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A GENERAL COMMON FIXED POINT THEOREM
FOR MULTI-MAPS SATISFYING AN IMPLICIT

RELATION ON FUZZY METRIC SPACES

S. Sedghi, K. P. R. Rao and N. Shobe

Abstract

In this paper, we give a common fixed point theorem for multi-valued
mappings satisfying an implicit relation on fuzzy metric spaces.

1 Introduction and Preliminaries

The theory of fuzzy sets was introduced by L.Zadeh [21] in 1965.George and Veera-
mani [5] modified the concept of fuzzy metric space introduced by Kramosil and
Michalek [10].Grabiec[6] proved the contraction principle in the setting of fuzzy
metric spaces introduced in [10].For fixed point
theorems in fuzzy metric spaces some of the interesting references are [2-4,6,7,11,14,
15,17-20].Mishra et.al[11] and Cho et.al[3] proved some common fixed point theo-
rems for four single valued self maps on fuzzy metric spaces using a special type
of contractive condition. In this paper we prove a common fixed point theorem for
four maps of which two are multi valued satisfying the same type of contraction
condition under implicit relation without using the following condition

lim
t→∞

M(x, y, t) = 1

for all x, y in X.

Definition 1.1. A binary operation ∗ : [0, 1]×[0, 1] −→ [0, 1] is a continuous t-norm
if it satisfies the following conditions

1. ∗ is associative and commutative,

2. ∗ is continuous,
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3. a ∗ 1 = a for all a ∈ [0, 1],

4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a∗ b = ab and a∗ b = min {a, b}.
Definition 1.2 ([5]). A 3-tuple (X, M, ∗) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on
X2 × (0,∞), satisfying the following conditions for each x, y, z ∈ X and each t and
s > 0,

1. M(x, y, t) > 0,

2. M(x, y, t) = 1 if and only if x = y,

3. M(x, y, t) = M(y, x, t),

4. M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),

5. M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Lemma 1.3 ([6]). Let (X, M, ∗) be a fuzzy metric space. Then M(x, y, t) is
non-decreasing with respect to t, for all x, y in X.
Definition 1.4. Let (X,M, ∗) be a fuzzy metric space. M is said to be continuous
on X2 × (0,∞) if

lim
n→∞

M(xn, yn, tn) = M(x, y, t)

whenever a sequence {(xn, yn, tn)} in X2 × (0,∞) converges to a point
(x, y, t) ∈ X2 × (0,∞), i.e., whenever

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) = M(x, y, t).

Lemma 1.5 (Proposition 1 of [13]).Let (X, M, ∗) be a fuzzy metric space. Then
M is continuous function on X2 × (0,∞).
Lemma 1.6 . Let (X, M, ∗) be a fuzzy metric space. If we define Eλ,M : X2 →
R+ ∪ {0} by

Eλ,M (x, y) = inf{t : M(x, y, t) > 1− λ}
for each λ ∈ (0, 1) and x, y ∈ X , then we have

(i) For any µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,M (x1, xn) ≤ Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn)

for any x1, x2, ..., xn ∈ X.
(ii) The sequence {xn} is convergent in fuzzy metric space (X, M, ∗) if and only

if Eλ,M (xn, x) → 0. Also the sequence {xn} is Cauchy sequence if and only if it is
Cauchy with Eλ,M .
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Proof. (i) For every µ ∈ (0, 1), we can find a λ ∈ (0, 1) such that

n︷ ︸︸ ︷
(1− λ) ∗ (1− λ) ∗ · · · ∗ (1− λ) ≥ 1− µ

by triangular inequality we have

M(x1, xn, Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn) + nδ)
≥ M(x1, x2, Eλ,M (x1, x2) + δ) ∗ · · · ∗M(xn−1, xn, Eλ,M (xn−1, xn) + δ)

≥
n︷ ︸︸ ︷

(1− λ) ∗ (1− λ) ∗ · · · ∗ (1− λ) ≥ 1− µ

for every δ > 0, which implies that

Eµ,M (x1, xn) ≤ Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn) + nδ.

Since δ > 0 is arbitrary, we have

Eµ,M (x1, xn) ≤ Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn).

(ii). Note that since M is continuous in its third place and

Eλ,M (x, y) = inf{t : M(x, y, t) > 1− λ},

we have
M(xn, x, η) > 1− λ ⇐⇒ Eλ,M (xn, x) < η

for every η > 0.

