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ON δ−SETS IN γ−SPACES

V. Renuka Devi and D. Sivaraj

Abstract

We consider a collection of subsets of a set X defined in terms of a function
on ℘(X), called the γ−open sets, which is not a topology but we show that
some of the results established for topologies are valid for this collection. In
particular, we define δγ−open sets in a γ−space and characterize its proper-
ties. Also, we discuss the properties of γ−rare sets and characterize δγ−open
sets in terms of γ−rare sets.

1. Introduction and Preliminaries.

Let X be a nonempty set and Γ = {γ : ℘(X) → ℘(X) | γ(A) ⊂ γ(B) whenever
A ⊂ B}. Also, the subcollections, Γ1 = {γ ∈ Γ | γ(X) = X} and Γ2 = {γ ∈ Γ |
γ(γ(A)) = γ(A) for every subset A of X } of Γ are defined in [3]. If γ ∈ Γ, a subset
A of X is said to be γ−open if A ⊂ γ(A) [3]. The complement of a γ−open set
is γ−closed. The family of all γ−open sets is denoted by µγ . In [3, Proposition
1.1], it is established that ∅ ∈ µγ and arbitrary union of members of µγ is again in
µγ . Collection of subsets of X satisfying these two conditions is called a generalized
topology in [4]. X need not be γ−open [3] and so ∅ need not be γ−closed. X is
γ−open if γ ∈ Γ1 [3]. The intersection of two γ−open sets need not be γ−open
[3]. The γ−interior of A is the largest γ−open set contained in A and is denoted
by iγ(A). Therefore, A is γ−open if and only if A = iγ(A). The smallest γ−closed
set containing A is called the γ−closure of A and is denoted by cγ(A). Therefore,
A is γ−closed if and only if A = cγ(A). In [3], it is established that cγ ∈ Γ2, iγ ∈
Γ2, iγ ◦ cγ = iγcγ ∈ Γ2, cγiγ ∈ Γ2 and X − iγ(A) = cγ(X −A). A subset A of X is
said to be γ−semiopen [5] if there exists a γ−open set G such that G ⊂ A ⊂ cγ(G).
The complement of a γ−semiopen set is said to be γ−semiclosed. It is easy to
verify that A is γ−semiopen if and only if A ⊂ cγiγ(A) and A is γ−semiclosed if
and only if iγ(A) = iγcγ(A) ⊂ A. Recall that, a subset A of X is said to be γ−dense
if X = cγ(A). σ(γ) is the family of all γ−semiopen sets, π(γ) = {A ⊂ X | A ⊂
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iγcγ(A)} is the family of all γ−preopen sets [4], α(γ) = {A ⊂ X | A ⊂ iγcγiγ(A)}
is the family of all γα−open sets [4], β(γ) = {A ⊂ X | A ⊂ cγiγcγ(A)} is the
family of all γβ−open sets [4] and b(γ) = {A ⊂ X | A ⊂ cγiγ(A) ∪ iγcγ(A)} is
the family of all γb−open sets [7]. The interior and closure operators of these
generalized topologies are respectively denoted by, iσ and cσ, iπ and cπ, iα and cα,
iβ and cβ and ib and cb. It is clear that µγ ⊂ α(γ) ⊂ σ(γ) ∪ π(γ) ⊂ b(γ) ⊂ β(γ).
In [7], a new family of functions defined on ℘(X), denoted by Γ4, is introduced.
Γ4 = {γ ∈ Γ | G∩γ(A) ⊂ γ(G∩A) for every γ−open set G and A ⊂ X}. If γ ∈ Γ4,
then the pair (X,µγ) is called a γ−space. In [7, Example 2.2], it is established that
µγ is not a topology on X even if γ ∈ Γ4 but the intersection of two γ−open sets
is γ−open. It is interesting to note that in a topological space (X, τ), if i is the
interior operator, then i ∈ Γ4 and the i−space is nothing but the topological space
(X, τ). The following lemma will be useful in the sequel.
Lemma 1.1. If (X, µγ) is a γ−space, then the following hold.
(a) If A and B are γ−open sets, then A ∩B is a γ−open set [7, Theorem 2.1].
(b)iγ(A ∩B) = iγ(A) ∩ iγ(B) for every subsets A and B of X [7, Theorem 2.3(a)].
(c) cγ(A∪B) = cγ(A)∪ cγ(B) for every subsets A and B of X [7, Theorem 2.3(b)].
(d) cγ(cσ(A)) = cγ(A) for every subset A of X [7, Theorem 2.5(f)].
(e) iγcγ(iπ(A)) = iγcγ(cπ(A)) = iγcγ(A) = iπ(cγ(A)) for every subset A of X [7,
Theorem 2.7(f)].
(f)cγ(iπ(A)) = cγiγcγ(A) for every subset A of X [7, Theorem 2.7(v)].
(g) If X is a nonempty set, A is a subset of X and γ ∈ Γ, then iγ(cσ(A)) = iγcγ(A)
[7, Theorem 2.4(e)].

