c) holds.

The converse follows immediately. O
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Also, on a semigroup S we define the relations T, 1, T, and 1y by

atb < (IneZt) b e (a,b)ala,b),
atb & (IneZt) v e (a,b)a,
atrb & (IneZ) " €ala,b),
attb & (IneZ)atb & at,b.

Clearly, a 1y b if and only if b" € a {(a,b) a, for some n € ZT.

A semigroup S is a hereditary Archimedean if a T b for all a,b € S. By a
hereditary left Archimedean semigroup we mean a semigroup .S satisfying the
condition: a T b, for all a,b € S. A hereditary right Archimedean semigroup
is defined dually. A semigroup S is called hereditary t-Archimedean if it is
both hereditary left Archimedean and hereditary right Archimedean, i.e. if
atybforallabels.

The next lemma gives an explanation of why we are use the term ”hered-
itary Archimedean”.

Lemma 3.17 A semigroup S is hereditary Archimedean (hereditary left Ar-
chimedean, hereditary right Archimedean, hereditary t-Archimedean) if and
only if every subsemigroup of S is Archimedean (left Archimedean, right
Archimedean, t-Archimedean).

By C> we denote the two-element chain and for a prime p, G, will denote
the group of order p.

The class Her(.A) of all hereditary Archimedean semigroups will be char-
acterized in terms of forbidden divisors as follows:

Theorem 3.22 A semigroup S is hereditary Archimedean if and only if Co
does not divide S

Proof.  The class Her(A) is closed under the formation of divisors and it
does not contain Cs, while we have that Co does not divide any semigroup
from Her(A).

Conversely, let Co not divide S. Suppose that S is not hereditary
Archimedean. Then there exist a,b € S such that a 1T b does not hold,
i.e. such that b" ¢ T'aT!, for any n € ZT, where T = (a,b). But, now we
have that the set Ag = T'aT"! and A; = (b) form a partition of 7" which
determines a congruence relation on S whose related factor is isomorphic to
Cs. This means that Cy divides .S, which contradicts our starting hypoth-
esis. Therefore, we conclude that S € Her(A). This completes the proof of
the theorem. O
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In terms of forbidden divisors we also characterize nil-extensions of rect-
angular bands.

Theorem 3.23 A semigroup S is a nil-extension of a rectangular band if
and only if Co and Gy, for any prime p, do not divide S.

Proof. The class of all semigroups which are nil-extensions of rectangu-
lar bands is closed under the formation of divisors and it does not contain
semigroups Cy and Gy, for any prime p, so Cy and G, do not divide any
semigroup from this class.

Conversely, let Cy and Gy, for any prime p, not divide S. According to
Theorem 3.22, S € Her(A). Assume an arbitrary a € S. If (a) is infinite,
then it is isomorphic to the additive semigroup of positive integers, and any
of the G, groups is a homomorphic image of (a). Thus, G, divides S, which
contradicts our starting hypothesis. Hence, (a) is finite, for any a € S,
so S is periodic, and it is a nil-extension of a periodic completely simple
semigroup K (by Theorem 3.16). In view of this hypothesis, K does not
have non-trivial subgroups. So K is a rectangular band. O

Lemma 3.18 A semigroup S is left simple hereditary left Archimedean if
and only if S is a periodic left group.

Proof. Let S be a left simple semigroup. Then by Corollary 1.5 for ¢ € S
there exists z € S such that @ = za. Since S is a hereditary left Archimedean
semigroup then there exists n € Z* and u € (a, z) such that " = ua so

a=2"a = uaa = a't,

for some i € ZT, because u € (a,x). Thus, S is a periodic semigroup, so
E(S) # 0. Now by Theorem 3.7 we have that S is a periodic left group.

The converse follows from Lemma 3.17 and from Theorem 3.7. O

Theorem 3.24 FEvery proper subsemigroup of a semigroup S is left Archi-
medean if and only if S is hereditary left Archimedean or |S| = 2.

Proof. Let every proper subsemigroup of S be left Archimedean. Then by
Theorem 3.21 there are three cases:

(a) S'is aleft Archimedean. In that case by Lemma 3.17, S is a hereditary
left Archimedean semigroup.
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(b) S has only two left ideals L; and Ly which are left simple semigroups
and S = Ly U Ly. In that case, since L1, Lo # S based on the hypothesis
and by Lemma 3.17, L1 and Ls are hereditary left Archimedean semigroups,
so by Lemma 3.18, L and Lo are left groups. Now, according to Theorem
3.8, S is a union of a group, i.e. S is completely regular, so, since S is a
simple semigroup then by Corollary 2.4, S is completely simple. Using the
notation from Theorem 3.6, S is a left zero band I of a right group R;, ¢ € I.
If |I| > 2, then for ¢ € I R; is a hereditary left Archimedean semigroup and
based on the dual of Theorem 3.7, and by Theorem 3.17, E(R;) is both a
right and left zero band, whence |E(R;)| =1, i.e. R; is a group. So, in that
case, by Theorem 3.7, S is a left group, i.e. E(S) is a left zero band, which
is impossible, as for e € E(L1) and f € E(L2) we have ef € Ly because Lo
is a left ideal of S, and e ¢ Lo. Thus |I| =1, so S is a right group and E(S)
is a right zero band. Then (e, f) = {e, f} cannot be a left Archimedean
semigroup, so S = {e, f}, i.e. |S|=2.

(c) S has a maximal left ideal M = L(S) which is a hereditary left
Archimedean semigroup and M C Ma, for every a € T =S — M. Based
on Theorem 1.16, T' is a subsemigroup of S. Assume that T is not a left
simple semigroup. Then there exist a € T such that Ta # T. So, in
that case, M # Ma whence S = Ma. Let a = xa for some z € M.
Then (ax)" = a"x € M, for every n € Z*, n > 2 and (az) U (a) is a
subsemigroup of S. It is evident that S = (az) U (a) because (ax)U (a) is not
a hereditary left Archimedean semigroup (if it is, then a* € (a,az)az € M
that is impossible). Now we have that z € (az), i.e. x = aFz for some

ke Z", soa=xa=dza = art?

, whence T' = (a) is a group, that is a
contradict by hypothesis that T is not a left simple semigroup. Thus 7T is a
left simple semigroup and by Lemma 3.18 T is a left group. For e € E(T)
we have that M C Me and for arbitrary © € M we have x = ye, for some
y € M. Hence x = ye = yee = ze and (ex)" = ex™ € M for every n € Z™T.
Now, if A = {(ex)?, (ex)3,...} U {e} is a proper subsemigroup of S, then
A is a hereditary left Archimedean semigroup, so e € (e, ex?)ex? C M that
is impossible. Thus, S = A, whence ex = (ex)* for some k € Z1, k > 2,
ie. {(ex)? (ex), ...} is a group. For identity (ex)* ! = ex¥~! of these
group we have that {ex*~! e} is not hereditary left Archimedean. Thus,
S = {exF"1 e}, ie. |G| = 2.

The converse follows immediately. O

Lemma 3.19 FEvery t-Archimedean semigroup contains at most one idem-
potent.



3.4. SEMIGROUPS IN WHICH PROPER IDEALS ARE... 117

Proof.  Let e, f be idempotents of a t-Archimedean semigroup S. Then
e=xf and f = ey, for some z,y € S, whence e = 2f = zf%2 =ef = ey =
ey=f. O

Lemma 3.20 A semigroup S is left simple (right simple, simple) t-Archi-
medean if and only if S is a group.

Proof.  We only give the proof when S is a left simple ¢-Archimedean semi-
group. For an element a € S there exists & € S such that a = za?. Since S
is t-Archimedean then for a and x there exist y € S and n € Z™ such that
2" = ay. Now we have

1

2 2 3 nan—‘rl — ayan—‘r .

a=xa"=zx"a°=---==x
Thus, S is a regular semigroup and by Lemma 3.19, S has only one idem-
potent, so according to Theorem 3.18, S is a group.

The converse follows immediately. O

Theorem 3.25 Let a semigroup S be not left simple. Then every proper left
ideal of S is a t-Archimedean semigroup if and only if one of the following
conditions holds:

(a) S is t-Archimedean;

(b) S contains only two left ideals G1 and G which are groups and S =
G1UGy;

(¢) S has a mazimal left ideal M which is a t-Archimedean semigroup and
M C Ma, for everyae S — M.

Proof.  Let every proper left ideal of S be a t-Archimedean semigroup.
Then by Theorem 3.21 and Lemma 3.20, we have that one of the condi-
tions (b) or (c) holds, or S is a left Archimedean semigroup. If S is left
Archimedean and L(S) # S, then L(S) is a maximal left ideal of S and it
is a t-Archimedean semigroup. Based on Theorems 1.15 and 1.16, there are
two cases: S — L(S) is a subsemigroup of S, and then we get a contradiction,
or S — L(S) = {a}, a®> € L(S), then S is t-Archimedean. If L(S) = S then
it is easy to prove that S is of the type (a).

The converse follows immediately. O

Theorem 3.26 Fvery proper subsemigroup of S is t-Archimedean if and
only if S is a hereditary t-Archimedean semigroup or S is a two element

band.
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Proof.  Let every proper subsemigroup of S be t-Archimedean. If S is left
simple, then by Lemma 3.20, S is a group. Suppose that S is not left simple.
Then one of the conditions (a), (b) and (c) of Theorem 3.25 holds.

If (a) hold then S is a hereditary ¢-Archimedean semigroup.

Let (b) hold and let e, f be units of the groups G1 and G4 respectively.
Then based on the proof of Theorem 3.24, we have that S = {e, f}.

Let (c) hold. Then M is an ideal of S and by Theorem 3.24, S — M is
a left simple semigroup, so by Lemma 3.20, S — M is a group. Let x € M
be an arbitrary element and let e be an identity of a group S — M. Then
ex,zbe € M, for every k € ZT, so S = (e,ex) = (x,ze). Hence, we have
that = = ey for some y € S, so ex = e(ey)ey = x. Thus (ze)* = z(ex)* e,
so S = {e,xze,2’%,...} and A = {e,2%e,23¢,...} is a subsemigroup of S. If
A is t-Archimedean, then e € 2¥eA C M, which is impossible. Therefore,
S = A, so M = {x%e,2%¢,...} whence we have that ve = z¥e = (xe)¥, for
some k € Z*, so M is a group with the identity (ze)*~! = 2F~le. Thus,
S = {(ze)*~1 e} = {2¥71 e} is a band and |S| = 2.

The converse follows immediately. a

Exercises

1. If S is not left simple, then every proper left ideal of S is a power-joined sub-
semigroup of S if and only if one of the following conditions holds:
(a) S is power-joined;
(b) S contains only two left ideals G; and G2 which are periodic groups and
S = G1 U GQ;
(¢) S has a maximal left ideal M which is a power joined subsemigroup of S and
M C Ma, for alla € S — M.

2. Every proper subsemigroup of a semigroup S is power-joined if and only if
|S| =2 or S is power-joined.

3. A semigroup S is a nilpotent extension of a rectangular band if and only if Cy
does not divide P(5).
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Chapter 4

The Greatest Semilattice
Decompositions of
Semigroups

Semilattice decompositions of semigroups were first defined and studied
by A. H. Clifford, in 1941. After that, several authors have worked on this
very important topic. The existence of the greatest semilattice decompo-
sition of a semigroup was established by M. Yamada, in 1955, and by T.
Tamura and N. Kimura, in 1955. The smallest semilattice congruence on a
semigroup, in notation o, has been considered many times. T. Tamura, in
1964, described the congruence o with the use of the concept of contents.
M. Petrich, in 1964, described o by means of completely prime ideals and fil-
ters. Another connection between o and completely prime ideals and filters
was given by R. Sulka, in 1970. T. Tamura, in 1972, and 1975, proved that
o =—>® N(—>)~! and M. S. Putcha, in 1974, proved that o is the tran-
sitive closure of the relation — N —~1. M. Ciri¢ and S. Bogdanovi¢, in
1996, gave a new characterization of the greatest semilattice decomposition,
i.e. of the least semilattice congruence on a semigroup, by using principal
radicals, i.e. completely semiprime ideals of semigroups. Also, they de-
scribed some special types of semilattice decompositions: semilattices and
chains of o,- (A-, Ay, 7-, T-) simple semigroups.

Two relations that were introduced by M. S. Putcha and T. Tamura,
denoted by — and —, play a crucial role in semilattice decompositions of
semigroups. General properties of the graphs that correspond to these rela-

119
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tions were studied by M. S. Putcha, in 1974, and the structure of semigroups
in which the minimal paths in the graph corresponding to — are bounded
was described by M. Ciri¢ and S. Bogdanovié, in 1996.

The celebrated theorem of T. Tamura, in 1956, asserts that every semi-
group has the greatest semilattice decomposition and each of its components
is a semilattice indecomposable semigroup. But, if we intend to study the
structure of a semigroup through its greatest semilattice decomposition, we
face the following problem: How to construct this decomposition? Another
more convenient version of this problem is: How do we construct the smallest
semilattice congruence ¢ on a semigroup?

One of the best construction methods for o was also given by T. Tamura,
in 1972. He devised the following procedure: We start from the division
relation on a semigroup. In the way shown below we define a relation denoted
by —. Finally, making the transitive closure of — we obtain a quasi-order
whose symmetric opening (that is, its natural equivalence) equals o.

On the other hand, M. S. Putcha, in 1974, proved that the action of the
transitive closure and the symmetric opening operators in Tamura’s proce-
dure can be permuted. In other words, on the relation — we can apply the
symmetric opening operator first, to obtain a relation denoted by —, and
applying the transitive closure operator on —, we obtain ¢ again.

The hardest step in these procedures is the application of the transi-
tive closure operator to relations — and —. As we know, one obtains
the transitive closure on a relation by using an iteration procedure. In the
general case, the number of iterations applied may be infinite. A natural
problem that imposes itself here is the following: Under what conditions on
a semigroup .S, can the smallest semilattice congruence on S be obtained by
applying only a finite number of iterations to — or —7

Problems of this type were first treated in the above mentioned paper
of M. S. Putcha. The results which will be presented in this chapter were
taken from the papers by M. Ciri¢ and S. Bogdanovié¢ (1996), and by S.
Bogdanovi¢, M. Ciri¢ and Z. Popovié¢ (2000).
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4.1 Principal Radicals and Semilattice
Decompositions of Semigroups

In this section we introduce the notion of the principal radicals of semi-
groups, we introduce relations which generalize the well known Green’s re-
lations and we describe their basic characteristics.

Let a be an element of a semigroup S and let n € ZT. We will use the
following notations:

Y(a)={zxeS|a—"z}, Z,(a)={zeS|a—"2z}

First we will give some basic characteristics of these sets.

Lemma 4.1 Let a be an element of a semigroup S. Then

Y1(a)=VSaS,Yn(a) C Xpi1(a)=+/SS,(a)S,n € Z1,%(a) = U Yn(a).

neZ+

Lemma 4.2 Let a be an element of a semigroup S. Then ¥(a) is the least
completely semiprime ideal of S containing a.

Proof. Let x € ¥(a) and let b € S. Then a —* z and since x — bz and
x — xb, then a —> b and a — bz, so xzb,bx € ¥(a). Thus, X(a) is an
ideal of S. Let x € S such that 22 € ©(a), i.e. a —> 22. Since 22 — x,
then @ —> z, so z € X(a). Therefore, X(a) is a completely semiprime
ideal of S containing a.

Let I be a completely semiprime ideal of S containing a. Then SaS C
SIS C I, s0 ¥1(a) = v/SaS C VI C I. Assume that ¥,(a) € I. Then
S¥,(a)S C SIS C I, so Lyi1(a) = +/S¥,(a)S € VI C I. Thus, by
induction we obtain that ¥, (a) C I for every n € Z*, whence X(a) C I.
Hence ¥(a) is the least completely semiprime ideal of S containing a. O

Corollary 4.1 Let A be a nonempty subset of a semigroup S. Then:

2(4) = | =(a)

a€A

is the least completely semiprime ideal of S containing A.
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If S is a semigroup, then the set X(a), a € S, will be called the principal
radical of S. The set of all principal radicals of S will be denoted by Xg.

Remark 4.1 If ¢ is an element of a semigroup S, then it is easy to see that
Yn(a) = X, (J(a)) for every n € ZT, whence X(a) = X(J(a)).

Let S be a semigroup and let a,b € S. Then a P p i a|pb’, for some

. p L . h™ ok
i€Zt, a— b if there exists z € S such that a — x — b, n € ZT,
and a - b if @ — b for some n € ZT, where his [ or r.

For an element a of a semigroup S and for n € Z* we introduce the
following notations

Aa)={z€S|a-5 2z}, Apla)={zeS|a—"a},

Pla)={ze€S|a-">z}, Pya)={xrecS|a-""x}

Based on the following results we will present some of the basic characteris-
tics of these sets.

Lemma 4.3 Let a be an element of a semigroup S. Then:

Ai(a) = VSa, A(a) C Apyi(a) = /SAn(a),n € Z¥, A(a) = | An(a),

neZ+t
Pi(a) = Va$, Py(a) € Payi(a) = /Pu(a)S,n € Z7,P(a) = | Pula).
neZ+t

Lemma 4.4 Let a be an element of a semigroup S. Then A(a) ( P(a) ) is
the least completely semiprime left (right) ideal of S containing a.

Proof. Let x € A(a) and let b € S. Then a Ly %2 and since 2 — bz,
then a —— *®bz. Thus bz € A(a), so A(a) is a left ideal of S.

Let = € S such that 22 € A(a), i.e. such that a L5 %042, Since 22 - x,

then a — >z, i.e. x € A(a). Therefore, A(a) is a completely semiprime
left ideal of S.

Let L be a completely semiprime left ideal of S containing a. Then
Sa C L whence Aj(a) = V/Sa C VL C L. Assume that An(a) € L. Then
Ani1(a) = \/SA,(a) € VSL C VL C L. Therefore, by induction we obtain
that Ay(a) C L for all a € S, whence A(a) = ,,cz+ An(a) € L. Thus, A(a)

is the least completely semiprime left ideal of S containing a. O
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Corollary 4.2 Let A be a nonempty subset of a semigroup S. Then:
def def
AA) = |JAa) (PA)= Y Pa))
acA acA
is the least completely semiprime left (right) ideal of S containing A.

If S is a semigroup, then the sets A(a) ( P(a) ), a € S, will be called the
principal left (right) radicals of S.

Remark 4.2 If a is an element of a semigroup S, then it is easy to see
that A, (a) = Ay (L(a)) and P,(a) = P,(R(a)) for every n € Z*, whence
A(a) = A(L(a)) and P(a) = P(R(a)).

We introduce the following equivalences on a semigroup S:

acbs X(a)=%(0b), ao,be X,(a)=23,(0),
albs Aa) =Ab), albs Ay(a)=A,(0b),
apbs Pla)=P(b), apy,bs Pyla)= P,(b),

T=ANp, Tn = An 0 Pn,

a,b € S. Based on the following lemma we prove that these equivalences are
generalizations of the well-known Green’s equivalences.

Lemma 4.5 On every semigroup

H < n € » ¢ .- C 1, C - C T
N N N N N
L C M C X C - C X, C -0 C A
N N N
J C o Cop C - C o C - C o
U U U
R € pp € p € -+ C pp € -+ C »p

Proof.  The inclusions in the third row of the previous diagram follow from
Lemma 4.1. The inclusions in the second and fourth row from Lemma 4.3
and from this the inclusions in the first row follow. The inclusion A C o
follows from Lemmas 4.2 and 4.4.

Assume that (a,b) € A1, i.e. that Aj(a) = Ai(b). Let z € ¥i(a),
ie. let 2" = wav for some n € Z', u,v € S. Then vua € Ai(a) =
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A1(b), whence there exists k € Z*, w € S such that (vua)® = wb. Thus

2D = (yav) 1 = ya(vua)*v = uawbv € SbS. Therefore, z € ¥1(b), i.e.
Yi(a) C ¥1(b). Similarly we prove that ¥;(b) C ¥1(a). Hence, (a,b) € X1,
so \1 C o1.

The rest of the proof follows immediately. O

If 7 is one of the equivalences from the diagram of Lemma 4.5, defined on
a semigroup S, then S is w-simple if # = S x S. It is clear that J (£, R, H)-
simple semigroups are simple semigroups (left simple semigroups, right sim-
ple semigroups, groups) and that o1 (A1, p1, 71)-simple semigroups are
Archimedean (left Archimedean, right Archimedean, t-Archimedean semi-

groups).

Lemma 4.6 On every semigroup

" (—™) "L for every n € ZF;
"N (L) "= for everyn € Z;
(_>oo) 17.

(=)

Proof. (i) and (ii) This follows immediately.

(iii) Follows from the definition of a principal radical and by Lemma 4.2.

>N
N

i) o
ii)
(iii)
iv)

(iv) Follows from the definition of a principal left radical and by Lemma
4.4. a

Lemma 4.7 Let a,b, c be elements of a semigroup S. Then:

for every n € Z+.

Proof. (i) According to Lemma 4.2 we have a? € ¥(a) and % (a?) C X(a).
Since Y(a?) is a completely semiprime ideal of S and a? € X(a?) we then
have that a € ¥(a?) and by Lemma 4.2 we obtain ¥(a) C %(a?). Thus, (i)
holds.
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(ii) Since X(a) and X(b) are the ideals of S, then ab € ¥(a) and ab € X(b)
and from Lemma 4.2 we have (ii).

(iii) From (i) and (ii) we have
Y (abc) = X(abcabe) C ¥(beabe) = X (becabebeabe) C
C ¥(cbea) = X(cbeacbea) C 3(ach).

Thus, ¥(abc) C X(acb). Since the opposite inclusion also holds, we then
have that (iii) holds.

(iv) From (i) and (ii) we have
Y(ab) = X(abab) C X(ba) = X(baba) C ¥(ab),
ie. X(ab) = X(ba).
Assume that ¥(ba) = S(a*b¥),k € ZT. Then based on (i), (i) and (iii)

we have
3 (ba) =L (a*b¥) = 2(ab*a*bF) = B(a?*b?F) C R (P C 2 (ab) = B(ba).

Thus X(ba) = X(a*T16¥*1) and by induction we have that (iv) holds. O

Lemma 4.8 Let a,b, c be elements of a semigroup S. Then:
a—"b = X(bc) C X(ac).

Proof. Let n =1, ie. b™ = zay for some z,y € S and m € Z*. Then
from Lemma 4.7 we have that

Y(be) = (") = B(c"zay) = L(xaay) C X(ca) = X(ac).

Thus, the assertion holds for n = 1.

Assume that the assertion holds for some n € Z* and assume that
a —"t b ie. a —" 2 — b for some x € S. Then X(bc) C X(xc) C
Y(ac). By induction we obtain that the assertion of the lemma holds. O

Lemma 4.9 Let £ be a semilattice congruence on a semigroup S and let
neZt.

(i) Let a,b e S and a —™ b. Then b€ < a in the semilattice S/€.

(ii) Let A be a &-class of S and a,b € A. Then a —" b in S if and only
ifa —"bin A.
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Proof. (i) Let n = 1. Then b™ = zay for some z,y € S and m € Z™T,
whence b¢ = (b™)¢ = (ay)¢ = (vy)€at < at.

Assume that (i) holds for n € Z* and that a —"** b. Then a —"
x — b for some x € S, whence b < z€ < a€. By induction we have that
(i) holds.

(i) Let n = 1. Then b™ = zay, for some z,y € S and m € Z*. From
this it follows that

b§ = (b™)€ = (vay)€ = (x€)(a)(yS)-

Thus (b€)(z€) = (y&)(b€) = V¢, i.e. bx,yb € A. Hence b™*2 = (bx)a(yb) €
AaA, ie. a — bin A. Thus, (ii) holds for n = 1.

Assume that (ii) holds for n € Z* and let a —"*! b in S. Then
a —" x — b for some z € S, and from (i) we obtain af < x€ < af = b€,
ie. €& = b€, i.e. x € A. Thus, (ii) holds for n = 1 and based on the
hypothesis we have that a —" z in A and 2 — b in A, whence a —"1 b
in A. Therefore, by induction we obtain (ii). O

Recall that on a semigroup S we have the following equivalence relation:
ach < X(a)=X(b).

Theorem 4.1 On a semigroup S equivalence o is the smallest semilattice
congruence and every o-class is semilattice indecomposable.

Proof. From Lemmas 4.7 and 4.8 we have that o is a semilattice congruence
on S.

Let £ be a semilattice conguence on S and let acb. Then a — b and
b —*° a. According to Lemma 4.9 (i) we have that a{ < b€ and b¢ < af
in S/¢, i.e. a& = b§. Thus, a&b, whence o C . Hence, o is the smallest
semilattice congruence on S.

Let A be a o-class of S, let o* be a relation of the type o on A and let
a,b € A. Then acbin S, ie. a —> band b —>° @ in S. From Lemma 4.9
(ii) we have that a —*° b and b —*>° a in A, whence ac*b. Thus, ¢* is a
universal relation on A and since ¢* is the smallest semilattice congruence
on A, we then have that A is a semilattice indecomposable semigroup. O

The following theorem is one of the main results of this section. By means
of this we describe the structure of the partially ordered set of principal
radicals of a semigroup.
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Theorem 4.2 For elements a,b of a semigroup S X(ab) = X(a) N X(b).
Furthermore, the set ¥g of all the principal radicals of S, partially ordered
by inclusion, is the greatest semilattice homomorphic image of S.

Proof.  From Lemma 4.7 we obtain that ¥(ab) C ¥(a) N X(b). Assume z €
Y(a)NX(b). Then a —*° z and b —° z, so by Lemma 4.8 we obtain that

Y(ab) D L(xb) D L(x?) = B(x).

Thus = € X(ab), so X(a) N X(b) C X(ab). Hence X(a) N X(b) = X(ab).
Therefore ¥ g is a semilattice and a — ¥(a), (a € S) is a homomorphism of
S onto X g with the kernel o. From Lemma 4.6 (iii) and based on Theorem
4.1, o is the smallest semilattice congruence on S, whence g is the greatest
semilattice homomorphic image of S. O

Lemma 4.10 Let £ be an equivalence relation on a semigroup S such that
ryéxyzéyz for all z,y € S' and 1€1. Then

(a) zaytxary, for all x,a,y € S* and k € Z+;
(b) xyz€xzy, for all x,y,z € S.

Proof. Assume that z,a,y € S'. Then wayéyralayxraéza®y. Then, (a)
holds for k = 2. Assume that zayéxaFy, for some k € ZT,k > 2. Then
based on the hypothesis we have that

zayéxay = (xa* Vayé(za* )y = a1y,

So, by induction we obtain that (a) holds.
Assume that x, y, z €S. Then based on the hypothesis and from (a) we have

wyz  Ex(yz)?E(wyzyz)? = (zyzyze)(yz)E(eyzyze) (yz)

(zy) (zyze) (y2)E(ey) (zyzx)?(y2) = 2(yz)? (vzyzayz)
w(yz)(zzyzayz) = (vyzezy)(zeyz)E(eyzezy)?® (zoyz)

(2 yzxzyxy)(yZ)(wzyzxyZ)ﬁ(wymzyﬂ:)(y2)2(xzyzxy2)
= (

Iy

Iy

(xyzxzywy)(zyzx) (y2)&(xyzazyzy)(zyzz)(yz)
zyzrzyx)(yz)?(zyz)E(eyzezyr) (yz) (zyz) = (zyzezy)(vyz)?
{(zyzazy)(zy2) = (vy2)(v2y)(vy2)E(zy2)(22Y).

Thus, zyz&(xyz)(rzy). Similarly, it can be proved that xzyf(zzy)(zyz).
Therefore, zyz&xzy. O

Using the previous lemma, we can prove the following theorem:
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Theorem 4.3 On every semigroup S, 0 = —=°.

Proof. It is easy to see that zy—axyz—uyz, for all z,y € S!, whence

o0

we obtain that —°° is an equivalence relation for which the conditions of

Lemma 4.10 hold.

Assume a,b € S such that a — b, i.e. b™ = wav for some u,v € S*,m €
Z*, and assume z,y € S'. From Lemma 4.10 we have

xaby—>zxab™y = rauvavy = (za)u(avy)—°>(za)(avy)u =

za’® (vyu) —za(vyu) = z(avy)u— > zu(avy) =

o0

x(uav)y = xb™y—=axby.

Thus, from a — b it follows that zaby—>xby, for all z,y € S'. Similarly
it can be proved that b — a implies zaby—>zay, for all z,y € S*. There-
fore, a—0b implies zay— *xby, for all z,y € S'. By induction we obtain
that for every n € Zt,a—"b implies zay— *xby for all z,y € S'. Thus,

o0 o0

— is a congruence relation on S. It is clear that —° is a semilattice

congruence and by Theorem 4.1 we have that 0 C —°°. On the other hand,
— % C—>°N(—>)"t =0¢. Thus, —> =o. O

Using the previous theorem we describe the principal filters of a semi-
group.

We remind the reader that, for an element a of a semigroup S, the
intersection of all filters of .S which contain a we call the principal filter of S
generated by a, and denote by N(a). It is the smallest filter containing an
element a of a semigroup S.

Corollary 4.3 Let a be an element of a semigroup S. Then:
N(a)={z eS|z —"a}.
Proof. Let a € S and let
A={zx eS|z —>a}.

Assume z,y € A. Thenz —* aand y —> a,so0a € L(x)NX(y) = X(zy).
Thus zy —> a, so xy € A, i.e. A is a subsemigroup of S.

Let z,y € S and let xy € A. Then zy —° a and since x — zy and
y — xy, then £ —>° @ and y —*° a. Thus A is a filter.
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Let y — a, i.e. let a™ = uyv, for some n € ZT, u,v € S. Since a €
N(a), then uyv = a"™ € N(a) and since N (a) is a filter, then u,y,v € N(a),
ie. y € N(a). By induction we prove that x € N(a) for all z € A, so
A C N(a). Since A is a filter, then A = N(a). |

Corollary 4.4 Let a,b be elements of a semigroup S. Then:
acb <& N(a)=N().

Proof.  Let acb. Then b € ¥(a) and a € 3(b), i.e. a—>b and b—>a,
whence a € N(b) and b € N(a), so N(b) C N(a) and N(a) C N(b), i.e.
N(a) = N(b).

Conversely, let N(a) = N(b). Thena € N(b) and b € N(a),ie. b —>a
and a —> b. Thus, a € X(b) and b € ¥(a) whence X(a) C X(b) and
Y(b) C X(a), so aob. |

We give the new proof for the known result concerning completely semi-
prime ideals of a semigroup, without Zorn’s Lemma.

Corollary 4.5 Let I be a completely semiprime ideal of a semigroup S and
let a € S such that a ¢ I. Then there exists a completely prime ideal P of S
such that I C P and a ¢ P.

Proof. Let P =S — N(a). Then P is a completely prime ideal of S and
a ¢ P. Let € INN(a). Then from Corollary 4.3 it follows that * — a,
so a € ¥(x) C I (from Lemma 4.2). Thus, we obtain that a € I, which is
not possible. Hence, I N N(a) = &, whence I C P. |

Corollary 4.6 Fvery completely semiprime ideal of a semigroup S is an
intersection of completely prime ideals of S.

Proof. This follows from Corollary 4.5. O

Corollary 4.7 On a semigroup S the following conditions are equivalent:

(i) S is semilattice indecomposable;
(i)
)
)

(iii
(iv) S has no proper completely prime ideals.

S is o-simple;

S has no proper completely semiprime ideals;
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Proof. Tt follows from Theorem 4.1 and Corollary 4.6. O

As we have seen, every completely semiprime ideal of a semigroup is the
intersection of all the completely prime ideals containing it. But, this is
not true for completely semiprime left (right) ideals. For example, in the
semigroup given by

2

(a,e | a® =a, ® = e, ae = ea® = e),

there exists a completely semiprime left ideal which is not an intersection of
completely prime left ideals.

Based on the following theorem we give some characterizations of semi-
groups in which every completely semiprime left ideal is an intersection of
completely prime left ideals.

Theorem 4.4 The following conditions on a semigroup S are equivalent:

(i) every completely semiprime left ideal of S is an intersection of com-
pletely prime left ideals of S;

(ii) (Va,b,c € 95) a_l>ooc/\b_l>oocz>ab_l>°° e

oo
(iii) for every a € S, {x € S | x LN a} is the least right filter of S
containing a.

Proof.  (ii)=(iii) Let F={z € S | x = a}. Assume z,y € S such that
zy € F. Then zy —l>oo a and since y LN xy, then y —l>oo a, soy € F.
Thus, F' is a right consistent subset of S.

Let z,y € F. Then z %oo a and y —l>oo a, so by (ii) we obtain that
Ty %oo a. Thus zy € F, so F is a subsemigroup of S. Hence, F' is a right
filter of S containig a.

Let G be a right filter of S containing a. Assume y € S such that y o
Then a™ = uy for some n € ZT, u € S, so by uy = a™ € G it follows that
y € G. By induction we show that x —l>oo a implies z € G, whence F' C G.
Therefore, F' is the smallest right filter of S containing a.

(iii)=(i) Let (iii) hold and let A be an arbitrary completely semiprime
left ideal of S. Let M be the intersection of all completely prime left ideals
of S containing A. Assume that a € M — A. From (iii) it follows that the set

[e.@]
F={zxeS |z LN a} is a right filter of S, so L =S — F' is a completely
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prime left ideal of S. Assume that x € A. If z € F,ie. if x —l>oo a, then
a € A(x) C A, which is not possible. Thus x € L, so A C L, whence M C L.
But then a € L and a € F, which is not possible. Therefore, M = A, so A
is an intersection of completely prime left ideals.

(i)=(ii) Let every completely semiprime left ideal of S be an intersection
of completely prime left ideals of S. Let a,b € S and let L be an arbitrary
completely prime left ideal containing A(ab). Then ab € L whence a € L or
b € L, since L is completely prime. Since L also is completely semiprime,
then A(a) C L or A(b) C L, whence A(a) NA(b) C L, so from the hypothesis
we obtain that A(a) N A(b) C A(ab), so (ii) holds. |

Exercises

1. Let € be a class of semigroups. A congruence & on a semigroup S is the smallest
¢-congruence on S if £ is the smallest element in the set of all €-congruences on S.
The decomposition and the factor which corresponds to the smallest €-congruence
on S we call the greatest €-decomposition and the greatest €-homomorphic image
of S, respectively.

Let V be a variety of semigroups. Prove that every semigroup has the smallest

V-congruence, i.e. the greatest V-decomposition.
2. Let A be a non-empty subset of a semigroup S. Then X(A) = UycaX(a) is the
smallest completely semiprime ideal of S which contains A.
3. If a is an element of a semigroup S, then X(a) = 3X(J(a)) and 3, (a) = X,,(J(a)),
for every n € Z+.
4. Let ay,as,...,a, be elements of a semigroup S, n € ZT. Then Y(aias---a,) =
Y(a17027 -+ - Gnr ), for every permutation 7 of the set {1,2,...,n}.
5. Let C be a o-class of an element a of a semigroup S. Then C = ¥(a) N N(a).
6. If AT is a free semigroup over an alphabet A, then:

(8) S(u) = {w € A* | e(w) C c(w)}, u € A%,

(b) N(u) ={w e At |c(u) D c(w)}, ue AT;

(c) uov & c(u) =c(v), u,v € A*.

7. A rectangular band of semilattice indecomposable semigroups is a semilattice
indecomposable semigroup.

8. Let ay,as,...,a, € S', where S is a semigroup. By C(a1,as, ..., a,) we denote
the subsemigroup of S' which consists of the products of elements a1, as, ..., a, in
which every element a; is notified at least once. Prove that C(a1,as,...,a,) is an
indecomposable subsemigroup of S*.

9. Let a and b be elements of a semigroup S. Then acb if and only if for all

z,y € S' there exists a semilattice indecomposable subsemigroup T of S such that
zay,xzby € T.
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10. The following conditions on a semigroup S are equivalent:

(a) for all a,b € S, from ab,ba € E(S) it follows that ab = ba;

(b) every J-class of S contains at most one idempotent;

(c) S is a semilattice of semilattice indecomposable semigroups such that ev-
ery semigroup contains at most one idempotent and group ideal whenever it
contains an idempotent;

(d) S is a semilattice of semigroups such that every semigroup contains at most
one idempotent.

11. A semigroup S is separative if for all a,b € S, a® = ab and b?> = ba implies a = b,
and a? = ba and b?> = ab implies a = b. Prove that a semigroup S is separative if
and only if S is a semilattice of cancellative semigroups.

12. The following conditions on a semigroup S are equivalent:
(a) 2(0) = 0;
(b) S has no non-zero nilpotents;
(¢) S is a subdirect product of semigroups without a divisor of zero.

13. Let S be a regular semigroup. Then ¢ = D# = J#, and if 3 is the smallest
band congruence on S, then H# C B C £# NR#*. If S is an inverse semigroup,
then H# C 0 = R¥ = L# = D# = J#.
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4.2 Semilattices of 0,-simple Semigroups

In Section 6.1 we proved that the relation o is the smallest semilattice
congruence on every semigroup. In this section we will study the condi-
tions under which the relation o, is a congruence, i.e. we will consider the
semilattices of o,-simple semigroups.

Lemma 4.11 Let a,b be elements of a semigroup S. Then:

Sn(ab) € Sn(a) N Su(b).
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Proof.  This follows since ab — = implies that a — = and b — =. O

Let o be an arbitrary relation on a semigroup S. Recall that the radical
R(p) of a binary relation g on a semigroup S is defined by:

(a,b) € R(0) & (3m,n € Z*)a™ ob™.

Based on the following theorem we characterize the semilattices of -
simple semigroups.

Theorem 4.5 Let n € ZT. Then the following conditions on a semigroup
S are equivalent:

(i) S is a semilattice of op,-simple semigroups;
(ii) S is a band of op-simple semigroups;
(iil) every on-class of S is a subsemigroup;
(iv) (Va € S) a ona?;
(v) (Va,be S)a—"b= a?> —"b;
(vi) (Va,b,ce S)a—"cANb—"c=ab—"¢;
(vii) for everya € S, ¥,(a ) is an ideal of S;
) (Ya,b e S)E,(ab) =X, (a) N E,(b);
(ix) for everya € S, N(a) ={zx € S| v —" a};
)
)
i)
)
)

(x

(viii

—" is a quasi-order on S;

(xi) o =—"N(—")"! on S;
(xii) —" C op;
(xiii) " C oy

Dd

(on) = on.

Proof.  (i)=-(ii) and (iii)=(iv) This follows immediately.

(xiv

(ii)=-(i) If S is a band of o,-simple semigroups, then by Corollary 3.7
S is a semilattice of semigroups which are rectangular bands of o,-simple
semigroups. Since a rectangular band of ¢,-simple semigroups is o,-simple,
we obtain (i).

(iv)<(v) This follows from the definition of the relation oy,.