Lemma 1.7 . Let (X,M,*) be a fuzzy metric space. If sequence {xn} in X exists
such that for every n ∈ N ,

M(xn, xn+1, t) ≥ M(x0, x1, k
nt)

for every k > 1, then the sequence {xn} is a Cauchy sequence.

Proof. For every λ ∈ (0, 1) and xn, , xn+1 ∈ X, we have

Eλ,M (xn+1, xn) = inf{t : M(xn+1, xn, t) > 1− λ}
≤ inf{t : M(x0, x1, k

nt) > 1− λ}
= inf{ t

kn
: M(x0, x1, t) > 1− λ}

=
1
kn

inf{t : M(x0, x1, t) > 1− λ}

=
1
kn

Eλ,M (x0, x1).
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By Lemma 1.6, for every µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,M (xn, xm) ≤ Eλ,M (xn, xn+1) + Eλ,M (xn+1, xn+2) + · · ·
+Eλ,M (xm−1, xm)

≤ 1
kn Eλ,M (x0, x1) + 1

kn+1 Eλ,M (x0, x1) + · · ·+ 1
km−1 Eλ,M (x0, x1)

= Eλ,M (x0, x1)
∑m−1

j=n
1
kj −→ 0.

Hence sequence {xn} is Cauchy .

Throughout this paper, CB(X) is the set of all non-empty closed and bounded
subsets of X. For A,B ∈ CB(X) and for every t > 0,denote

M(A,B, t) = sup{M(a, b, t); a ∈ A, b ∈ B}

and

δM (A, B, t) = inf{M(a, b, t); a ∈ A, b ∈ B}.
If A consists of a single point a, we write δM (A,B, t) = δM (a,B, t). If B also

consists of a single point b, we write δM (A,B, t) = M(a, b, t).
It follows immediately from the definition that

δM (A,B, t) = δM (B, A, t) ≥ 0,

δM (A,B, t) = 1 ⇐⇒ A = B = {a},
for all A, B in CB(X).

The following definition was given by Jungck and Rhoades [9].
Definition 1.8.The mappings I : X −→ X and F : X −→ CB(X) are weakly
compatible if they commute at coincidence points, i.e., for each point u in X such
that Fu = {Iu}, we have FIu = IFu.
Implicit relations on metric spaces have been used in many articles ([1, 8, 12, 16,
18]).

Let T be the set of all continuous functions T : [0, 1]5 −→ [−1, 1]
satisfying the following conditions:

(T1): T (t1, · · · , t5) is increasing in t1 and decreasing in t2, · · · , t5.
(T2):T (u, v, v, v, v) ≥ 0 implies that u > v, ∀v ∈ [0, 1) and ∀u ∈ [0, 1].

Remark 1.9. It easy to see that T (v, v, v, v, v) ≥ 0 implies that v = 1. If v 6= 1, by
(T2) , T (v, v, v, v, v) ≥ 0 implies that v > v, is a contradiction. Thus v = 1.
Example 1.10.Let T : [0, 1]5 −→ [−1, 1], be defined by T (t1, t2, t3, t4, t5) =
t1 − (min{t2, t3, t4, t5})h for some 0 < h < 1.

2 THE MAIN RESULT

Now we give our main theorem.
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Theorem 2.1. Let F, G be mappings of a complete fuzzy metric space (X, M, ∗)
with t ∗ t = t for all t ∈ [0, 1] into CB(X).Also f, g be mappings of X into itself
satisfying:

(i) Fx ⊆ g(X), Gx ⊆ f(X) for every x ∈ X,
(ii) The pairs (F, f) and (G, g) are weakly compatible,
(iii)there exists a constant k ∈ (0, 1) such that

T

(
δM (Fx,Gy, kt),M(fx, gy, t),M(fx, Fx, t),M(gy,Gy, t),
M(fx, Gy, αt) ∗M(gy, Fx, (2− α)t)

)
≥ 0.

for every x, y in X , for every t > 0 and α ∈ (0, 2) , where T ∈ T . Suppose that
one of g(X) and f(X) is a closed subset of X, then there exists a unique p ∈ X
such that {p} = {fp} = {gp} = Fp = Gp.