(v)=(x) Let a,b € S and let a —""! b. Then a — x —" b for
some 2 € S. From (v) it follows that ¥ —" b for every k € Z*. On the
other hand, there exists k € Z* such that z* € SaS. Let y € S such that

zF — y —" 1 b if n>2 and y = b, if n = 1. Then there exists m € Z+
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such that y™ € Sz¥S C SaS. Thus a — y, whence a —™ b. Therefore
—n=—n*l whence —"=—>, s0 —" is transitive.

(x)=(vii) If —™ is a transitive relation, then —"=— whence
Yn(a) = X(a), for every a € S, so ¥, (a) is an ideal of S.

(vii)=-(viii) If ¥,,(a) is an ideal for every a € S, then ¥, (a) = X(a) for
every a € S, so by Theorem 4.2 it follows that (viii) holds.

(viii)=-(i) From (viii) it follows that the relation o, is a semilattice con-
gruence on S, so S is a semilattice Y of semigroups S,, a € Y, where S,
are o,-classes of S. Let « € Y and let a,b € S,. Then ao,b, so a —"™ b in
S. According to Lemma 4.9 we obtain that a —" b in S,, whence S, is a
op-simple semigroup.

(i)=(v) Let S be a semilattice Y of o,-simple semigroups S,, o € Y.
Let a,b € S such that a —" b. Then a € S, and b € Sg for some o, 5 €Y,
and from Lemma 4.9 it follows that a > 8. Now we have that a?b € S
whence a?b —" b in Sg, so a> —"bin S.

(viii)=-(vi) This follows immediately.

(vi)=-(viii) From (vi) it follows that ¥,(a) N X,(b) C X, (ab) for all
a,b e S, so by Lemma 4.11 we obtain that (viii) holds.

(x)=(ix) If —™ is a transitive relation, then —"=—%so by Corol-
lary 4.3 we obtain (ix).

(ix)=-(vi) Let a,b,c € S such that @ —" ¢ and b —" ¢. Then a,b €

N(c) and since N(c) is a subsemigroup of S, then ab € N(c), i.e. ab —" c.

(viii)= (111) Let A be a op-class of S and let a,b € A. Then ao,b so
Yn(a) = X, (b). From this and from (viii) it follows that X, (ab) = 3, (a) N
Yn(b) = Xy (a). Thus aboya, ie. ab € A, so (iii) holds.

(x)=(xi). Since (x)<(vii), then we obtain that o,, = 0 and —"=—,
so by Lemma 4.6 we obtain (xi).

(xi)=-(iv) This follows immediately.
(x)=(xii) Let S be a semilattice Y of o,,-simple semigroups S,, o € Y.

Assume a,b € S such that a—"b. Based on Lemma 4.9 we have that
a,b € Sy, for some a € Y, whence (a,b) € o,. Therefore, (xii) holds.

(xii)=(xiii) This is an immediate consequence of the inclusion —" C
n

(xiii)=(iv) Since a—-"a2, for each a € S, then (xiii) yields (iv).

(x)=>(xiv) The inclusion o, C R(0y,) always holds, so it we have to
prove the opposite inclusion. Assume a,b € S such that (a,b) € R(oy).
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Then a* o, ™, for some k,m € Z*1, and since o, is a semilattice congruence
on S (based on the hypothesis) we have a o, a* o, b™ ¢, b. Thus (a,b) € oy,
which was to be proved.

(xiv)=>(iv) This follows from (v) and the fact that (a,a?) € R(p), for
every reflexive relation g on S. O

If S is a finite semigroup, then there exists n € Z*, n < |S|, such that
—®=—"s0 from Theorem 4.5 (iii) we obtain

Corollary 4.8 Let S be a finite semigroup. Then there exists n € Z7, n <
|S|, such that S is a semilattice of oy,-simple semigroups.

Now we give the following important examples of semilattices of oa-
simple semigroups.

Example 4.1 Let X be a finite set and let 7,.(X) be the full transformation
semigroup on X. If | X| = 2, then 7,(X) is a union of groups (and there-
fore, 7,.(X) is a semilattice of completely simple semigroups). If | X| > 2,
then based on the results of R.Croisot ([1], Example 3) 7,(X) is not a union
of simple semigroups (and therefore, 7,(X) is not a semilattice of simple
semigroups). Let V(X) = 7,(X) — S(X), where S(X) is the group of per-
mutations on X. Then V(X) is a completely prime ideal of 7,(X). As M.
S. Putcha ([5], Example 4.6) mentioned, there exists a fixed a € V(X)) such
that for all b € V(X) a — b — a. From this we conclude that V(X) is a
og-simple semigroup. Therefore, 7,.(X) is a chain of a oo-simple semigroup
and of a group.

Example 4.2 Let X be an infinite set and let 7,(X) be the full transforma-
tion semigroup on X. As M.S.Putcha ([5], Example 4.6) mentioned, there
exists a fixed a € T,(X) such that for all b € 7,.(X) a — b — a. From
this it follows that 7,(X) is a oa-simple semigroup.

Next we prove two auxiliary lemmas.

Lemma 4.12 Let a be a completely m-regular element of a semigroup S.

Then for every b € S and every n € Z+,
a® —" b = a —" b

In other words, for every n € Z+,

n (ao) C ¥, (a).
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Proof. Let m € ZT such that a™ € G,,, and let (a™)~! be the inverse
of a™ in the group Gg,. Then a® = (a™(a™)™1)? € SaS, which yields
SaS C SaS, and hence

¥1(a’) = VSa0S C VSaS = %4 (a).

Now, by induction we easily verify that 3, (a") C X, (a), for every n € ZT.0

Lemma 4.13 Let b be a completely m-reqular element of a semigroup S.
Then for every a € S and every n € Z,

a —" b o a —" 0.

Proof. Let m € Z* such that ™ € Gp,. Consider an arbitrary a € S.
Suppose that @ —» b. Then b* € SaS, for some k € Z*, and hence b™F €
Gp, N SaS. Let (b™*)~1 be the inverse of b™* in the group Gj,. Now
b0 = (B™F(b™¥)~1)2 € SaS so we obtain that a|b°, which is equivalent to
a — b2, because B° is an idempotent. Conversely, let a — b0, i.e. a|b°.
Then b™ = b9 € SaSb™ C SaS, and hence a — b.

Therefore, we have proved that our assertion holds for n = 1. By induc-
tion we easily verify that this assertion holds for every n € Z*. a

Note that if b is a completely m-regular element then we have that a —
bV if and only if a|b°. Therefore, in such a case we obtain

a — bif and only if a | B°.
Now we are prepared for the next result.

Theorem 4.6 Let S be a completely w-reqular semigroup andn € Z+. Then
the following conditions are equivalent:

(i) S is a semilattice of oy,-simple semigroups;
(ii) (Va € S) aopa®;

(iii) (Va,b€ S) a —"b=a —"b;

(iv) (Va € S)(Vf € E(S)) a —" f = a®? —" f;

(v) (Va,be S)(Vg € E(S)) a —" g &b —" g = ab —" g;
) (Ve,f € E(S))(VeeS)e—="c&f —"c=ef —"¢
) Ve, f,ge E(S)) e —"g&f—"g=¢ef —"g.

v

(vii
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If n > 2, then any of the above conditions are equivalent to
(viil) (Ve, f,g€ E(S)) e —" f&f —"g=e—"g.

Proof.  (i)=(ii) For an arbitrary a € S, a° — a and a|a®, which implies
a —> a°, and if (i) holds, then based on (xi) of Theorem 4.5 it follows that
aopal.

(ii)=(iii) The condition (ii) is equivalent to X, (a) = ¥,(a"), whereas
(iii) is equivalent to ¥, (a) C 3, (a’), so it is evident that (ii) implies (iii).

(iii)=-(i) Let a,b € S such that a —™ b. Based on the assumption (iii)
a’® —" b, and since (a?)? = a°, we have that (a?)® —™ b, so based on
2 ™ b. Hence, from Theorem 4.5, S is a semilattice of
op-simple semigroups.

Lemma 4.12, a

(i)=-(iv) This is an immediate consequence of Theorem 4.5.

(iv)=-(i) Consider a,b € S such that a —" b. Based on Lemma 4.13,
a —" b implies a —" t°, and from (iv), a —" b° implies a® —" b°, so
again by Lemma 4.13, a> —™ b. From this and from Theorem 4.5 it follows
that (i) holds.

(i)=(vii) This is an immediate consequence of Theorem 4.5.

(vil)=(v) Let a,b € S and g € E(S) such that a —" g and b —" g.
This means that « — z —" 1 g and b — y —" ! g, for some z,y € S.
Based on the hypothesis, S is a completely m-regular semigroup, so z € T,
and f € Ty,, for some eg, fo € E(S), and by Lemma 4.13, we have that
a —» x is equivalent to a|ey and b — y is equivalent to b| fo. But, a|eg
and b| fo yield eg = uav and fy = pbq, for some u,v,p,q € S. Set e = (vua)?
and f = (bgp)?. Then e, f € E(S) and

eo = ep = ua(vua)*v = uaev,

so we have that e | eg, and similarly, f| fo. Again from Lemma 4.13, e| e is
equivalent to e — z and f| fo is equivalent to f — y, which yields

e —s ¢ —n71 gand f — vy —n—l g,

ie. e —" g and f —"™ g. Now, based on the assumption (vii), we obtain
that ef —" g, i.e. ef — z —"" 1 g, for some z € S, and hence

2F € SefS = S(vua)?(bgp)®S C Sabs,

which means that ab — z. Therefore, ab — z —""1 ¢, so ab —" g.
Hence, we have proved that (v) holds.
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(v)=-(iv) This implication is obvious.

(vi)=-(vii) This implication is obvious.

(vii)=(vi) Let e, f € E(S) and ¢ € S such that e —" ¢ and f —" c.
Based on Lemma 4.13, ¢ —" ¥ and f —" ¢, and (vii) yields ef —" c°,
so again from Lemma 4.13 we obtain ef —" ¢, which was to be proved.

Further, let n > 2.

(i)=(viii) This is an immediate consequence of Theorem 4.5.

(viii)=(i) According to Theorem 4.5, in order to prove (i), it suffices to
prove that —" is a transitive relation, and we will consider a, b, c € S such
that a —"™ b and b —" c.

First, according to Lemma 4.13 we have that a —" b and b —" (Y.
Furthermore, a —" " yields a — y —"~ 1 9, for some y € S, and since
y € T,,, for some ey € E(S), from Lemma 4.13 it follows that a — y if
and only if a|eg, i.e. eg = uav, for some u,v € S. If we set e = (vua)?,
then e € E(S) and eg = uaev so e|eg. But, based on Lemma 4.13, e| ey is
equivalent to e — g, so we have that e — y —""1 b0, ie. e —" B0,

On the other hand, b —" ¥ gives b — z —"~1 Y, for some z € 9,
and z € Tp,, for some hy € E(S). Now, based on Lemma 4.13, b — z if
and only if b| ho, i.e. hg = pbq, for some p,q € S. Set h = (bgp)?. Then
h € E(S) and h | hg, which is equivalent to h — z, again from Lemma 4.13.
Thus, h — z —" 1 ¥, which means h —™ 0.

Finally we have by — b, and also b| h, so b — h. Hence, b° —2 h, so
b0 —™ h, because n > 2. Therefore,

e—"b, by —"h and h —" °,
so based on the assumption (viii) we conclude that e —™ .

Now, in order to prove that a —" ¢, we start with the relation e —"
@, and from Lemma 4.13 we obtain that e —" ¢. But this means that
e — t —" "L ¢, for some t € S. Furthermore, e —» ¢ implies

th € SeS = S(vua)*S C Sas,

for some k € Z+, so a —> t. Therefore, a — t —" ! ¢, and we have that
a —"™ ¢, which was to be proved. O

Remark 4.3 The requirement n > 2 is crucial for the equivalence of (i) and
(viii) in the previous theorem. Namely, every completely m-regular semi-
group S satisfies the condition

(Ve,f, g€ E(S)) e — f&f — g=e—g,
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because it is clearly equivalent to the condition

(Ve,f, g€ E(S)) el f&flg=ely,

and the division relation is transitive. But, S is not necessarily a semilattice
of o1-simple semigroups. For example, the five-element Brandt semigroup

By = (a,b|a* = b* = 0,aba = a, bab = b)

is completely m-regular, and hence satisfies the above mentioned conditions.
But S is not a semilattice of o1-simple (Archimedean) semigroups.

Exercises

1. Let S be a completely m-regular semigroup and n € Z*. Then the following
conditions are equivalent:

(a) S is a semilattice of o,-simple semigroups;
(b) for every e € E(S), X, (e) is an ideal of S;
(c

)
) (Ve, f € E(S)) Xn(ef) = En(e) N Xn(f);
(d) for every e € E(S), N(e) ={xz € S|x —" e}.
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4.3 Semilattices of \-simple Semigroups

In this section we consider semilattices of A\, A,, 7- and 7,-simple semi-
groups. The results obtained here are generalizations of well known results
concerning unions and semilattices of left simple semigroups and semilattices
of groups and of results concerning semilattices of left and t-Archimedean
semigroups.

First we will prove the following lemma:

Lemma 4.14 Let S be a semilatticeY of semigroups So,a €Y and let n €Z™.

(a) Let a € Y with a,b € S,. Ifa—l>bmS, then a — b in Sa.
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(b) Leta € Sy, be Sp, o, €Y. Ifa—l>b, then o > 3.
(¢) Let a € Y with a,b € S,. Ifa—l> bin S, then a — b in Sy.

Proof. (a) Let a L bin S, i.e. let ™ = ua for some m € ZT, uc S. If
u € S for some § €Y, then a8 = o whence

b = (bu)a € Sppa = Spa.

Thus @ — b in S,.
(b) This follows from Lemma 4.9 (i), since L

(c) This can be proved in a way similar as Lemma 4.9 (ii). a

Theorem 4.7 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of A-simple semigroups;
(i) (Va,be S)a T ab;
(iii) for every a € S, A(a) is an ideal;
(iv) every completely semiprime left ideal of S is two-sided;
(v) (Va,b e S) A(ab) = Ala) N A(D);
(vi) for everyae S, N(a)={zx eS|z = a};
) (Va,b e S) a—s ®b=a — b;
)

(vii) (
(Va,b € S) a—>b = a — .

(viii

Proof.  (i)=-(ii) Let S be a semilattice Y of A-simple semigroups S,, o € Y,
and let a,b € S. Then ab,ba € S, for some a € Y, so ba L>OO ab in S,
since S, is A-simple. Thus ba —l>oo ab in S, and since a L bain S , then
a5 abin 8. Hence, (ii) holds.
(ii)=-(iii) Let a € S, let x € A(a) and let b € S. Then from (ii) we obtain
1 > 1 >

a— x —> b,

whence zb € A(a). Thus, A(a) is a right ideal of S, so from Lemma 4.4 it
follows that A(a) is an ideal of S.

(iii)=(iv) This follows immediately.
(iv)=-(v) This follows from Theorem 4.2, since A(a) = 3(a) for all a € S.

(v)=(i) From (v) it follows that S is a semilattice Y of semigroups
Sa,a € Y, such that S, are A-classes of S. Assume o € Y and a,b € S,.
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o0
Then a Ab, so a L bin S. According to Lemma 4.14 we obtain that
o0
a5 bin Sq- Thus, S, is a A-simple semigroup.
o
(v)=(vi) Let (v) hold, let a € S and let A = {z € S|z SN a}. Based on

(v) and Theorem 4.4 we obtain that A is the smallest right filter of S con-
taining a, so A C N(a). Let x,y € S be such that zy € A, i.e. such that
o0

xy—l> a. Since from (v) we obtain that Z‘L) xy, then x—l> a, whence
x € A. Therefore, A is left consistent, i.e. A is a filter, whence A = N(a).
(vi)=-(ii) Let (vi) hold and let a,b € S. Since {z € S|z T ab} =
N(ab) is a filter and ab € N(ab), then a € N(ab), i.e. a L7 . Hence,
(ii) holds.
(i)=(vii) Let S be a semilattice Y of A-simple semigroups Sy, o € Y.

Assume a,b € S such that a — °°b. Then based on Lemma 4.9 (i), for
n=1,a¢€ Sy, b€ Sg, for some o, €Y and 8 < o, whence ba,b € Sg. So

ba —- b, Since a — ba —» °b, we then have that a Ly oo,

(vii)=-(i) Let (vii) hold. According to Theorem 4.2 every semigroup S
is a semilattice Y of o-simple semigroups S,, o € Y. Then for a,b € S,,
a €Y, from Theorem 4.1 we have that a—°b, and from Lemma 4.9 (ii),
forn=1,a—>°bin S,, o € Y, whence a — *°bin S, o € Y. So based on
the hypothesis a 1y %p and Lemma 4.14 (a) a Iy opin Sa, @ €Y, since

a,b € S,. Thus a Ly o in Sa, @ € Y, for all a,b € S, and from Lemma
4.6 (iv) S, a € Y is a A-simple semigroup. Therefore, S is a semilattice of
A-simple semigroups.

(i)=(viii) Let S be a semilattice Y of A-simple semigroups Sy, a € Y.
Assume a,b € S such that a—°b. Then based on Lemma 4.9 (ii), for
n=1,a,b€ S, and a—>°b in S, for some o € Y, whence aAb and based
on Lemma 4.6 (iv) a L7,

(viii)=(i) Let (viii) hold. Since every semigroup S is a semilattice ¥
of o-simple semigroups S,, a € Y, then for a,b € S,, a € Y, based on
Theorem 4.1 we have that a—°°b, whence a L5 b and a(—l> >)~1p in

S,. Thus a —— >N (—l> >)~1p and based on Lemma 4.6 (iv) S, is a
A-simple semigroup. O

Theorem 4.8 Let n € Z". Then the following conditions on a semigroup
S are equivalent:

. l . .
(i) — ™ is a quasi-order on S;
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(ii) (Va € S) a A\, a%;
(iii) (Va,b€ S)a - "b=a? - "b;
(iv) for alla € S, Ap(a) is a left ideal of S.

Proof.  (ii)«<(iii) This follows immediately.

(iii)= (i) Let @ — "*+1b, i.e. let @ — z — ™b for some z € S. From
(iif) it follows that 2% — ™b for all k € Z*. Let k € Z* such that 2* € Sa.
LetyeSbesuchthatwk—l>y—l>”*1b, ifn>2,ory=0,if n=1. Then
there exists m € Z1 such that vy € SzF C Sa. Thus a LN Y, SO a Ly onp,

l l l
Therefore, — " =— "1

relation.

so — =ty . ie. 1y 7 s a transitive
(i)=(iv) This follows from Lemma 4.4, since in this case N
(iv)=(i) Let A, (a) be a left ideal for every a € S. Then based on Lemma

4.4 we obtain that A,(a) = A(a) for all a € S, whence SLIG UN > s0 (i)
holds. a

Theorem 4.9 Let n € Z*. Then the following conditions on a semigroup
S are equivalent:

(i) S is a semilattice of A\,-simple semigroups;
(ii) a A\, a® for alla € S and a Ly nab for alla,be S;
(iii) for alla € S, Ap(a) is an ideal;

) (Ya,b e S) Ap(ab) = Ap(a) N Ay(b);

)

(v forallaES,N(a):{:EES\m—l>"a}.

(iv

Proof.  (i)=-(ii) Let S be a semilattice Y of A,-simple semigroups Sy, a €

Y. Assume a,b € S such that a LN "b,ie. a € Sy, b S a,BEY.
Then by Lemma 4.14 we obtain that o > /3, so ba® € Sap = Sp. Since Sz is

An-simple, then ba? Ly npin S3, whence ba? —5 b in S, so a® Ly npin
S. Thus, by Theorem 4.8 we obtain that a)\,a? for all a € S.

Assume a,b € S, ie. a € S,, b € Sg for some o, € Y. Then ab,ba
Sap, and since S, is a A,-simple semigroup, then ba Ly nabin Sap, whence
ba — "ab in S,s0a L ngb in S. Thus, (ii) holds.

(ii)=-(iii) Let (ii) hold. Based on Theorem 4.8 we obtain that A,(a) is a
left ideal of S, so A,(a) = A(a), for all @ € S. Now, according to Theorem
4.7 we obtain that A, (a) = A(a) is an ideal of S, for all a € S.
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(iii)=(iv) If for all @ € S, Ay, (a) is an ideal of S, then from Lemma 4.4 it
follows that A, (a) = A(a) for all a € S, so based on Theorem 4.7 we obtain
that (iv) holds.

(iv)=-(i) Let (iv) hold. Then S is a semilattice Y of semigroups Sy,
a €Y, such that S, are \,-classes of S. Assume o € Y and a,b € S,. Then

aX,b, whence a ynpin S, so from Lemma 4.14 we obtain that a BLINYA
in Sy. Thus, S, is a A,-simple semigroup, so (i) holds.
(iii)=(v) From (iii) it follows that A, (a) = A(a) for all a € S, so SN
(N Thus, according to Theorem 4.7 we obtain that (v) holds.
(v)=(iv) Let (v) hold. Then for a,b,z € S we obtain that

x € Ap(a) NAL(b) & a,b e N(x) & ab e N(z) &z € Ay(ab).

Thus, (iv) holds. |

Problem 4.1 For n = 1, in (ii) of Theorem 4.9 the condition a\,a? can be
omitted. We can state a problem: Can this hypothesis also be omitted for
n > 27

Theorem 4.10 The following conditions on a semigroup S are equivalent:

(i) A is a matriz congruence on S;

(11; A is a right zero band congruence on S;

(iii) (Ya,b,c € S) abe Ly oo

(iv) (Va,b e S) aba Ly oo

(v) (Va,be S) ab L, oop;

(vi) S is a disjoint union of all its principal left radicals;
) —

o0

(vii s a symmetric relation on S.

Proof.  (i)=-(iii), (ili)=-(iv) and (ii)=(i) This follows immediately.
(iv)=(v) For all a,b € S, ab - bab, so from (iv), ab - b,

(v)=(ii) Let a,b € S such that aX\b, and x € S. By (v), Alaz) = A(z) =
A(bz) and A(xa) = A(a) = A(b) = A(xb). Therefore, A\ is a congruence.
Clearly, it is a right zero band congruence.

(ii)=-(vi) Let S be a right zero band B of semigroups S;, i € B, which
are A-classes of S. Assume a € S. Then a € S;, for some i € B, and since S;
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is a completely semiprime left ideal of S (Lemma 4.4), then A(a) C S;. On
the other hand, if b € S;, then bAa, so b € A(b) = A(a), whence S; C A(a).
Therefore, A(a) = S;, so (vi) holds.

(vi)=(vii) Let a,b € S such that a Ly b, Then b € A(a), whence
A(a) MA(b) # 0, so from (vi), A(a) = A(b). Therefore, b Ly oo

(vil)=(v) For all a,b € S, b Ly ab, so from (vii), ab Ly oop, O

Corollary 4.9 The following conditions on a semigroup S are equivalent:

(i
(ii) A is a right zero band congruence on S;

) A
) A
(iii) (Va,b e S) Ap(a) C Ay (aba);
)
) —

n 1S @ matrizc congruence on S

(Va beS) An(b) C An(ab);

n

(iv

(v is a symmetric relation on S.

Based on the well-known result of A. H. Clifford, any band of A-simple
semigroups is a semillatice of matrices of A-simple semigroups. These semi-
groups will be characterized by the following theorem.

Theorem 4.11 A semigroup S is a semilattice of matrices of A-simple semi-
groups if and only if

1
a— b = ab— b,

for every a,b € S.

Proof. Let S be a semilattice Y of matrices of A-simple semigroups S,
a €Y. Assume that a — b, for a € S,, b € Sg, o, 3 € Y. Then based on
Lemma 4.9, 8 < «, whence b, ba € Sg and based on Theorem 4.10 we have

that ba - b —— b, i.e. ab —— ®b.

Conversely, since every semigroup S is a semilattice Y of semilattice
indecomposable semigroups S, @ € Y, then for a,b € S,, o € Y we have
that aob (where o corresponds to the greatest semilattice congruence on 5),
whence from Lemma 4.6, a — *°b. Based on Lemma 4.9 we have that
a — ®bin Sy, a € Y. From this and from the hypothesis it follows that

ab -5 *°b. From Lemma 4.14 we have that ab —— b in Sq, @ € Y and
based Theorem 4.10, S, is a matrix of A-simple semigroups, for all « € Y.O
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If a is an element of a semigroup S and if n € Z™T, then we will use the
following notations:

Q(a) =Ala)N P(a), Qn(a)=Ay(a)N Py,(a).
Using the previous theorems, we obtain the following results:

Corollary 4.10 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of T-simple semigroups;
(ii) (Va,be S)a Ly 0ab A b -1 <ab;
(iii) for alla € S, Q(a) is an ideal;
(iv) (Va,b € S) Q(ab) = Q(a) N Qb);
(v) LN R is an ideal, for every completely semiprime left ideal L and for
every completely semiprime right ideal R of S;

(vi) for alla € S, N(a):{SUES|;U—l>°°a/\$L>OOa}'
Proof.  This follows from Theorem 4.7 and its dual. 0O

Corollary 4.11 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of T,-simple semigroups;
(ii) for alla € S, Qn(a) is an ideal;
(i) (Va,b € S) Qn(ab) = Qn(a) N Qn(b);
)

iv) arpa® for alla € S and
(
a Hl "ab A b — "ab,

for all a,b e S;
(v) foralla€e S, N(a)={z € S| x—l>”a/\xi>”a},

Proof.  This follows from Theorem 4.9 and its dual. O

Exercises
1. The relation 7# on a semigroup S is the smallest band congruence on S.
References

S. Bogdanovi¢ and M. Ciri¢ [15]; S. Bogdanovi¢, Z. Popovié and M. Ciri¢ [2]; M.
Ciri¢ and S. Bogdanovié¢ [3], [5].



146 CHAPTER 4. THE GREATEST SEMILATTICE...

4.4 Chains of o-simple Semigroups

Here we will give some characterizations of chains of o-simple semigroups
and the related consequences to chains of o,-simple and A-simple semigroups.

Lemma 4.15 Let a,b be elements of a semigroup S. Then:

N(a) UN(b) C N(ab).

Lemma 4.16 The following conditions for elements a,b of a semigroup S
are equivalent:

(i) N(ab) = N(a) UN(b);
(ii) N(b) € N(a) or N(a) C N(b);
(iii) N(ab) = N(a) or N(ab) = N(b).

Proof.  (i)=(ii) From ab € N(ab) = N(a) U N(b) it follows that ab € N(a)
or ab € N(b). If ab € N(a), then a,b € N(a), since N(a) is a filter, i.e.
b€ N(a), whence N(b) C N(a). Similarly we show that from ab € N(b) it
follows that N(a) C N(b).

(ii)=-(iii) Assume that N(a) C N(b). Then a,b € N(b) so ab € N(b),
since N(b) is a subsemigroup. Thus N(ab) C N(b). On the other hand,
since N (ab) is a filter, then a,b € N(ab), i.e. b € N(ab), so N(b) C N(ab).
Therefore, N(ab) = N(b). In a similar way we prove that from N(b) C N(a)
it follows that N(ab) = N(a).

(iii)=(i) From (iii) it follows that N(ab) C N(a) U N(b), so based on
Lemma 4.15 we obtain (i). a

Lemma 4.17 The union of every nonempty family of consistent subsets of
a semigroup S is a consistent subset of S.

Theorem 4.12 The following conditions on a semigroup S are equivalent:
(i) Xg is a chain;

(ii) S is a chain of o-simple semigroups;

every completely semiprime ideal of S is completely prime;

)
)
(iii) the partially ordered set of all completely prime ideals of S is a chain;
(iv)
)

(v) principal radicals of S are completely prime;
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(vi) the union of every nonempty family of filters of S is a filter of S;
(vii) (Va,b € S) ab—>a V ab—>>b;

(viii) —%° U (—>°)~! is the universal relation on S.

Proof. (i)« (ii) This follows immediately.

(i)=(vi) Let ¥g be a chain, let F;, i € I, be a family of filters of S
and let F' be the union of this family. From Lemma 4.17 it follows that it
is sufficient to prove that F' is a subsemigroup of S. Let a,b € F, i.e. let
a € F;, b€ F; for some i,j € I. Since ¥g is a chain, then aboa or abob, so
from Corollary 4.3 and Lemma 4.16 it follows that N(ab) = N(a) U N(b).
Since N(a) C F; and N(b) C F}j, then

ab € N(ab) = N(a) UN(b) C F;UF; C F.

Thus, F is a subsemigroup.

(vi)=(vii) Let the union of every nonempty family of filters of S be a
filter of S. Then N(a)UN (b) is a filter for every a,b € S. Thus N(a)UN(b) is
a subsemigroup of S, whence ab € N(a) UN(b), i.e. ab € N(a) or ab € N(b),
so based on Corollary 4.3 we obtain (vii).

(vii)=-(viii) This follows from the fact that a — ab and b — ab.

(viii)=(i) Let a,b € S. Then from (viii) it follows that b € ¥(a) or
a € X(b), whence X(b) C X(a) or X(a) C X(b). Thus, Xg is a chain.

(i)=-(iii) Let A and B be completely semiprime ideals of S. Assume that
A—B#DPand B—A#(,ie. assumethata € A—Bandb€ B— A. Then
Y(a) € A and 3(b) C B, so from (i) we obtain that ¥(a) C 3(b) C B or
Y(b) C X(b) C A, whence a € B or b € A, which is a contradiction according
to the hypothesis. Thus, A— B=0or B—A=10,ie. AC Bor B C A.
Therefore, (iii) holds.

(iii)=(viii) Assume a,b € S. Let A= S—N(a) and B =S—N(b). Based
on Lemma 1.21, A and B are completely prime ideals of S, so based on (iii),
A C Bor BC A, whence N(b) C N(a) or N(a) € N(b), so according to
Corollary 4.3, b—>°a or a—°b. Therefore, (viii) holds.

(vii)=-(iv) Let A be a completely semiprime ideal of S. Assume a,b € S
such that ab € A. Then X(ab) C A, so from (vii) we obtain that a € %(ab) C
Aorbe X(ab) C A. Hence, A is completely prime.

(iv)=-(v) This follows immediately.
(v)=(vii) If a,b € S, then X(ab) is completely prime, whence a € ¥(ab)
or b € ¥(ab), so (vii) holds. |
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Corollary 4.12 Letn € Z™. Then the following conditions on a semigroup
S are equivalent:

(i) S is a chain of o,-simple semigroups;
(i) for every a € S, ¥, (a) is a completely prime ideal of S;
(iii) S is a semilattice of oy-simple semigroups and for every a € S, Xy (a)
is a completely prime subset of S;

(iv) S is a semilattice of oy, -simple semigroups and ab—s"a or ab—"b for

all a,b € S;

(v) S is a semilattice of op-simple semigroups and b—"a or a—"b for
all a,b € S.

Proof.  (i)=-(ii) Based on the hypothesis and Theorem 4.5 we obtain that
Y, (a) is an ideal of S, and based on Theorem 4.12 we obtain that 3, (a) is
completely prime, for all a € S.

(ii)=-(iii) This follows from Theorem 4.5.

(iii)=(iv) Assume a,b € S. Since ¥, (ab) is completely prime and ab €
Y., (ab), then we obtain that a € X,,(ab) or b € 3,,(ab), so (iv) holds.

(iv)=(v) This follows immediately.
(v)=(i) This follows from Theorem 4.12. O

Problem 4.2 In [11] S. Bogdanovi¢ and M. Ciri¢ proved that for n = 1 the
previous theorem can be proved without the hypothesis in (iii),(iv) and (v)
that S is a semilattice of o,-simple semigroups. We can state the following
problem: Can this hypothesis also be omitted for n > 27

Corollary 4.13 The following conditions on a semigroup S are equivalent:

(i) S is a chain of \-simple semigroups;
(ii) principal left radicals of S are completely prime ideals of S;

(iii) S is a semilattice of \-simple semigroups and ab L5 %0 orab 5 b
for all a,b € S;

(iv) S is a semilattice of \-simple semigroups and b Ly g ora -t b
for all a,b e S.

Proof. 1t follows from Theorems 4.7 and 4.12. O
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The similar characterizations we can obtain for chains of \,-, 7- and
Tp-simple semigroups.
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I,
4.5 Semilattices of 7,-simple Semigroups

Given a,b € S. If a path exists from a to b in (S,—) (resp. a path
between a and b in (S, —) ), then paths exist from a to b (resp. between a
and b) of minimal length. They will be called the minimal paths from a to
b (resp. between a and b). Let S,, and gn, n € ZT, denote respectively the
classes of all semigroups S in which the lengths of all the minimal paths in
the graphs (S, —) and (S, —) are bounded by n. Equivalently, S,, and gn
are respectively the classes of all semigroups in which the n-th powers —"
and —" of — and — are transitive relations. It is known that &1 = §1.
This class consists of semigroups which are decomposable into a semilattice
of Archimedean semigroups.

However, for n > 2 we have S,, # gn, that is §n C S,. An example that
confirms this inequality, obtained through the combination of two construc-
tion methods of M. S. Putcha from [5], will be given here. The purpose of
this section is to study semigroups belonging to the class §n These semi-
groups will be described by Theorem 4.13. This result is from a paper by S.
Bogdanovié¢, M. Ciri¢ and Z. Popovi¢ [1]. By means of other theorems we
characterize their various special types.

By the rank of a semigroup S, in notation ran(S), we mean the supremum
of the lengths of all the minimal paths in the graph (S, —), and by the
semirank of S, in notation sran(S), we mean the supremum of the lengths
of all the minimal paths in the graph (S,—). Equivalently, ran(S) is the
smallest n < oo for which —" is transitive, and sran(S) is the smallest
n < oo for which —" is transitive, where —" and —" denote the n-th
powers of — and —, respectively. These notions were introduced by M.
S. Putcha in [5], but our definition differs from his, since he denoted by —"
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and —" not the n-th powers of — and —, but their (n + 1)-th powers.
Therefore, our definition increases Putcha’s rank and semirank by 1, if they
are finite.

The main goal of this section is to describe the structure of semigroups
from the class S,,.

We define the set 3, (a) and the relation &, on S by

Sp(a) ={z e Sla—"z}, (a,b) €5, < Sp(a) = Ta(d).

Since o, is contained in the symmetric opening of —" (Lemma 4.6) and
on € —™, then S is o,-simple if and only if a — "b, for all a,b € S,
and S is o,-simple if and only if a—"b, for all a,b € S. Thus, for every
n € Z*, each G,-simple semigroup is o,-simple. We will show that for n > 2
the opposite statement does not hold. But, all o;-simple semigroups are
o1-simple, and these are exactly the Archimedean semigroups.

Now we are ready to describe the semigroups from the class SAn The
following theorem gives the relation between the class S,, and the class S,,.

Theorem 4.13 Let n € Z*. Then the following conditions on a semigroup
S are equivalent:

(Va,b,c € S) a—" ¢ & b—" e = ab—"¢;
(Va,b € S) a—""b = a?—"b;
S eS8, and —" equals the symmetric opening of —";
" equals the symmetric opening of —"+1.
Proof.  (i)=-(ii) Let S € S,., that is let —™ be a transitive relation. Then
—" = —% and — equals the smallest semilattice congruence on S,
based on Theorem 4.3. Therefore, (ii) holds.

(ii)=-(iii) Using the transitivity of —" we easily check that —" = &,
whence we have that &, is a semilattice congruence on S.

(iii)=>(iv) Let 7, be a band congruence on S. Let a,b € S be arbitrary
elements. Then aba, (ab)?, that is ¥,,(ab) = ,,((ab)?). Now, let = € %,,(ab)
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be an arbitrary element. Then (ab)?2—"x, whence (ab)?—y—""'z. But,
(ab)?—y implies ba—1y, so we have ba—"x, i.e. T € in(ba). Analogously
we prove the opposite inclusion. Therefore, aba, ba, so 7, is a semilattice
congruence on S.

Let C be an arbitrary o,-class of S and let a,b € C. Then a—"b in S,
and based on Lemma 4.9, a—"b in C. Hence, we have proved that each
op-class of S is an &,-simple semigroup.

(iv)=(v) Let S be a semilattice of 7,-simple semigroups. As we have
already mentioned, every o,-simple semigroup is o,-simple, so S is also a
semilattice of o,-simple semigroups, o, = o, and it is the smallest semilat-
tice congruence on S.

According to Theorem 4.5, —™ C ¢,. On the other hand, assume an
arbitrary pair (a,b) € o,. Then (a,b) € 7,, whence a—"b, which was to
be proved. Therefore, (v) holds.

(v)=(vi) Let —" = 0,,. Based on Theorem 4.5, S is a semilattice Y’
of o,-simple semigroups S,, @ € Y. Assume a,b,c € S such that a—""!c
and b—""!¢c. Based on Lemma 4.9, a,b,c € S,, for some a € Y, whence
ab,c € S, and so abo, c. But, o, = "
we have that ab—"¢, which was to be proved.

, according to the hypothesis, so

(vi)=(vii) This implication is trivial.
(vii)=>(i) We always have —" C —"*1 To prove the opposite inclu-
sion, assume a,b € S such that a—""'b. Then a?—"b, by (vii), and so

a—"b, which we had to prove. Hence, —" = —"*+1 so —" is transitive.

(v)=(viii) Let —" = o,. Based on Theorem 4.5, S is a semilattice
of o,-simple semigroups, and based on Theorem 4.5 we have that —" is
transitive, that is S € §,,, and o, equals the symmetric opening of —".
Therefore, we have proved (viii).

(viii)=-(ix) Since S € S,, means that —" is transitive, that is —"=
—" L then (viii) yields (ix).

(ix)=-(i) We have that

__nc _ n+l C_>n+1 m(_>n+1)71 —___n

= )

so — ™ = — "1 whence it follows that —" is transitive. O

Remark 4.4 A binary relation £ on a semigroup S is said to satisfy the
power property if a€b implies a®¢&b, for all a,b € S, and to satisfy the
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common multiple property, the cm-property in short, if a £ ¢ and b€ ¢ implies
ab&c.

Remark 4.5 Let {Si}rez+ be a sequence of semigroups such that for each
k € Z" the following conditions are satisfied:

(1)

(2)

(3) there exists a nonzero idempotent e in Sk;

(4) Sg N Sk+1 ={ex} = {0k41} and Sy NS; = @ for i > k + 2.

Sy is a 0-simple semigroup with the zero O;

there exists a nonzero square-zero element aj in Sy;

By induction we define a new sequence {71}, },cz+ of semigroups as fol-
lows: We set Ty = S1. If, for n € ZT, T, is defined, then we set Ty, =
T, U Sp+1 and we define a multiplication on T}, 11 to coincide with the mul-
tiplications on 7, and Syy1, and for x € T}, and y € S, 11 we set xy = ze,
and yxr = e,x, where the right-hand side multiplications are from T},. Since
{Tn}nez+ is a chain of semigroups, then T' = | J,, .4+ T}, is also a semigroup
and each T}, is an ideal of T'. Let us denote 0 = 0;. We see that 0 is the zero
of T.