Proof. Let x0 be an arbitrary point in X. By (i), we choose a point x1 in X such
that y0 = gx1 ∈ Fx0. For this point x1 there exists a point x2 in X such that
y1 = fx2 ∈ Gx1, and so on. Continuing in this manner we can define sequences
{xn} and {yn} as follows

y2n = gx2n+1 ∈ Fx2n, y2n+1 = fx2n+2 ∈ Gx2n+1,

for n = 0, 1, 2, · · · .
Let dm(t) = M(ym, ym+1, t), t > 0.
Step 1: Putting x = x2n, y = x2n+1 in (iii) we have

T




δM (Fx2n, Gx2n+1, kt),M(fx2n, gx2n+1, t),
M(fx2n, Fx2n, t),M(gx2n+1, Gx2n+1, t),

M(fx2n, Gx2n+1, αt) ∗M(gx2n+1, Fx2n, (2− α)t)


 ≥ 0

From (T1),

T

(
M(y2n, y2n+1, kt),M(y2n−1, y2n, t), M(y2n−1, y2n, t),
M(y2n, y2n+1, t),M(y2n−1, y2n+1, αt) ∗M(y2n, y2n, (2− α)t)

)
≥ 0.

Put α = 1 + q1, where q1 ∈ (k, 1). Since

M(y2n−1, y2n+1, (1 + q1)t) ≥ M(y2n−1, y2n, t) ∗M(y2n, y2n+1, q1t),

and T is decreasing in t5, we get

T (d2n(kt), d2n−1(t), d2n−1(t), d2n(t), d2n−1(t) ∗ d2n(q1t)) ≥ 0. (1)

If d2n(t) < d2n−1(t), then since d2n(q1t) ∗ d2n−1(t) ≥ d2n(q1t) ∗ d2n(q1t) = d2n(q1t)
and from (T1)in inequality (1), we have

T (d2n(kt), d2n(q1t), d2n(q1t), d2n(q1t), d2n(q1t)) ≥ 0.
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From (T2) we have d2n(kt) > d2n(q1t). It is a contradiction.
Hence d2n(t) ≥ d2n−1(t) for every n ∈ N and ∀t > 0. Now from (1) and (T1)we
have

T (d2n(kt), d2n−1(q1t), d2n−1(q1t), d2n−1(q1t), d2n−1(q1t)) ≥ 0. (2)

Step 2: Putting x = x2n, y = x2n−1 and α = 1− q2 where q2 ∈ (k, 1) in (iii) we can
show that

T (d2n−1(kt), d2n−2(q2t), d2n−2(q2t), d2n−2(q2t), d2n−2(q2t)) ≥ 0. (3)

Let q = min {q1, q2}.Then q ∈ (k, 1) and from (2), (3), (T1) we have

T (dn, (kt), dn−1(qt), dn−1(qt), dn−1(qt), dn−1(qt)) ≥ 0.

From (T2),we have dn(kt) ≥ dn−1(qt) , for every n ∈ N. That is,

M(yn, yn+1, t) ≥ M(yn−1, yn,
q

k
t) ≥ · · · ≥ M(y0, y1, (

q

k
)nt).

Hence by Lemma 1.7 {yn} is Cauchy and the completeness of X, {yn}
converges to p in X. Thus

lim
n→∞

yn = lim
n→∞

y2n = lim
n→∞

gx2n+1 = p ∈ lim
n→∞

Fx2n,

and
lim

n→∞
yn = lim

n→∞
y2n+1 = lim

n→∞
fx2n+2 = p ∈ lim

n→∞
Gx2n+1.

Suppose that g(X) is closed . Then for some v ∈ X we have
p = gv ∈ g(X) .
Step 3: Putting x = x2n, y = v and α = 1 in (iii) we get

T

(
δM (Fx2n, Gv, kt),M(fx2n, gv, t),M(fx2n, Fx2n, t),
M(gv,Gv, t),M(fx2n, Gv, t) ∗M(gv, Fx2n, t)

)
≥ 0.

By (T1), we have

T

(
δM (y2n, Gv, kt),M(y2n−1, gv, t), M(y2n−1, y2n, t),
M(gv, Gv, t),M(y2n−1, Gv, t) ∗M(gv, y2n, t)

)
≥ 0.

On making n −→∞ we have

T (δM (p,Gv, kt),M(p, gv, t),M(p, p, t),M(p,Gv, t),M(p,Gv, t)

∗M(p, p, t)) ≥ 0.
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Thus by (T1) we get,

T (δM (p,Gv, kt), 1, 1, δM (p,Gv, t), δM (p, Gv, t) ∗ 1) ≥ 0.