As was proved by M. S. Putcha in [5], ran(T,) = sran(T,) = n + 1,
for each n € Z*, and ran(T) = sran(T) = co. Moreover, he proved that
0—ai—ao— -+ —a,—e, is a minimal sequence between 0 and e, in
T, and T.

For n € Z*, n > 2, let P, be the orthogonal sum (0-direct union) of T,
and a 0-simple semigroup S having a nonzero square-zero element a and a
nonzero idempotent e. Then ran(P,) = n+2 and sran(P,) = n+1. In partic-
ular, a minimal sequence between e and e, is e—a—a;—as— -+ —ay,
—e,, and a minimal sequence from e into e, ise — a1 —> ag — - -+ —>
ap — €.
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4.6 Semilattices of X—Simple Semigroups

The problems, that were treated in the previous section for the relation
—, will here be considered for the left-hand analogue of this relation.

For n € Z" and an element a of a semigroup S, we define the sets Kn(a)
and A(a) by

Ap(a) ={z € S| ai%}, Aa)={z eS| aiwa

and the relations )\, and Xon S by:

(a,b) € An < An(a) = An(b), (a,b) € X & A(a) = A(b).

The semilattices of A\-simple semigroups were described in the previous
subsection. Here we study the semilattices of A-simple semigroups. A semi-
group S is A-simple if a A b, for all a,b € S.

Theorem 4.14 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of /)\\-simple semigroups;
(i) L = —;
(iii) —-°° is a semilattice congruence on S.
Proof.  (i)=-(ii) Let S be a semilattice Y of A-simple semigroups S, o € Y.
Assume a, b € S such that a—b. Based on Lemma 4.9, a,b € S,, for some
a €Y, whence a—°b. Therefore, —> C —L-°°. The opposite inclusion
is clear.
(ii)=-(iii) This is an immediate consequence of Theorem 4.3.

(iii)=(i) This follows from Lemma 4.14. |

For n € Z™, let us denote by £,, the class of all semigroups from S, on
which —>”:L>”, and let £,, denote the class of all semigroups from S, on
which —" = - Semigroups belonging to the class £,, were described in
the previous subsection. In particular, it was to be proved that S € L, if
and only if it is a semilattice of A\,-simple semigroups. It can be also checked
that S € £, if and only if Lyn — nH Here we investigate the structure
of semigroups from the class En.
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Theorem 4.15 Let n € Z*. Then the following conditions on a semigroup
S are equivalent:

)

)

)

)

(v) " =0, on S;
) (Va,b,c € 8) a—"tb = a>-L"b;
) (Va,b,c € S) a—"b & b—"c = a—L"¢;
)
)

—_

(viii) (Va,b,c € S) a—"T'c & b—" e = ab-L-"¢;
(ix) S €L, and - equals the symmetric opening of Lyn,
Proof.  (i)=-(ii) This is evident.
(ii)=(iii) From (i) it follows that —n"*! = Ln» Cc —n C —n+l
whence " = —" and so > = L = " — __%  Therefore, in
view of Theorem 4.14, —L-" is a semilattice congruence on S.

(iii)=-(iv) This follows from Lemma 4.14.

(iv)=(v) Let S be a semilattice Y of An-simple semigroups Sa, a € Y.
Then S, is a op-simple semigroup, for each a € Y, so based on Theorem
4.5 we have that ——" C o,,. On the other hand, if (a,b) € oy, then there
exists & € Y such that a,b € Sy, based on Lemma 4.9, whence a—"b, so
0, € -4, Therefore, (v) holds.

(v)=(i) Based on (v), in view of Theorem 4.5, 7, = " C —" C g,
that is " = —" = ¢,,, and from Thorem 4.13 it follows that S € S,,, so
we have proved (i).

(i)=(vi) Let S € Ln. Then S €8, and -7 = —n = —n+1 Agsume

now a,b € S such that a—""1b. According to Theorem 4.13 we have that

2 I n

a“—"b, and since = —" then a?—"b, which was to be proved.

(vi)=(vii) Based on (vi) it follows that a—""1b implies a? —"b, for all
a,b € 5, so based on Theorem 4.13 we have that —" is a transitive relation

on S. Assume now a,b,c € S such that a—"b and b—"¢c. Then a—"¢,

2 1l n l

that is a—"*!'¢, whence a ¢, by (vi), and hence a——"¢, which was to

be proved.
(vii)=-(i) From (vii) it follows that —™ is transitive, that is S € S,, and

n I n

also — , whence we obtain S € En
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(iv)=(ix) Let S be a semilattice Y of An-simple semigroups Sy, @ € Y.
Assume a,b € S such that a —" 1 b. Leta € Sy, b € Sg, for some o, € Y.
Based on Lemma 4.9, 3 < « in Y, that is a8 = 3, whence b, ba € Sg. Now

we have that ba—L"b and hence ba —"b. But, ba Lnp implies a NN
Therefore, we have proved that —>"+1§L>". Since the opposite inclusion
always holds, we have that —>”+1:L>”, that is S € L,,.

We also have that S, is a o,-simple semigroup, for each a € Y, so o,
equals the symmetric opening of —", based on Theorem 4.5. But, we

have proved that Ly =—", and in the part (iv)=(v) of this theorem we

n

proved that -—" = ¢,. Therefore, ——" equals the symmetric opening of

— ™. This completes the proof of this implication.

(ix)=(v) From S € L,, it follows that Lyn =7 and -5 and —"
are transitive relations on S. On the other hand, based on Theorem 4.5,
oy is the transitive closure of —"™, and now, in view of (ix), we have that

—" =o,.

(i)=(viii) Let S € L,. Assume a,b,c € S such that a—"" ¢ and
b—"Fl¢. Then S € §n, and based on Theorem 4.13 we have that ab—"c.

But, —" = —L-" 30 we obtain ab—"¢, which was to be proved.
(viii)=(vi) This implication is evident. |
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4.7 The Radicals of Green’s [J-relation

The radicals R(g) and T'(¢) which we will use in this section are defined
on page 28.

As was proved by M. S. Putcha in [1], in 1973, the smallest semilattice
congruence on a completely w-regular semigroup equals the transitive clo-
sure of R(J). But, this assertion does not hold in a general case, and we
investigate some conditions under which the transitive closures and powers
of the relations R(J) and T'(J) are semilattice congruences.
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A relation ¢ on S will be called T-closed if T'(0) = o, and it is R-closed
if R(0) = o. It is easy to check that —", for each n € Z*, and — are
both T-closed and R-closed relations. Thus, for Green’s J-relation on S,
R(J) and T(J) are contained in —.

Here we consider the semigroups on which R(J)™ is a semilattice con-
gruence.

Theorem 4.16 On a semigroup S, R(J)> is a semilattice congruence if
and only if R(J)>® = —.

Proof.  This is an immediate consequence of Theorem 4.3 and the fact that
R(J) is contained in —. a

Similarly we have

Theorem 4.17 On a semigroup S, T(J)*> is a semilattice congruence if
and only if T(J)>® = —°.

Further we study the conditions under which the powers of R(J) are
semilattice congruences.

Theorem 4.18 Let n € Z*. Then the following conditions on a semigroup
S are equivalent:

(i) R(j)" is a semilattice congruence;
(i) R(J)" = on;
(i) R(T)" = —"*;
(iv) (Va,b€ S) a—"b = (a2,b) € R(J)™;

(v) (Va,b,ce S)a—"b & b—"c = (a,c) € R(J)";

(vi) (Va,b,c € S) a—" e & b—" ¢ = (ab,c) € R(T)".

Proof.  (i)=-(iii), (iv), (v), and (vi). Let S be a semilattice Y of semigroups
Sa, @ €Y, such that each S, is an R(J)"-class of S.

Assume a,b € S such that a—""'b. Then from Lemma 4.9 we have
that a,b € Sy, for some a € Y, so (a,b) € R(J)"™. Therefore,

7714’1 g R(j)n g . n g 771-"-1’

so we have obtained (iii). On the other hand, we also have that a?,b € S,,
o (a?,b) € R(J)"™, whence it follows (iv).



4.7. THE RADICALS OF GREEN’S J-RELATION 157

Assume a,b,c € S such that a—"b and b—"¢c. Then a,b,c € S,, for
some « € Y, in view of Lemma 4.9, and a,c € S, implies (a,c) € R(J)".
Therefore, we have proved (v). Similarly, if a,b,c € S such that a—"1c
and b—""!l¢, then a,b,c € S,, for some a € Y, so ab,c € S,, whence
(ab,c) € R(J)™. This proves (vi).

(iii)=>(ii) If (iii) holds, then

= )

_ n+l - R(j)n C __nc _ n+l

so we have that —" = —"*1 that is —" is transitive, and from Theorem
4.13 it follows that o, = —" = R(J)".

(ii)=() If R(J)" = oy, then (a?,a) € R(J) C R(J)" = oy, for each
a € S, and based on Theorem 4.5 we have that o, = R(J)" is a semilattice
congruence.

(vi)=-(iv) This is obvious.

(iv)=-(iii) Note that (a?,b) € R(J) implies (a,b) € R(J), so (a?b) €
R(J)™ implies (a,b) € R(J)". Therefore, (iv) yields —"*! C R(J)",
whence it follows (iii).

(v)=(iii) First, from (v) it follows that —" is transitive, that is —" =
—nF1 Tt also follows from (v) that —" = R(J)", so we have proved (iii).00

In the case of the radical T'(J) we have the following:

Theorem 4.19 Let n € Z*. Then the following conditions on a semigroup
S are equivalent:

(i
(ii
(iii

)
)
)
(iv) (Va,b€ S) a—"T = (a2,b) € T(JT)";
)
)

T(J)™ is a semilattice congruence;

T(I)" = on=R(T)";
( ) n+17

(v) (Ya,b,c €S) a—"b & b—"c = (a,c) e T(I)";
(Va,b,c € S) a—"Ttc & b—"Flc = (ab,c) € T(T)".

(vi
Proof.  (iii)=-(ii) If (iii) holds then

_ n+l _ T(j)n C R(j)n C __nc 7n+1’

so R(J)" = —"*! and from Theorem 4.18 we have that o, = R(J)" =
—ntl = T(J)", which was to be proved.
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The implication (ii)=-(i) follows from Theorem 4.18. The implications
between the remaining conditions can be proved in a similar way as the
corresponding parts of Theorem 4.18. O

Problem 4.3 For an arbitrary Green’s relation X € {J,D,L, R, H}, we
say that a semigroup S is R(X)-simple if a,b € R(X), for all a,b € S.

At the end we state the following problems:

(i) Describe the bands of R(J)-simple (R(L)-simple) semigroups;
(ii) Describe the semigroups in which R(X), X € {J,D,L,R,H}, is a

congruence.

Exercises

1. Let X € {J,L,H}. Prove that the following conditions on a semigroup S are
equivalent:

(i) S is a semilattice of Archimedean semigroups;
(ii) R(oq) is a congruence on S;
%iii T(O’lg is a semilattice (band) congruence on S;
iv) R(o1) =o071;

(v) R(X) Co;.

2. Let X € {TJ,L,H}. Prove that the following conditions on a semigroup S are
equivalent:

(i) R(X) is a semilattice congruence;
(ii) R(X) = oq;
(iii) S is a semilattice of R(X')-simple semigroups.

3. Show that the following conditions on a semigroup S are equivalent:

(i) R(J) is a semilattice congruence;
(i) R(J) = oy; )

i) R(J) = —2

iv) (Va,b€ S)a—b = (a*b) € R(J);

(v) (Va,b,ce S)a—b & b—c = (a,c) € R(J);

(vi) (Va,b,c€ S)a—c & b—c = (ab,c) € R(J).
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Chapter 5

Semilattices of Archimedean
Semigroups

Note that the semilattices of Archimedean semigroups have been studied
by a number of authours. M. S. Putcha, in 1973, gave the first complete
description of such semigroups. Other characterizations of semilattices of
Archimedean semigroups have been given by T. Tamura, 1972, S. Bogdanovié¢
and M. Cirié, 1992, and M. Ciri¢ and S. Bogdanovié¢, 1993.

In this chapter we investigate the semigroups whose any subsemigroup
is Archimedean, called hereditary Archimedean, and the semilattices of such
semigroups.

Bands of left (also right and two-sided) Archimedean semigroups form
important classes of semigroups studied by a number of authors. General
characterizations of these semigroups were given by M. S. Putcha, in 1973,
and in the completely m-regular case by L. N. Shevrin, in 1994. Some
characterizations of bands of left Archimedean semigroups and of bands
of nil-extensions of left simple semigroups have been given recently by S.
Bogdanovi¢ and M. Ciri¢, 1997. Based on the well-known results of A. H.
Clifford, in 1954, any band of left Archimedean semigroups is a semilat-
tice of matrices (rectangular bands) of left Archimedean semigroups. The
converse of this assertion does not hold, i.e. the class of semilattices of ma-
trices of left Archimedean semigroups is larger than the class of bands of
left Archimedean semigroups. In this chapter we give a complete characteri-
zation of semigroups having a semilattice decomposition whose components
are matrices of left Archimedean semigroups. Moreover, we describe such

159
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components in general and in some special cases.

As we all know, semilattices of completely Archimedean semigroups form
an important class of semigroups studied by a number of authors. Several
characterizations of these semigroups were given by M. S. Putcha, in 1973,
and 1981, L. N. Shevrin, in 2005, M. L. Veronesi, in 1984, and S. Bogdanovi¢,
in 1987. We emphasize the results of L. N. Shevrin (see also M. L. Veronesi
[1] and L. N. Shevrin [4]), which give a powerful tool for checking whether a
m-regular semigroup is a semilattice of completely Archimedean semigroups.
Based on this result, a w-regular semigroup has this property if and only if
any of its regular elements are completely regular. In this chapter we gen-
eralize the notion of a completely Archimedean semigroup, introducing the
notion of a left completely Archimedean semigroup. Several characteriza-
tions of these semigroups will be given in Theorem 5.26. The main results of
this section are Theorem 5.27, which gives some characterizations of semilat-
tices of left completely Archimedean semigroups, and Theorem 7.4, in which
we give some new results concerning semilattices of completely Archimedean
semigroups.

Semigroups which can be decomposed into a band of left Archimedean
semigroups have been studied in many papers. M. S. Putcha, in 1973, proved
a general theorem that characterizes such semigroups. This result we give
here as the equivalence of conditions (i) and (ii) in Theorem 5.29. Some
special decompositions of this type have also been treated in a number of
papers. S. Bogdanovié¢, in 1984, P. Proti¢, in 1991, and 1994, and S. Bog-
danovi¢ and M. Cirié, in 1992, and 1995, studied bands of left Archimedean
semigroups whose related band homomorphic images belong to several very
important varieties of bands. L. N. Shevrin, in 1994, investigated bands
of nil-extensions of left groups, and S. Bogdanovi¢ and M. Ciri¢, in 1992,
investigated bands of nil-extensions of groups. Finally, bands of left simple
semigroups, in the general and some special cases, were investigated by P.
Protié¢, in 1995, and S. Bogdanovi¢ and M. Cirié, in 1996.

5.1 The General Case

The semilattice of o,-simple and \,-simple semigroups were described
in Sections 4.2 and 4.3. Here we give some new characterizations for the
semilattices of oi-simple and Aj-simple semigroups, i.e. for the semilattices
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of Archimedean semigroups and the semilattices of left Archimeden semi-
groups.

Theorem 5.1 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of Archimedean semigroups;

(i) (Va,be S) a—b = a®> — b;
(iii) (Va,b€ 8) alb = a? —b;
(iv) (Ya,b€ S)(Vk € ZT)(3n € ZT) (ab)" € Sd*S;
(v) (Va,b € S)(3n € Z*) (ab)" € Sa8S;
(vi) (Va,be S)(Vk e Zt)(3n € Z1) (ab)™ € SHS;
(vii) (Va,be€ S)(3n € ZT) (ab)™ € SH2S;
(viii) the radical of every ideal of S is an ideal.

Proof. (1)< (ii) This equivalence holds based on (i)<(v) of Theorem 4.5,
for n = 1.

(ii)=-(iii) Assume that a|b, then a — b, whence a>— b. Thus (iii) holds.
(iii)=-(ii) Assume that a — b, i.e. a|b™ for some n € Z*. Then
a? — b". Thus a® — b.

(i)=(iv) Let S be a semilattice Y of Archimedean semigroups Sy, € Y.
Let a € Sy,b € Sg for some o, 3 € Y. Then we have that ab, akb € Sap for
all k € Z™, so there exists n € Z* such that

(ab)™ € Sa*bS C Sa*s.

(iv)=-(v) This follows immediately.

(v)=(i) Let a,b € S be elements such that a | b. Then there exists
u,v € St such that b = uav, so b"*1 = u(avu)av for every n € Z*. From
(v) we have that there exists n € Z* such that (avu)"™ € Sa?S, whence

b = w(avu)"av € uSa?Sav C Sa?S.

Therefore, a® | b"*!, and based on the equivalence (ii)<>(iii) and from The-
orem 4.5 it follows that S is a semilattice of Archimedean semigroups.
(i)=(v))=(vii)=-(i) This we prove in a similar way, as (i}=(iv)=(v)=(i).
(1)=(viii) Let A be an ideal of S and let a € v/A, b€ S. Then a* € A, for
some k € ZT. Since (i)<(iv)<(vi), we then have that there exist m,n € Z+
such that (ab)”, (ba)™ € Sa*S C SAS C A. Therefore, ab,ba € /A, so VA
is an ideal of S.
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(viii)=(v) Let (viii) hold. Let a,b € S and let A = Sa2S. It is clear that
A is an ideal of S and that a € v/A. From (viii) it follows that VA is an
ideal of S, so ab € VA, i.e. there exists n € Z* such that (ab)” € Sa?S. O

Let m,n € ZT. On a semigroup S we define a relation P(m.n) DY
(a,0) € pemn) & (Vo € S™)(Vy € S™) zay— by,
ie.
apmmb < (Vo €S™)(VyeS™)(Fi, j €Z1)(zay)’ € SxbyS A (xby)’ € Szays.

The relation p(;,1) we simply denote by p.

If instead of the relation — we assume the equality relation, then we
obtain the relation which was introduced and discussed by S. J. L. Kopamu
in [1], 1995. So, the relation P(m,n) 15 & generalization of Kopamu’s relation.

Based on the following theorem we give a very important characteristic
of the p(;, ) relation.

Theorem 5.2 Let m,n € Z*. On a semigroup S the relation P(m,n) 1S @
congruence relation.

Proof. Tt is evident that p(,, ) is a reflexive and symmetric relation on S.

Assume a, b, c € S such that ap(y )b and bp(y, nyc. Then
apmmb < (Yo eS™)(VyeS™)(3i,j€Z™) (zay)' € SxbyS A (zby)’ € Szays,

bp(mmyc & (Vo eS™)(VyeS™)(Ip,q€ Z™") (zby)? € SwcyS A (xcy)? € SxbysS.

So, (zay)’! = uxbyv and (zcy)? = wzxbyz, for some u,v,w,z € S. Since
bP(m,n)C, then for z € S™ and yvu € S™*2 C S™ we have that there exists
t € Z™" such that (zbyvu)t € SzeyvuS and

((zay)))'™™ = (uzbyv)'™ = u(zbyvu)'zbyv € uSzeyvuSazbyy C SwcysS.

Thus (zay)™ Y € SzcysS.

Similarly, we prove that (xcy)¥ € SzayS, for some k € Z*. Hence,
ap(mn)c- Therefore, p(y, ) is a transitive relation on S.

Now, assume a,b, c € S are such that ap(,, ,)b. Then for z € S™, y € S"
we have cy € S"T C S, so, there exist p,q € ZT such that

(z(ac)y)? = (za(cy))? € Szb(cy)S = Sx(be)ys,
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(x(bc)y)? = (xb(cy))? € Sza(cy)S = Sx(ac)yS.

Hence acp(y nybe. Similarly, we prove that cap(y, nycb. Thus, ponn) is a
congruence relation on S. O

Remark 5.1 Let pu be an equivalence relation on a semigroup S and let
m,n € ZT. Then a relation W(mn) defined on S by

(a7 b) € mmn) < (Vl‘ € Sm)(vy S Sn) (:ray,xby) cp

1§ a congruence relation on S. But, there exists a relation p which is not
equivalence, for example p = —, for which the relation ppy, ) is a congru-
ence on S.

The following two lemmas are useful for further work. Their proofs are
elementary and they will be omitted.

Lemma 5.1 Let & be an equivalence on a semigroup S. Then £ is a con-
gruence relation on S if and only if € = €.

Lemma 5.2 Let & be an equivalence relation on a semigroup S. Then & is
a band congruence if and only if

(Va € S)(Vz,y € SY) (zay, za’y) € €.

Now we give some new characterizations of the semilattices of Archime-
dean semigroups.

Theorem 5.3 Let m,n € Z*. The following conditions on a semigroup S
are equivalent:

(1) pP(m.n) s a band congruence;
(i) (Va € S)(Vo € S™)(Vy € S™) ray—mxa’y;

(iii is a semilattice of Archimedean semigroups;

)

)

) S

(iv) R(p(m,n)) = Pmm);

(v) p

(vi) (Va € S)(Yu,v € S) (uav, ua®v) € p(y i
) p is a band congruence.

b .
Plm.n) 18 a band congruence;

(vii
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Proof.  (i)=-(ii) This implication follows immediately.
(ii)=(iii) Let (i) hold. Then for every a,b € S, if x = (ab)! and y =
(ba)*b, for some k,l € ZT, 1 > m and k > n, there exists i € Z* such that

((ab)la(ba)*b)* € S(ab)la®(ba)*bS C Sa>S,

ie.
(ab) (2k+1+1)7 c SG2S.
Thus, based on Theorem 5.1 S is a semilattice of Archimedean semigroups.

(iii)=(i) Let S be a semilattice Y of Archimedean semigroups S,, a € Y
and let m,n € ZT be fixed elements. Based on Theorem 5.2 Pimm) 18 &
congruence relation on S. It remains to be proven that p(,,) is a band
congruence on S. Assume a € S, x € S™ and y € S™. Then zay, xa’y € S,,
for some o € Y. Since S,, o € Y, is Archimedean, then there exist p,q € Z*
such that

(zay)? € Sqra’yS, C Sra’ys,
(za*y)? € SpzraySa C Srays,
hence ap(myn)aQ, i.e. p(m,n) is a band congruence on S. Thus (i) holds.
(i)=(iv) The inclusion p(,, ny € R(p(m,n)) always holds, so it remains for

us to prove the opposite inclusion. Since p(,, ) is a band congruence on S,
then we have that

(Va € S)(Vk € Z) ap(m,n)ak.

Now assume a, b € S such that aR(p(y,»))b. Then ai,o(mm)bj, for some i,j €
Z7", and from the previous statement we have that ap(m’n)aip(mm)bjp(m’n)b.
Thus ap(m n)b- S0 R(p(mn)) S P(m,n)- Therefore, (iv) holds.

(iv)=-(i) Since p(y, ) is reflexive, then based on the hypothesis for every
a € S we have that

2 2

azp(m,n)aQ & (ab) p(myn)(a2)1 & aR(p(Wn))a2 & AP(mn) @
Thus, (i) holds.

(i)=(v) This implication follows from Lemma 5.1.

(v)=>(vi) This implication follows from Lemma 5.2.

(vi)=(i) Let (vi) hold. Based on Theorem 5.2 p(,, ,y is a congruence and
based on (vi) for u = v = 1 we obtain that (a,a?) € P(m.n), for every a € S,
i.e. p(m,n) is a band congruence. Thus, (i) holds.

(i)<(vii) This equivalence follows immediately from the equivalence
(1)< (iil). O
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The following result shows the connections between relations p and a?.

Theorem 5.4 Let S be an arbitrary semigroup. Then p = a?.

Proof. Assume a,b € S such that apb. If ¢ € ¥1(a), then ¢* = uav, for

some u,v € S and some k € Z*. Since apb then we obtain that (uav)® €
SubvS C SbS, for some i € ZT. Thus

M = (*)! = (uav)’ € SbS,

whence ¢ € ¥1(b). So, we proved that ¥;(a) C ¥;(b). Similarly we prove
that ¥1(b) C X1(a). Therefore, ¥1(a) = £1(b), i.e. ac1b. Thus, p C o;.

Let & be an arbitrary congruence relation on S contained in o; and let
a,b € S be elements such that ab. Since £ is a congruence, then for every
x,y € S we have that

(zay,zby) € £ C o1 C —,
b

so it follows that (Vx,y € S) zay—aby, i.e. apb. Therefore, £ C p. Since o]

is the greatest congruence contained in o1, then from the previous statement

it is evident that p = of. O

On an arbitrary semigroup .5, it is clear that the following inclusion holds

p":p:aggal.

Theorem 5.5 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of simple semigroups;
(ii) S is intra w-regular and each J-class of S containing an intra regular
element is a subsemigroup;
(iii) S is intra w-regular and a semilattice of Archimedean semigroups;
(iv) (Va,b € S)(In € ZT) (ab)"™ € S(ba)™(ab)"S;
(v) (Va,b € S)(3n € Z*)(Vk € Z%) a¥ | (ab)";
(vi) (Va,b€ S)(3n € ZT) a'*™| (ab)".

Proof.  (i)=(ii) Let S be a semilattice Y of semigroups S,, a € Y, and for
each a € Y, let S, be a nil-extension of a simple semigroup K,. Let J be a
J-class of S containing an intra regular element a, and let a € S, for some
a € Y. Then a = xa®y, for some x,y € S, whence a = (za)"ay", for each
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n € ZT. Tt is easy to verify that za € Sy, so (za)" € K,, for some n € Z*,
and also, ay™ € Sy. Now, a = (za)"ay"™ € K4So C K. Thus, a € K. Since
K, is simple, then every element of K, is J-related with a in S, so K, C J.
Further, assume b € J. Then (a,b) € J C 0, s0 b € S,, and since b = uav,
for some u,v € S, then b = uza?yv = u(za)?ay®v = (uzazr)alay®v). It is
not difficult to check that uzax,ay?v € S, so b € SuK4Sq C Ko, whence
J C K,. Therefore, J = K, so it is a subsemigroup of S.

(ii=(iv) Assume a,b € S. Since S is intra m-regular, then (ab)" =
x(ab)®™y, for some n € Z*, z,y € S. Without a loss of generality we
can assume that n > 2, so (ab)" = x(ab)**y € S(ba)"*'S, and clearly,
(ba)"*t! € S(ab)™S, whence (ba)"*1J(ab)", i.e., (ba)"* € J, where J is
the J-class of (ab)"™. Similarly, (ab)"*! € J. Based on the hypothesis, .J
is a subsemigroup of S, so (ba)"*t(ab)"*! € J, i.e., (ba)"*1(ab)" 1T (ab)".
Therefore,

(ab)™ € S (ba)" ™ (ab)" TSt C S(ba)™ (ab)™S.

(iv)=(iii) Assume a € S, then a?" € Sa?"a’"S = S(a?")%S for some
n € ZT, i.e. S is an intra mw-regular semigroup. From (iv) we have that for
every a,b € S there exists n € Z* such that (ab)” € S(ba)"(ab)"S C Sa®S
and based on Theorem 5.1 S is a semilattice of Archimedean semigroups.

(iii)=-(i) This follows from Theorem 3.14 and Lemma 2.7.

(i)=(v) Let (i) hold and let £ be a corresponding semilattice congruence.
Assume a,b € S and let A be a £-class of element ab. Then A is a nil-
extension of a simple semigroup K, so there exist n € Z* such that (ab)” €
K. Assume k € Z*. Since a*b € A then (a*b)™ € K, for some m € Z™.
Thus,

(ab)™ € K(a*b)™K C Sa*s,
because K is a simple semigroup. Therefore, (v) holds.

(v)=>(vi) This is evident.

(vi)=-(iii) Based on (vi) for every a € S there exists n € Z* such that
a*™|a®", so S is intra 7-regular. According to Theorem 5.1 we have that S
is a semilattice of Archimedean semigroups. Thus, (iii) holds. a

A subset A of a semigroup S is semiprimary iff

(Va, b€ S)(In€ZT)abc A = a"c A VvV V" € A.

A semigroup S is semiprimary if all of its ideals are semiprimary subsets of
S. Based on the following theorem we prove that the class of semiprimary
semigroups is equal to the class of chains of Archimedean semigroups.
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Theorem 5.6 The following conditions on a semigroup S are equivalent:

(i) S is a chain of Archimedean semigroups;
(ii) (Va,be S)ab— a V ab—> b;
(iii) S is semiprimary;
(iv) VA is a completely prime ideal, for every ideal A of S;
(v) VA is a completely prime subset of S, for every ideal A of S.

Proof.  (i)=-(ii) This follows from Corollary 4.12.

(ii)=>(iii) Let A be an ideal of S and let a,b € S. From (ii), ab — a or
ab — b, so there exists n € Z™ such that a™ € SabS or b € SabS. Now, if
ab € A, then a” € SabS C SAS C A or b" € SabS C SAS C A. Thus, S is
a semiprimary semigroup.

(iii)=(iv) Let S be a semiprimary semigroup and let a,b € S. Since
(ba)(ab) € J((ba)(ab)), then there exists n € Z* such that

(ba)"™ € S(ba)(ab)S or (ab)™ € S(ba)(ab)s,

whence (ab)"*! € Sa%S. Now, from Theorems 5.1 and 4.5 it follows that
VA is an ideal, for every ideal A of S. Assume an arbitrary ideal A of S
and assume a,b € S such that ab € v/A. Based on (iii) there exists n € Z*
such that a™ € SabS C VA or b € SabS C \/Z, so, it follows that a € VA
or b € v/A. Therefore, v/A is a completely prime ideal.

(iv)=-(v) This implication follows immediately.
(v)=(ii) Assume a,b € S. Based on (v), V'SabS is a completely prime

subset of S. Since a?b? € SabS € V' SabS, we then have that a® € v/SabS or
b% € V/SabS, whence it follows that (ii) holds.

(ii)=(i) Assume a,b € S. Then, from (ii), (ba)(ab) — ba or (ba)(ab) —
ab, whence it is easy to prove that a> — ab, so based on Theorem 5.1 S is a
semilattice Y of Archimedean semigroups S,,a € Y. Let a, 8 € Y. Assume
that a € S, and b € Sg. Then based on (ii) there exists n € ZT such that
a™ € SabS or b € SabS, whence a < B or § < a. Thus Y is a chain. O

Theorem 5.7 The following conditions on a semigroup S are equivalent:
(i) (Va,b€ S) a —+b=>a® -5 b;
(i) (Va,be S)(Vk € ZT) bF -1 ab;

(iii) (Va,b e S) b? -5 ab.
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Proof.  (i)=(ii) Assume a,b € S and k € Z*. Then b SN ab, so based on
(i) it is easy to prove that b* Ly ab. Thus, (ii) holds.

(ii)=-(iii) This is evident.

(iii)=(i) Assume a,b € S such that a SN b, i.e. V" = za, for some
n € Z*, z € S. Based on (iii), a? LN za, i.e. (ra)™ = ya?, for some
m € Zt, y € S. Thus, b™ = ya?, so a’ . Whence, (i) holds. O

Theorem 5.8 Let S be a semigroup. Then

(i) S is a semilattice of right Archimedean semigroups if and only if for
alla,be S, alb = al,b", for somen € Z7;
(ii) S is a semilattice of left Archimedean semigroups if and only if for all
a,be S, alb = alb", for somen € Z%;
(iii) S is a semilattice of t-Archimedean semigroups if and only if for all
a,be S, alb = al|b", for somen € Z™T.

Proof.  We prove (i). The proofs of (ii) and (iii) are similar.

Suppose that for all a,b € S, a|b = al,b", for some n € Z*. Let
a,b € S such that a|b. Then b = xay, for some x,y € S*. Let ¢ = yra. Then
alc. So al,c?, for some n € ZT. So az = (yxa)" for some z € S1,n € ZT.
Hence a? | va®z = za(yza)™ | (zay)" ™' = b1, Based on Theorem 5.1, S is
a semilattice of Archimedean semigroups S,,a € Y. Let a,b € S,, for some
a € Y. Then a|b™ for some n € Z*. So a|,.b™ in S for some m € Z*.
Then au = b™ for some u € S*. So a(ub) = b™*! ub € S,. Thus a|,.bm!
in S,. Hence S, is right Archimedean. Now assume conversely that S is a
semilattice of right Archimedean semigroups S,,a € Y. Let a,b € S,a|b.
Then zay = b for some z,y € S*. Then ayz,b € S, for some o € Y. So
ayx | »b" for some n € ZT. Then a|,b". This proves the theorem. O

Theorem 5.9 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of left Archimedean semigroups;

(i) (Va,be S)(Vk € Z%) a* - ab;
(ili) (Va,b e S) a Ly ab;
)

(iv) the radical of every left ideal of S is a right ideal of S.

Proof.  (i)=-(ii) This we prove in a way similar to (i)=(ii) in Theorem 5.1.
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(ii)=-(iii) This is evident.

(iii)=-(i) Assume a,b € S. Based on (iii) there exists n € ZT and z € S
such that (ba)" = xb. Now we have that (ab)"T! = axb?, so b? 5 ab. Based
on (iii), Theorems 4.7 and 4.8, for n = 1, and Theorem 5.1, we have (i).

(ii)=(iv) Let L be a left ideal of S. Assume that a € vL,b € S. Then
a* € L, for some k € ZT, and we have that (ab)" € Sa¥ C SL C L, for some
n € ZT. Thus ab € VL, i.e. VL is a right ideal of S.

(iv)=(i) Let a,b € S,L = Sa. Then a € /L. Since VL is a right
ideal of S we then have that ab € \E, i.e. there exists n € Z* such that
(ab)" € L = Sa, whence from (ii) Theorem 5.8 we have that the condition
(i) holds. |

From Corollary 4.13 and Theorems 4.8, 4.9 we have the following

Corollary 5.1 The following conditions on a semigroup S are equivalent:

(i) S is a chain of left Archimedean semigroups;
(ii) for every left ideal A of S, VA is a completely prime ideals of S;
(iii) S is a semilattice of left Archimedean semigroups and every left ideal
of S is semiprime;
(iv) S is a semilattice of left Archimedean semigroups and ab s a or

ab - b for alla,b e S.
As in the case of Theorem 5.5, we prove the following corollary:

Corollary 5.2 The following conditions on a semigroup S are equivalent:

(i
i

(iii

S is semilattice of nil-extensions of left simple semigroups;

S is left m-reqular and a semilattice of left Archimedean semigroups;
(VYa,b € S)(3n € Z7)(Vk € Z) a¥|; (ab)";

(Va,b € S)(3n € Z) a® 1| (ab)".

~— — ~—

(iv

For the semilattice and chains of ¢t-Archimedean semigroups it is easy to
prove the following characterizations:

Corollary 5.3 The following conditions on a semigroup S are equivalent:

(1) S is semilattice of t-Archimedean semigroups;
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(ii) (Va,b € S)(3In € Z™) (ab)™ € bSa;
(iii) for every bi-ideal A of S, /A is an ideal of S.

Corollary 5.4 The following conditions on a semigroup S are equivalent:

(i) S is a chain of t-Archimedean semigroups;

(ii) S is a semilattice of t-Archimedean semigroups and ab s aorab -
b for all a,b € S;
(iii) for every bi-ideal A of S, VA is a completely prime ideals of S.

Theorem 5.10 For every subsemigroup A of S, VA is a completely prime
subset of S if and only if for all a,b € S is ab-L-a or ab-L-b.

Proof. Let v/A be completely prime for every subsemigroup A of S. Then,
for all a,b € S, from ab € (ab) C \/(ab) we have that a € \/(ab) or b €
(ab), i.e. ab-L-a or ab-L-b.

Conversely, let ab--a or ab-£-b, for every a,b € S and let A be a
subsemigroup of S. Let ab € VA, a,b € S. Then (ab)* € A, for some
k € ZT. Since a™ = (ab)" or b™ = (ab)?t, for some n,r,t € Z*, we then have
that a™* = (ab)™ € A or b"* = (ab)* € A, whence a € VA or b € VA.
Therefore, v/A is a completely prime subset of S. a

Based on Theorem 4.5 we know that a semigroup S is a band of Archime-
dean semigroups if and only if S is a semilattice of Archimedean semigroups.
If the term ” Archimedean” we replace with "left (right) Archimedean” the
same statements does not hold. That is confirmed by every completely
simple semigroup which is not a left group (see Corollary 3.8). By means of
the following theorem we describe a band of left Archimedean semigroups.

Theorem 5.11 A semigroup S is a band of left Archimedean semigroups if
and only if

ray—xa’y,
forallac S, z,y € S.

Proof. Let S be a band of left Archimedean semigroups and let £ be a
corresponding band congruence. Assume a € S, z,y € S! and assume that
A is a &-class of the element zay. Then zay, za’y € A and since A is a left

Archimedean semigroup then we have that zay——=za2y.
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Conversely, assume a,b € S, then based on the hypothesis we have that
ab—-ab?, so (ab)™ € Sab®> C Sb%. Whence, b? LN ab, and according to
Theorem 5.7 ((i)<(iii)) and Theorem 4.8 ((iii)<(v), for n = 1), we have
that —— = )\, so —— is an equivalence relation on S.

We define the relation £ on S with
l
atb < (Vr,y € ) zay—axby, a,b e S.

From Theorem 1.2 and the hypothesis we have that £ is a band congruence
on S. Let A be a ¢-class of S. Assume a,b € A. Then a?£b, whence b = za?,
for some n € Zt, x € S. Now, we have that zaza® = b"€b, so za € A.

Hence, b" = (za)a € Aa, ie. a L bin A, so A is a left Archimedean
semigroup. Thus, S is a band of left Archimedean semigroups. O

Corollary 5.5 A semigroup S is a band of t-Archimedean semigroups if and
only if

t 9
ray—zmrxa’y,
forallac S, z,y € St

Proof. This follows from Theorem 5.11 and its dual. O

Otherwise, it is easy to prove that t-Archimedean semigroups are band
indecomposable, i.e. the universal relation on a ¢t-Archimedean semigroup S
is an unique band congruence on S.

A band B is left (right) seminormal if axy = axyay (yra = yayza), for
all a,z,y € B. A band B is normal if axya = ayxa, or all a,z,y € B. A
band B is left (right) regular if xy = yzry (xy = yay), for all a,z,y € B.

Theorem 5.12 On a semigroup S the following conditions are equivalent:

(i) S is a normal band;
(ii)) (Va,z,y,b € S) axyb = ayxb;

(iii) S is a left and right seminormal band.
Proof.  (i)=-(ii) Assume a,x,y,b € S. Then

axyb = axybaxryb = aybraryb = aybaryxb = ayrbayrb = ayxb.
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(ii)=(iii) Assume a,z,y € S. Then
ary = aryaTry = aTTYAY = ATYQY.

Similarly we prove that yxa = yayxa. Therefore, S is left and right semi-
normal, so (iii) holds.

(iii)=-(i) Assume a,z,y € S. Then

arya = ayaarya = ayarya = ayryaayarya

= ayz(ya)?®xya = ayryarya = ay(rya)? = ayrya,
ayra = ayraaya = ayraya = ayrayaayrya

= ayz(ay)?®xya = ayrayrya = (ayz)*ya = ayrya.

Thus, arya = ayxa, so (i) holds. O

Corollary 5.6 A semigroup S is a left seminormal band of left Archimedean

semigroups if and only if for all a,b,c € S, ac Ly abe.

Proof.  Let S be a left seminormal band of left Archimedean semigroups
and let £ be a corresponding band congruence. Assume a,b,c € S. Since
S/€ is a left seminormal band, then abcabcac. Assume that A is a &-class
of elements abc and abcac. Since A is a left Archimedean semigroup, then

(abe)™ € Sabcac C Sac, so ac L5 abe.

Conversely, let ac LN abe, for all a,b,c € S. Assume z,y,a € S. Then
l
za’y = (za)(ay) — (wa)(yz)(ay) = (vay)®,

zay — (za)(aywa®)y = (va*y)?,

whence za’y LN zay and xay LN zaly, i.e. zay—=za?y. Thus, based
on Theorem 5.11, S is a band B of left Archimedean semigroups. Since B

is a homomorphic image of .S, then ik LN ijk in B for all 4,5,k € B, i.e.
ijk € Bik, whence 15k = ijkik. Therefore, B is a left seminormal band. O

Corollary 5.7 A semigroup S is a normal band of t-Archimedean semi-

groups if and only if for all a,b,c € S, ac s abe.

Proof. This follows from Corollary 5.6, Theorem 5.12 and the fact that
t-Archimedean semigroups are band indecomposable. O
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Theorem 5.13 The following conditions on a semigroup S are equivalent:

(i) S is a band of power-joined semigroups;
(ii) (Va,b € S) ab-L-a%b-L-ab?;
(iii) (Va,b € S)(Ym,n € Z*) ab-L-a™b".

Proof.  (i)=-(ii) Let S be a band of power-joined semigroups and let & be
a corresponding band congruence. Assume a,b € S and let A be a &-class of
the element ab. Then ab, a®b, ab®> € A, whence we have that (ii) holds.

(ii)=-(iii) Let (ii) hold. Assume a,b€ S. From (ii) we have that ab-2-a?b
p

L2622, ie. ab-2-a?b?, because is an equivalence on S. Assume
ab-L-a™b" for m,n € Z*, m,n > 2. Then from (ii) we have that

ab-L-a™p" = (a0 1oL (™ )b? = o =
— a(am—lbn-l—l)iaZ(am—lbn—i-l) — am—&-lbn—kl’

i.e. ab-2-a™*t1p"*1, Thus, by induction we have that (iii) holds.

(iii)=-(i) It is clear that -2~ is an equivalence relation on S. Let a—2-b,
a,b € S and assume x € S. Then a™ = b" for some m,n € Z*, and from
(iii) we have that

ax L amy = b”:nﬁba:, za-L g™ = 2" P gp,
Thus, -2~ is a congruence on S. It is evident that a—2-a?, for every a € S,
so -2~ is a band conguence on S. Also, it is clear that every —£--class is a
power-joined semigroup. O

Corollary 5.8 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of power-joined semigroups;
(ii) (Va,b € S) ab-L-a?b-L-ab®L-ba;
(iii) (Va,b € S)(Ym,n € Z*) ba-L-a™b".

Exercises

1. A semigroup S is a semilattice of Archimedean semigroups if and only if the
following relation p on S:

apb < (Va,y € S)(3m,n € Z") (way)™ € SxbyS, (xby)" € Sways,

is a semilattice congruence.
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2. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of Archimedean semigroups;
— is transitive;

)
(iii) (Va,b,c € S)
(iv) (Va,be S) a—b = a2—b
V) (Va bES)a| b = a®> — b
(vi) v SaS is an ideal of S, for all a € S;

in every homomorphic image with a zero of S the set of all nilpotent elements
is an ideal.

3. The following conditions on a semigroup S are equivalent:

¢ S is a semilattice of nil-extensions of groups;
(ii) T(H) is a semilattice congruence;

i) T(H) = o1 = R(H);

iv) (Va,b e S) (ab,ba?) € T(H).

4. Prove that the following conditions on a semigroup S are equivalent:

(i) T(J) is a semilattice congruence;

(ii T;J =01 =R(J);
T = 2,

1ii —2

Eiv Va,b € S) a—b = (a®,b) € T(J);

VabcES a,c) € T(T);
Va,b,c €S)a—c & b—c = (ab,c) e T(J);

(vii) S is a semilattice of nil-extensions of simple semigroups.

5. Ao S is homomorphically closed.

6. Ao S is not subsemigroup closed.

7. Ao S is finite-direct product closed.

8. Ao S is not infinite-direct product closed.
9

. A semigroup S is a rectangular band of power-joined semigroups if and only if
(Va,b,c € S)(3m,n € ZT)( (abe)™ = (ac)™ ).
10. A semigroup S is a left zero band of power-joined semigroups if and only if

(Va,b € S)(3m,n € ZT)( (ab)™ = a™ ).
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5.2 Semilattices of Hereditary Archimedean
Semigroups

In this section we investigate semigroups whose any subsemigroup is a
semilattice of Archimedean semigroups.

Theorem 5.14 Any subsemigroup of a semigroup S is a semilattice of Arc-
himedean semigroups if and only if

(Ya,be S)(3n € Z%) (ab)™ € (a,b) a® (a,b) .
Proof. 1Ifa,be S and T = (a,b), then from Theorem 5.1 it follows that
(ab)™ € Ta®T = (a,b) a® (a,b),

for some m € Z+.

Conversely, if T' is a subsemigroup of S and a,b € T, then there exists
m € ZT such that

(ab)™ € (a,b) a* (a,b) C Ta’T,
so based on Theorem 5.1, T' is a semilattice of Archimedean semigroups. O

The main result of this section is the following theorem which character-
izes the semilattices of hereditary Archimedean semigroups.

Theorem 5.15 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of hereditary Archimedean semigroups;
(i) (Va,b€ S) a — b = a® 1 b;

(iii) (Va,b,ceS)a—c&b—c = abtc;

(iv) (Va,b,ce S)a—b&b—c = atec
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Proof.  (i)=(ii) Let S be a semilattice Y of hereditary Archimedean semi-
groups Sy, @ € Y. Assume a,b € S such that a — b. Then b, a?b € S,,, for
some « € Y, so based on the hypothesis we obtain that

b" € (b,a’b) a®b (b,a’b) C (a*b)a® (a®,b).

Thus a? 1 b, so (ii) holds.

(ii)=-(iii) Assume a,b,c € S such that a — ¢ & b — ¢. Then based on
Theorem 4.5 ab — c. Now, from (ii) it follows (ab)? 1 ¢, whence ab 1 c.

(iii)=(iv) Based on (iii) and Theorem 4.5, for n = 1, — is transitive.
Assume a,b,c € S such that a — b and b — ¢. Then a — ¢, so a? 1 ¢,
by (iii), whence a 1 c.

(iv)=(i) Based on (iv), — is transitive, so according to Theorem 4.5,
for n =1, S is a semilattice Y of Archimedean semigroups S,, a € Y.

Assume o € Y and a,b € S,. Then a — b and b — b, whence a 1 b,
by (iv). Therefore, S, is hereditary Archimedean. Hence, (i) holds. a

The next theorem gives a characterization of semigroups which are chains
of hereditary Archimedean semigroups.

Theorem 5.16 A semigroup S is a chain of hereditary Archimedean semi-
groups if and only if
abta or abthb.

foralla,be S.

Proof.  Let S be a chain Y of hereditary Archimedean semigroups S, o €
Y. If a € 54, b € Sp, for some o,3 € Y, then a,ab € S, or b,ab € Sg,
whence
a" € {(a,ab) ab(a,ab) or b" € (b,ab)ab(b,ab)

for some n € ZT.

Conversely, based on the hypothesis and Theorem 5.6, S is a chain Y of
Archimedean semigroups S,,a € Y. If @ € Y and a,b € S,, then then there
exists n € ZT such that b" € S,aS,, and based on Theorem 5.15, a® 1 b*,

whence a T b. Thus, S, is hereditary Archimedean. Hence, S is a chain of
hereditary Archimedean semigroups. O

We proceed on to study the semilattices of hereditary left Archimedean
semigroups.
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Theorem 5.17 A semigroup S is a semilattice of hereditary left Archime-
dean semigroups if and only if for all a,b € S,

a—b = afb

Proof. Let S be a semilattice Y of hereditary left Archimedean semigroups
Sa; @ € Y. Assume a,b € S such that a — b. Since a € S,, b € S, for
some a, 8 € Y, then we have that 8 < «, so b,ba € Sg. Now ba 1; b, whence
a 1 b, which proves the direct part of the theorem.

Conversely, based on the hypothesis and Theorem 5.8, S is a semilattice
Y of the left Archimedean semigroups S,, @ € Y. Assume o € Y and
a,b € Sy. Then a — b, whence a 1; b, based on the hypothesis. Therefore,
any Sy, is hereditary left Archimedean, so S is a semilattice of hereditary left
Archimedean semigroups. O

Corollary 5.9 A semigroup S is a semilattice of hereditary t-Archimedean
semigroups if and only if for all a,b € S,

a—b = af:b.

Theorem 5.18 The folowing conditions on a semigroup S are equivalent:

(i) S is hereditary Archimedean and w-reqular;

)
(ii) S is hereditary Archimedean and has a primitive idempotent;
(iii) S is a nil-extension of a periodic completely simple semigroup;
)

(iv) (Va,b e S)(3n € ZT) a"™ = (a"b"a™)".
Proof.  (i)=-(ii) First we prove that
(Va € S)(Ve € E(S))(3n € Z1) e = (eae)™. (1)

Indeed, for a € S, e € E(S5), ea 1 e, by (i), whence e = (ea)” or e = (ea)"e,
for some n € Z*. However, in both of cases it follows that e = (ea)"e =
(eae)™. Thus, (1) holds.

Further, assume a € S. Let m € ZT such that a™ € Reg(S) and let =
be an inverse of ™. Then a™z,za™ € E(S), so from (1) we obtain that

amzr = (a"x-a-amx)" = (¢ a)",
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for some n € Z™, whence

a™ = qgMra™ = (a m+1 ) — ( m+1 )nflaerl:Uam —
= (a"™Hz)" laagmza™ = (amHx)" " lamt =
(a +1 )n 2 m+1 m+1 _ (am+1x)n—2aamxama —
(am+1 ) aa a _ (am+1 )n—2am+2 - .=
_ ( m+1 ) )gmt(n=1) —
= amHlggmtn— 1—a,a ra™a" "t =
= aama"_1 = g™,

Thus, S is periodic, and by Theorem 3.16, S has a primitive idempotent.

(ii)=(iii) Based on Theorem 3.16, S is a nil-extension of a completely
simple semigroup K. But, K is hereditary Archimedean and regular, so it
is periodic, based on the proof of (i)=-(ii).

(iii)=(iv) Assume a,b € S. Then a* = e and b" = f, for some e, f €
E(S), k € Z*". Further, efe € eSe = G,, by Lemma 3.15, whence (efe)™ =
e, for some m € Z*. Now, for n = km we obtain that a" = (a"b"a™)".

(iv)=-(i) This follows immediately. a

Theorem 5.19 The following conditions on a semigroup S are equivalent:

(i) S is w-regular and a semilattice of hereditary Archimedean semigroups;

(ii) S is a semilattice of nil-extensions of periodic completely simple semi-
groups;

(iii) (Va,b€ S)(In € ZT) (ab)"

(iv) (Va,b € S)(In € Z1) (ab)”

I
—~
—

s £
>~ =
N— 3

3 —~
—
S o
SIS
=

3 3
—_~
e 2
S o
N—

3 3
N—

3 3

Proof.  (i)=-(ii) This follows immediately from Theorem 5.18.
(ii)=-(iii) and (ii)=(iv) This follows from Theorem 5.18.
(iii)=(i) and (iv)=-(i) This follows immediately. a
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5.3 Semilattices of Weakly Left Archimedean
Semigroups

Based on the well-known results of A. H. Clifford, from 1954, any band of
left Archimedean semigroups is a semilattice of matrices (rectangular bands)
of left Archimedean semigroups (see Corollary 3.7). The converse of this
assertion does not hold, i.e. the class of semilattices of matrices of left Archi-
medean semigroups is larger than the class of bands of left Archimedean
semigroups. In this section we characterize the semilattices of matrices of
left Archimedean semigroups, and especially matrices of left Archimedean
semigroups.

Recall that a semigroup S is called left Archimedean if a LN b, for all
a,b € S. Here we introduce a more general notion: a semigroup S will be

called weakly left Archimedean if ab LN b, for all a,b € S. By WLA we
denote the class of all weakly left Archimedean semigroups. Weakly right
Archimedean semigroups are defined dually. A semigroup S is weakly t-
Archimedean (or weakly two-sided Archimedean) if it is both weakly left and
weakly right Archimedean, i.e. if for all a,b € S there exists n € Z™ such
that o™ € abSha.

First we prove the following important lemma:

Lemma 5.3 Let £ be a band congruence on a semigroup S. Then the fol-
lowing conditions are equivalent:

(i) €S+
(iii) any &-class is a left Archimedean semigroup.

Proof.  (i)=>(iii) Let A be a ¢-class of S and let a,b € A. Then a?¢b, whence
FLALIN b, that is b = za?, for some n € Z*, x € S'. Seeing that £ is a band
congruence, zazra? = b"¢b, so xa € A and b" = (wa)a € Aa. Therefore, A
is left Archimedean.

(iii)=(ii) Assume an arbitrary pair (a,b) € £&. Let ¢ € Aq(a), that is
a - ¢. Then ¢* = za, for some n € ZT and x € S!, and za,xb € A, where
Aisa&-class of S. Since A is left Archimedean, then there exists m € Z* and
y € S such that (va)™ = yxb. Therefore, ™ = (za)™ = yxb, s0 b Le
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and ¢ € Aq(b). Thus, Ai(a) € Aq(b). Similarly we prove Aj(b) C Aj(a).
Hence, Aj(a) = A1(b), so (a,b) € A\; This proves (ii).
(ii)=(i) This is obvious. O

Now, we give the following characterization of semilattices of weakly left
Archimedean semigroups:

Theorem 5.20 A semigroup S is a semilattice of weakly left Archimedean
semigroups if and only if

a—b = ab-sb,
for all a,b € S.

Proof. Let S be a semillatice Y of weakly left Archimedean semigroups
S, a €Y. Assume a,b € § such that a — b. If a € S,, b € S3, for some
a,B €Y, then 8 < a, whence b,ba € Sg. Now, b" € Sgbab C Sab, for some

n € Z*, since Sp is weakly left Archimedean. Therefore, ab b

Conversely, let for all a,b € S, a — b implies ab s b Assume

a,b € S. Since a —> ab, then based on the hypothesis, a?b LN ab, i.e.
(ab)® € Sa?b C Sa?S, for some n € ZT. Now, based on Theorem 5.1, S
is a semilattice Y of Archimedean semigroups S,, « € Y. Further, assume

a €Y, abe S,. Then a — b, so based on the hypothesis, ab LI

in S, and Lemma 4.14 (c¢), ab L bin Sa. Therefore, S, is weakly left
Archimedean. O

Corollary 5.10 A semigroup S is a semilattice of weakly t-Archimedean
semigroups if and only if

a—b = ab—5b & ba -5 b,

for all a,b € S.

The components of the semilattice decomposition treated in Theorem
5.20 will be characterized in the next theorem. Namely, we will give a
description of weakly left Archimedean semigroups.
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Theorem 5.21 The following conditions on a semigroup S are equivalent:

(i) S is weakly left Archimedean;

(iii S is a Tight zero band of left Archimedean semigroups;

)
(i1) S is a matriz of left Archimedean semigroups;
)
) — is a symmetric relation on S.

(iv

Proof.  (i)=(iv) Let a,b € S such that a N b, i.e. V" = za, for some
neZ", reS. Based on (i), a™ = yra = yb", for some m € Z*, y € S,

whence b — a.
(iv)=-(i) This follows from the proof for (vii)=(v) of Theorem 4.10.

(iv)=-(iii) Let a,b,c € S such that a 5 band b -5 c. From (iv),
¢ -5 b, s0 b" = wa = ye, for some n € Z+, x,y € S. Since (iv)<(3i),

then there exists m € Z*, 2z € S such that ¢™ = z(yc) = 2b" = zza € Sa.

! I . e l !
Therefore, a — ¢, so — is transitive, i.e. —=—> *°. Now, based on

Theorem 4.10, Ay = A is a right zero band congruence. According to Lemma
5.3, Ai-classes are left Archimedean semigroups.

(iii)=-(ii) This follows immediately.

(ii)=(i) Let S be a matrix B of left Archimedean semigroups S;, i € B.
Then for a,b € S, a,aba € S;, for some i € B, whence a" € S;aba C Sba, for
some n € Z™. O

Recall that, the relation s ona semigroup S is defined by BRI
N —. Now, from Theorem 5.21 and its dual we obtain the following
corollary:

Corollary 5.11 The following conditions on a semigroup S are equivalent:

(i) S is weakly t-Archimedean;

(iii

)
(i1) S is a matriz of t-Archimedean semigroups;
) Ly isa symmetric relation on S;

)

(iv s and s are symmetric relations on S.

By means of the following theorem we characterize the matrices of nil-
extensions of left simple semigroups.
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Theorem 5.22 The following conditions on a semigroup S are equivalent:

(i
(i

(iii) S is a matriz of nil-extensions of left simple semigroups;

S is weakly left Archimedean and left w-regular;

S is weakly left Archimedean and intra-mw-regular;

S is a right zero band of nil-extensions of left simple semigroups;
(Va,b € S)(In € ZT) a™ € S(ba)";
(Va,b € S)(In € Z1) a™ € Sh"a.

(iv
(v

(vi

~— N N

Proof.  (i)=-(iv) This follows from Theorem 5.21 and Theorem 3.14, since
the components of any band decomposition of a left m-regular semigroup are
also left 7w-regular.

(iv)=-(iii) This follows immediately.
(iii)=-(ii) Based on follows from Theorem 5.21, since a nil-extension of a
left simple semigroup is intra-w-regular.

(ii)=-(i) By Theorem 5.21, S is a right zero band B of left Archimedean
semigroups S;, i € B. Let a € Intra(S), i.e. a = xa?y, for some z,y € S.
Then a = (za)*ay”, for each k € Z*. Further, a € S;, for some i € B,
and clearly, y € S;, so y* = za?, for some k € Zt, z € S, since S; is left
Archimedean. Therefore, a = (za)fay® = (za)*faza®, whence a € LReg(S),

so based on Theorem 2.4, S is left w-regular.

(iv)=-(vi) Let S be a right zero band B of semigroups S;, i € B, and for
each ¢ € B, let S; be a nil-extension of a left simple semigroup K;. Since
(v)<(i), then S is a nil-extension of a left completely simple semigroup K.
Clearly, K = LReg(S) = U;cg Ki. Now, for a,b € S, a € S;, b € S},
for some i,j € B, and a" € K;, b" € Kj, for some n € Z*, whence
b"a € S;NK = K;, soa”™ € K;b"a C Sb"a.

(vi)=(v) Assume a,b € S. By (vii), there exists n € Z* such that
a™ € S(ab)"a C S(ba)™.

(v)=-(i) This follows immediately. O

Let T be a subsemigroup of a semigroup S. A mapping ¢ of S onto T is
a right retraction of S onto T if ap = a, for each a € T, and (ab)p = a(by),
for all a,b € S. Left retraction is defined dually. A mapping ¢ of S onto T'
is a retraction of S onto T if it is a homomorphism and ay = a, for each
a€T. If T is an ideal of S, then ¢ is a retraction of S onto 7' if and only if
it is both a left and right retraction of S onto T. An ideal extension S of a
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semigroup T is a (left, right) retractive extension of T' if there exists a (left,
right) retraction of S onto T.

By means of the next theorem we prove that such semigroups are exactly
right retractive nil-extensions of completely simple semigroups.

Theorem 5.23 The following conditions on a semigroup S are equivalent:

(i) S is a right retractive nil-extension of a completely simple semigroup;
(ii) S is weakly left Archimedean and has an idempotent;
(iii) S is a matriz of nil-extensions of left groups;

(v) (Va,b€ S)(In € ZT) a™ € a™S(ba)";

)
)
(iv) S is a right zero band of nil-extensions of left groups;
)
(vi) (Va,b e S)(In € Z1) a™ € a" St a.

Proof.  (iv)=-(iii) and (iii)=-(ii) This follows immediately.

(ii)=(i) Based on Theorem 3.14, S is a nil-extension of a simple semi-
group K, so it is intra m-regular and based on Theorem 2.4, S is left
m-regular, it is a right zero band B of semigroups 5;, ¢ € B, and for
each i € B, S5; is a nil-extension of a left simple semigroup K;. Further,
K = Intra(S) = LReg(S) = U, Ki, based on Theorem 2.4, since the com-
ponents of any band decomposition of a left m-regular semigroup are also
left m-regular. Thus, K is left completely simple, so it is completely simple,
since it has an idempotent. Thus, for each ¢ € B, K; is a left group, so based
on Theorem 3.7, it has a right identity e;. Define a mapping ¢ of S onto K
by:

ap = ae; ifaes;, i €B.

Clearly, ap = a, for each a € K. Further, for a,b € S, a € S;, b € S},
for some 7,5 € B, and ab € S;, whence (ab)p = (ab)e; = a(be;) = a(byp).
Therefore, ¢ is a right retraction of S onto K.

(i)=(vi) Let S be a right retractive nil-extension of a completely simple
semigroup K, and let K be a right zero band B of left groups K;, ¢ € B.
Let a,b € S. Then a",b" € K, for some n € Z*, and o™ € K;, V" € Kj,
for some i,j € B. If ap € K, for some | € B, since a"*! € Kj, then
a"tt = a"tly = a"(ap) € K;K; C K, whence | = i. Thus, ap € K;, so
b"a = (b"a)p = b"(ap) € K;K; C K;. Therefore, a”,b"a € K;, so based on
Theorem 3.7, a™ € a"K;b"a C a™Sb"a.

(vi)=(v) For a,b € S there exists n € ZT such that a" € a™S(ab)"a =
a™Sa(ba)™ C a™S(ba)".

(v)=(iv) This follows from Theorem 5.22. |
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Corollary 5.12 The following conditions on a semigroup S are equivalent:

(i) S is a retractive nil-extension of a completely simple semigroup;
(i) S is weakly t-Archimedean and intra-m-regular;
(iii) S is weakly t-Archimedean and has an idempotent;
(iv) S is a matriz of w-groups;
(v) (Va,be€ S)(In € ZT) a™ € (ab)™S(ba)".

A semigroup S is hereditary weakly left Archimedean if
(Ya,b e S)(Fi e Z7) b’ € (a,b)ab.

The next theorem gives an explanation why the notion ”hereditary weak-
ly left Archimedean” is used.

Theorem 5.24 The following conditions on a semigroup S are equivalent:

(i) S is hereditary weakly left Archimedean;
(ii) any subsemigroup of S is weakly left Archimedean;
(iii) 1y s a symmetric relation on S.

Proof.  (i)=(ii) Let T be a subsemigroup of S. For a,b € T" we have that
b’ € {a,b)ab C Tab, for some i € Z*. Hence, T is a weakly left Archimedean
semigroup and therefore S is a hereditary weakly left Archimedean semi-
group.

(ii)=(i) Assume a,b € S, then (ba,b) is a weakly left Archimedean semi-
group, whence

b' € (ba,byba - b C {a, b)ab,
for some i € Z™T.

(i)=(iii) Let a,b € S such that a 1; b, i.e. b™ € (a,b)a, for some n € Z*.
Then b" = zxa, for some z € (a,b). For z and a there exists m € ZT,
y € (x,a) C (a,b) such that a™ = yax = yb", i.e. b1 a.

(iii)=>(i) Let a,b € S, then b 1; ab, whence ab 1; b, i.e. b* € (ab,b)ab C
{a,b)ab, for some i € Z™. O

T. Tamura [15] proved that in the general case semilattices of Archi-
medean semigroups are not subsemigroup closed. Here, we prove that semi-
lattices of hereditary weakly Archimedean semigroups are subsemigroup
closed. Based on the following theorem we generalize some results obtained
by S. Bogdanovi¢, M. Ciri¢ and M. Mitrovi¢ [1].
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Theorem 5.25 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of hereditary weakly left Archimedean semigroups;
(ii) (Va,b€ S) a — b= (Ji € Z*) b’ € (a,b)ab;
(iii) every subsemigroup of S is a semilattice of hereditary weakly left Archi-
medean semigroups.

Proof.  (i)=-(ii) Let S be a semilattice Y of hereditary weakly left Archime-
dean semigroups S,, a € Y. Assume a,b € S such that a — b. If a € S,,
b € Sg for some o, 3 € Y, then 8 < o, whence b, ba € Sg. Now

b" € (ba,b)bab C (a,b)ab,

for some n € ZT. Hence, (ii) holds.

(ii)=-(i) Assume a,b € S. Since a — ab, then based on the hypothesis
a-ab 1y ab, i.e. (ab)™ € (a,ab)a®b, for some n € Z*. Now based on Theorem
5.1 § is a semilattice Y of Archimedean semigroups S,, a € Y. Further,
assume o € Y, a,b € S,. Then a — b, so according to the hypothesis
b" € {a,b)ab, for some n € Z*. Therefore, S,, o € Y is an hereditary
weakly left Archimedean semigroup.

(ii)=-(iii) Let T be a subsemigroup of S and a,b € T such that a — b in
T, then a — b in S and based on (ii), b" € {a,b)ab C Tab, for some n € Z*.
Thus, T is a semilattice of hereditary weakly left Archimedean semigroups.

(iii)=-(i) This implication follows immediately. |

Let us introduce the following notations for some classes of semigroups:

Notation Class of semigroups
B bands

RB (M) | rectangular bands (matriz)
) semilattices

and by A o Xy we denote the Mal’cev product (see page 189.) of classes &)
and Xy of the semigroups. Let

LA ML = (LAo MM) oM, ke Z".
Now we can state the following:

Problem 5.1 Describe the structure of semigroups from the following class-
es

LA o MFFL, <£A o Mkﬂ) o B, (L‘A o Mkfﬂ) oS,
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The previous problem can be formulated in the same way if instead the
class LA we take the class of all power-joined semigroups, the class of all
A-simple semigroups or the class of all \,,-simple semigroups.

Exercises

1. The following conditions on a semigroup .S are equivalent:
(a) S is a matrix of m-groups;
(b) S is m-regular and S satisfies the identities a® = (a%ba®); (ab)? = (a®b°)?;
(c¢) Sis asubdirect product of a completely simple semigroup and a nil-semigroup.
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5.4 Semilattices of Left Completely Archimedean
Semigroups

In this section we introduce the notion of a left completely Archime-
dean semigroup, which is a generalization of the notion of a completely
Archimedean semigroup. We give certain characterizations of semilattices of
left completely Archimedean semigroups and some results concerning semi-
lattices of completely Archimedean semigroups.

A semigroup S is left completely Archimedean if it is Archimedean and
left w-regular. Right completely Archimedean semigroups are defined dually.
Clearly, a semigroup is completely Archimedean if and only if it is both left
and right completely Archimedean.

Certain characterizations of left completely Archimedean semigroups will
be given in the following theorem:

Theorem 5.26 The following conditions on a semigroup S are equivalent:

(i) S is left completely Archimedean;
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(ii) S is a nil-extension of a left completely simple semigroup;
(iii) S is Archimedean and has a minimal left ideal;
(iv) (Va,b e S)(3n € Z1) a™ € Sba™.

Proof.  (i)=-(ii) Based on Theorem 3.14, S is a nil-extension of a simple
semigroup K. Clearly, K is left m-regular, so based on Theorem 2.18, K is
left completely simple.

(ii)=(iv) Let S be a nil-extension of a left completely simple semigroup
K. Assume a,b € S. Then o™, b™ € K, for some n,m € Z*, so based on
Theorem 2.18, a™ € Kb™a™ C Sba™.

(iv)=-(i) This follows immediately.

(ii)=(ili) Let S be a nil-extension of a left completely simple semi-
group K. According to Theorem 2.18, K has a minimal left ideal L. Clearly,
L? = L, whence SL = SLL C KL C L. Therefore, L is a left ideal of 9,
and clearly, a minimal left ideal of S.

(iii)=-(ii) It is known that the union of all minimal left ideals of S, if
it is non-empty, is the kernel of S, so based on (iii), S has a kernel K,
which is the union of all minimal left ideals of .S, and hence, a union of left
simple semigroups, so it is left regular. Moreover, K is simple, so it is left
completely simple. Finally, since S is Archimedean, it is a nil-extension of
K. |

Theorem 5.27 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of left completely Archimedean semigroups;
(ii) S is left w-regular and each L-class of S containing a left reqular ele-
ment 1s a subsemigroup;
(iii) S is left m-regqular and each J-class of S containing a left regular ele-
ment is a subsemigroup;
(iv) S is left w-regular and a semilattice of Archimedean semigroups;
(v) (Va,b € S)(In € Z7) (ab)™ € Sa(ab)".

Proof.  (i)=-(ii) Let S be a semilattice Y of left completely Archimedean
semigroups S,, a € Y, and for each a € Y, let S, be a nil-extension of a
left completely simple semigroup K, and let K, be a right zero band B,
of left simple semigroups K;, i € B,. Clearly, S is left m-regular. As in
the proof for (i)=-(ii) of Theorem 5.5 we obtain that for each L-class L of
S containing a left regular element, there exists a € Y, i € B, such that
L = Kj, so it is a subsemigroup of S.
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(ii)=>(v) Assume a,b € S. Then (ba)" = z(ba)*"*, for somen € Z*, z€ S,
whence (ba)"€Sa(ba)™, and clearly, a(ba)™€S(ba)", whence (ba)"La(ba)™,
i.e., a(ba)™ € L, where L is the L-class of S containing (ba)”. Based on

the hypothesis, L is a subsemigroup of S, whence (ba)"a(ba)” € L, i.e.,
(ba)"L(ba)"a(ba)™. Therefore,

(ab)"™ = a(ba)"b € aS* (ba)"a(ba)™b C Sa(ab)" .

(v)=(iv) For every a,b € S there exists n € ZT such that (ab)" €
Sa(ab)™ C Sa’S and based on Theorem 5.1 S is a semilattice of Archimedean
semigroups. It is clear that S is left m-regular.

(iv)=-(i) This follows from Theorem 5.26, since in every semilattice de-
composition of a left m-regular semigroup, each of its components is also left
m-regular.

(iii)<(iv) This follows from Theorem 2.4 and Theorem 5.5. m|
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5.5 Bands of Left Archimedean Semigroups

In this section we give some new results concerning decompositions into
a band of left Archimedean semigroups, in general and some special cases.
Based on Theorem 5.29 we give some new characterizations of these decom-
positions in general. Then we study the bands of nil-extensions of left simple
semigroups (Theorem 5.30) and bands of nil-extensions of left groups (The-
orem 5.31). We investigate the decompositions which correspond to various
varieties of bands. All such decompositions will be characterized in Theo-
rems 5.32 and 5.34. Some of the results obtained in this section generalize
many results from the above mentioned papers, and some of them simplify
some known results.

In the following table we outline the notations for some classes of semi-
groups and some varieties of bands which will be used later.
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Notation | Class of semigroups | Notation | Class of semigroups
LS left simple ™R m-reqular
LG left groups IR intra w-reqular
g groups LR left w-reqular
N nil-semigroups RaR right m-reqular
A A-simple CtR completely w-regular

Notation | Variety of bands | Notation | Variety of bands

@ one-element bands LN left normal bands
LZ left zero bands RN right normal bands
RZ right zero bands

For two classes X7 and Xs of semigroups, X; o Xy will denote the Mal’cev
product of X and Xs, i.e. the class of all semigroups S on which there exists
a congruence o such that S/p belongs to X5 and each p-class of S which is
a subsemigroup of S belongs to &A7. If A5 is a subclass of B, then X o A is
the class of all semigroups having a band decomposition whose related factor
band belongs to X> and the components belong to X;. Such decompositions
will be called Xy o Xs-decompositions. On the other hand, if X5 is a subclass
of N, then X} o X5 is the class of all semigroups that are ideal extensions of
semigroups from A& by semigroups from Xb.

Here we describe some other properties of relations —l>, —L X\ and A

Lemma 5.4 If a semigroup S satisfies

(Va,b € S) ab - ab?, (1)
then for any k € Z™, it satisfies

(Va,b € S) ab - ab”. (2)

Proof. Suppose that S satisfies (2) for some k € Z*. Assume a,b € S.
Based on (1) it follows that ab® = abF~1b Ly abb1p2 = @bkl that is
(abP1)m = zabF, for some m € ZT, x € S'. Based on the hypothe-
sis, wab BN rab®, that is (zab®)" = yzab, for some n € Z*, y € S!, so
(abF+1)ymn = yxab. Hence, S satisfies (2) for k 4+ 1. Now, by induction we
have that S satisfies (2) for any k € Z+. O
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Lemma 5.5 If a semigroup S satisfies
(Va,b € S) b* -1 ab, (3)

then it also satisfies
(Va,b € S) a®b - ab. (4)

Proof.  Assume a,b € S. Based on (3) we have a? L5 ba, that is (ba)™ =
za?, for some n € ZT, x € S', whence (ab)"*! = a(ba)"b = awa?b, which

. !
gives a’b — ab. O

Theorem 5.28 The following conditions on a semigroup S are equivalent:

(i) (Va,b€ S) al,b = a®> T b;
(i) (Va,be€ S)(Vk € Z) a* = ab;
(iii) (Va,b € S) a®> - ab;
(iv) VaS is a right ideal of S, for every a € S;
(v) V'R is a right ideal of S, for every right ideal R of S.

Proof.  (i)=-(iii) Since ab € aS for every a,b € S, we then have that (ab)" €
a?S. Thus a? - ab.

(iii)=(ii) By induction.

(i))=-(i) Let b = au for some u € S. Then there exists n € Z* such that
b* = (au)™ € a®S. Thus a® — b.

(ii)=(iv) Let = € vaS and let b € S. Then z* € aS for some k € Z*.
Since (xzb)" € z¥S C aSS C aS, for some n € Z* we then have that
xb € vaS. Thus Va¥S is a right ideal of S.

(iv)=-(iii) Let a,b € S. Then a € Va?S. Since Va?S is a right ideal of
S, then ab € Va?S, and therefore (iii) holds.

(v)=(iv) Since aS is a right ideal of S, from (v) we then have that vaS
is also a right ideal of S.

(ii)=(v) Let R be a right ideal of S. Let a € VR, b € S. Then a* € R
for some k € ZT. Now, (ab)" € a*S C RS C R, for some n € ZT and thus
ab € \/ﬁ, ie. VRis a right ideal of S. O

Lemma 5.6 The following conditions on a semigroup S are equivalent:

. L. .. .
(i) — is a transitive relation on S;
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)
)
) (Va € S) a\ia?;
) (Va,bGS)aAb = a2—l>b;
(vi) (Va,be S)(Vk € ZT) bk -1 ab;
) (Va,be S)b? - ab;
) any Ai-class of S is a subsemigroup;
)
)

v Sa is a left ideal of S, for any a € S;

(x) VL is a left ideal of S, for any left ideal L of S.

Proof. Note that the equivalence of conditions (i), (iv), (v) and (ix) is a
particular case of Theorem 4.8, for n = 1, and the equivalence of (v), (vi),
(vii), (ix) and (x) is the dual of Theorem 5.28. Therefore, it remains for us to
prove that the conditions (ii), (iii) and (viii) are equivalent to the remaining
ones.

We will establish the following sequences of implications: (i)=-(iii)=(iv)
and (vii)=> (i) = (viil) = (iv).

(i)=-(iii). This follows from Lemma 4.6.

(iii)=(iv). This is obvious.

(vii)=-(ii). Based on the equivalence of conditions (vii) and (i) we have

that — is a quasi-order. Assume that a LN b, for a,b € S, and assume
an arbitrary ¢ € S. Then b” = za, for some n € ZT, z € S', and based

on (vii) and Lemma 5.5 we have that b**c N be, for any k € ZT. Assume
k € Z* such that 2k > n. Then (bc)™ = yb**c = yb** "xac, for some

m € Z*, y € S*, whence ac 5 be. Hence, s right compatible.

(ii)=(viii). Clearly, A\; is a right congruence on S. Let A be a Aj-class
of S and let a,b € A. Then b\ia, whence bA;b?A1ab, since \; is a right
congruence, and hence ab € A.

(viii)=-(iv). This is obvious. |

Lemma 5.7 The following conditions on a semigroup S are equivalent:
(i) (Ya,b € S) ab® - ab;

(ii) (Ya,b,ce S)alic N bljc = ab -5 c.
(iii) (Va,b€ S)a —b=>ba — b;



192CHAPTER 5. SEMILATTICES OF ARCHIMEDEAN SEMIGROUPS

(iv) LN satisfies the cm-property on S;
(v) for any left ideal L of S, V'L is an intersection of completely prime left
ideals of S.

Proof. (i)=(ii) Let ¢ = ua = vb for some u,v € S, whence ¢? = (vb).
Now, there exists i € Z™ such that

' = ((vbv)b)" € S(vbv)b? C Swb® = S(vb)b = S(ua)b C Sab.

Thus ab — .

(il)=(i) It is clear that ab|;ab, b|; ab, for all a,b € S, and based on (ii)
we have that (ab)b = ab? Ly ab.

(i)=(iv) Let a,b,c € S, a Ly cand b -5 ¢, Then ¢ = za = yb,
for some n € ZT, x,y € S, and based on (i), (yb)™ = zyb?, for some
m e Zt, z € S, whence

¢ = (yb)™ = zyb® = z(yb)b = zuab € Sab,

so ab - c.

(iv)=-(iii) Let a,b € S and a L4 b. Then b - b and a - b, whence
ba - b, by (iv).

(iii)=(i) Let a,b € S. Then b L ab, so by (iii), ab? L5 ab.

(iv)=-(v) Since (i)« (ii), then according to Lemma 5.6 we have that N

is transitive, that is BLINELIN % so based on Theorem 4.8, for each left ideal
L of S, VL is a completely semiprime left ideal of S, and based on Theorem
4.4, it is an intersection of completely prime left ideals of S.

(v)=(iv) Let a € S. Based on (iv), v.Sa is a completely semiprime left

. . L. o . l l
ideal of S, so according to Theorem 4.8, — is transitive, i.e. —=—> ®.