Since T is increasing in t1 and decreasing in t2, ..., t5,we get

T (δM (p,Gv, t), δM (p,Gv, t), δM (p, Gv, t), δM (p,Gv, t), δM (p,Gv, t)) ≥ 0.

Thus by Remark1.9, we have δM (p,Gv, t) = 1. Hence Gv = {p} = {gv}. Since
(G, g) is weakly compatible pair we have Ggv = gGv, hence Gp = {gp}.
Step 4: Putting x = x2n, y = p and α = 1 in (iii) we get

T

(
δM (Fx2n, Gp, kt),M(fx2n, gp, t),M(fx2n, Fx2n, t),
M(gp, Gp, t),M(fx2n, Gp, t) ∗M(gp, Fx2n, t)

)
≥ 0.

By (T1), we have

T

(
M(y2n, gp, kt),M(y2n−1, gp, t),M(y2n−1, y2n, t),
M(gp, gp, t),M(y2n−1, gp, t) ∗M(gp, y2n, t)

)
≥ 0.

On making n −→∞, we get

T (M(p, gp, kt),M(p, gp, t),M(p, p, t),M(gp, gp, t),M(p, gp, t) ∗M(gp, p, t)) ≥ 0.

Thus,

T (M(p, gp, t),M(p, gp, t), M(p, gp, t),M(p, gp, t),M(p, gp, t)) ≥ 0,

by Remark 1.9, we have M(p, gp, t) = 1, hence gp = p. Therefore, Gp = {p}.
Step 5: Since Gp ⊆ f(X),there exists w ∈ X such that {fw} = Gp = {gp} = {p}.
Putting x = w, y = p and α = 1 in (iii) we get

T

(
δM (Fw,Gp, kt), M(fw, gp, t),M(fw, Fw, t),
M(gp, Gp, t),M(fw, Gp, t) ∗M(gp, Fw, t)

)
≥ 0.

Thus we have
T (δM (Fw, p, kt),M(p, p, t),M(p, Fw, t),M(p, p, t),

M(p, p, t) ∗M(p, Fw, t)) ≥ 0.

Hence by (T1), we get

T (δM (Fw, p, t), δM (Fw, p, t), δM (p, Fw, t), δM (Fw, p, t), δ(p, Fw, t)) ≥ 0.

So again by Remark 1.9 we have δM (Fw, p, t) = 1. Hence Fw = {p}. Since
Fw = {fw} and the pair {F, f} isweakly compatible, we obtain Fp = Ffw =
fFw = {fp}.
Step 6: Putting x = p, y = x2n+1 and α = 1 in (iii) we can show as in
Step 4 that fp = p so that Fp = {fp} = {p}.
Thus Fp = Gp = {fp} = {gp} = {p}. Uniqueness of common fixed point follows
easily from (iii). Similarly the theorem follows when f(X) is closed.
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Corollary 2.2. Let F,G be mappings of a complete fuzzy metric space (X,M, ∗)
with t ∗ t = t into CB(X) for all t ∈ [0, 1].Also f, g be mappings of X into itself
satisfying:

(i) Fx ⊆ g(X), Gx ⊆ f(X) for every x ∈ X,
(ii) The pairs (F, f) and (G, g) are weakly compatible,
(iii)there exists a constant k ∈ (0, 1) such that

δM (Fx, Gy, kt) ≥
(

min
{

M(fx, gy, t),M(fx, Fx, t),M(gy,Gy, t),
M(fx,Gy, αt) ∗M(gy, Fx, (2− α)t)

})h

for every x, y in X ,for every t > 0 , α ∈ (0, 2) and 0 < h < 1. Suppose that one of
g(X) and f(X) is a closed subset of X, then there exists a unique p ∈ X such that
{p} = {fp} = {gp} = Fp = Gp.

Proof. The Corollary follows easily from Theorem 2.1 , if we define
T (t1, t2, t3, t4, t5) = t1 − (min{t2, t3, t4, t5})h in Theorem 2.1, where
0 < h < 1.

Now we give the following Corollaries when F and G are also single valued
mappings.