Now, based on Theorem 4.4, Ly satisfies the cm-property. O
Lemma 5.8 On a semigroup S the relation n defined by
1 l
anb < (Vx € S°) xa—uxb,

18 a congruence relation.
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Proof. 1t is evident that n is a reflexive and symmetric relation.

Now, assume a, b, ¢ € S such that anb and bnc, i.e. za——xb and zb—zc,
for every x € S'. Then, there exist i, j,p,q € Z1 such that

(za)' € Sxb, (xb)! € Sza, (xb)? € Szc, (xc)? € Sxb.
By this we have that
(za)® = uxb, (xb)! =wvza, (xb)? =wze, (xc)! = zab,
for some u, v, w, z € S and for every x € S'. Now, we obtain that
(za)? = ((ma)i)p = (uzb)? = ((ux)b)? = w(ux)c € Sxe,

and
(2)% = ((we)?)! = (:ab)) = ((22)b)! = v(z2)a € Swa.

Hence, za——zc, for every € S, i.e. anc. So, 1 is transitive. Thus, 7 is an
equivalence relation on S.

Furthermore, assume a,b,c € S such that anb, i.e. za—xb, for every
x € S'. Then, there exist i,j € ZT such that

(za)' € Sxb, (zb)! € Sza,
for every o € S'. Based on this, we have that
(z(ca))’ = ((zc)a)® € S(zc)b = Sx(cb),

and
(z(cb))? = ((zc)b)! € S(zc)a = Sz(ca).

Hence, z(ca)—x(cb), for every z € S', i.e. canch.

Also, we have that
(z(ac))™ = za(cza)’c = ra((cx)a)'c € za - S(cx)b-c € Sx(be),
and
(z(be))? ™ = ab(cab) c = 2b((cx)b)c € zb- S(cx)a - ¢ € Sz(ac).

Hence, z(ac)-t-x(bc), for every = € S, i.e. acnbe. Thus, 7 is a congruence
relation on S. O
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Now we prove the following lemma.

; b
Lemma 5.9 On any semigroup S, n = \].

Proof.  Assume an arbitrary pair (a,b) € n. If ¢ € Ai(a), that is ¢” = za,
for some x € S', n € Z*, then from anb we have that za—xb, so (za)™ €
Sxb, for some m € ZT, which yields ¢ € Sb, so ¢ € A1(b). Thus we proved
Ai(a) € Ay(b). Similarly we prove Aj(b) C Ai(a). Therefore, aA1b, which
means that n C Aj.

Let o be an arbitrary congruence relation on S contained in A;. Assume
an arbitrary pair (a,b) € o. Then for any z € S* we have that

(va,ab) € 0 € M C -,

whence it follows that (a,b) € n. Therefore, ¢ C 1, which was to be proved.
This completes the proof of the lemma. O

As we noted before, the first characterization of bands of left Archime-
dean semigroups was given by M. S. Putcha in [3], and this result we quote
in the next theorem as the equivalence of conditions (i) and (ii). Moreover,
we give several new characterizations of semigroups having such a decompo-
sition.

Theorem 5.29 The following conditions on a semigroup S are equivalent:

(i) Se LAoB;

(i) (Va € S)(Va,y € SY) zay—L-za’y;
(iii) n is a band congruence on S;
(iv) (Ya,b € S) a2b - ab & ab —+ ab?;
(v) (Ya,b € S) ab——ab?.

Proof. (i)« (ii). This is Theorem 5.11.
(ii)=(v) This is clear.

(v)=(ii) Clearly, b? LN ab, for all a,b € S, so based on Lemma 5.6, ——
is a right congruence. Assume a,b,c € S. Based on (v) and (iv) we have
ab—t—ab? and ab—a2b, and since — is a right congruence, then abe——ab?c.

Hence, (ii) holds.
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(iv)=(v) Assume a,b € S such that a — b, that is b = zay, for

some m € Z*, z,y € S'. Based on (iv) we have (za)?y SN zay, that is
(way)™ = z(za)?y = zzab™, for some n € Z*, z € S'. On the other hand,

according to Lemma 5.4, zzab LN zxab™, that is (zxabm)k = wuzazxb, for
some k € ZT, u € S', which gives b™"* = wzzab, that is ab NN Now,
according to Theorem 5.20, S is a semilattice Y of weakly left Archimedean
semigroups Sy, @ € Y.

Assume a,b € S Then ab Ly ab?in S, and ab, ab® € S,, for some a € Y,
so based on Lemma 4.14 (c), ab s ab? in S,. According to Theorem 5.21,
isa symmetric relation on S, whence ab? Ly ab.

(v)=(iv) This follows from Lemma 5.5.

(v)=(iii) This follows from Lemma 5.9.

(iii)=-(i) This follows from Lemma 5.3. O

As a consequence of the previous theorem we obtain the next corollary.

Corollary 5.134 semigroupS belongs to TAoB if and only if a*b—"—ab——ab?
for all a,b e S.

The concept of m-regularity, in its various forms, appeared first in ring
theory, as a natural generalization of the regularity. In semigroup theory this
concept attracts great attention both as a generalization of the regularity
and a generalization of finiteness and periodicity. On the other hand, there
are specific relations between the w-regularity and the Archimedeanness, as
was shown by M. S. Putcha in [2]. That motivates us to investigate £.A o B-
decompositions of w-regular semigroups.

We do it first for intra w-regular and left m-regular semigroups. It is
interesting to note that for left m-regular semigroups only one half of the
condition (v) of Theorem 5.29 is enough.

Theorem 5.30 The following conditions on a semigroup S are equivalent:

(i) Se LARN LA B;
(i) SeZrRN LA B;
(iii) S € (LSoN)oB;
(iv) S € L7R and ab? Ly ab, foralla,be S;
(v) (Va,be S)(3n € Z*1) (ab)"™ € S(ab®)".
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Proof.  (iii)=(i) and (i)=-(ii) This is trivial.

(ii)=(i) Since ZTRNLAo B CIrRNWLAoS = (ZrRNWLA)o S =
(LTRNWLA) oS = LTRNWLA o S, based on Theorems 5.20, 5.21 and
5.22, then (iii) implies (ii).

(i)=-(iii) As we all know, each component of a band decomposition of a
left m-regular semigroup is also left w-regular. Based on this and Theorem
3.14 we obtain (i).

(iii)=(v) Let S be a band I of semigroups S;, ¢ € I, and for each i € I,
let S; be a nil-extension of a left simple semigroup K;. Then for all a,b € S,
ab,ab® € S;, for some i € I, and (ab)", (ab®)" € K;, for some n € ZT, whence
(ab)™ € K;(ab®)™ C S(ab®)™.

(v)=>(iv) This is obvious.

(iv)=(i) Based on Theorem 5.1, S is a semilattice ¥ of Archimedean
semigroups S,, a € Y. It was proved in Theorem 5.26 that AN L7R =
(LSoRZ)o N, so for any a € Y, S, is a nil-extension of a semigroup K,
which is a right zero band I, of left simple semigroups K;, ¢ € I,.

Assume a € Y, i € I, and set S; = VK;. Further, let i,j € I, a €
Si, b € S;, and assume m € Z* such that b™ € K;. By (iv) and based on
Lemma 5.4, ab™ ! - abin S, so based on Lemma 4.14 (c), (ab)" = zab™+!,
for some n € Z*, x € SL. Assume k € Z* such that (ab)* € K,. Then

(ab)+" = (ab)* (ab)b™ € KoSukK: C Kok C K,

so ab € S;. Hence, for any o € Y, S, is a right zero band I, of semigroups
Si, i € I,, and for any i € I, S; is a nil-extension of a left simple semigroup
K;. Now, according to Theorem 5.21, for any o € Y, s a symmetric
relation on Sy, and as in the proof of (iv)=-(v) of Theorem 5.29 we obtain
that ab——ab?, for all a,b € S. Hence, by Theorem 5.29 we obtain (ii). O

For w-regular semigroups we have the following;:

Theorem 5.31 The following conditions on a semigroup S are equivalent:

(i) SeRTRNLAO B;
(i) SemRNLAOB;
(iii) SeCrRN LA B;
(iv) Se (LGoN)oB;
(v) S € R and ab® SN ab, for all a,b € S;
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(vi) (Va,b € S)(3n € ZT) (ab)™ € (ab)™S(ab?)™.

Proof.  (iv)=-(iii) and (vi)=-(v) This is clear.

(i) (iil) and (ii)«<>(ili) This can be proved in a similar way as (ii)=(i)
of Theorem 5.30, using Theorems 5.22 and 5.23.

(iii)=-(iv) This follows from the arguments similar to the ones used in
(i)=(iii) of Theorem 5.30.

(iv)=-(vi) This can be proved in a similar way as (iii)=(v) of Theorem
5.30, using Theorem 3.7.

(v)=(ii) Let a € Reg(9), a’ € V(a). Then a'a? Ly ¢/a, whence a €
LReg(5), so S is left m-regular, and based on Theorem 5.30, S € LAo B. O

Some other characterizations of semigroups from (£LGoN')oB one can ob-
tain by the results concerning their dual semigroups, given by L. N. Shevrin
in [5].

Corollary 5.14 The following conditions on a semigroup S are equivalent:

(i) Se(GoN)oB;

(i) SeZrTRNTAo0B;

(iii) S € rRNTAoB;

(iv) S € 7R and a®b —— ab & ab? L>ab, for all a,b e S.

Our next goal is to characterize the semigroups from LA o V, for an
arbitrary variety of bands V.

The lattice LVB of all varieties of bands was studied by P. A. Birjukov,
C. F. Fennemore, J. A. Gerhard, M. Petrich and others. Here we use the
characterization of LVB given by J. A. Gerhard and M. Petrich in [1]. Using
induction they defined three systems of words as follows:

Ga = 211, Hy = x4, Iy = zom 22,

G, = 2,Gp-1, Hy, = 2,Gp12nH, 1, I, = 2p,Gr12ndp—1,

(for n > 3), and they shown that the lattice LVB can be represented by
the graph given in Figure 1.

Let us give some additional explanations concerning the graph from Fig-
ure 1. Throughout this section, for a semigroup identity u = v, based
on [u = v] we will denote the variety of bands determined by this iden-
tity. In other words, this is a shortened notation for the semigroup variety
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[#2 = x, u = v]. For a word w, W denotes the dual of w, that is, the word
obtained from w by reversing the order of the letters in w. In the graph
from Figure 1 we have labelled only the nodes which represent varieties of
bands that will appear in our further investigations.

Figure 1.

The central point of this section is the following theorem:

Theorem 5.32 Let V be an arbitrary variety of bands. Then

( £z, if Velo,Lz];
RB, if Ve[RZ,RB|;
. [GQ = 1—2} s if Ve [8, [GQ = IQ]] ;
FZV=N Gy = 1), if Ve RN, [Gs — Hyll;
(Gny1=Int1], if VE [Ln :ﬂlh [Gni1 = n+1]] 2> 2
[Gri1 = Hyia], if V€ [[Gn = Hpl,[Gn1 = Hopa]] ,n > 3.
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Proof. Consider the congruence n on a band S. Since A\; = - = £ on

S, then n = £°. Tt is known that the Green relation £ on S is defined by
(a,b) € L < ab=a & b= ba, whence we conclude that

(a,b) €n & (Vo e SY) za = zaxb & zb = zbza. (5)

But, if xa = xzaxb and xb = xbxa, for any x € S, then for x = a we have
a = ab, and for z = b we have b = ba, so the condition (5) is equivalent to

(a,b) en & (Vx € S) za = zaxb & zb = xbxa. (6)

Let [V1, Vs] be some of the intervals of LVB which appear in the formu-
lation of the theorem. We will prove:

SeV, & S/T}EVl, (7)

for any band S.

Case 1: V1,Vo] =[O, LZ]. This case is trivial.

Case 2: [V1,V2] = [RZ,RB]. In this case the assertion (7) is an imme-
diate consequence of the construction of a rectangular band.

Case 3: V1,V2] =[S, [G2 = I1]].

Case 4: V1, Vo] = [RN, [Gs = Hs]].

Case 5: [Vl,VQ] = [62 = 72, [Gg = 13]]. 1

Note that in all of these cases the Green relation £ is a congruence, i.e.
n = L. In other words, for a band S we have that £ is a congruence on .S if
and only if S € [G3 = I3].

Case 6: V1,V =[Gy, = I, [Gni1 = Iny1]], n > 3. Here we have that
Vo = [xn—i-lGn = xn+1ann+1]n]~

Let S be an arbitrary band. Suppose first that S € V5. For 1 <i <n
let the letter z; get a value a; in S. Then the words G,, and I, get some
values u and v in S, respectively. To prove that S/n € Vi = [G,, = I,], it is
enough to prove that (u,v) € 7.

Assume an arbitrary a € S. If the letter x,,41 assumes in S a value a,
then from S € V, it follows that au = auav. Since the words G,, and I,, have

the same letters, then (u,v) € D and (au,av) € D. But, any D-class of S is
a rectangular band, whence by au = auav it follows avau = avauav = av.

'For details of the proof for cases 3, 4 and 5 see Section IT 3 of book [10] by M. Petrich.
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Therefore, au = auav and av = avau, for any a € S, whence (u,v) € n,
which was to be proved.

Conversely, assume that S/n € V. For 1 <i <n+1 let the letter z; get
an arbitrary value a; in S. Then the words G,, and I,, get some values u and
v in S, respectively, and (u,v) € n, since S/n € Vi = [G,, = I,]. But, from
(u,v) € n it follows that a,i1u = aptiua,1v, by (6), whence we conclude
that S € [2,41Gn = Tpy11n] = V2. This completes the proof of this case.

Case 7: [V1,Vs] = [Gn = Hyp, [Gpi1 = Hyya]], n > 3. This case is
analogous to the previous one.

Taking into consideration all the cases, we have completed the proof of
the theorem. 0

By means of a straightforward verification we give the following lemma:

Lemma 5.10 LetC be a class of semigroups and let By and By be two classes
of bands. Then C o (B1 o Bz) C (C o By) o Bs.

A particular case of the previous lemma is the well-known result of A.
H. Clifford from 1954 (see Corollary 3.7) that asserts that X o B = X o
(RBoS) C (X oRB)oS, for an arbitrary class X' of semigroups. For the
class G of all groups, Go B = Go (RBoS) is the class of all semigroups
that are bands of groups, and (G o RB) o S is the class of all semigroups
that are unions of groups. As we all know, these classes are different, so
Go(RBoS)S (GoRB)oS. This proves that the inclusion in Lemma 5.10
can be proper.

The following theorem gives a very important result. It gives the con-
ditions under which a band of semigroups from any class of semigroups
coincides with a semilattice of semigroups from the same class.

Theorem 5.33 Let C be a class of semigroups. Then
CoRBCC & CoB=CoS.

Proof. Let CoRB C C. Then based on Lemma 5.10 and Corollary 3.6 we
have that

CoB=Co(RBoS)C(CoRB)oSCCoSCCoBk.

Hence, CoB=CoS.
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Conversely, from the hypothesis we have that

C=CoO=CoS=CoRE.

Using the above theorem and lemma we prove the following:

Theorem 5.34 Let V' be an arbitrary variety of bands. Then

(LA, itV elo,L2);
LAORZ, if V € [RZ,RB;
- [:.AOS, ifVE [8, [GQZ[QH;
LAY =9 rAoRN, if V€ [RN, [Gs = Hy]:
\ LAo [én = Fn] ifV € [[én = Fn]a [Gn+1 = Hn+1“7 n > 3.

Proof.  One verifies easily that LA o LZ = LA. Further, let [V1,)Vs] be
some of the intervals of the lattice LVB which appears in the formulation of
the theorem, and let V € [V1, Va]. According to Theorem 5.32 we have that
Vo = LZ oV, whence

LAV, C LAYV C LAYy =LAo(LZoV)) C(LAoLZ)o V) =LAV,

using Lemma 5.10. Therefore, LAoV; = LAoV = LA oV, which was to
be proved. O

Finally, we prove the following:

Theorem 5.35 Let V be an arbitrary variety of bands and let S be a semi-
group. Then S € LAoV if and only if S/n € V.

Proof. Let S € LAoY. Then there exists a congruence £ on S such that
S/¢€ € V and any &-class of S is in LA. Based on Lemma 5.3 we have £ C Ay,
and Lemma 5.9, £ C 7. Therefore, S/n is a homomorphic image of S/¢ and
S/¢ € V, whence S/n € V, which was to be proved.

Conversely, if S/n € V, then based on Lemma 5.3 we have that any
n-class is in LA, and hence, S € LAo V. O

Lemma 5.11 Let S be a semigroup. Then

A=AoLZ.
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Proof. Let S be a left zero band Y of A-simple semigroups S,, a € Y.
Assume a,b € S, then a € S,, b € Sp, for some «, 3 € Y, whence ab €

SaSg € Sap = So. Hence, ab,a € S,. So ab LN *a, whence b Ly og. In

a similar way we can prove that a Ly b, Thus a - >N (—l> >)~1p and
based on Lemma 4.6 we have that a\b. Therefore, S is a A-simple semigroup.

The converse follows immediately. O

Our next goal is to characterize semigroups from A o V, for an arbitrary
variety of bands V.

Theorem 5.36 Let V be an arbitrary variety of bands. Then

A, if Velo,LZ];
AoRZ, if Ve[RZ,RBJ;
AoV — AoS, if Ve[S [Gg—lg]]
) AoRN, if VG[RN [Gs = H3);
Ao Fnzfn}, if Ve [[Gn—I L, [Gnt1 = n+1ﬂ,n22;
Ao Fn:Hn]a ’if Ve [[Gn—Hn]a[Gn—l—l:Hn—i-l]]ynz?"

Proof.  Based on Lemma 5.11 we have that Ao LZ = A. Let V € [V;, V],
whence [V1, V1] is some of the intervals of the lattice LVB from the theorem.
Based on Theorem 5.32 we have that Vo = LZ o V;, whence

AoV C AoV C AoVy= Ao(LZoV) C (AoLZ)oV; = AoV (by Lemma 5.11).
Therefore, AoVy = AoV =AoV,. O

Note that the corresponding results can be obtained for bands of left
simple semigroups and bands of left groups.

Exercises

1. The following conditions on a semigroup .S are equivalent:

(i) S is a right weakly commutative;
(ii) S is a semilattice of left Archimedean semigroups;
(iii) (Va,be S)a|b = (Ji € ZT)alb};
(iv) N(z) ={y € S| (3n € Z*)a™ € Sy}, for every z € S;
(v) (Va,b € S) ab—-ba;
( i) (Va,b€ S) a—>b = a?>-Lb;
(vii) (Va,b,c€S) a—b & b—c = a—t-g;
) (Va,b,c € S) a—c & b—c = ab—c.

(viii
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2. VR is a subsemigroup of S, for every right ideal R of S if and only if
(VYa,be S)(Vk,l € ZT) a* 5 ab Vv b 5 ab.
3. The radical of every right ideal of a semigroup S is a bi-ideal of S if and only if
(Ya,b,c € S)(Vk,l € ZT) a* 5 abe v ¢ - abe. (1)

4. The radical of every ideal of a semigroup S is a bi-ideal of S if and only if

(Ya,b,c € S)(Vk,l € ZV) a* — abe VvV ¢ — abe.
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Chapter 6

Semilattice of k-Archimedean
Semigroups

In this section, on an arbitrary semigroup we define a few different types
of relations and its congruence extensions. Also, we describe the structure
of semigroups in which these relations are band (semilattice) congruences.
The components of such obtained band (semilattice) decompositions usually
are in some sense simple semigroups.

L. N. Shevrin proved that a completely w-regular semigroup R(D) is
transitive if and only if it is a semilattice congruence. A more general result
has been obtained by M. S. Putcha who proved that in a completely 7-
regular semigroup the transitive closure of R(J) is the smallest semilattice
congruence. Since D = J on any completely m-regular semigroup, Shevrin’s
result can also be derived from the one of M. S. Putcha.

Various characterizations of semigroups in which the radical R(p) (T'(0)),
where ¢ € {J,L,R,D,H}, is a band (semilattice) congruence have been
investigated by S. Bogdanovié¢ and M. Ciri¢, S. Bogdanovié¢, M. Ciri¢ and Z.
Popovié¢ and S. Bogdanovié, Z. Popovié¢ and M. Cirié.

In this section we define one new radical oy, k € Z™, of a relation o
on a semigroup S and using it we describe the structure of a semigroup
in which this radical is a band (semilattice) congruence for some Green’s
relation. For these descriptions of the structure of semigroups we consider
some new types of k-regularity of semigroups and also some new types of k-
Archimednness of semigroups. Also, here we characterize the semilattices of

205
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k-Archimedean semigroups and describe the hereditary properties of semi-
lattices of k-Archimedean semigroups.

Very interesting decompositions are band decompositions in which com-
ponents are power-joined, periodic and both power-joined and periodic semi-
groups. These decompositions were studied by T. Tamura, T. Nordahl, K.
Iseki and S. Bogdanovi¢.

T. Tamura studied commutative Archimedean semigroups which have
a finite number of power-joined components. Bands of power-joined semi-
groups were studied by T. Nordahl, in medial cases, and by S. Bogdanovi¢,
in general. K Iseki considered periodic semigroups which are the disjoint
union of semigroups, each containing only one idempotent. S. Bogdanovié
considered bands of periodic power-joined semigroups.

In this section, on a semigroup S, for k € Z™, we define some new equiv-
alence relations 1, n; and 7. If these equivalences are band congruences then
they makes band decompositions of n-simple (power-joined) semigroups, and
band decompositions of two types of periodic power-joined semigroups (-
simple and 7-simple semigroups). The obtained results generalize the results
of the above mentioned authors.

It is known that Lallement’s lemma does not hold true in arbitrary semi-
groups. In fact, this lemma fails to hold in the semigroup of all positive
integers under addition, since it does not have an idempotent element but
the entire semigroup can be mapped onto a trivial semigroup, which of course
is an idempotent.

Idempotent-consistent semigroups are defined by the property that each
idempotent in a homomorphic image of a semigroup has an idempotent pre-
image. In a way this property is another formulation for the well known
Lallement’s lemma. Idempotent-consistent semigroups were studied by P.
M. Higgins, P. M. Edwards, P. M. Edwards, P. M. Higgins and S. J. L.
Kopamu, S. Bogdanovi¢, H. Mitsch, S. J. L. Kopamu and S. Bogdanovié¢, Z.
Popovi¢ and M. Cirié.

Here on an arbitrary semigroup we introduce a system of congruence
relations and using them we give a new version of the proof of Lallement’s
lemma. The results presented in this section are generalizations of results
obtained by the above mentioned authors.
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6.1 k-Archimedean Semigroups

Let k € Z* be a fix integer. A semigroup S is k-nil if a* = 0 for every
a € S. This notion was introduced by T. Tamura in [17]. A semigroup
S is nilpotent if S™ = {0}, for some n € Z*. All finite nil-semigroups are
nilpotent. An ideal extension S of a semigroup [ is a k-nilextension of I if
S/I is a k-nil-semigroup.

In the following table we introduce the notations for some new classes of
semigroups.

Notation | Class of semigroups Definition
kR k-regular
LER left k-regular
RER right k-regular

(
(
(
CkR completely k-regular | ( af € aFt1SaF+t
TER intra k-regular (Va € S) aF E Sa?*S
(
(
(
(

)
)
Va € S) aF € a*F1S
)
)

kA k-Archimedean Va,b € S) a € S1hSt
LkA left k-Archimedean Va,b € 5) a e Sty
REA | right k-Archimedean | (Va,b € S) a € bS!
)

TkA t-k-Archimedean Va,be S) a® € bSTN S

Semigroups from the class kR were introduced by K. S. Harinath in [2].
The other types of semigroups were introduce by S. Bogdanovi¢, Z. Popovié¢
and M. Ciri¢ in [1] for the first time.

We give here one very simple example.

Example 6.1 Let S be a semigroup defined by Cayley’s table

e a b c d
ele a b ¢ d
ala b b ¢ d
blb b b ¢ d
clec ¢ ¢ d b
dld d d b ¢

It is easy to see that the subsemigroup {a, b, ¢, d} of S is t-2- Archimedean.
Also, a ¢ Reg(S), i.e. S is not regular. Since a?> = a®> € Reg(S) and
{e,b%,c2,d?} C Reg(S), then S is a 2-regular semigroup.
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Based on the following lemmas we describe the structure of k-Archime-
dean, left k-Archimedean and k-regular and Archimedean semigroups.

Lemma 6.1 Let k € Z*. Then the following conditions on a semigroup S
are equivalent:

(i) SekA;
(i) S € ANTER;

(iii) S is a k-nil-extension of a simple semigroup.

Proof.  (i)=-(ii) This implication follows immediately.

(ii)=-(iii) Based on Theorem 3.14, S is a nil-extension of a simple semi-
group I. Let a € S —1, b € I. Then a* = za®*y, for some z,y € S,
whence

a® = 2Fa* (aFy)t € 2FaFSbS C SbS.
Thus, S is a k-nil-extension of a simple semigroup I.

(iii)=-(i) This implication follows immediately. m|

Lemma 6.2 Let k € Zt. Then the following conditions on a semigroup S
are equivalent:

(i) S € LkA;
(i) S € LANLER;

(iii) S is a k-nil-extension of a left simple semigroup.
Lemma 6.3 Let k € Z*. Then the following conditions on a semigroup S

are equivalent:

(i) S€ekRNA;
(ii) S e TRNEkA;

(iii) S is a k-nil-extension of a simple regular semigroup.

Proof.  (i)=(ii) Let a,b € S, then a* = a¥za*, for some z € S. Since S is
Archimedean, then for a®z and b we have that a*z € SbS, whence

a* = afza® € SbSa* C SbS.

Hence, a* € SbS, i.e. S is k-Archimedean.
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(ii)=-(ili) Based on Lemma 6.1, S is a k-nil-extension of a simple semi-
group and based on Theorem 3.15, S is a k-nil-extension of a simple regular
semigroup.

(iii))=(i) Let S be a k-nil-extension of a simple regular semigroup I.
Assume a € S, then a* € I. So, a¥ € Reg(S). Clearly, S is an Archimedean
semigroup. O

Let k € Z™ be a fix integer. A semigroup S is a k-group if S is k-regular
and if it has only one idempotent. By means of the following theorem we
describe the structure of the k-group.

Theorem 6.1 Let k € Z". The following conditions on a semigroup S are
equivalent:

(i) SeTkA;
(i) S € TANCER;
(iii) S is a k-group;
(iv) S is a k-nil-extension of a group;
(v) (Va,b e S) a* € bSh.

Proof.  (i)=(ii) Let S be a t-k-Archimedean semigroup. Then S is both
left k-Archimedean and right k-Archimedean. So, based on Lemma 6.2 and
its dual, we have that S is t-Archimedean and both left k-regular and right
k-regular. Thus, it is evident that S is ¢t-Archimedean and a completely
k-regular semigroup. Hence, (ii) holds.

(ii)=-(iii) Let (ii) hold. Then it is clear that S is k-regular and that S con-
tains idempotent elements. Assume e, f € E(S). Since S is ¢-Archimedean,
then e = fx and f = ye, for some x,y € S'. So, we obtain that e = fo =
f(fz) = fe = (ye)e = ye = f. Hence, S has only one idempotent element.
Thus, S is a k-group.

(iii)=(iv) Let (iii) hold. It is clear that S is a m-group. So, based on
Theorem 3.18, S is a nil-extension of a group G. Assume a € S — G. Then
a™ € G, for some n € Z*. Now, we make a distinction between two cases. If
k > n, then a* = a"a* ™ € GS C G, i.e. S is a k-nil-extension of a group G.
If k£ < n, then since S is k-regular and since S has only one idempotent, from

a* = d*za¥, for some x € S, and from ¥z = za* € F(S), we obtain that

a¥ = a*x, for every i € Z*. Assume j € Z* such that n < jk. Then we
have that a* = o/*z = a"a’* "2z € GS C G, whence S is a k-nil-extension

of a group G. Thus, (iv) holds.
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(iv)=(v) Let S be a k-nil-extension of a group G. Assume a,b € S.
Then o* € G, whence ba*,a*b € G and since G is a group, then we have
that a* € ba*Ga*b C ba*Sa*b C bSh.

(v)=-(i) If (v) holds, then it is evident that S is a ¢-k-Archimedean semi-
group. O

By means of the following theorem we describe the structure of left k-
Archimedean semigroups.

Theorem 6.2 Let k € ZT. The following conditions on a semigroup S are
equivalent:

(i) S € LkA and it has an idempotent;
(ii) S € kR and E(S) is a left zero band;
(iii) S is a k-nil-extension of a left group;
(iv) (VYa,b € S) a* € akSa*b.

Proof.  (i)=(ii) Let S be a left k-Archimedean semigroup and let e € E(S).
Assume a € S. Then e € S'a and a* € S'e. Since a* = we, for some z € ST,
then a*e = (ze)e = we = a*. Also, since S is left k-Archimedean and
e,af € S, then e = e € S'aF. Thus, o* = d¥e € a¥StaF C aFSa*, for all
a € S,ie. S is k-regular. Now, assume f,g € F(S). Then f € Slg, i.e.
f = yg, for some y € S'. Hence fg = (yg)g = yg = f. Therefore, E(S) is a
left zero band.

(ii)=(i) Let S be k-regular and let E(S) be a left zero band. According
to Theorem 3.17, S has an idempotent. Assume a,b € S. Then a* = a*za”*
and b* = bFyb*, for some x,y € S. Let e = za® and f = yb*. Then
e? = ee = zdfzad® = zadf = e and f2 = ff = ybFybF = yb* = f, ie.
e, f € E(S). Since E(S) is a left zero band then ef = e, i.e. xafyb* = wa*.
Thus, we obtain that a* = a*za* = a*zaFyb* € Sb, for every a,b € S, ie. S
is left k-Archimedean. Therefore, (i) holds.

(i)=(iii) Let S be a left k-Archimedean semigroup and let e € E(S).
Based on Lemma 6.2, S is a k-nil-extension of a left simple semigroup K.
Then e = e* € K and based on Theorem 3.7, K is a left group. Thus, (iii)
holds.

(iii)=(iv) Let S be a k-nil-extension of a left group K. Assume a,b € S.
Then o* € K, whence a*b € K and based on Theorem 3.7 we obtain that
a* € a*Ka*b C a¥Sa*b. Thus, (iv) holds.
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(iv)=-(i) If (iv) holds then it is evident that S is a left k-Archimedean
semigroup. Since from (iv) it immediately follows that S is a k-regular, then
based on Theorem 3.17, .S has an idempotent. O

References

S. Bogdanovi¢ and Z. Popovié [1], [2], [3]; S. Bogdanovié, Z. Popovié¢ and M. Ciri¢
[1]; K. S. Harinatah [2]; T. Tamura [17].

6.2 Bands of J;-simple Semigroups

Recall that by J, £, R and H we denote Green’s equivalences on a
semigroup S. Here we define a new radical oi, k € Z* by

(a,b) € o, & (a",0F) € 0.

It is clear that
or € T(0) € R(o).

Ifo e {TJ,L,R,D,H}, then it is easy to see that g, k € ZT is an equivalence
relation. So, in this case these equivalences are very similar to Green’s
equivalences and they can be considered its generalizations. The conditions
under which the relations R(p) and T'(p) are transitive (i.e. are equivalences)
have been discussed by L. N. Shevrin in [4], by S. Bogdanovi¢ and M. Cirié
in [19], [21] and by S. Bogdanovié¢, M. Cirié¢ and Z. Popovi¢ in [1].

We start with a few lemmas in which we give some general characteristics
of band congruences on an arbitrary semigroup.

Lemma 6.4 Let & be a congruence relation on a semigroup S. Then R(§) =
& if and only if € is a band congruence on S.

Proof. Let R(§) = £. Since £ is reflexive, then for every a € S we have
that

a’ta® = (a2 €(a®)! e aR(€)a® & atd®.

Thus, £ is a band congruence on S.
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Conversely, let £ be a band congruence on a semigroup S. Since the
inclusion £ C R(&) always holds, then it remains for us to prove the opposite
inclusion. Also, since £ is a band congruence on S, then we have that

(Va € S)(Vk € ZT) atd.

Now assume a,b € S such that a R(&)b. Then a' &b/, for some i, € ZT,
and based on the previously stated, we have that a&a’&b £b. Thus a€b.
Therefore, R(§) C &, i.e. R(§) =¢. a

Lemma 6.5 Let £ be an equivalence relation on a semigroup S. Then the
following conditions are equivalent:

(i) & is a band congruence;
(ii) & =¢& = R(¢);
(iii) € = R(§) and £ is a congruence on S.

Proof. (i)« (ii) This equivalence follows from Lemmas 6.4 and 5.1.

(i)<(iii) This equivalence follows from Lemma 6.4. a
Let k € Z™ be a fix integer. On S we define the following relations by
(a,b) € T & (ak,bk) e J;
(a,b) € T} = (Va,y € SY) (zay, zby) € T;.

It is easy to verify that Jj is an equivalence relation on a semigroup S.
But R(J) and T'(J) are not equivalences (see L. N. Shevrin [4]).

A semigroup S is Jy-simple if
(Va,b e S) (a,b) € Tg.

It is clear that a semigroup S is J-simple if and only if S is k-Archime-
dean. In the remainder of our study there is no distinction between these
notions.

Example 6.2 It is not difficult to verify that on the semigroup S, as shown
in the table in Example 6.1, we have that the relation

J=N={e,e), (a,a),(b,b), (¢, ¢), (d,d), (b,¢), (¢, b), (b, d), (d,]), (¢, d), (d, c}},
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is an equivalence and it is not a band congruence, since (a, a?) = (a,b) ¢ J.
Further, the relation

J2 = {(e;¢),(a,a), (b, ), (¢, ¢), (d, d), (a,b), (a, ¢), (a, d), (b, a), (b; ), (b, d),
(¢;a), (¢, ), (¢, d), (d, a), (d,]), (d, c)},

is a band congruence on S, and S is a band of 2-Archimedean semigroups.

Example 6.3 Let S = T be the semigroup 7" with an identity adjoined,
where T' is from the Example of T. Tamura in [17]. It is clear that S is
a band (two-element chain) of two semigroups {e} and T, and then the
corresponding band congruence is Jo.

The following lemma holds.

Lemma 6.6 Let S be a semigroup and let k € ZT. If S € kAo RB, then
SeckA.

Proof. Let S be a rectangular band I of k-Archimedean semigroups S;,
i € I. Assume a,b € S, then there exist 4, j € I such that aba € 5;5;5; C
Siji € S;. Thus a,aba € S;, whence ab € S;abaS; C SbS. Hence, S is
k-Archimedean. O

Based on the following result we describe the structure of a semigroup
which can be decomposed into a band (semilattice) of Jj-simple semigroups.

Theorem 6.3 Let k € Z+. Then the following conditions on a semigroup
S are equivalent:

(1) Ji is a band congruence;
(it) Ju =T} = R(Jw);
(iii) S € kAoB;
(iv) SekAoS;
(v) jk is a band congruence;

(vi) (Va € S)(Vx,y € SY) zay Ty, xa’y;
(vii) jk = (jk;)

(viii) S € AoSNIKR.
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Proof. (i)« (ii) This follows from Lemma 6.5.

(ii)=>(iii) For all a € S, z,y € S', by (ii) we have that zay J; za’y.
From this and based on Theorem 5.1 we have that S is a semilattice of
Archimedean semigroups. Also, since aJj a? implies a* J a?*, for every
a € S, then S is intra k-regular. Thus, based on Lemma 6.1, .S is a semilattice
of k-Archimedean semigroups. Thus, (iii) holds.

(iii)=-(i) Let S be a semilattice Y of J-simple semigroups Sy, o € Y.
Assume a,b,c € S, then a € S,, b € Sg and ¢ € S,, for some o, 3,7 € Y.
Let (a,b) € Ji, then (a¥ b*) € J, whence a = 3, i.e. a,b € S,. Further,
ac,be,ca,cb € Soy. Hence, acJj be and ca Ji,cb, i.e. Ji is a congruence.
Since a,a® € S,, @ € Y, we then have that a J;a?, ie. J, is a band
congruence on S.

(iii)<(iv) This equivalence follows from Theorem 5.33 and Lemma 6.6.

(iii)=-(vi) Let S be a band Y of Jj-simple semigroups S, o € Y. Assume
a € Sandz,yc S'. Then zay,ra’y € S, for some a € Y. Since Sy, a € Y
is an Jj-simple semigroup then zay J; xa?y. Thus, (vi) holds.

(vi)=-(iii) This implication is the same as (ii)=>(iii).

(vi)<>(v) This equivalence follows from Lemma 5.2.

(v)<(vii) This equivalence follows from Lemma 6.4.

(

i)«<>(viil) This equivalence is the same as the equivalence (i)« (iii). O

Theorem 6.4 Let k € Zt. A semigroup S is a semilattice of k-Archime-
dean semigroups if and only if

(Va,b € S) (ab)* € Sa’S & S e IkR.

Proof.  Let S be a semilattice Y of k-Archimedean semigroups S,, o € Y.
For a,b € S there exists a € Y such that ab,a®b € S,, whence (ab)* €
S,a2bS, C Sa2S. Based on Theorem 6.3 we have that S € TkR.

Conversely, from the first condition of Theorem 5.3 we have that S is
a semilattice of Archimedean semigroups and since S is intra k-regular we
have from Theorem 6.3 that the assertion follows. O

T. Tamura [15] proved that the class of all semigroups which are semi-
lattices of Archimedean semigroups is not subsemigroup closed. Based on
the following theorem we determine the greatest subsemigroup closed sub-
class of the class of all semigroups which are semilattices of k-Archimedean
semigroups.
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Theorem 6.5 Let k € Z*. Then kAo S is a subsemigroup closed if and
only if

(Va,b € S) (ab)* € (a,b)a*(a,b) & a” € (a,b)a**(a,b).

Proof.  Assume a,b € S and T = (a,b). Since T is a semilattice of k-
Archimedean semigroups then based on Theorem 6.4 we obtain

(ab)* € TaT = (a,b)a*(a,b),

and
a® € Ta®*T = (a,b)a** (a,b).

Conversely, let T' be an arbitrary subsemigroup of S. Assume a,b € T.
Based on the hypothesis we have that

(ab)k € (a,b)a?(a,b) C Ta’T,

so based on Theorem 5.1, T' is a semilattice of Archimedean semigroups.
Also, according to the second part of hypothesis we have that

a* e (a,b)a*{a,b) C Ta®T,

thus 7' is an intra k-regular semigroup. Therefore, based on Theorem 6.4, T’
is a semilattice of k-Archimedean semigroups. O

Let k € Z* be a fixed positive integer and let a and b be elements of a
semigroup S. Then:
a Ty b< b € (a,bala,b).

A semigroup S is hereditary k-Archimedean if a 13 b, for all a,b € S. The
class of all hereditary k-Archimedean semigroups we denote by Her(k.A).

Theorem 6.6 Let k € ZT. Then S € Her(kA) if and only if every one of
its subsemigroups is k-Archimedean.

Proof. Let S be a hereditary k-Archimedean semigroup and let T be a
subsemigroup of S. Assume a,b € T, then (a,b) C T, and also based on the
hypothesis we have that

v* € (a,b)bla,b) C TaT.

Thus, T is k-Archimedean.
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Conversely, assume a,b € S. Then a,b € (a,b) and since (a,b) is k-
Archimedean, we obtain that

v* € (a,b)ala,b).
Thus, S is hereditary k-Archimedean. a

Based on the following theorem we describe the semilettices of hereditary
k-Archimedean semigroups which are subsemigroup closed.

Theorem 6.7 Let k € Z*. The following conditions on a semigroup S are
equivalent:

(i) S € Her(kA)oS;

(ii) (Va,b€ S) a — b= a® 1} b;

(iii) (Va,beS)a—c&b— c=abTyc;

(iv) (Va,b,ceS)a—b&b—c=atic;
)

(v

Proof.  (i)=(ii) Let S be a semilattice Y of hereditary k-Archimedean semi-
groups S, a € Y. Let a,b € S, such that @ — b. Then b,a?b € S, for
some « € Y and based on the hypothesis we have that

the class Her(kA) o S is subsemigroup closed.

b* € (b, a’b)a®b(b, a®b) C (a?, b)a?(a?,b),

i.e. a? 1 b. So, (ii) holds.

(ii)=(i) Based on Theorem 5.3, S is a semilattice Y of Archimedean
semigroups S,, @ € Y. Assume a,b € S,, a € Y. Then a — b and from
(ii) we have that a? 14 b, whence

v* € (a?,b)a*(a%,b) C (a,b)ala,b).

Hence, a T b in S,, i.e. S,, a € Y is a k-Archimedean semigroup.
(ii)=-(iii) Assume a,b,c € S such that a — ¢ and b — ¢. Then based
on (i)<(ii) and Theorem 5.1 and Theorem 4.5, for n = 1, we have that
ab — c. Now, based on the hypothesis we have that (ab)? 13 ¢, whence
ab Ty c.
(iii)=(iv) Based on Theorem 4.5, for n = 1, we have that — is transi-
tive. Assume a,b,c € S such that a — b and b — ¢. Then a® 1, ¢, whence

a g c.
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(iv)=-(i) Since — is transitive, then based on Theorem 4.5, for n = 1,
we have that S is a semilattice Y of Archimedean semigroups S,, a € Y.
Let a,b € So, a € Y. Then a — b and b — b and from (iv) we have that
a 1% b. Hence, (i) holds.

(ii)=(v) Let T be a subsemigroup of S and let a,b € T such that a — b
in T. By (ii), a® 13 b, i.e.
v* € (a?,b)a*(a®,b) C Ta’T.
Hence, a? 1), b in T. Based on (i)<(ii) we have that T is a semilattice of
hereditary k-Archimedean semigroups.

(v)=(i) This implication is obvious. O
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6.3 Bands of £;-simple Semigroups

Let k € Z™ be a fix integer. Let £ be a Green’s relation on a semigroup
S. On S we define the following relations by

(a,b) € L, & (ak,bk) eL;
(a,b) € L2 = (Vo,y € SY) (zay, xby) € Ly.

It is easy to verify that Ly is an equivalence relation on a semigroup 5.

A semigroup S is Li-simple or left k-Archimedean, if a Ly b, for all a,b €
S. It is clear that a Lg-simple semigroup is left w-regular and left Archime-
dean.

Lemma 6.7 Let S be a semigroup and let k € Z+. If S € LERN LAo B,
then S € LkAo B.

Proof.  Let S be a band of left Archimedean semigroups S,, & € Y. Since
Sa, a0 €Y is left Archimedean and left k-regular, then based on Lemma 6.2
Sa, a €Y is left k-Archimedean, i.e. an Li-simple semigroup. Thus, S is a
band of Li-simple semigroups. O
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Based on the following theorem we describe the structure of a semigroup
which can be decomposed into a band of Li-simple semigroups. Also, we
should emphasize that a band of left k-Archimedean semigroups is not co-
incident with a semilattice of left k-Archimedean semigroups.

Theorem 6.8 Let k € Z*. Then the following conditions on a semigroup
S are equivalent:

(i) Se LkAoB;
(ii) (Va,b€ S) (abLyab® A aLya?);
(iii) £, is a band congruence on S;
(iv) (Va 6 S)(Va,y € SY) way Ly va’y;
(v) R(E) = £
i)

(vi) S € LAoBNLKR.

Proof.  (i)=(ii) Let S be a band Y of L-simple semigroups S,, a € Y.
Then for every a,b € S we have that a € S, b € Sg, for some a,3 € Y,
whence ab, ab® € S, SB C Sag. Thus ab Ly ab®. Also, a,a® € S,, for every
a € Y and thus a £, a®>. Hence, (ii) holds.

(ii)=(i) Let a,b € S. From (ii) it follows that ab—ab?, whence based on
Theorem 5.29 we have that S is a band Y of left Archimedean semigroups
Sa, @ € Y. From the second condition of the hypothesis we have that S is
left k-regular. Based on Lemma 6.7 we have that S, is left k-regular, for
all @ € Y. Finally, from Lemma 6.2 we obtain that S,, a € Y, is a left
k-Archimedean (Lg-simple) semigroup.

(i)=(iv) Let S be a band Y of Lj-simple semigroups S,, a € Y. Assume
a € Sandz,ye S Then zay, xa’y € Sy, for some a € Y. Since S, a € Y
is an Lj-simple semigroup then zay £y, za’y. Thus, (iv) holds.

(iv)=-(i) Based on Theorem 5.29, S is a band Y of left Archimedean
semigroups S,, @ € Y. From (iv) it follows that S is a left k-regular.
Assume a € S, then a € S, for some a € Y and a® = za?*, for some
x € Sg, f €Y. Since a = Ba, we have that ak = :J:QakamC € S,a?*. Hence,
Sa, a € Y, is left k-regular and since it is left Archimedean, then based on
Lemma 6.2 we have that S,, o € Y, is a left k-Archimedean (Lj-simple)
semigroup.

(iv)«<(iii) This equivalence is evident.

(iii)<(v) This equivalence immediately follows from Lemma 6.4.

(i)<(vi) This equivalence follows from Lemmas 6.2 and 6.7, and from
Theorem 5.29. a
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Theorem 6.9 Let k € Z+. Then the following conditions on a semigroup
S are equivalent:

(i) Lk is a band congruence on S;
(ii) L =L} = R(Ly);
(iii) R(Ly) = Ly and Ly, is a congruence on S.

Proof.  (i)<(ii)<(iii) These equivalences follow from Lemma 6.5. O

Proposition 6.1 Let k € Z*. If Ly is a band congruence on a semigroup
S, then S € LkAo B.

Proof. Let a,b € A, where A is an arbitrary Lj-class of S. Then a? L}, b,
whence a?* L, i.e. b¥ = za®*, for some x € S'. Since a Ly, a?, for every
a € S, then for every i € Z1 we have that a £, a’, for every a € S, whence
za Ly zal, ie. xaLlyb®, so xa € A, and therefore, za* € A. Now, we have
that

v = za®f = zd" - ¥ € Ad”.

Similarly we prove that a* € Ab*. Therefore, Lj-class A of S is a Lj-simple
semigroup. Thus, S is a band of L;-simple semigroups. O

Based on the following theorem we describe the structure of a semigroup
which can be decomposed into a semilattice of Li-simple semigroups.

Theorem 6.10 Let k € Z™. Then the following conditions on a semigroup
S are equivalent:

(i) S € LkAoS;
(ii) Ly is a semilattice congruence on S;

(ili) S € LAoSNLER.

Proof.  (i)=(ii) Let S be a semilattice Y of Ly-simple semigroups Sy, a €
Y. Assume a,b,c € S such that (a,b) € L. Since a € Sy, b € Sg, c € S,
for some «, 3,7 € Y, and since a* = zb* and b¥ = ya*, for some = € Sj,
y € S, where d,¢ € Y, then we obtain that o = § and 8 = . Based on
this we have that a8 = (68)5 = §5 = a and fa = (ca)a = ea = . Since
Y is a semilattice then it follows that « = a8 = Ba = 5. Thus a,b € S,
a €Y. So, ac,bc € Suy, o,y € Y, and since Say, a,y € Y, is an Ly-
simple semigroup, then (ac,bc) € L. Similarly we prove that (ca,cb) € Ly.
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Thus £}, is a congruence relation on S. Further, a,a? € Sy, o € Y and Sy,
a €Y, is Ly-simple, then (a,a?) € Ly, for every a € S, whence Ly, is a band
congruence on S. Also, ab,ba € Sy, @« € Y and S,, a € Y, is Li-simple,
then (ab,ba) € Lg, for all a,b € S, whence Ly, is a semilattice congruence on
S.

(ii)=(i) Let (ii) hold. Then S is a semilattice of Li-classes. Let a,b € A,
where A is an arbitrary Li-class of S. Then a2 £ b, whence a?* LbF, i.e.
b* = za®*, for some = € S'. Since L is a semilattice congruence, then
aLya?, for every a € S. Based on this, for every i € ZT we have that
aLlyal, for every a € S, whence za Ly, za’, i.e. zaLlyb®, so za € A, and
therefore, za* € A. Now, we have that

b = 20 = za® - aF € Ad".

Similarly, we prove that a* € Ab*. Therefore, the Li-class A of S is a
L-simple semigroup. Thus, S is a semilattice of Li-simple semigroups.

(i)=(iii) Let S be a semilattice Y of Ly-simple semigroups S,, a € Y.
Assume a,b € S. Then ab, ba € S,, for some a € Y. Since Sy, a € Y, is L-
simple, then (ab, ba) € Ly, whence (ab)* € S(ba)¥ C Sa, i.e. a L5 ab. Then
based on Theorem 5.9, S is a semilattice of left Archimedean semigroups.
Also, a,a? € S,, for some a € Y, and since S,, a € Y, is L;-simple, then
(a,a®) € Ly, whence af € Sa?* C Sa**+1, for every a € S. Thus, S is a left
k-regular semigroup. Therefore, (iii) holds.

(iii)=-(i) This implication immediately follows from Lemma 6.2. O
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6.4 Bands of H;-simple Semigroups

Let k € Z™ be a fix integer. Let H be a Green’s relation on a semigroup
S. On S we define the following relations by

(a,b) € Hy, < (a®,b%) e H;
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(a,b) € 1), & (Vo,y € SY) (zay, zby) € H.

It is easy to verify that Hj is an equivalence relation on a semigroup S.
Also, it is evident that Hy = L N Ry.

A semigroup S is Hy-simple (t-k-Archimedean), if a Hy b, for all a,b € S.
Also, it is easy to verify that a semigroup S is Hy-simple if it is both L-
simple and Ry-simple, and conversely.

Based on the following theorem we describe the structure of a semigroup
which can be decomposed into a band of Hj-simple semigroups.

Theorem 6.11 Let k € ZT. Then the following conditions on a semigroup
S are equivalent:

(i) S 6 TkAoB;

(ii) H, is a band congruence on S;
(iii) (Va € S)(Vm y € SY) xay Hy zay;
() ROHY) = H;

(v) Se TAoBNCEKR.

Proof.  (i)=-(iii) Let S be a band Y of Hj-simple semigroups S,, a € Y.
Assume a € S and z,y € S'. Then zay,ra’y € Sy, for some o € Y. Since
S,y a €Y is an Hy-simple semigroup then xay Hy ra?y. Thus, (iii) holds.

(iii)=(i) Let a € S and z,y € S'. From (iii) it follows that zay — za’y,
whence based on Corollary 5.5, S is a band Y of t-Archimedean semigroups
Sa, @ € Y. Also, based on (iii) S is both left k-regular and right k-regular.
Just like (iv)=(i) of Theorem 6.8 we prove that every band component
Sa, a € Y, of § is left k-regular, and, dually, that S,, o € Y, is right
k-regular, i.e. S, a € Y, is completely k-regular. Thus, S,, o € Y, is
t-Archimedean and completely k-regular. So, based on Theorem 6.1, S,,
a €Y is t-k-Archimedean. Therefore, S is a band of ¢t-k-Archimedean (H-
simple) semigroups.

(iii)<(ii) This equivalence follows from Lemma 5.2.

(ii)<(iv) This equivalence follows from Lemma 6.4

(i)<(v) This equivalence follows from Theorem 6.1. O

Theorem 6.12 Let k € Z". Then the following conditions on a semigroup
S are equivalent:

(i) Hi is a band congruence on S;
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(i) Hi = H2 = R(Hz);
(i) R(Hk) = Hi and Hy, is a congruence on S.

Proof. (i)« (ii)<(iii) These equivalences follow from Lemma 6.5. a

Theorem 6.13 Let k € ZT. Then the following conditions on a semigroup
S are equivalent:

(i) S€TkAOS;
(ii) My is a semilattice congruence on S;

(iii) S € TAoSNCEkR.

Proof.  These equivalences follow from Theorem 6.10 and its dual. |
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6.5 Bands of n-simple Semigroups

Recall that a semigroup S is called power-joined if for each pair of ele-
ments a,b € S there exist m,n € Z™ such that a™ = b"™. These semigroups
were first considered by P. Abellanas [1], in 1965, for cancellative semigroups
only, and D. B. Mc Alister [1], in 1968, who called them rational semigroups.
Every power-joined semigroup is Archimedean. An element a of a semigroup

m-+n

S is periodic if there exist m,n € Z* such that a™ = a . A semigroup S

is periodic if every one of its element is periodic.

On a semigroup S we define the following relations:
(a,b)en < (Fi,j€ZT)a' =V,
(a,b) e’ & (Va,y € 8Y) (zay, zby) € 1.

It is easy to verify that n is an equivalence relation on a semigroup S.

A semigroup S is n-simple if

(Va,b € S) (a,b) €n.
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These semigroups are well-known in the literature as power-joined semi-
groups.

The important result is the following lemma.

Lemma 6.8 If £ is a band congruence on a semigroup S, then & C n if and
only if every £-class of S is an n-simple semigroup.

Proof. Let Abe a &-class of S. Then A is a subsemigroup of S, since a ¢ a2,
for all a € S. Let a,b € A, then a{b, whence anb in A.

Conversely, let (a,b) € &, then a® = b/, for some 4,7 € Z™, since a and b
are in the same ¢-class A of S. Thus (a,b) € . Therefore, £ C 7. O

By means of the following theorem we describe the structure of semi-
groups in which the relation 7 is a congruence relation. These semigroups
have been treated by S. Bogdanovié in a different way in [9].

Theorem 6.14 The following conditions on a semigroup S are equivalent:

(i) S is a band of n-simple semigroups;

(ii 17 is a (band) congruence on S;

(iv) (Ya € S)(Vx,y € SY) zaynza’y;

(v) R(n’) =1

Proof.  (i)=-(ii) Let S be a band B of n-simple semigroups S,, o € B.
Assume a,b,c € S such that anb. Then a,b € S, and ¢ € Sg, for some
a, 8 € B. Also, ac,bc € 5,53 C Sap, o, B € B and since Sy, o, 3 € B, is
simple, then acnbc. Similarly we prove that cancb. Thus 7 is a congruence

)
)
(iil) 7” is a band congruence on S;
)
)

relation on S. Furthermore, since a,a® € Sy, @« € B and S,, o € B, is
n-simple, then ana?, i.e. 1 is a band congruence on S.

(ii)=(i) Let (ii) hold. Then S is a band of n-classes. Since n C 7, then
based on Lemma 5.2 we have that every n-class is an 7-simple semigroup.
Thus S is a band of n-simple semigroups.

(i)=(iv) Let S be a band B of n-simple semigroups Sy, « € B. Assume
a € Sandz,y e S'. Then zay,xa’y € S, for some a € Y. Since S, a € Y
is n-simple, then xaynxa?y. Thus, (iv) holds.

(iv) (iii) Let (iv) hold. Then by definition, for n’ it is evident that
an’ a?, for every a € S. Thus 7° is a band congruence.
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(iii)=(i) Let 1° be a band congruence on S, then S is a band of 7’-
classes. Since 7” is the greatest congruence on S contained in 7, then based
on Lemma 5.2 we have that every 7’-class is an 7-simple semigroup. Thus
S is a band of n-simple semigroups.

(iii)<(v) This equivalence immediately follows from Lemma 6.4. |

Let m,n € ZT. On a semigroup S we define a relation T(m,n) DY
(@,0) € Ty & (Vi € S™)(Vy € 5") (way, aby) € 7

If instead of 1 we assume the equality relation, then we obtain the re-
lation which was discussed by S. J. L. Kopamu in [1] and [2]. The main
characteristic of the previous defined relation gives the following theorem.
Theorem 6.15 Let S be a semigroup and let m,n € Z*. Then 7( s a
congruence relation on S.

m?”)

Proof. 1t is clear that 7),, ,) is reflexive and symmetric. Assume that
AT () b and b7y, ) c. Then for every z € S™ and y € S™ there exist
k,l,s,t € Z" such that

(zay)" = (zby)' and (xby)® = (zcy)’

whence
(zay)** = (xby)"* = (zcy)”,

Le. zaynzcy. Thus 7, is transitive and therefore it is a congruence on
S. a

The complete description of 7 congruence, for n = —, was given

m,n)

by S. Bogdanovi¢, Z. Popovié¢ and M. Ciri¢ in [5].

Theorem 6.16 Let m,n € Z*. The following conditions on a semigroup S
are equivalent:

() N is @ band congruence on S;
ii) (V:U € Sm)(Vy € S")(Va € S) zaynxay;
(111)
iv) ( ) = N(m,n)-
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Proof.  (i)=-(ii) This implication follows immediately.
(ii)=-(iii) Assume that anb. Then a’ = &7, for some i,j € Z". Then for
every x € S™, y € S" and 4, € ZT we have that
zaynra*ynza'y = xblynaby.
Since 7 is transitive, we have that a7, ) b. Thus n C 7, ).
(iii)=(i) Since ana?, for every a € S, then we have that AN () a?, for
every a € S, i.e. T(m,n) 18 @ band congruence.

(i)<(iv) This equivalence immediately follows from Lemma 6.4. |

Proposition 6.2 Let m,n € Z*. If 7, )
group S, then S is a band of 7y, ,)-simple semigroups.

is a band congruence on a semi-

Proof.  Let A be an 7, ,,)-class of a semigroup S. Assume a,b € A, then
aT(mny b In S, ie. zaynaxby, for every z € S™ and every y € S™, whence
we have that for every x € A™ and every y € A" is zaynaby, i.e. af(y, b
in A. Thus A is 7, ,)-simple. O

Let k € Z™ be a fix integer. On a semigroup S we define the following
relations by
(a7b) ENk < ak = bka

(a,b) €y & (Va,y € ') (zay, xby) € ny,.
It is easy to verify that n; is an equivalence relation on a semigroup S.
A semigroup S is ng-simple if

(Va,b e S) (a,b) € .

These semigroups are periodic.

Lemma 6.9 Let k € ZT. If € is a band congruence on a semigroup S, then
& C g if and only if every -class of S is an ng-simple semigroup.

Proof. Let Abe a ¢-class of S. Then A is a subsemigroup of S, since a € a?,
for all a € S. Let a,b € A, then a &b, whence ani b in A.

Conversely, let (a,b) € £. Since a and b are in the some ¢-class A of S
and since A is ng-simple,then (a,b) € 7. Therefore, £ C . O
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By means of the following theorem we give the structural characterization
of bands of ng-simple semigroups.

Theorem 6.17 Let k € ZT. Then the following conditions on a semigroup
S are equivalent:

(i) S is a band of n-simple semigroups;
(i) (Va,be S) ((ab) = (V) A ab = a2*);

(iii k is a band congruence on S';

(v) (Va € 9)(Va,y € SY) zay g wa’y;

(vi

(vii

)
)
) 7
(iv) n k is a band congruence on S;
)
i) R 77k) = n, and M 18 a congruence on S;
)

R(n )_Uk

Proof.  (i)=-(ii) Let S be a band Y of n-simple semigroups S,, o € Y.
For every a,b € S we have that a € S, b € Sp, for some «, 3 € Y, whence
ab, a*v* € S,z and so (ab)* = (a*b¥)*. Clearly, a* = a?*.

(ii)=(iii) It is clear that n is an equivalence. Let angb and z € S,
then a* = b* and based on the hypothesis we have that (ax)¥ = (a*2%)F =
(VraF)k = (bx)k, i.e. axmgbr. Similarly, zang, zb. Thus 7 is a congruence
relation on S, and since a¥ = a?* we have that 7, is a band congruence on

S.

(iii)=(i) Let nx be a band congruence and A be an ng-class of S. Assume
a,b € A, then an,bin A and thus A is an n-simple semigroup. Therefore,
S is a band of ng-simple semigroups.

(i)=(v) Let S be a band Y of n-simple semigroups Sy, a € Y. Assume
a € Sandz,ye St Then zay, xa’y € S, for some a € Y. Since S, a € Y
is an ng-simple semigroup then zay ng ra?y. Thus, (v) holds.

(v)=(iv) Let (v) hold. Then based on the definition for 7, it is evident
that an}: a?, for every a € S. Thus T}Z is a band congruence.

(iv)=(i) Let 7. be a band congruence on S, then S is a band of 7;-
classes. Since n}: is the largest congruence on S contained in 7, then based
on Lemma 6.9 we have that every nZ—class is ng-simple semigroup. Thus S
is a band of n-simple semigroups.

(iii)<(vi) and (iv)<(vil) These equivalences immediately follows from
Lemma 6.4. O
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Let k,m,n € Z*. On a semigroup S we define a relation N(k;m,n) DY
(a,0) € Ngymny & (Vo € ™) (Vy € S") (zay, zby) € ng.

The following lemma holds.

Lemma 6.10 Let S be a semigroup and let k,m,n € Z™T, then 7
congruence relation on S.

kym,n) s a

is reflexive and symmetric. Assume a,b,c €
y¢. Then for every z € 5™ and every

Proof. 1t is clear that 7., n)
S such that a7y, )b and b7
y € S™ we obtain that

k;momn

(zay)* = (aby)* and  (eby)* = (wey)*

whence
(zay)* = (zey)”,

Le. £aY N (k) xcy. Thus 7., » is transitive and therefore it is a congru-
ence on S. O

Theorem 6.18 Let k,m,n € Z*. Then the following conditions on a semi-
group S are equivalent:

(1) Mkymom) 18 a band congruence on S;
(ii) (Vo € S™)(Vy € S™)(Va € S) zay n va’y;

Proof. (i)« (ii) This equivalence is evident.

(i)«<(iii) This equivalence immediately follows from Lemma 6.4. |

Proposition 6.3 Let k,m,n € Z*. If N(k;m,n) 5 @ band congruence on a
semigroup S, then M C N p)-

Proof.  Since 7y ) is a band congruence on S, then zay ny za'y, for every
i€ Z* and for all z € 8™, y € S™, a € S. Assume a,b € S such that any b.
Then a* = b*. Thus for every z € S™ and y € S™ we have that

zay ng zaty = zbyny, xby.

Since 7y, is transitive, we obtain that a7y, ) 0. Thus ng C Mg -
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Furthermore, based on the previously defined relations on a semigroup
S, we define the following relations:

(a,b) €7 < (k€ ZT) (a,b) € my;
(a,b) € 7° & (Va,y € SY) (zay,zby) € T

It is easy to verify that the relation 7 is an equivalence on a semigroup S.

A semigroup S is T-simple if
(Va,b € S) (a,b) €T

By means of the following theorem we describe the structure of bands of
7-simple semigroups. S. Bogdanovié in [10] gave some other characterizations
of these semigroups.

Theorem 6.19 The following conditions on a semigroup S are equivalent:

(i) S is a band of T-simple semigroups;

(ii) 7 is a band congruence on S;

(iv) (Va € S)(Vx,y € SY) zay T va’y;
(v

(vi

=7 and T is a congruence on S;
( )= g
) =1

Proof.  (i)=-(ii) Let S be a band Y of 7-simple semigroups S,, o € Y.
Assume a,b,c € S such that a7b. Then a* = b*, for some k € Z*. So,
then a,b € S, and ¢ € Sg, for some o, 3 € Y. Thus ac,bc € 5,53 C Sag,
o, €Y and since S,g, a, f € Y, is 7-simple, then ac 7 be. Similarly, ca 7 cb.
Hence, 7 is a congruence relation on S. Furthermore, since a,a? € Sy, a € Y
and S,, a €Y, is 7-simple, then a7 a?, i.e. 7 is a band congruence on S.

(ii)=(i) Let (ii) hold. Then S is a band of 7-classes. Let A be a 7-class
of S. Then A is a subsemigroup of S. Assume a,b € A, then a7b in A and
A is a 7-simple. Therefore, S is a band of 7-simple semigroups.

)
)
(iii) 7 is a band congruence on S;
)
)
) R

(i)=(iv) Let S be a band Y of 7-simple semigroups S,, o € Y. Assume
a € Sandz,ye S Then zay,xa’y € Sy, for some a € Y. Since S, a € Y
is 7-simple then zay 7 xa?y. Thus, (iv) holds.

(iv)=-(iii) This implication follows immediately.
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(iii)=(i) Let (iii) hold. Then S is a band of 7”-classes. Let A be an
arbitrary 7°-class of S. Then A is a subsemigroup of S. Assume a,b € A,
then a7’b in A and since 7> C 7, then a7b in A. Thus A is a 7-simple.
Therefore, S is a band of T-simple semigroups.

(ii)<(v) and (iii)<(vi) These equivalences follow from Lemma 6.4. [
Let m,n € ZT. On a semigroup S we define a relation T(m,n) by

(a,b) € Timn) & (Vo e S™)(Vy e S") (vay,xby) € .
The following theorem holds.

Theorem 6.20 Let S be a semigroup and let m,n € Z+. Then T(mn) 5 @
congruence relation on S.

Proof. 1t is clear that 7, ) is reflexive and symmetric. Assume a,b,c € S
such that a7 (,, ) b and bT(,, ) c. Then for every x € S™ and y € S™ there
exist k,l € Z* such that

(zay)* = (zby)* and  (zby)' = (zey)’

whence

)kl )kl )lk

(way)™ = (zby)* = (zby)"* = (wey)™.

So, we have that zaymy zcy, i.e. zayTzcy. Thus T(,, . is transitive and
therefore it is a congruence on S. O

Theorem 6.21 Let m,n € Z+. Then the following conditions on a semi-
group S are equivalent:

(i) T(m,n) is a band congruence on S;
(i) (Vz € S™)(Vy € S™)(Va € S) xay T xa’y;
(111) R(?(m,n)) - ?(m,n) .

Proof. (i)« (ii) This equivalence follows immediately.

(i)« (iii) This equivalence immediately follows from Lemma 6.4. O

Proposition 6.4 Let m,n € Z™. If T is a band congruence on a semi-
group S, then T C T, ).
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Proof.  Since Ty, ) is a band congruence on S, then zay T xa'y, for every
i€ ZT and for all z € S™, y € S™, a € S. Assume a,b € S such that a1b.
Then a* = b*, for some k € ZT. Thus for every z € S™, y € S" and k € Z7
we have that

zay T za¥y = zbFy T xby.

Since 7 is transitive, then a7, ) b. Therefore 7 C 7, ). a
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6.6 On Lallement’s Lemma

Lallement’s lemma for regular semigroups says that if p is a congruence
on a regular semigroup S and ap is an idempotent in the quotient S/p then
a p e for some idempotent e € S. We can formulate this property in terms of
homomorphic images. The property featured in the conclusion of the lemma
therefore has merited a name of its own and so we say that a congruence rela-
tion & on a semigroup S is idempotent-consistent (or idempotent-surjective)
if for every idempotent class a& of S/¢ there exists e € E(S) such that
a&e. This property is found in the conclusion of the well known Lallement’s
lemma. A semigroup is idempotent-consistent if all of its congruences enjoy
this property. These notions were explored by P. M. Higgins [1], [4], P. M.
Edwards [1], P. M. Edwards, P. M. Higgins and S. J. L. Kopamu [1], S.
Bogdanovi¢ [14], and H. Mitsch [3], [4].

The class of regular semigroups certainly does not exhaust the class of
idempotent-consistent semigroups as it is a simple matter to check that ev-
ery periodic semigroup, or more generally every (completely) m-regular, is
idempotent-consistent. A generalization of Lallement’s lemma that includes
all the cases mentioned so far was provided by P. M. Edwards [1], where it
was shown that the class of idempotent-consistent semigroups includes all
m-regular semigroups.

Although the class of m-regular semigroups does not contain all idempo-
tent-consistent semigroups, any idempotent-consistent and weakly commu-
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tative semigroup is also m-regular. A semigroup S is weakly commutative if
for all a,b € S there exists n € Z* such that (ab)" € bSa.

The converse implication does not generally hold, however, not all idem-
potent-consistent semigroups are w-regular. This was first shown by S. J.
L. Kopamu [2] through the introduction of the class of structurally regular
semigroups which are defined using a special family of congruences. Some
characterizations of semigroups, based on congruences which are more gen-
eral then ones introduced by S. J. L. Kopamu in [1], are considered by S.
Bogdanovié, Z. Popovi¢ and M. Ciri¢ in [1] and [4]. S. J. L. Kopamu proved
that Lallement’s lemma holds for the class of all structurally regular semi-
groups.

Let £ be a congruence relation on a semigroup S. An element a € S
is &-regular if there exists b € S such that a§ = (aba)§. A semigroup S is
&-regular if all its elements are -regular, i.e. if S/€ is a regular semigroup.
An element b € S is such that a& = (aba)¢ and b€ = (bab)§ is a -inverse of
the element a.

Lemma 6.11 For any &-reqular element of a semigroup S there exists a
E-inverse element.

Proof.  Let a,b € S such that a& = (aba)&, then it is easy to verify that

(a€) (bab)¢ (af) = af and (bab)¢ (ag) (bab)§ = (bab)g.

Thus a& and (bab)¢ are mutually inverses. O

Before we present the main result of this section, we give the following
helpful lemma.

Lemma 6.12 Let m,n € Z*. An element a € S is T (m.n)-Tegular if and
only if a has a T(,, n)-inverse element.

Proof.  Let a € S is T(y, )-regular. Then a7, ,jaxa, for some z € S, i.e.
(uav)? = (uazav)P, for every u € S™ and every v € S™ and some p € Z™.
Put ' = zawx. Since zav € S"t? C S™ then we have that (uaz’av)? =
(vazazrav)? = (uaxav)?, for some ¢ € Z*. Hence,

(uaz'av)®= ((uaz'av)?)P= ((uvaxav)?)P= ((uazav)?P)i= ((uav)?)i= (uav)’?.

Thus, a7, ) az’a. Since uzx € SmHl C 8™ and zazv € S"T3 C S™ we have

k

that (u2’az'v)* = (uzazazazv)? = (uzazazv)k, for some k € Z*. Also,
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since ur € S™ and xv € S™ we have and (uzazarv)® t = (uz'v)t,

for some t € Z*. Hence,

= (uzaxv)

kt k\t

(uz'az'v)* = ((ur'az'v)*) = ((uzazazv)k)t =

= ((uzazazv))* = ((uz'v)H)* = (uz'v)*.
Thus, 2'az'T(;, »y2’. Therefore, 2’ is a 7, n)-inverse of a.
The converse follows immediately. O

By means of the following theorem we give a new result of the type of
Lallement’s lemma. This theorem is a generalization of the results obtained
by P. M. Edwards, P. M. Higgins and S. J. L. Kopamu [1].

Theorem 6.22 Letm,n € Z". Let ¢ be a homomorphism from a semigroup
S onto T and let S/T () be a w-regular semigroup. Then for every f €
E(T) there ezists e € E(S) such that ep = f.

Proof.  Since ¢ is surjective, then there exists a € S such that a¢p = f.
Assume a2 ¢ S then based on Lemma 6.12 we have that

(1) a2(mn)i?(m,n) = (a2(mn)iIa2(mn)i)?(m7n)’ x?(m,n) = (xQQ(mn)ix)?(m’n)’

for some x € S and i € Z*, whence

((a(mn)zxa(mn)z)])Q — ((CL( )2)] (a(mn ( (mn)zw)a(mn)z)]
— (a(m)m( 2(mn i )a(mz n)] ( xa( )n)]
(a(mn i a(mn )] ( )7

for some j € Z*. Let e = (a(™za(™")7 | then

ep = <(a<m">im<mn>i>j>¢ = ((almig)(xg)(alm™ig))

((agp) mn”(,m)(mﬂ%”)% |

<<a¢>3<mn>l<x¢><a¢> (mm)iyi - (since <a¢> =ap=f=f?
= ((

= ((

a*"ig) (2¢) (a*M9)) = ((a* M iza® )¢
a(mn)z( 2(mn)z 2(mn)2)a(mn) )])¢

Based on (1) there exists k € Z™ such that
(a(mn)z (a2(mn)z$a2(mn)z)a(mn)z)k _ (a(nz)m (a2(mn)zxa2(mn)z)a(mz)n)k

(a(m')ma2(mn)ia(mi)n)k _ a4(mn)z’k‘
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Finally,

(e¢)k _ (((a(mn)z(aQ(mn)szZ(mn)l)a(mn)l)J)¢)k
_ (((al(mn) (a2(mn)zxa2(mn)z>a(mn)l)k)(b)J — ((a4(mn)zk)¢)]
_ (a4(mn)ikj)¢ _ (a¢)4(mn)ikj — f4(mn)ikj = f.

Therefore, e¢ = f. O

The proof of the following corollary immediately follows from the previ-
ous theorem.

Corollary 6.1 Let m,n € ZT. Every semigroup S for which S/?(m,n) 18
m-reqular is idempotent-consistent.

The relation 7(; 1) we simply denote by 7. On a semigroup S this relation
is defined by
(a,b) €T & (Vx,y € 5) (zay,xby) € T.

According to Theorem 6.20 it is evident that:

Corollary 6.2 Let S be an arbitrary semigroup, then T is a congruence
relation on S.

For m = 1 and n = 1 based on the previously obtained results we give
the following corollaries which refer to the relation 7.

Corollary 6.3 An element a € S is T-reqular if and only if a has a T-inverse
element.

Corollary 6.4 Let ¢ be a homomorphism from a semigroup S onto T and
let S/T be a m-regular semigroup. Then for every f € E(T) there exists
e € E(S) such that ep = f.

Corollary 6.5 Every semigroup S for which S/T is m-regular is idempo-
tent-consistent.
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Chapter 7

Semilattices of Completely
Archimedean Semigroups

This chapter continues the previous study in a natural way. Here we give
the theory of semilattice decompositions of completely m-regular semigroups
on Archimedean components, i.e. we are going to talk about a completely
m-regular semigroups whose every regular element is a group element. These
semigroups were introduced by L. N. Shevrin, in 1977, but the first proof
concerning them was given by M. L. Veronesi, in 1984. These semigroups
will be described structurally in Theorem 7.4. Semilattices of completely
Archimedean semigroups are of special interest. In the first section we will
present the results regarding the semilattice of simple semigroups which are
regular. Various structures and characterizations of these semigroups repre-
sent the results obtained by S. Bogdanovi¢ and M. Ciric’, in 1993, which will
be shown in Theorem 7.6. In the last section of this chapter we will present
the results regarding bands and semilattices of nil-extensions of groups.

7.1 Semilattices of Nil-extensions of Simple
Regular Semigroups

The main purpose of this section is to study semigroups which are 7-
regular and are decomposable into a semilattice of Archimedean semigroups.

235
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We characterize them as semilattices of nil-extensions of simple regular semi-
groups.

The following theorem is a helpful result for future work.

Theorem 7.1 Let E(S) # @. Then the following conditions on a semigroup
S are equivalent:

(i) (Va € S)(Ve € E(S)) ale = a?|e;
(ii) (Va,be S)(Vee S) ale & ble = able;
(iii) (Ve,f,g € E(S)) elg & flg = eflg-

Proof.  (i)=(ii) Let a,b € S and let e € E(S) such that ale and ble, i.e. let
e = xay = ubv, for some z,y,u,v € S'. Based on the hypothesis we have

e = ee = ubvzay € S(bvra)?S C Sabs.

Hence, able.

(il)=(i) and (ii)=-(iii) This is obvious.

(iii)=(ii) Let a,b € S and let e € E(S) such that ale and ble. Then e =
ray = ubv for some z,y,u,v € S*. It is easy to verify that (yza)?, (bvu)? €
E(S) and e = za(yra)*y = u(bvu)?bv. Now, based on (iii) we obtain that
(yza)? (bvu)?|e whence able. a

Now, we are ready to prove the main result of this section.

Theorem 7.2 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of simple reqular semigroups;
(ii) S is a band of nil-extensions of simple reqular semigroups;
(iii) S is m-regular and S is a semilattice of Archimedean semigroups;
(iv) (Va,b€ S)(3n € Z%) (ab)™ € (ab)"Sa?S(ab)";
(v) S is m-regular and (Va € S)(Ve € E(S)) ale = a?|e;
(vi) S is m-regular and (Va,b € S)(Ve € E(S)) ale & ble = able;
(vil) S is w-reqular and (Ve, f,g € E(S)) e|lg & flg = eflg;
(viii) S is w-regular and in every homomorphic image with zero of S, the set
of all nilpotent elements is an ideal;

(ix) S is m-regular and every J-class of S containing an idempotent is a
subsemigroup of S;
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(x) S is intra-m-regular and every J-class of S containing an intra-reqular
element is a regular subsemigroup of S;
(xi) S is a semilattice of nil-extensions of simple semigroups and Intra(S)=

Reg(S).

Proof. (i)« (ii) This is evident.
(i)=(iii) Clearly, S is m-regular and based on Theorem 3.15 S is a semi-
lattice of Archimedean semigroups.

(iii)=(i) Let S be a m-regular semigroup which is a semilattice Y of Ar-
chimedean semigroups S,, @ € Y. Then S, is also m-regular and based
on Theorem 3.15 we have that S, is a nil-extension of a simple regular
semigroup, for every a € Y.

(i)=(iv) Let S be a semilattice Y of nil-extensions of simple regular
semigroups S, a € Y. Let a,b € S. Then ab,a?b € S,, for some a € Y.
Now according to Theorem 3.15 there exists n € Z™ such that:

(ab)™ € (ab)™Saa®bSs(ab)"™ C (ab)"SaS(ab)".
(iv)=-(iii) Let a,b € S. Then there exists n € Z™ such that
(ab)™ € (ab)"Sa?S(ab)™ C Sa*S,

and based on Theorem 5.1, S is a semilattice of Archimedean semigroups.
It is clear that S is w-regular.

(v)<(vi)<(vii) This follows from Theorem 7.1.

(iii)=(v) This follows form Theorem 5.1.