Corollary 2.3. Let (X, M, ∗) be a complete fuzzy metric space with t ∗ t = t for all
t ∈ [0, 1].Also let F, G, f, g be mappings of X into itself satisfying:

(i) F (X) ⊆ g(X), G(X) ⊆ f(X) ,
(ii) The pairs (F, f) and (G, g) are weakly compatible,
(iii)there exists a constant k ∈ (0, 1) such that

M(Fx,Gy, kt) ≥
(

min
{

M(fx, gy, t),M(fx, Fx, t), M(gy,Gy, t),
M(fx,Gy, αt) ∗M(gy, Fx, (2− α)t)

})h

for every x, y in X , for every t > 0 , α ∈ (0, 2) and 0 < h < 1. Suppose that
one of g(X) and f(X) is a closed subset of X, then there exists a unique p ∈ X
such that p = fp = gp = Fp = Gp.

Corollary 2.4. Let (X, M, ∗) be a complete fuzzy metric space with t ∗ t = t for all
t ∈ [0, 1].Also F, G, f, g be mappings of X into itself satisfying:

(i) F (X) ⊆ g(X), G(X) ⊆ f(X) ,
(ii) The pairs (F, f) and (G, g) are weakly compatible,
(iii)there exists a constant k ∈ (0, 1) such that

M(Fx,Gy, kt) ≥ (M(fx, gy, t)h

for every x, y in X , for every t > 0 and 0 < h < 1. Suppose that one of g(X)
and f(X) is a closed subset of X, then there exists a unique p ∈ X such that
p = fp = gp = Fp = Gp.
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Proof. The Corollary follows easily if we define T (t1, t2, t3, t4, t5) = t1 − t2
h in

Theorem 2.1, where 0 < h < 1.

Now we give an example to illustrate our main Theorem 2.1.

Example 2.5. Let (X, M, ∗) be a fuzzy metric space, in which X = [0, 1], a ∗ b =
min{a, b} for all a, b ∈ [0, 1] and

M(x, y, t) =
t

t + |x− y|
for all t > 0.
Define the maps F, G, f, g on X as follows: Fx = Gx = {1} and fx = x+1

2 ,
gx = 2x+1

3 for all x ∈ X. Define T (t1, t2, t3, t4, t5) = t1 − (min{t2, t3, t4, t5})h.
Then for any h, k ∈ (0, 1), the inequality

M(Fx, Gy, kt) ≥
(

min
{

M(fx, gy, t),M(fx, Fx, t),M(gy, Gy, t),
M(fx, Gy, αt) ∗M(gy, Fx, (2− α)t)

})h

is satisfied for all x, y in X , for every t > 0 and for every α ∈ (0, 2) , since the
L.H.S. of the inequality is 1. Clearly all conditions in Theorem 2.1 are satisfied.
Also 1 is the unique common fixed point of F, G, f and g.

Acknowledgement: The authors are thankful to the referee for his valuable
suggestions in preparing this paper.
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[13] J. Rodŕıguez López, S. Ramaguera, The Hausdorff fuzzy metric on
compact sets, Fuzzy Sets Sys, 147 (2004), 273-283.

[14] R. Saadati, A. Razani, and H. Adibi, A common fixed point theorem in L-fuzzy
metric spaces, Chaos, Solitons and Fractals, chaos.(2006),
01-023.

[15] S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets
Syst. 127 (2002), 345-352.

[16] S. Sharma, B. Desphande, On compatible mappings satisfying an
implicit relation in common fixed point consideration, Tamkang J. Math. 33
(2002), 245-252.

[17] B. Singh and M. S. Chauhan, Common fixed points of compatible maps in fuzzy
metric spaces, Fuzzy Sets Syst. 115 (2000), 471-475.

[18] B. Singh and S. Jain, Semi compatibility and fixed point theorems in fuzzy
metric space using implicit relation, Internat. J. Math. Math. Sci. 16 (2005),
2617-2629.

[19] B. Singh and S. Jain, Semi compatibility,compatibility and fixed point theorems
in fuzzy metric space, J. Chung Cheong Math. Soc. 18 (1) (2005) 1-22.

[20] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric
spaces, Indian J. Pure Appl. Math. 30 (1999), 419-423.

[21] L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353.



A general common Fixed Point Theorem for multi-maps 11

Address

S. Sedghi: Department of Mathematics, Islamic Azad University-Ghaemshar Branch,
Iran,

E-mail: sedghi gh@yahoo.com

K. P. R. Rao: Department of Applied Mathematics, Acharya Nagarjuna University-
Nuzvid Campus, Nuzvid-521201, Krishna Dt., A.P., India

E-mail: kprrao2004@yahoo.com

N. Shobe: Department of Mathematics, Islamic Azad University-Babol Branch,
Iran

E-mail: nabi shobe@yahoo.com