(v)=(iii) Let a,b € S. Then (ab)™ = (ab)"x(ab)™, for some z € S and
n € Z*. Since a|(ab)"x, we then have that a?|(ab)"x, whence (ab)® =

(
(ab)"z(ab)™ € Sa?S, and based on Theorem 5.1, S is a semilattice of
Archimedean semigroups.

(iii)«>(viil) This equivalence follows from Theorem 4.5, for n = 1.

(i)=(x) Let S be a semilattice Y of semigroups S,, « € Y, and for each
a €Y let S, be a nil-extension of a simple regular semigroup K,. Based on
Theorem 5.5, S is an intra m-regular semigroup and every J-class containing
an intra regular element is a subsemigroup of S. Let a € Intra(S). Then
a = za’y, for some z,y € S, and a € S,, for some a € Y, whence we
have that za,ay € S, and a = (za)"ay", for each n € Z*. But xza € S,
yields (za)" € K,, for some n € Z*, whence a = (za)"ay”™ € KySa C K.
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This means that K, is the J-class of a, which completes the proof of the
implication (i)=(x).

(x)=(iii) Let S be an intra m-regular semigroup whose every J-class
containing an intra regular element is a regular subsemigroup of S. Accord-
ing to Theorem 5.5, S is an intra w-regular semigroup and a semilattice of
Archimedean semigroups. Let a € S. Then there exists n € Z™ such that
a™ € Intra(S). If we denote by J the J-class of a", then J is a regular
semigroup and we have that a” € a"Ja"™ C a"Sa™. Thus, S is a w-regular
semigroup.

(iii)=(ix) Since S is a m-regular semigroup, then based on the proof
of (iii)<(x) we have that each J-class of S containing an idempotent is a
regular subsemigroup.

(ix)=>(iii) Let a,b € S. Then there exist z € S and n € Z" such that
(ab)™ = (ab)"x(ab)™ and (ab)"z,z(ab)" € E(S). It is also true that

(ab)" = (ab)"xz(ab)"™ = (ab)"x(ab)"z(ab)" € Sx(ab)™S

and
x(ab)™ = x(ab)"z(ab)" € S(ab)"S.

Thus (ab)"Jz(ab)™, and in a similar way we show that (ab)"J (ab)"xJ (ab)?".
Therefore, (ab)™ € S(ab)?*S C S(ba)" 1S and (ba)"*! € S(ab)™S, which im-
plies (ab)™, (ba)"+! € J(apyn- Since the J-class Ji4p)n contains an idempotent,
then it is a subsemigroup of S. Now (ba)"*!(ab)" € J(4p)n, whence

(ab)™ € S(ba)" T (ab)™S C Sa®S.

Based on Theorem 5.1, S is a semilattice of Archimedean semigroups.

(i)=(xi) Let S be a semilattice Y of semigroups S, which are nil-extensi-
ons of simple regular semigroups K,, o € Y. Consider an arbitrary a €
Reg(S). Then a € S,, for some a € Y, and there exists € S such that
a = azxa. Let x € Sg, for some B € Y. Then a = aff = Ba. Thus za € S,,
and za € E(S,) = E(K,), whence (za)x € K,S3 C 5,53 C Sag = Sa.
Now

a = a(zax)a € aS,a

S0
a € Reg(S,) C K, C Intra(S5).

Therefore
Reg(S) C Intra(S). (1)
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Conversely, let a € Intra(S). Then there exists a € Y such that a € S,, and
based on Lemma 2.7 we have that a € Intra(S,), i.e. there exist u,v € S,
such that

a = uav = uFa(av)F,

for every k € Z™. Since S, is a nil-extension of a simple regular semigroup
K, then there exists n € Z™ such that u", (av)" € K,. Hence,

a=u"Ma?y(ay)" € Koa®K, C K, C Reg(S).

Thus
Intra(S) C Reg(95). (2)

Based on (1) and (2) we have that Intra(S) = Reg(.5).

(xi)=(i) Let S be a semilattice Y of semigroups S,, @ € Y, and for each
a €Y, let S, be a nil-extension of a simple semigroup K,. For an arbitary
a € S there exists n € Z" such that " € K, C Intra(S) = Reg(S). Thus, S
is a mw-regular semigroup, and using (i)<(iii) we have that S is a semlattice
of nil-extensions of simple regular semigroups. O

Later we will consider chains of nil-extensions of simple regular semi-
groups.

Theorem 7.3 The following conditions on a semigroup S are equivalent:

(i) S is a chain of nil-extensions of simple reqular semigroups;
(ii) (Va,b€ S)(In € ZT) a™ € a™SabSa™ or b™ € b"SabSH™;
(iii) S is w-regular and (Ve, f € E(S)) ef|e or ef|f;

(iv) S is w-regular and Reg(S) is a chain of simple regular semigroups.

Proof.  (i)=-(ii) Let S be a chain Y of nil-extensions of simple regular semi-
groups So, « €Y. Let a,b € S. Then a € S, and b € Sg, for some o, 5 €Y.
If a8 = a then a,ab € S,, and based on Theorem 3.15, there exists n € Z™
such that a” € a"SabSa™. In a similar way, from a8 = 8 we obtain that
b™ € b SabSb", for some n € ZT.

(ii)=-(i) It is clear that S is m-regular. Let a,b € S. Then, based on the
hypothesis, there exists n € ZT such that a™ € SabS or b € SabS. Accord-
ing to Theorem 5.6 we have that S is a chain of Archimedean semigroups.
Since S is m-regular, then based on Theorem 7.2 we have that S is a chain
of nil-extensions of simple regular semigroups.
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(ii)=-(iii) This is clear.

(iii)=-(i) Let S be a m-regular semigroup and let e, f, g € E(S) such that
fle and gle. Then there exist z,y,u,v € S! such that e = xfy = ugv,
whence (yz f)?, (gvu)? € E(S). Now we have that (yxf)? € S(yzf)*(gvu)?S
or (guu)? € S(yxf)?(gvu)?S. If (yzf)? € S(yzf)?(gvu)?S, then (yzf)? €
SfgS. Thus

e = eee = xfyxfyzfy = xf(yzf)*y € xfSfgSy C SfgS,

so fgle in S. If (gvu)? € S(yxf)%(gvu)?S, then fgle in S. Now, based
on Theorem 7.2, S is a semilattice Y of nil-extensions of simple regular
semigroups Sy, o € Y.

Let o, € Y and e, f € E(S) be such that e € S,, f € Sg. If eflein S,
then aff = a, and if ef|f, then af = . Therefore, Y is a chain and S is a
chain of simple regular semigroups.

(i)=(iv) Let S be a chain Y of semigroups S,, a € Y, and for a € Y, let
Sa be a nil-extension of a simple regular semigroup K,. Let a,b € Reg(95).
Then a € S,, b € Sg, for some o, B € Y. It is clear that a € K, and b € K.
Since Y is a chain, then a8 = a or aff = «. Suppose that af = a. Then
ab € Sy, whence ab € K,S, C K,, i.e. ab € Reg(S). Similarly, we prove
that o = B implies ab € Reg(S). Hence, Reg(S) is a subsemigroup of S
and clearly

Reg(S) = U Reg(Sy) = U K,.

acY acY
Therefore Reg(.S) is a chain Y of simple regular semigroups K,, o € Y.

(iv)=-(iii) Let S be m-regular and let Reg(S) be a chain Y of simple
regular semigroups K,, a € Y. Consider arbitrary e, f € E(S). Then
e€ K, and f € Kg, for some o, 3 € Y. Since Y is a chain, then e,ef € K,
or f,ef € Kg, whence efle or ef|f. |

Exercises

1. A semigroup S is w-inverse and S is a semilattice of Archimedean semigroups if
and only if S is a semilattice of nil-extensions of simple inverse semigroups.
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7.2 Uniformly m-regular Semigroups

In this section we will give some general structural characteristics of
the semilattice of completely Archimedean semigroups, i.e. of uniformly n-
regular semigroups which are defined as w-regular semigroups whose any reg-
ular element is completely regular, i.e. semigroups whose Reg(S) = Gr(.5).
We remind the reader that semigroups As and By, which we used in the
following theorem, are defined by the presentations Ay = (a,e|a® =0, €2 =
e, aea = a, eae = e) and By = (a,b|a® = b* = 0, aba = a, bab = b).

Theorem 7.4 On a semigroup S the following conditions are equivalent:

(i) S is a semilattice of completely Archimedean semigroups;
(ii) S is a semilattice of Archimedean semigroups and completely T-regular;
(iii) S is uniformly m-regular;
(iv) (Va,b e S)(3n € Z*) (ab)"™ € (ab)"Sa(ab)™;
(iv’) (Va,b € S)(In € ZT) (ab)™ € (ab)"bS(ab)™;
v) S is completely w-regular and every D-class of S is its subsemigroup;
)

(vi) S is completely m-reqular and between the factors of completely -
reqular subsemigroups of S there are no Ay and Ba semigroups;
(vii) S is completely m-regular, Reg((E(S))) = Gr((E(S))) and for alle, f €
E(S), fle in S implies fle in (E(S5));
(viii) S is right m-regular and a semilattice of left completely Archimedean
SEMIgroups;
(ix) S is w-regular and a semilattice of left completely Archimedean semi-
groups;
(x) S is w-regular and every regular element of S is left reqular;
(xi) S is w-regular and each L-class of S containing an idempotent is a
subsemigroup.
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Proof.  (i)=-(iv) Let S be a semilattice Y of completely Archimedean semi-
groups Sy, € Y. Assume a,b € S. Then ab,ba € S, for some o € Y, so
according to Theorem 3.16 we obtain that

(ab)™ € (ab)"S(ba)(ab)™ C (ab)"Sa(ab)",

for some n € Z™.

(iv)=-(ii) From (iv) it immediately follows that S is completely m-regular.
Assume a,b € S. Based on (iv), (ab)" € Sa?S, for some n € ZT, so based
on Theorem 5.1, S is a semilattice of Archimedean semigroups.

(ii)=(i) This follows from Lemma 2.7 and Theorem 3.16.

(i)=-(iii) Let S be a semilattice Y of completely Archimedean semigroups
Sa, a €Y. Assume a € Reg(S). Then a € S, for some o € Y. For a there
exists x € Sg, B € Y such that a = aza € 5,535, € Sag, so it follows
that aff = «a. Since zaz € S,, then based on Theorem 3.16 we obtain that
a € Reg(Sy) = Gr(Sy) C Gr(S). Whence, Reg(S) C Gr(S) C Reg(S), i.e.
Reg(S) = Gr(S). Thus, S is uniformly 7-regular.

(iii)=-(ii) From (iii) it immediately follows that S is completely m-regular.
Assume a,b € S. Then (ab)" € G, for some n € Z*, e € F(S), so based
on Theorem 1.8 it follows that eab € G.. Let x be an inverse of eab in
the group G.. Then e = eabr = eabxe, whence ea = eabxrea. Thus, ea €
Reg(9) = Gr(9), i.e. ea = (ea)?y = (eae)(ay), for some y € S. Now we
have that eae = eabreae = (eae)(ay)(bx)(eae), so eae € Reg(S) = Gr(9),
i.e. eae € Gy, for some f € E(S). It is easy to see that ef = fe = f. On
the other hand, e = eabx = (eae)(ay)(bzr) = f(eae)(ay)(bx), whence fe = e.
Thus, e = f, i.e. eae,eab € G, whence

ea’be = (ea)(abe) = (ea)e(ab) = (eae)(eab) € G..
Thus, (ab)”, ea’be € G, whence
(ab)™ € Geea’be C Sa?S,

so according to Theorem 5.1, S is semilattice of Archimedean semigroups.

(i)=(vi) Let S be a semilattice Y of completely Archimedean semigroups
Sa, € Y. Assume a completely m-regular subsemigroup 7T of S. Then T is a
semilattice Z of semigroups T,,, a € Z, where Z = {a € Y |T NS, # 0} and
T, =TNS,, a € Z. 1t is evident that T, a € Z, is a completely m-regular
semigroup and all its idempotents are primitive. Based on Theorem 3.16
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semigroups Ty, a € Z are completely Archimedean. Thus, T is a semilattice
of completely Archimedean semigroups. Since (i)<(iv), then every factor of
T is a semilattice of completely Archimedean semigroups. Hence, between
the factors of T' there are no semigroups As or Ba.

(vi)=(v) Assume that there exists a regular D-class D,, a € S, which
is not a subsemigroup of S. Based on Lemma 1.32 D = J, so D, = J,.
The ideal J(a) of a semigroup S is a completely m-regular semigroup and
it is also the principal factor K = J(a)/I(a). Based on Theorem 1.22, K
is a completely O-simple semigroup, i.e. K = M°(G;I, A, P), where P is a
regular matrix. Since J, is not a subsemigroup of S, then K has the zero
divisor, i.e. there exists i € I, A € A such that p;y = 0. On the other hand,
since P is regular, then there exists j € I and p € A such that p,; # 0 and
prj # 0. Let 1o = {4, 5}, Ao = {\, u} and let Py be a Py x Ag submatrix of P.
There is a subsemigroup M = M°(G; Iy, Ag, Py) of K. Then T = M* U I(a)
is a completely m-regular subsemigroup of S, because and M and I(a) are
completely m-regular. Also, M is a factor of T, and since M is a completely
O-simple, then # is a congruence on M and M/H = A,, for p,; # 0, and
M/H = By, for p,; = 0, respectively. Thus, one of the semigroups Ay or
By is a factor of T, which is a contradiction according to hypothesis in (vi).
Therefore, (v) holds.

(v)=(ii) Assume a,b € S. Based on Theorems 2.3 and 1.8 (ab)", (ba)"™ €
Gr(S), for some Z*, whence (an)™ € (ab)"*1S C (ab)"aS, (ba)™ € S(ba)™*
C Sa(ba)™, so (ab)"R(ab)"a = a(ba)™L(ba)™. Thus, (ab)"D(ba)", and since
every regular D-class of S is a subsemigroup, then (ab)"D(ba)"(ab)”. On
the other hand, from D C J we obtain that (ab)"J(ba)"(ab)™. Whence,
(ab)® € S(ba)"(ab)™S C Sa?S. Now, according to Theorem 5.1, S is a
semilattice of Archimedean semigroups.

(i)=(vii) Let S be a semilattice Y of completely Archimedean semigroups
Sa, @ € Y, and for every a € Y, S, is a nil-extension of a completely simple
semigroup K,. Consider e, f € E(S) such that e € SfS, and let e € S,
and f € Sg, for some o, € Y. Then o = aff = Ba and ef € S,, whence
ef =eef € KuSo C K. Now there exists x € K, such that ef = efxef.
Thus zef € E(S,). Based on Theorem 3.16, (E(K,)) is (completely) simple,
whence

e € (E(Kq))zef(E(Ka)) = (E(Ka))zef f(E(Ka)) € (E(S))f(E(S)),

which was to be proved. Using Lemma 2.11 we have that (E(S)) is com-
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pletely m-regular and based on Lemma 2.5 we have
Reg(E(S)) = SNReg(S) = SNGr(S) = Gr(E(Y)).

(vii)=-(i) Conversely, let S be completely m-regular. Then based on
Lemma 2.11, (E(S)) is completely m-regular and based on (i)<(iii) (E(5)) is
a semilattice of completely Archimedean semigroups. Consider e, f, g € E(S)
such that e|g and f|g in S. Then from the hypothesis we have that e|g and
flg in (E(S)). Now, based on Theorem 7.2, ef|g in (E(S)) (and also in S).
Again based on Theorem 7.2 we have that S is a semilattice of Archimedean
semigroups. Since S is completely m-regular, we then have based on (i)« (ii)
that S is a semilattice of completely Archimedean semigroups.

(i)« (viii) and (viii)<(ix) This follows from Theorem 5.27.
(i)=(xi) This follows from Theorem 5.27.

(xi)=(x) Assume a € Reg(S), « € V(a). Let L be the L-class of a.
Clearly, alzra, i.e. xza € L. Based on the hypothesis, L is a subsemigroup
of S, so za®> = (za)a € L, i.e. alxza®, whence a € Sxza®? C Sa?, and

a € LReg(S).

(x)=(ii) Clearly, S is left m-regular, so according to Theorem 2.3, it
is completely m-regular. Assume a,b € S. Then (ab)"” € G, for some
n € Z", e € E(S), and based on Lemma 1.8, abe € G,. Let x be the inverse
of abe in the group G.. Then e = zabe = exabe, whence be = bexabe.
Therefore, be € Reg(S) C LReg(S), so be = y(be)? = (yb)(ebe), for some y €
S. Clearly, be = y™(be)™ "1, for each m € ZT. Assume that (ebe)™ € Gy,
for some m € Z*, f € E(S). Then it is easy to verify that ef = fe = f.
On the other hand,

e = zabe = zay™(be)™ ! = zay™b(ebe)™ = zay™b(ebe)™ f = ef.

Hence, e = f, i.e. (ebe)™ € G., so again based on Lemma 1.8, ebe =
e(ebe) € Ge. Now, eab’e = (eab)(be) = (abe)(be) = (abe)(ebe) € G, whence
(ab)"™, eab®e € G.. Therefore, (ab)" € Geeab’e C Sb2S, so based on Theorem
5.1, S is a semilattice of Archimedean semigroups. O

Theorem 7.5 The following conditions on a semigroup S are equivalent:

(i) S is a chain of completely Archimedean semigroup;
(ii) S is completely m-regular and for all e, f € E(S) is e € efSfe or
f € feSef;
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(iii) S is completely w-regular and for alle, f € E(S) ise € efS or f € Sef;

(iv) S is completely m-regular and Reg(S) is a chain of completely simple
semigroups;

(v) S is completely w-regular and for all e, f € E(S), e € ef(E(S)) fe or
fe fe(E(S))ef;

(vi) S is completely m-reqular and for all e, f € E(S), e € ef(E(S)) or
fe(ES)ef;

(vii) S is completely m-regqular and (E(S)) is a chain of completely simple
semigrups.

Proof.  (i)=(ii) Let S be a chain Y of completely Archimedean semigroups
Sa, @ € Y. It is evident that S is completely m-regular. Assume e, f € E(S),
and assume that e € S, f € S, a, 8 € Y. Since Y is a chain, then aff = «
or af = B. If aff = «, then e,ef € S,, so based on Theorem 3.16 and
Lemma 3.15 we have that efe = e(ef)e € eSpe = Ge. Thus, e,efe € G, so

e €efeGeefe CefSfe.

Similarly, if a8 = g it follows that f € feSef.

(ii)=-(iii) This follows immediately.

(iii)=-(i) Assume a,b € S. Then (ab)™, (ba)™ € Reg(S), for some m,n €
Z*. Assume x € V((ab)™), y € V((ba)"). Then y(ba)™, (ab)"x € E(S), so
by (iii) we obtain that

y(ba)"™ € y(ba)"(ab)™zS or (ab)"x € Sy(ba)"(ab)x,

SO
y(ba)" € (ba)"(ab)"xS or (ab)™ € Sy(ba)"(ab)™.

Thus, (ab)"*! € Sa?S or (ab)™ € Sa%S, so based on Theorems 5.1 and 7.4
we obtain that S is a semilattice Y of completely Archimedean semigroups
Sa, @ €Y. Assume o, € Y, e € E(S,), f € E(Sg). Then e € efS or
f e Sef. If e € efS, then e = efu, for some v € S. If we assume that
u € Sy, 7 € Y, then we obtain that a = af~, whence o = «. Similar, if
f € Sef then it follows that a8 = 5. Thus, Y is a chain.

(ii)=(v) Let T" = Reg(S). Assume a,b € T, z € V(a), y € V(b).
Then za,by € E(S), so from (ii) it follows that xa € zabySbyzra or by €
byraSxaby. If xa € rabySbyzra, then

ab = axabyb € axabySbyxabyb = abySyxab C abSab,
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so ab € T. Similar, if by € byzaSxaby, then ab € T. Thus, T = Reg(S) is
a subsemigroup of S. Since Gr(S) = Gr(7) C T and since S is completely
m-regular, then we obtain that T is also completely m-regular.

Assume a € T, x € V(a). Then, from az,za € E(S), from (ii) we obtain
that ax € ar?aSza’x or za € ra’xSax’a, whence a = axa € Sa?S. Based
on Theorem 2.6 we obtain that 7" is a semilattice Y of simple semigroups T4,
a €Y, so based on Lemma 2.7 and Theorem 2.5, T,,, « € Y are completely
simple semigroups. In the same way as in proof (iii)=(i) we obtain that T’
is a chain.

(iv)=-(ii) This follows from the fact that is E(S) = E(Reg(S)) and the
fact is (1)< (ii).

(i)=(v) Let S be a chain Y of completely Archimedean semigroups Sy,
a €Y. Clearly, S is a completely m-regular semigroup. Let e, f € E(S)
and let e € Sy, f € Sp, for some o, € Y. Since Y is a chain, then
af =aor af =p. If af = a, then e, ef € S,, so based on Theorem 3.16
and Lemma 3.15, efe = e(ef)e € eSqe = G.. Thus, e,efe € Ge, whence
e € efeGeefe, ie. e = efexefe = efzfe, for some x € G.. Therefore,
e = ef(fafe)(efxf)fe € ef(E(S))fe. Similarly we prove that af =
implies f € fe(E(S))ef.

(v)=>(vi) This follows immediately.

(vi)=(i) Let a,b € S. Then (ab)™, (ba)" € Reg(S), for some m,n € Z*.
Let z € V((ab)™), y € V((ba)™)). Then y(ba)™, (ab)™z € E(S), so based on
(iii) we obtain that

y(ba)" € y(ba)" (ab)™x(E(S))

(ab)™z € (E(S))y(ba)" (ab)™z,
whence
(ba)" € (ba)"(ab)"xS

(ab)™ € Sy(ba)"™(ab)™.

Therefore, (ab)" ™ € Sa%S or (ab)™ € Sa?S , so from Theorem 5.1 it follows
that S is a semilattice Y of completely Archimedean semigroups S, @ € Y.
If o, B €Y and e € E(S,), f € E(Sp), then e € ef (E(S)) implies aff = a,
and f € (E(S))ef implies af = 8. Thus, based on (vi) we obtain that Y is
a chain.
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(vii)=-(v) Since (E(S)) is a chain of completely simple semigroups, then
based on (i)<(v) we have the assertion.

(i)=(vii) Based on (i)<(iv), Reg(.9) is a chain of completely simple semi-
groups. Based on this and Theorem 2.16 we have that (£(S)) is a union of
groups, whence from (i)<(v) we obtain that (E(S)) is a chain of completely
simple semigroups. O

Exercises

1. A semigroup S is a semilattice of completely Archimedean semigroups if and
only if S is completely 7-regular with the identity (ab)? = ((ab)°(ba)®(ab)?)°.
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7.3 Semilattices of Nil-extensions of Rectangular
Groups

In the previous section we observed a decomposition of (completely) -
regular semigroups into a semilattice of completely Archimedean semigroups,
i.e. a semilattice of nil-extension of completely simple semigroups (Theorem
3.16). In this section we will discuss one special case of these decompositions,
i.e. we will discuss semillatice decompositions in which every component is
an orthodox semigroup, i.e. a semigroup in which the set of all idempotents
is its subsemigroup.

We start with the following result.

Lemma 7.1 The following conditions on a semigroup S are equivalent:

(i) E(S) is a subsemigroup of S;
(ii) ifa,b€ S and x € V(a), y € V(b), then yx € V(ab);
(iii) for all a,b,x,y € S, a = axa and b = byb implies ab = abyzxab.



248 CHAPTER 7. SEMILATTICES OF COMPLETELY ...

If S is regular, then each of the previous conditions is equivalent to:

(iv) every inverse of every idempotent from S is an idempotent.

Proof.  (i)=(ii) Assume a,b € S, z € V(a), y € V(b). Then based on
za,by € E(S) and (i) we obtain that zaby, byza € E(S), whence

abyrab = axabyrabyb = a(xaby)?b = axabyb = ab
yrabyr = ybyrabyrar = y(byxra)®xr = ybyrar = yx.
Therefore, yz € V(ab).
(ii)=-(iii) Let @ = aza, b = byb, a,b,z,y € S. Then zax € V(a),
yby € V(b), so by (ii), ybyxazx € V(ab). Hence,

ab = ab(yby)(xax)ab = abyxab.

(iii)=(i) This follows immediately.
(i)=(iv) Let e € E(S) and let x € V(e). Then ze,ex € E(S), so based
on (i) we obtain that

2 2 2

x = zex = (ze)(ex) = [(ze)(ex)]” = (xex)” = x*.

Now, let S be a regular semigroup.

(iv)=-(i) Assume e, f € E(S). Since S is regular, then there exists x €
V(ef), whence

(ef)(fze)(ef) = efvef =ef, (fze)(ef)(fze) = f(zefr)e = fre,
so ef € V(fxe). On the other hand, fre = f(zefr)e = (fre)?, ie. fre €
E(S), so based on (iv) we obtain that ef € FE(S). O

According to the following lemma we describe some completely simple
semigroups which are not orthodox, i.e. which are not rectangular groups.

Lemma 7.2 Let R be the ring Z of all integers or the ring Z, of all the
rests of the integers by mod p, p € Z*, p > 2, and let I = {0,1} C R. The
set R x I x I under multiplication defined by

(m,Z,)\)(TL,],/J,) = (m—l—n— (’L—j)<)‘_u)7lvu)7 m,n € Rviaja)\au € Ia

is a semigroup, in notation E(co) = Z x I x I, E(p) = Z, x I x I. Also,
E(oo) and E(p), p € Z+, p > 2, are completely simple semigroups and they
are not rectangular groups.
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Proof. 1t is evident that E(co) and E(p) are semigroups. Also, it is clear
that E(co) (E(p)) is a rectangular band of I x I groups E; y = {(m;4,\) |m €
R}, i,A € I, where R =Z (R = Z,), so based on Corollary 3.8, E(co) and
E(p) are completely simple semigroups. The set of all idempotents from
E(o0) (E(p)) is the set {(0;4,\) |4, A € I}, and it is easy to prove that it is
not a subsemigroup of E(co) (E(p)). Thus, according to Theorem 3.6 E(c0)
and E(p), p € ZT, p > 2 are not rectangular groups. O

A factor K of a semigroup S is a completely m-regular factor of S if each
of its elements is completely 7-regular.

The following theorem is the main result of this section.

Theorem 7.6 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of rectangular groups;

(ii) S is a semilattice of completely Archimedean semigroups and for all
e, f € E(S) there exists n € Zt such that (ef)" = (ef)";

(iii) S is completely m-reqular and (zy)° = (xy)°(yz)°(zy)°;

(iv) S is m-reqular and a = axa implies a = azx?a?;

(v) S is a semilattice of completely Archimedean semigroups and the in-
verse of every idempotent from S is an idempotent;

(vi) S is a semilattice of completely Archimedean semigroups and between
subsemigroups of S there are no E(oco) and E(p), p € Z+, p > 2
Semigroups;

(vil) S is completely w-regular and between the completely w-reqular factors
of subsemigroups of S there are no Ao, By and E(p), p € ZT, p > 2
Semigroups.

Proof.  (i)=(ii) Let S be a semilattice Y of semigroups S, a € Y, and
for « € Y, let S, be a nil-extension of a rectangular group K,. Assume
e, f € E(S). Then ef, fe € S, for some o € Y, so there exists n € Z™ such
that (ef)", (fe)"™ € K,. Furthermore, we have that (ef)" € Gy, (fe)" € Gy,
for some g,h € E(K,), so (ef)"xz = g, (fe)"y = h, for some z € Gy,
y € Gp, and from Theorem 1.8 it follows that (ef)"*! € G4. Since K, is a
rectangular group, then ghg = g. Now we have that

(ef)" = (ef)"g = (ef)"(ef)"z = (ef)"e(ef)"z = (efe)"g
=e(fe)"g = e(fe)"hg = e(fe)"(fe)"yg = e(fe)" f(fe)"yg
= (ef)"hg = (ef)" T ghg = (ef)" g = (ef)" .
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(ii)=(i) Let S be a semilattice Y of completely Archimedean semigroups
Sa, a € Y, and let for all e, f € E(S) there exists n € Z* such that
(ef)" = (ef)"*L. For a € Y, let S, be a nil-extension of a completely simple
semigroup K,. Assume a € Y, e, f € E(K,). Based on the hypothesis,
(ef)™ = (ef)"*!, for somen € ZT, so (ef)" = (ef)"*! € E(S). On the other
hand, ef € K,, so ef € G, for some g € E(K,). Since (ef) C Gy, then
(ef)" = (ef)"™*! = g, whence ef = efg = ef(ef)" = (ef)"*) = g € E(S).
Thus, E(K,) is a subsemigroup of K,, so based on Theorem 3.6 K, is a
rectangular group. Therefore, (i) holds.

(i)=(iii) Let S be a semilattice Y of semigroups S,, a € Y, and for
a €Y, let S, be a nil-extension of a rectangular group. According to
Theorem 7.4, S is completely w-regular. Assume x,y € S. Then xy, yx € S,,
for some a € Y, whence (zy)°, (yz)° € E(S,), so based on Corollary 3.12

(zy)° = (zy)° (yx)° (zy)°.

(iii)=-(iv) From (iii) it immediately follows that S is m-regular. Let a =

azxa, a,x € S. Then az,ra € FE(S), whence (az)? = ax, (za)’ = za, and
based on (iii) we obtain that a = (ar)a = (az)(za)(azx)a = az’a’ra =
azx?a’.

(iv)=(v) Let (iv) hold. Assume a € Reg(S), * € V(a). Then from
(iv) we obtain that a = az?a? € Sa?, and x = ra®2?, whence a = aza =
ara’z?a = a*r?a € a®S. Thus, a € Gr(S). Hence, Reg(S) = Gr(S),
so according to Theorem 7.4 S is a semilattice of completely Archimedean
semigroups. Assume e € E(S), y € V(e). Then based on (iv) we have that

y = ye’y? = yey? = y?. Therefore, (v) holds.

(v)=(vi) Let (v) hold. If S contains a subsemigroup isomorphic to E(co)
or E(p), p € ZT, p > 2, then there exists an idempotent from S and its
inverse which is not an idempotent. Actually, the element (1;0,0) is inverse
of the idempotent (0;1,1) in E(co), E(p) respectively, where (1;0,0) is not
an idempotent.

(vi)=-(i) Let (vi) hold. If we want to prove (i), then it is enough to prove
that every completely simple subsemigroup of S is a rectangular group. Let
K be a completely simple subsemigroup of S. Assume that K is not a
rectangular group. According to Theorem 3.6 there exist e, f € E(K) such
that ef ¢ E(K). Hence, ef is a group element of the order p > 2 or of
an infinite order in a semigroup K, and it is easy to prove that ef,efe, fef
and fe are different elements of the same order (finite or infinite). Also, it
is easy to prove that ef,efe, fef and fe are in the different H-classes of K
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and for K it holds:

(1) efLfef, efRefe, feLefe, feRfef.

According to Theorem 3.8, K is a rectangular band of I x A groups H;),
1€ I, A\ € A, which are H-classes of K. For the sake of simplicity, we use the
notation ef € Hyg, fe € Hy1, 0,1 € I, 0,1 € A. Based on (1), efe € Hpy,
fef € Hyg. With Gy, Go1, G1o, G11 we respectively denote the monogenic
subgroups of Hyg, Ho1, Hip and Hi; generated by elements ef, efe, fef
and fe, and let T'= Gog U Go1 U G19 U G11. Now, there are two cases:

(A) The elements ef, efe, fef and fe are of an infinite order, i.e. the
groups Goo, Go1, Gio and G711 are isomorphic to the additive group of inte-
gers. Then it is easy to prove that T is a subsemigroup of K isomorphic to
E(oc0), where one isomorphism ¢ from E(co) to T is given by: for n € Z

(n; 0, 0)()0 - (ef)nv (TL; 0, 1)90 = (efe)n’

(n;1,0)p = (fef)", (n; 1, 1) = (fe)™

(B) The elements ef, efe, fef and fe are of a finite order p > 2, i.e.
the groups Ggg, Go1, G1p and (11 are isomorphic to the additive group of
the rest of the integers by mod p. Then it is easy to prove that T is a
subsemigroup of K isomorphic to E(p), where one isomorphism ¢ from E(p)
to T' is given by: for n € Z,,

(n;0,0)p = (ef)", (n;0,1)p = (efe)”, (n;1,0)p = (fef)", (n;1,1)p =(fe)".

Hence, in both cases we obtain a contradiction to the hypothesis in (vi).
Therefore, K must be a rectangular group.

(vi)«<>(vii) This follows from Theorem 7.4 and from the fact that E(p) is
a factor of E(co), for every p € ZT, p > 2. O

Lemma 7.3 A semigroup S is a chain of rectangular bands if and only if
forall xz,y € S is x = zyx ory = yzy.

Proof. Let S be a chain Y of rectangular bands Sy, @ € Y. Assume
z,y € S. Then z € So, y € S, o, € Y, and since T is a chain then
af =aor af = . If af = «, then z,xy € S,, so since S, is a rectangular
band, then zyr = z(zy)xr = z. Similarly, from af = § it follows that
Yyry =y.
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Conversely, let xyx = z and yxy = y for all z,y € S. Then, for z € S

we have that z = 23, and = = z2?z or 22 = 22222, ie. z = z* or © = 25.

Thus, z = 2 or 22 = 2°, whence z = 22. Hence, S is a band, so based on
Corollary 3.6, S is a semilattice Y of rectangular bands S,, a € Y. It is

easy to prove that Y is a chain. O

The chain of nil-extension of rectangular groups will be described by the
following theorem.

Theorem 7.7 The following conditions on a semigroup S are equivalent:

(i) S is a chain of nil-extensions of rectangular groups;
(i1) S is completely w-regular and Reg(S) is a chain of rectangular groups;
(iii) S is completely m-regular and E(S) is a chain of rectangular bands.

Proof.  (i)=-(ii) Let S be a chain Y of semigroups S,, a € Y, and fora € Y
let S, be a nil-extension of the rectangular group K,. Based on Theorem
7.4, S is completely m-regular. Assume e, f € E(S). Then e € K,, f € Kg,
a,B € Y. Since Y is a chain, then aff = a or af = 8. If af = «, then
ef = elef) € KoSq C K,, while based on Theorem 7.6 we obtain that
(ef)™ = (ef)" "1, for some n € ZT, whence ef € E(S,) = F(K,), so from
Lemma 3.8 it follows that e = e(ef)e = efe. Similarly, from af = § it
follows that ef € E(Sg) and f = fef. Thus, E(S) is a subsemigroup of S,
and based on Lemma 7.3, E(S) is a chain of rectangular bands.

(ii)=-(iii) This is proved in a similar way as (i)=(iii).
(iii)=-(i) and (iii)=-(ii) This follows from Theorem 7.5. m|

A semigroup S is a singular band if S is either a left zero band or a right
zero band. A semigroup S is a Rédei band if for all x,y € S, zy = = or
zy = y. The rectangular Rédei bands are described by the following lemma:

Lemma 7.4 A semigroup S is a rectangular Rédei band if and only if S is
a singular band.

Proof. Let S = I x A be a rectangular band. Assume that is [I| > 2
and |[A| > 2, i.e. assume i,j € I, 1 # j, and \,u € A, X\ # u. Then

(4, A) (4, p) = (4, 1), so (i, A)(j, n) # (4, A) and (4, A)(j, p) # (4, ), which is
a contradiction of the hypothesis that S is a Rédei band. Thus, |I| =1 or
|A| =1, so S is a singular band.

The converse, follows immediately. O
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Now, we discuss a semilattice of semigroups in which an arbitrary com-
ponent is a nil-extension or a nil-extension of a right group (”the mixed
properties”).

Theorem 7.8 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of left or right groups;

(ii) (Va,b € S)(In € ZT) (ab)™ € (ab)™S(ba)™ U (ba)™S(ab)™;

(iii) S 4s w-regular and for all a,b € S there exists n € Z* such that
(ab)™ € SaUbS;

(iv) S is a semilattice of completely Archimedean semigroups and for all
e, [ € E(S) there exists n € Z* such that (ef)"™ = (efe)” or (ef)" =
(fef)";

(v) S is completely w-regular and (xy)= (zy)°(yx)? or (zy)°= (yx)°(zy)°;

(vi) S is m-reqular and a = axa implies ax = ax’a or ax = xa’w.

Proof.  (i)=-(ii) Let S be a semilattice Y of semigroups S,, a € Y, and for
a €Y let S, be a nil-extension of a semigroup K, where K, is a left or a
right group. Assume a,b € S. Then ab,ba € S,, for some « € Y, whence
there exists n € ZT such that (ab)”, (ba)" € K,, so according to Theorem
3.7 and from its dual we obtain that

(ab)™ € (ab)" Ky (ba)™ C (ab)™S(ba)",
if K, is a left group, whence
(ab)" € (ba)"Kq(ab)™ C (ba)"S(ab)™,

if K, is a right group. Therefore, (ii) holds.

(ii)=-(iii) This is evident.

(iii)=(iv) Let (iii) hold. Assume a € Reg(S), =z € V(a). Then, based
on (iii) we obtain that az € Sa U xS and za € Sz UaS. If ax = ua, for
some u € S, then a = aza = ua® € Sa?. If ax = zv, for some v € S, then

2 = azxva and a = xTva = raxva = :ca2 S Sa2.

a = ara = xrva, whence a
Thus, ax € Sa U xS implies that a € Sa®. Similarly, we prove that from
ar € SaU xS follows that a € a®S. Hence, a € Gr(9), i.e. Gr(S) = Reg(S),
so based on Theorem 7.4, S is a semilattice of completely Archimedean

semigroups.
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Fore, f € E(S), based on (iii), there exists n € Z* such that (ef)" € SeU
fS. If (ef)™ = ue, for some u € S, then (ef)" = ue = uee(ef)"e = (efe)".
Similarly, from (ef)” € fS it follows that (ef)™ = (fef)".

(iv)=(i) From (iv) it immediately follows that for all e, f € E(S) there
exists n € ZT such that (ef)" = (ef)" "1, so based on Theorem 7.6 we obtain
that S is a semilattice Y of semigroups S,, o € Y, and for a € Y, S, is a
nil-extension of a rectangular group. Assume a € Y, e, f € E(S,). From
(iv), using Corollary 3.12, it follows that ef = efe = e or ef = fef = f,
whence E(S,) is a rectangular Rédei band, so based on Lemma 7.4 E(S,) is
a singular band. Thus, based on Theorem 3.17 S, is a nil-extension of left

or right groups.

(i)=(v) This proves similar as (i)=-(iii) in Theorem 7.6.

(v)=(vi) This proves similar as (iii)=(iv) in Theorem 7.6.

(vi)=(i) From (vi) we obtain that from a = awa it follows that az = ax?a
or ar = za’r, whence a = (ax)a = ar’®a® or a = ax(ax)a = ax(za’s)a =
ax’a’ra = ax’a®. Thus, in both cases a = az?a?, so based on Theorem
7.6, S is a semilattice Y of semigroups S,, a € Y, and for a € Y, S, is a
nil-extension of a rectangular group. Assume o € Y, e, f € E(S,). Based
on Corollary 3.12, E(S,) is a rectangular band, so e = efe, and from (vi) we
obtain that ef = ef?e = efe = e or ef = fe?f = fef = f. Hence, E(S,)
is a rectangular Rédei band, so based on Lemma 7.4, E(S,) is a singular
band. Thus, according to Theorem 3.17, S, is a nil-extension of a left or

right group. O

Using Theorem 7.8, the following result we prove in a similar way as
Theorem 7.7.

Corollary 7.1 The following conditions on a semigroup S are equivalent:
(i) S is a chain of nil-extensions of left or right groups;
(iii) S is completely m-regular and E(S) is a chain of singular bands;

(iv) (Va,b € S)(3n € Z*) a" € a®S(ab)" U (ba)"Sa®** Vv b" € b*"S(ba)" U
(ab)"Sb*".

)

(ii) S is completely w-regular and Reg(S) is a chain of left and right groups;
)
)

Just like Theorem 7.8, we prove the following theorem:
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Theorem 7.9 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of left groups;
(ii) (Va,b€ S)(In € ZT) (ab)™ € (ab)™S(ba)™;
(iii) S is w-regular and a semilattice of left Archimedean semigroups;
(iv) S is a semilattice of completely Archimedean semigroups and for all
e, f € E(S) there exists n € ZT such that (ef)™ = (efe)";
(v) S is completely w-reqular and (zvy)° = (xy)°(yx)°;

(vi) S is m-reqular and a = axa implies ax = ax’a.

Corollary 7.2 The following conditions on a semigroup S are equivalent:

(i
u

(iii

S is a chain of nil-extensions of left groups;

S is completely m-regular and Reg(S) is a chain of left groups;
S is completely m-regular and E(S) is a chain of left zero bands;
(Va,b € S)(3n € ZT) a™ € a*S(ab)™ U (ba)"Sa?".

~— — — ~—

(iv

Exercises

1. The following conditions on a semigroup S are equivalent:

(a) S is a semilattice of nil-extensions of rectangular bands;
(b) S is w-regular and E(S) = Reg(S);
(c) (Va,b€ S)(3n € ZT) (ab)* ! = (ab)"ba?(ab)™.

2. Prove that a semigroup S is a left (right) regular band if and only if S is a
semilattice of left zero (right zero) bands.

3. The following conditions on a semigroup .S are equivalent:

(a) S is a semilattice of nil-extensions of left groups;

(b) (Vz € S)(Ve € E(9)) z|e = ex = exe;

(c) S is a semilattice of completely Archimedean semigroups and for all e, f €
E(S) there exists n € ZT such that (ef)"L(fe)™;

(d) S is a semilattice of completely Archimedean semigroups and a = aza = aya
implies ax = ay.

4. A completely simple semigroup S is not a rectangular group if and only if §
contains some semigroup E(oo) or E(p), p € ZT, p > 2, as its own subsemigroup.

5. The following conditions on a completely m-regular semigroup S are equivalent:
(a) S is a band of left Archimedean semigroups;
(b) S satisfies the identity (zy)° = (zy)°(2%y°)?;
(c) there are no semigroups Az, By, Rs 1, RZ(n), for all n > 1, among the
completely m-regular divisors of S.
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6. The following conditions on a completely m-regular semigroup S are equivalent:

(a) S is a semilattice of left Archimedean semigroups;

(b) S satisfies the identity (yz)° = (yx)°(zy)?;

(c) there are no semigroups Ay, By, Ry among the completely m-regular divisors
of S;

(d) each regular D-class of S is a left group.
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7.4 Locally Uniformly m-regular Semigroups

For any idempotent e of a semigroup S, the subsemigroup eSe is a max-
imal submonoid of S, and it is known under the name local submonoid of
S. If K is some class or some property of semigroups, then .S is said to be
a locally K-semigroup if any local submonoid of S belongs to I or has the
property . The main purpose of this section is to characterize a more gen-
eral kind of semigroups — w-regular semigroups whose any local submonoid
is uniformly w-regular, and which are called locally uniformly m-regular.

We define the sets Q(S) and M (S) by

Q)= |J eSfr and M) = []J eSe

e,fEE(S) e€E(S)

Let us note that eSf =eSNSf, for all e, f € E(S).
If T' is a subsemigroup of S then

Reg(T)={a €T |3z €T) a=azxa},
reg(T)={aeT|(Fz €S) a=axa}.

Evidently, Reg(T) C reg(T).
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Recall that, a w-regular semigroup whose any regular element is com-
pletely regular is called uniformly w-reqular.

Next we offer several results that describe some properties of the regular
and group parts of quasi-ideals eSf, e, f € E(S), and bi-ideals eSe, e €
E(S), of a semigroup S.

Lemma 7.5 Let e, f be arbitrary idempotents of a semigroup S. Then the
following conditions hold:

(i) Reg(eSf) = Reg(eS)NReg(Sf);
(i1) Gr(eSf) =eSfnNGr(S).

Proof. (i) Let a € Reg(eS) NReg(Sf). Then a = ea = af and a = axa =
aya, for some x € eS and y € Sf, and from this it follows that a € eSf and

a = azaya € aeSaSfa C aleSf)a,

so a € Reg(eSf). Thus, Reg(eS) N Reg(Sf) C Reg(eSf). The opposite
inclusion is obvious.
(ii) Let a € eSf N Gr(S). Then a = ea = af and a € Gy, for some
g € E(S), and we have that ¢ = aa 'a"'a = eaa"'a~laf, which yields
g=-eg=gf. Now
Gy =9Ggg =egGygf CeSf,

whence a € Gr(eSf), so we have that eSfNGr(S) C Gr(eSf). The opposite

inclusion is evident. O

Lemma 7.6 Let e be an arbitrary idempotent of a semigroup S. Then the
following conditions hold:

(i) Reg(eSe) =reg(eSe) = Reg(Se) N Reg(es);
(ii)) Gr(eSe) =eSen Gr(S);
(iii) Gr(Se) = Sen Gr(S) and Gr(eS) = eS N Gr(S).

Proof. (i) Based on Lemma 7.5 it follows that Reg(eSe) = Reg(Se) N
Reg(eS). Let a € reg(eSe). Then a = ea = ae and a = axa for some z € S,
and we have that a = azra = aexea € a(eSe)a, so a € Reg(eSe). Thus
reg(eSe) C Reg(eSe). It is clear that the opposite inclusion also holds.

(ii) This is also an immediate consequence of Lemma 7.5.
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(iii) Evidently, Gr(Se) € Sen Gr(S). Let a € Se N Gr(S). Then a = ae
and a € Gy, for some f € E(S), so by f = a"'a = a 'ae € Se it follows
that f = fe. Therefore

Gf — fo:foe g Se,

which implies a € Gr(Se). Hence, Gr(Se) = Se N Gr(S). In a similar way
we prove that Gr(eS) = eS N Gr(S). O

Lemma 7.7 Let S be a semigroup with E(S) # @. Then

U Gr(Se) U Gr(eS) U Gr(eSe) U Gr(eSf).

ecE(S) ecE(S e€E(S) e,fEE(S)

Proof. From Lemma 7.5 it follows that

| Gr(esf) = ( U eSf) N Gr(S) = Q(S) N Gr(S) = Gr(S),
e, fEE(S) e, fEE(S)

since Gr(S) C M (S) C Q(S). Similarly we prove the remaining equations.C]
For a semigroup S, let the set Reg,,(.S) be defined by

Regy,(S) = U Reg(eSe).
ecE(S)

Then the following equations hold:
Lemma 7.8 Let S be a semigroup with E(S) # @. Then
Reg)(5) = M(S) N Reg(S) = Reg(M(5)).

Proof. It is obvious that Reg,,(S) € M(S) N Reg(S) and Reg,(S) C
Reg(M(S)). Let a € M(S) N Reg(S). Then a € eSe, for some e € E(S5), so
based on Lemma 7.6 we have that

a € eSe N Reg(S) = reg(eSe) = Reg(eSe) C Reg,/(.9).

Thus M (S) N Reg(S) C Regy,(S), whence Reg,,(S) = M(S) N Reg(S). On
the other hand

Reg(M(S5)) € M(S) NReg(S) = Regy (5),

so we have proved Reg(M(S)) = Reg;;(.5). O
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It is easy to verify that the following relationships between the sets Gr(.5),
Regpr(S) and Reg(S) hold on an arbitrary semigroup S:

Gr(S) € Regu(S) € Reg(9).

The conditions under which the first inclusion can be turned into an equality
are determined by the following theorem.

Lemma 7.9 Let S be a semigroup with E(S) # &. Then the following
conditions are equivalent:

(i) Gr(S) = Regy(9);
(ii)) (Ve € E(S)) Reg(eSe) = Gr(eSe);
(iii) (Ve € E(S)) reg(eSe) = Gr(eSe).

Proof.  (i)=(ii) Let Gr(S) = Reg,(S5) and let e € E(S). Then based on
Lemma 7.6 we have that

Gr(eSe) = eSen Gr(S) = eSe N Reg,,(S) = Reg(eSe).

(ii)=(i) Let Reg(eSe) = Gr(eSe), for each e € E(S). Then Lemma 7.7
yields

Regy/(S) = U Reg(eSe) = U Gr(eSe) = Gr(S5).
ecE(S) ecE(S)

(ii)«<(iii) This follows immediately from Lemma 7.6. |

A bi-ideal of a m-regular semigroup is not necessarily m-regular. But,
the principal bi-ideals generated by idempotents, that is to say, the local
submonoids of a semigroup, have the following property:

Lemma 7.10 Let S be a w-regular or a completely m-reqular semigroup.
Then for each e € E(S), the local submonoid eSe has the same property.

Proof. Let S be a m-regular semigroup, and let e € E(S) and a € eSe.
Then there exists n € ZT such that a™ € Reg(5), and based on Lemma 7.6
we have that a™ € eSe N Reg(S) = Reg(eSe). Thus eSe is w-regular, for
every e € E(S).

Let S be a completely m-regular semigroup and let a € eSe, for some
e € E(S). Then there exists n € ZT such that a™ € Gr(S), so again based
on Lemma 7.6 it follows that a” € eSe N Gr(S) = Gr(eSe). Hence, eSe is
completely m-regular, for each e € E(S). O
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A semigroup S is called locally completely m-regular if it is m-regular
and eSe is completely m-regular, for every e € E(S), and it is called locally
uniformly m-regular if S is m-regular and eSe is uniformly w-regular, for
every e € E(S). The main result of this section is the following theorem
that characterizes locally uniformly w-regular semigroups.

Theorem 7.10 The following conditions on a semigroup S are equivalent:

(i) S is locally uniformly mw-regular;

(ii) S is w-regular and if a € S, n € Z* and o’ € V(a™), then a’Sa™
(a"Sd' ) is uniformly w-reqular;

(iii) S is w-regular and Reg,,;(S) = Gr(S);

(iv) S is w-regular and Reg(eSe) = Gr(eSe), for each e € E(S);

(v) S is m-regqular and reg(eSe) = Gr(eSe), for each e € E(S);

(vi) S is locally completely m-regular, (E(S)) is locally uniformly m-regqular
and

(Ve,[,g€ E(S)) e>f, e>g& flg = fl(Bese)9-

Proof. (i)« (iv) This equivalence is an immediate consequence of the defi-
nition of a uniformly 7-regular semigroup.

(i)=(ii) Let a € S, n € Z* and d’ € V(a"). Set e = d’a"™ and f = a"d'.
Then

eSe =ad'a"Sd'a" C d'Sa™ = d'a"d'Sa"d'a™ C d'a"Sa’a™ = eSe,

whence eSe = a/Sa™, and from (i) it follows that eSe = a/Sa™ is uniformly
m-regular. In a similar way we prove that a"Sa’ = fSf is uniformly =-
regular.

(ii)=(i) For each e € E(S5), from e € V(e) and (ii) it follows that eSe is
uniformly m-regular.

(iii)<(iv)<(v) These equivalences are immediate consequences of Le-
mma 7.9.

(i)=(vi) It is clear that S is locally completely m-regular. Since S is 7-
regular, then based on Lemma 2.11 we have that (E(S)) is m-regular, which
implies that e(E(S))e, based on Lemma 7.10, is also m-regular, for every
e € FE(S). Based on (i)<(iv) we also have that Reg(eSe) = Gr(eSe) for
every e € E(S). Further, from

a € Reg(e(E(5))e) C Reg(eSe) = Gr(eSe)
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it follows that for a € Reg(e(E(S))e) there are x € eSe and y € e(E(S5))e
such that a = aza = aya and ax = za € E(eSe). Now we have that

a = axa = ra®> C E(eSe)e(E(S))ea* C e(E(S))ed?,

i.e. a € LReg(e(E(S))e). Therefore Reg(e(E(S))e C LReg(e(E(S))e) and
e(E(S))e is m-regular, which based on Theorem 7.4 means that e(E(S))e is
uniformly 7m-regular for every e € E(S). Thus (E(S)) is locally uniformly
m-regular.

Let e, f,g € E(S), such that e > f, e > g and f|g in S. Then f,g €
E(eSe) and f|g in eSe and based on Theorem 7.4 we have that f|g in
(E(eSe)).

(vi)=(i) Let e € E(S). Based on Lemma 2.11 we have that (E(eSe)) is
completely m-regular. On the other hand, from the hypothesis it follows that
e(E(S))e is uniformly m-regular. On the other hand (E(eSe)) C e(E(S5))e,
so based on Theorem 7.4 and Lemma 2.5 we have that

Reg((E(eSe)))= (E(eSe)) N Reg(e(E(S))e)
= (B(eSe)) N Gr(e(E(S))e) = Gr((E(eSe))).

Let f,g € E(eSe) such that f|g in eSe. Then e > f, e > g and f|g in eSe,
and based on the hypothesis we have that f|g in (E(eSe)). Therefore, from
Theorem 7.4 we obtain that eSe is uniformly 7-regular for every e € E(S).
Hence S is locally uniformly w-regular. O
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7.5 Bands of m-groups

In this section we will discuss a band decomposition of semigroups whose
components are m-groups, i.e. a nil-extension of groups.

First we prove the following theorem.
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Theorem 7.11 Let S be a w-reqular semigroup and let for all a,b € S there
exists n € Z+ such that

(2) (ab)"™ € a®SV?.

Then S is a semilattice of retractive nil-extensions of completely simple semi-
groups.

Proof. Assume a € Reg(S), z € V(a). Based on (1), (az)" € a®Sx?, for
some n € Z*, whence a = ara = (az)"a € a>Sr?a C a%S. Similarly we
prove that a € Sa?. Based on this, a € Gr(S), i.e. Reg(S) = Gr(5), so
according to Theorem 7.4, S is a semilattice Y of completely Archimedean
semigroups S, a € Y. For a € Y, let S, be a nil-extension of a completely
simple semigroup K.

Assume a €Y, e, f € E(Sy), a € T.. We will prove that

(3) af =eaf and fa= fae.

First we will prove that for every m € Z* there exists n € Z7 and u € S
such that

(4) (af)" = a™uf.

It is evident that (4) holds for m = 1. Assume that (af)"” = a™uf holds for
some m,n € ZT and some u € S. Then based on (2) we obtain that there
exists k € ZT and v € S such that (a™uf)* = a®™v(uf)?, whence

(af)™ = ((af)")* = (a™uf)* = a®™v(uf)? = a" wf,

where w = a™ 'wufu. Now by induction for every m € ZT there exists
n € Z™ and u € S such that (4) holds.

Let m € Z* such that a™ € G., and let n € Z", u € S such that (4)
holds. Since af € K, = Gr(Sy), then af = (af?)y, for some y € S, whence

af = (af)"y"" = a"ufy™" = ca™ufy" "t = caf.

By this we have proved the first part of statement (3). In a similar way we
prove the second part of (3).

Now, we define the mapping ¢ : S, — K, with

ap = ae, if a € Te,e € E(Sy).
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Assume a € T,, b € Ty, e, f € E(S,), and assume that ab € Ty, for some
g € E(S,). Then based on (3) and based on Theorem 1.8 we obtain that

(ab)p = abg = afbg = eafbg = eabg = eab = aeb = aebf = (ayp)(by).

Thus, ¢ is a homomorphism. Since ap = a, then ¢ is a retraction, so S, is
a retractive nil-extension of K. O

From Theorem 7.11 we obtain the following corollary.

Corollary 7.3 Let S be a m-regular semigroup and let for all a,b € S there
exists n € ZT such that (ab)™ € a®?Sa. Then S is a semilattice of retractive
nil-extensions of left groups.

Proof. Assume a,b € S. Then there exist m,n € Z* such that (ab)™ €
a?Sa and (ba)"™ € b2Sb, whence (ab)"*! € ab?Sb?, so

(ab)™ ! € 4?Saab®Sb? C a®SH?.

Thus, based on Theorem 7.11, S is a semilattice Y of semigroups S,, a €
Y, and for a € Y, S, is a retractive nil-extension of a completely simple
semigroup K. Just like in Theorem 7.8 we prove that K, is a left group.O

By means of the following theorem we describe the relationship between
a decomposition into a band of m-groups and the retraction of a semigroup
on its regular part.

Theorem 7.12 Let S be a band of w-groups and let Reg(S) be a subsemi-
group of S. Then Reg(S) is a band of groups and a retract of S.

Conversely, if S has a retract K which is a band of groups and if VK = S,
then S is a band of mw-groups.

Proof. Let S be a band B of m-groups S;, i € B, and let Reg(S) be a
subsemigroup of S. For ¢ € B, let S; be a nil-extension of a group G; with
the identity e;. Then, Reg(S) = Gr(S) = U{G;|i € B}, so it is evident
that Reg(S) is a band B of groups G;, i € B. Assume i,j € B. From
€ieij = (eieij)eij S SijGZ'j = Gij and eijej = 61']'(62']'63') S GijSij = Gij we
obtain that

(eiei)* = eilesjleiess)) = eileies;) = eiesj € Sij
(eijes)® = ((eijeg)eij)e; = (eijej)ej = eijej € Sij,
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so since S;; has an unique idempotent e;;, then e;e;; = ejje; = ;5.
Now, we define the mapping ¢ : S — Reg(S) with:
xp =uxe;, if x€S5;i€ B.

For z; € S;, x; € S, 1,5 € B we have that:

(zip)(xjp) = (ziei)(zje;s)

= e;j(xiei)(zjej)ei; (because zie;xje; € GGy C Gij)
= €jj€iT;Tje;€; (from Theorem 1.8)

= e;jexixjejeje;;  (because ejjejxix; € GijSi; C Gij)
= €;j€;T;T;€;j (because e;je; = e;5)

= €;j€;€i;T;Tj€;j (because zjzje;5 € S;Gij C Gij)
= €ijT;T;€;j (because e;je; = e;;)

= X;T;€;; (because z;zje;5 € Gij)

= (zizj)ep.

Hence, ¢ is a homomorphism, so since ay = a, for every a € Reg(.S), then
¢ is a retraction from S onto Reg(.5).

Conversely, if S has a retract K which is a band B of groups G;, i € B,
if VK = S, and if we assume that © is a retraction from S onto K, then
S is a band B of a semigroups S; = G;p~!, i € B, since for every i € B it
holds that S; N K = G, v/G; = S;, then S; are mw-groups. O

From Theorem 7.12 it immediately follows:

Corollary 7.4 A semigroup S is a retractive nil-extension of a completely
simple semigroup if and only if S is a matriz of w-groups.

Corollary 7.5 A semigroup S is a retractive nil-extension of a left group if
and only if S is a left zero band of w-groups.

Let S be a semigroup. For e € FE(S), by T, we denote the set
T.=+\Ge={xeS|(FnecZ) 2" cG.}.

According to Theorem 1.8 and Theorem 1.7, for e, f € E(S), e # f, is
T.N Ty = 0. On a semigroup S we define the relation 7 by:

aTb < ((Je€ E(S)) a,beTe) V a=hb, a,bes.
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It is clear that 7 is an equivalence relation on S. If S is completely simple,
then

aTb & (Jee E(Y)) a,beTe.

Now, we prove the main result of this section.

Theorem 7.13 The following conditions on a semigroups S are equivalent:

(i) S is a band of w-groups;
(i) S is m-regular and for all a,b € S there exists n € Z" such that
(ab)™ € a®bSab?;
(iii) S is completely w-reqular and for all a,b € S is abT a’bT ab?;
(iv) S is completely m-regular and (zy)° = (22y)° = (xy?)°.

Proof.  (i)=(ii) Let S be a band B of m-groups S;, i € B. Let a € S;,
b€ S;, i,j € B. Then ab,ab,ab® € S,j, so (ii) holds.

(ii)=(iii) Let (ii) hold. Then based on Theorem 7.11 S is a semilattice
Y of semigroups Sy, € Y, and for a € Y, S, is a retractive nil-extension of
a completely simple semigroup K., while based on Corollary 7.4, for every
a €Y, S, is a matrix of m-groups.

Assume a,b € S. Then ab,a’b,ab?® € S,, for some a € Y. Assume
that S, is a matrix I x A of m-groups T;y, i € I, A € A. Assume that
ab € Tjy, a®b € m ab® € Ty, for some 4, 5,1 € I, \,u,v € A. Let ej, be an
idempotent from T},. Then ejanb € Tj2u C T}, and

2
ejua”b = ejuejuaab € TjuSapTin © Ti,

so i = A. Similarly we prove that | = i. Also, from (ii) we obtain that there
exists n € ZT and u € S such that (ab)" = a®buab?, whence uab?a’bu € S,p,
SO

(ab)*™ = a*b(uab*a®bu)ab® € TjrSasTi C Tjy.

Since (ab)?™ € Tjy, then j =i and v = \. Therefore, ab, a®b, ab? € T}y, so
(iii) holds.

(ili)=(i) Assume a,b € S. Let a € T¢, b € Ty, for some e, f € E(S).
Based on (iii), abT a*b, for every k € ZT. Let k € Z* such that a* € G..
Then

eb = a*(a®) 7T (a*)2(aF) 71 = aFeb = aFbT ab.
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Thus, abTeb. Similarly we prove that eb7Tef. Hence, abTef, so T is a
congruence relation on S. It is evident that 7 is a band congruence and
every T-class is a w-group. Therefore, (i) holds.

(iii)<(iv) This follows immediately. a

Recall that a band S is a normal if for all x,y,z € S is zyzz = xzyx.

Based on Theorem 7.13 we gave the characterizations of a band of -
groups in general. Now, we will discuss some important types of bands of
m-groups: normal bands, semilattices and Reédei bands of m-groups.

Theorem 7.14 The following conditions on a semigroups S are equivalent:

(i) S is a normal band of T-groups;
(i) S is w-regular and for all a,b,c € S there exists n € Z* such that
(abe)™ € acSac;
(iii) S is completely m-regular and for all a,b,c,d € S is abedT acbd;
(iv) S is completely m-regular and (zyzu)® = (vzyu)P.

Proof.  (i)=-(iii) This follows from Theorem 5.12.
(iii)=-(ii) Let (iii) hold. It is evident that S is w-regular. Assume a,b,c €
S. From (iii) we have that

(abc)? = ab(cab)cTa(cab)be = acab’c and
(abc)? = a(beca)beT ab(bea)e = ab?cac,

whence it follows that there exist m,n € ZT such that
(abc)®™ € acS and  (abe)®™ € Sac,

so (abc)?™ 2" ¢ geSac. Hence, (ii) holds.

(ii)=(i) Let (ii) hold. Based on Corollary 5.7 S is a normal band B of
t-Archimedean semigroups S;, i € B. Assume a € Reg(S), z € V(a). Based
on (ii), there exists n € Z™ such that ax = (azaz)" € aaxSaax, whence

a = aza € a’xSa’ra C a*>Sa®.

Thus, a € Gr(95), so, S is a completely m-regular semigroup. According to
Lemma 2.8, S; are completely m-regular semigroups, and based on Theorem
3.18, S; are m-groups.

(iii)<(iv). This follows immediately. a
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Theorem 7.15 The following conditions on a semigroups S are equivalent:

(i) S is a semilattice of w-groups;
(ii) S is w-regular and a semilattice of t-Archimedean semigroups;
(iii) S is a semilattice of completely Archimedean semigroups and for all
e, f € E(S) there exists n € Z such that (ef)" = (fe)";
(iv) S is a semilattice of completely Archimedean semigroups and every
reqular element from S has a unique inverese element;

S is completely w-reqular and for all a,b € S is abTba;

(v

)
(vi) S is completely w-regular and (zvy)° = (yz)°;
(vii) S is m-regular and a = axa implies ax = xa;
(viii) (Va,b € S)(3n € ZT) (ab)™ € b*"Sa®".

Proof.  (i)=-(viii) Let S be a semilattice Y of m-groups Sy, o € Y, and for
a €Y, let S, be a nil-extension of a group G,. Assume a,b € S. Then
ab,b™a™ € S,, for some a € Y and for all m € Z*. Then there exists n € Z*
such that (ab)” € G,. Now for m = 2n we have that (b*"a®")* € G, for
some k € ZT. Therefore, (ab)" € (b*"a?")kG4(b*"a?™)F C b*"Sa®". Thus,
(viii) holds.

(viii)=-(ii) This follows from Corollary 5.3.

(ii)=(i) This follows from Lemma 2.7 and from Theorem 3.18.

(viii)=>(iii) From (viii), and by Theorem 7.8, S is a semilattice of com-
pletely Archimedean semigroups. Assume e, f € E(S). By (viii), (ef)" =
(fe)"z(fe), for somen € ZT, x € S, s0 (fe)" = f(ef)"e = f(fe)"x(fe)" e
= (fe)"z(fe)" = (ef)" and (ef)" = (fe)"x(fe)" = (fe)"x(fe)"e = (ef)"e,
whence (ef)"* = (ef)"ef = (ef)"f = (ef)". Thus, (ef)"*! = (fe)"*!, so
(iii) holds.

(iii)=-(i) From (iii), for e, f € E(S) we obtain that (ef)"™ = (fe)", for
some n € ZT, whence (ef)" = e(ef)"f = e(fe)"f = (ef)""!, so based
on Theorem 7.6, S is a semilattice Y of semigroups S,, a € Y, and for
a €Y, S, is a nil-extension of a rectangular group K,. Assume o € Y,
e, f € E(K,). Since E(K,) is a rectangular band, then from (iii) we obtain
that ef = fe, so |[E(K,)| =1, i.e. K, is a group.

(i)=(v) Let S be a semilattice Y of m-groups Sy, a € Y. Then ab,ba €
Sa, for some o € Y, so for some e € E(S,) we have that ab,ba € S, = T,
whence abT ba.

(v)=(vi) and (vi)=(vii) This is evident.
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(vii)=-(iv) If (vii) hold, then a = axa implies ax = za, whence a =
azara = arxraa = ax’a’, so based on Theorem 7.6, S is a semilattice of
completely Archimedean semigroups. Assume a € Reg(S), =,y € V(a).

Based on (vii), ax = xza and ay = ya, whence

r = zar = 2’a = raya = ray = axy

= axyay = axay® = ay® = yay = v.

Hence, (iv) holds.

(iv)=(i) From (iv) it follows that every inverse of every idempotent from
S is also an idempotent, so based on Theorem 7.6, S is a semilattice Y of
semigroups So, a € Y, and for a € Y, S, is a nil-extension of a rectangular
group K,. Assume a € Y, e,f € E(K,). Then E(K,) is a rectangular
band, so e, f € V(e), whence, based on (iv), e = f. Thus, |E(K,)| = 1, so
K, is a group. Therefore, (i) holds. a

A semigroup S is an ordinal sum Y of semigroups S,, a € Y if S is a
chain Y of semigroups S,, a € Y, and for o, 8 € Y, from o < 8, a € S,,
b € Sp it follows that ab = ba = a. Based on the following lemma we give
the structural characterization of Rédei bands:

Lemma 7.11 A semigroup S is Rédei band if and only if S is an ordinal
sum of singular bands.

Proof. Let S be a Rédei band. Based on Lemma 7.3, S is a chain Y of
rectangular bands S,, o € Y, while based on Lemma 7.4, S, are singular
bands. Assume that o, 8 € Y are such that o < 3, and assume that a € S,
b € Sg. Then a,ab,ba € S, and ab,ba € {a,b}, whence we obtain that
ab =ba = a.

The converse follows immediately. O

Theorem 7.16 The following conditions on a semigroups S are equivalent:

(i) S is a Rédei band of m-groups;
(ii) S has a retract K which is a Rédei band and VK = S;
(iii) (Va,b € S)(In € ZT) a™ € (ab)™S(ab)™ v b" € (ab)"S(ab)™.

Proof.  (i)=(ii) Let S be a Rédei band B of m-groups S;, ¢ € B. For i € B,
let S; be a nil-extension of a group G; with the identity e;. It is evident that
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E(S) = {e;|t € B}. Assume that e;,e; € E(S), i,j € B. Then e;e; € S;;.
If ij = i, then e;e; € S, so ejej = e;(ejej) € G;S; C G whence

(eieg)? = ((eiej)ei)e; = (eiej)ej = eie;.

Similarly, from ij = j it follows that (e;e;)? = e;e;. Thus, E(S) is a sub-
semigroup of S, so based on Lemma 7.1 Reg(S) is a subsemigroup of S,
whence based on Theorem 7.12 we obtain that (ii) holds.

(ii)=-(i) This follows from Theorem 7.12.

(i)=(iii) Let S be a Rédei band B of m-groups S;, ¢ € B. For i € B, let
S; be a nil-extension of group G;. Assume a,b € S. Then a € S;, b € S,
for some i,j € B. If ij = i, then ab € S;, so there exists n € Z™ such that
(ab)",a" € G;, whence

a” € (ab)"Gi(ab)" C (ab)™S(ab)"™.
Similarly, from 4j = j it follows that
b" € (ab)™S(ab)",

for some n € ZT. Thus, (iii) holds.

(iii)=-(i) Let (iii) hold. It is evident that S is completely 7-regular. Also,
from (iii) it follows that e € Sf or f € €S, for all e, f € E(S), so E(S) is
a Rédei band. Based on Lemma 7.11 and Corollary 7.1, S is a chain Y of
semigroups Sy, a € Y, and for a € Y, S, is a nil-extension of a semigroup
K,, where K, is a left or right group.

Assume a € Y, a,b € S,. Let K, be a left group. Let a € T¢, b € T,
e, f € E(S,), e # f. Based on (iii) we obtain that there exists n € Z* such
that

a" € (af)"S(af)* or fe€(af)*S(af)".
Assume that f € (af)"S(af)" C afSaf, ie. f = afuaf, for some u € S.
Since af € So Ko C K, then af € Gy, for some g € E(S,). Now, based on
Lemma 3.15 we obtain that

[ =afuaf =g(afuaf)g=gfg € gSag = Gy,

whence f = g, i.e. af € Gy. Also, fa = f(fa) € GyK, C Gy, because K, is
a left group, so af = f(af) = (fa)f = fa. Since a* € G, for some k € Z7,
and since K, is a left group, then

aF =dve=dfef =d"f = fd* G;G. C Gy,
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that is impossible. Thus, a" € (af)"S(af)”, whence a™ € afSsaf C
afKqyaf, so based on Lemma 3.15 a"Haf in K,. Thus, af € G.. In a
similar way we prove that be € G ¢, so from Lemma 1.8 it follows that

be = fbe =bfe=bf = fb and af =eaf = aef = ae = ea,

whence

abe = afb = eab.
Assume that (ab)™ € Gy, for some g € E(S,), m € ZT. Then

(ab)"e € G4Ge € Gy and (ab)™e =e(ab)™ € GGy C Gy.

Hence, g = e, i.e. (ab)™ € Ge, s0 ab € T, = T.5. Thus, S, is a left zero band
E(S,) of m-groups Te, e € E(Sy,). If K, is a right group, then in a similar
way we prove that S, is a right zero band E(S,) of m-groups T¢, e € E(S,).

Assume a € T, € So, b€ Ty C Sg, o, €Y, a # . Let a < B3, ie.
af = fa = «a (a similar case is § < «a). Since E(S) is a Rédei band and
since ef, fe,e € Sy, f ¢ Sa, then ef = fe = e. Based on (iii), there exists
n € Z* such that

b" € (be)"S(be)™ or e € (be)"S(be)".

If b = (be)"u(be)”, for some v € S, then u € S,, for some v € Y, so
afy = B, whence aff = 8, which is impossible. Hence, e € (be)"S(be)",
whence

e € beS,be.

Since be = (be)e € SaK, C K, from Lemma 3.15 it follows that be €
(. Similar we prove that eb € G, so from Lemma 1.8 it follows that
eb = (eb)e = e(be) = be and abe = aeb = eab. Let (ab)™ € Gy, for some
g € E(S,), m € Z". Based on Lemma 3.15 we have that

(ab)™ = (ab)™g = (ab)™geg = (ab)™eg = e(ab)™g = e(ab)™
= ee(ab)™ = e(ab)e € eSpe = Ge.
Hence, (ab)™ € G, i.e. ab € T, = T,y. Thus, S is a Rédei band F(S) of
m-group Te, e € E(S5). |
From Theorem 7.16 it immediately follows that

Corollary 7.6 A semigroup S is a Rédei band of periodic m-groups if and
only if S is w-reqular and for all a,b € S there ewists n € ZT such that
(ab)™ € (a) U (b).
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Exercises

1. A semigroup S which satisfies the condition
T1To " Tpy1 € <.T1> U <I2> J---u <In+1>,

for all x1,29, -, 241 € S we call a U,41-semigroup. A semigroup Us we call
U-semigroup for short. Prove that the following conditions hold:
(a) G is aUyyi-group if and only if G is a U-group;
(b) G is a U-group if and only if G is a cyclic group of the order p*, k € Z*, or
quasi-cyclic Zpe, for some prime p.

2. Let S be a monogenic semigroup. Then S is a U- (Usk-, Uskt1-, Uskto2-) semi-
group if and only if S is an ideal extension of a cyclic group by a 5- ((6k+1)-,
(6k+3)-, (6k+5)-) nilpotent monogenic semigroup.

3. The following conditions on a semigroup S are equivalent:
(a) S is a regular U, 11-semigroup;

(b) S is a regular U-semigroup;
(¢) S is an ordinal sum of U-groups and singular bands.

4. A band (chain) Y of semigroups Sy, a € Y, is a Uy, +1-band (chain) of semigroups
Sa, @ €Y, if

X1Tg* Tp41 € <£L‘1> U <I2> J---u <ZL'7L+1>,
for all z; € So,,%2 € Say, -+ Tns1 € Sa,,,,, Where there are i, j € {1,2,...,n+1}

such that S, # Sa,;. The Uz-band (chain) of semigroups we call the U-band (chain)
of semigroups.

Prove that the following conditions on a semigroup S are equivalent:

(a) S is a U,11-semigroup;

(b) S is a Uy 41-chain of ideal extension of U-groups by U,,1-nil-semigroups and
a retractive extension of singular bands by U,,41-nil-semigroups;

(¢) S is a Uyy1-band of ideal extension of U-groups by U,,1-nil-semigroups.

5. Let S be a U,,+1-semigroup. Then Reg(S) is a retract of S.
6. A semigroup S is a U, 1-semigroup and Reg(S) is an ideal of S if and only if

iy € U ak [k e 20k > 2),

for all &1, 29, -+, xp41 € S.

7. A semigroup S is an n-inflation of Rédei’s band if and only if

n+2 n+2 n+2
x1x2...xn+1€{q}1 ,1‘2 7...,33”_;’_1,

for all x1,z0, -+, xpy1 € S.
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8. A semigroup S in which for all z1,z2, -+, 2,11 € S there exists m € Z* such
that

(T122 -+ Tn1)™ € (1) U (2) U+ U (Tng1),

we call a GU,,41-semigroup. The GUs-semigroup is the GU-semigroup.

Prove that S is a w-regular GU,,1-semigroup if and only if S is a w-regular
GU-semigroup.
9. A chain Y of semigroups S, o € Y, is a GU-chain of semigroups S, a € Y, if
for all , 8 € Y, a # B3, and for all a € S,, b € Ss there exists m € ZT such that
(ab)™ € {(a) U (D).

Prove that the following conditions on a semigroup S are equivalent:

) S is a Rédei’s band of a periodic w-groups;

) S is a m-regular GU-semigroup;

) S is a periodic GU-semigroup;

) S is a GU-chain of retractive nil-extensions of periodic left and right groups;
)

10. Let € be a class of semigroups with a modular lattice of subsemigroups, or
a class of semigroups with a distributive lattice of subsemigroups or a class of U-
semigroups. Then the following conditions on a semigroup S are equivalent:

(a) Sec¢

(b) S is a U-band of ideal extensions of groups from the class € by U-nil-semi-
groups;

(¢c) S is a U-chain of ideal extensions of groups from the class € by U-nil-
semigroups and retractive extensions of singular bands by U-nil-semigroups.

11. Let S be a completely w-regular semigroup and Ty = £y. Then S is a semi-
lattice of retractive nil-extensions of completely simple semigroups by commutative
maximal subgroups and z = 3, for every z € (E(S)).

12. Let S be a completely m-regular semigroup and Ty = Zy. Then S is a semilattice
of retractive nil-extensions of completely simple semigroups.

13. Let S be a completely m-regular semigroup and J C 7, then S is a semilattice
of m-groups.

14. Let S be a semilattice of m-groups. Then a relation £ = {(z,y) € S x S| (Fe €
E(S)) ex = ey} is the smallest congruence on S such that S/ is a group.

15. The following conditions on a semigroup S are equivalent:

(a) T(H) is a band congruence;
(b) S is a band of m-groups;
(c) (Va,b € S) abT(H)a*bT (H)ab?.

16. The following conditions on a semigroup S are equivalent:

(a) S is a semilattice of w-groups;
(b) S is completely w-regular and each regular D-class of S is a group;
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(c¢) S is completely m-regular and there are no semigroups As, B, Lo, Ry among
the completely m-regular divisors of S;

(d) S is a semilattice of completely Archimedean semigroups and does not contain
Ls; and Ry as subsemigroups.

17. Let V= (e, f|e?2 =e, f2 = f, fe =0) = {e, f,ef,0}. The following conditions
on a semigroup S are equivalent:

(a) S is completely m-regular and Ty = § 7;

(b) S is completely m-regular and (zy)° = (yx)°, 2%9° = (2%9°)°;

(c) S is a semilattice of m-groups and ef = fe, for all e, f € E(S);

(d) S is w-regular and Reg(S) is a semilattice of groups;

(e) S is completely m-regular and there are no semigroups Ba, Lo, Ry and V

among the completely m-regular divisors of S.

18. The following conditions on a w-regular semigroup S are equivalent:

(a) S is a band of ¢-Archimedean semigroups;

(b) S satisfies the identity (zy)° = (2%9°)%;

(c) there are no semigroups Ag, By, L3 1, Rs 1, LZ(n), RZ(n) among the com-
pletely m-regular divisors of S.
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