2. More results in γ−spaces

In this section, we establish some of the properties of iγ and cγ in a γ−space
and also we prove that iγ ∈ Γ4. Also, we characterize γβ−open sets, γ−locally
closed sets and γ−preopen sets.
Theorem 2.1. If (X, µγ) is a γ−space, then the following hold.
(a) If G is γ−open and A ⊂ X, then G ∩ iγ(A) = iγ(G ∩A) and so iγ ∈ Γ4.
(b) If G is γ−open and A ⊂ X, then G ∩ cγ(A) ⊂ cγ(G ∩A).
(c) iγ(A ∪ F ) ⊂ iγ(A) ∪ F where F is γ−closed and A ⊂ X.
(d) cγ(A ∪ F ) = cγ(A) ∪ F where F is γ−closed and A ⊂ X.
(e) If G is γ−open and D is γ−dense, then cγ(G ∩D) = cγ(G).
Proof. (a) Let G be γ−open and A be any subset of X. Then G∩iγ(A) is a γ−open
set by Lemma 1.1(a), such that G∩iγ(A) ⊂ G∩A. Therefore, G∩iγ(A) ⊂ iγ(G∩A) =
iγ(G) ∩ iγ(A) = G ∩ iγ(A), by Lemma 1.1(b). Therefore, G ∩ iγ(A) = iγ(G ∩ A).
Since the set of all iγ−open sets coincides with the set of all γ−open sets, it follows
that iγ ∈ Γ4.
(b) Let x ∈ G∩ cγ(A) and U be an arbitrary γ−open set containing x. Since U ∩G
is a γ−open set containing x and x ∈ cγ(A), (U ∩G)∩A 6= ∅ and so U ∩(G∩A) 6= ∅
which implies that x ∈ cγ(G ∩A). Therefore, G ∩ cγ(A) ⊂ cγ(G ∩A).
(c) Now X − iγ(A∪F ) = cγ(X − (A∪F )) = cγ((X −A)∩ (X −F )) ⊃ cγ(X −A)∩
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(X−F ), by (b). Therefore, X−iγ(A∪F ) ⊃ (X−iγ(A))∩(X−F ) = X−(iγ(A)∪F )
and so iγ(A ∪ F ) ⊂ iγ(A) ∪ F.
(d) Now X − cγ(A∪F ) = iγ(X − (A∪F )) = iγ((X −A)∩ (X −F )) = iγ(X −A)∩
(X−F ) = (X− cγ(A))∩ (X−F ) = X− (cγ(A)∪F ) and so cγ(A∪F ) = cγ(A)∪F.
(e) Since G ∩ D ⊂ G, cγ(G ∩ D) ⊂ cγ(G). By (b), cγ(G ∩ D) ⊃ cγ(D) ∩ G = G
which implies that cγ(G ∩D) ⊃ cγ(G) and so cγ(G ∩D) = cγ(G).

The following Theorem 2.2 shows that the intersection of two γα−open sets is
a γα−open set and the intersection of a γ−semiopen (resp. γ−preopen, γβ−open,
γb−open) set with a γα−open set is a γ−semiopen (resp. γ−preopen, γβ−open,
γb−open) set. We will use Lemma 1.1(a), Lemma 1.1(b) and Lemma 1.1(c) in the
following Theorem without mentioning them explicitly.
Theorem 2.2. If (X, µγ) is a γ−space, then the following hold.
(a)G∩A is γ−semiopen (resp.γ−preopen, γβ−open, γb−open) whenever G is γα−
open and A is γ−semiopen (resp.γ−preopen, γβ−open, γb−open).
(b)G ∩A is γα−open whenever G and A are γα−open.
Proof. (a) Suppose G is γα−open and A is γ−semiopen. Then G∩A ⊂ iγcγiγ(G)∩
cγiγ(A) ⊂ cγ(iγcγiγ(G)∩ iγ(A)) = cγiγ(cγiγ(G)∩ iγ(A)) ⊂ cγiγcγ(iγ(G)∩ iγ(A)) =
cγiγcγiγ(G ∩A) = cγiγ(G ∩A). Therefore, G ∩A is γ−semiopen.

Suppose G is γα−open and A is γ−preopen. Then G ∩ A ⊂ iγcγiγ(G) ∩
iγcγ(A) = iγ(cγiγ(G)∩ iγcγ(A)) ⊂ iγcγ(iγ(G)∩ iγcγ(A)) = iγcγiγ(iγ(G)∩cγ(A)) ⊂
iγcγiγcγ(iγ(G) ∩A) ⊂ iγcγ(G ∩A) and so G ∩A is γ−preopen.

Suppose G is γα−open and A is γβ−open. Then G ∩ A ⊂ iγcγiγ(G) ∩
cγiγcγ(A) ⊂ cγ(iγcγiγ(G) ∩ iγcγ(A)) = cγiγ(cγiγ(G) ∩ iγcγ(A)) ⊂ cγiγcγ(iγ(G) ∩
iγcγ(A)) = cγiγcγiγ(iγ(G) ∩ cγ(A)) ⊂ cγiγcγiγcγ(G ∩ A) = cγiγcγ(G ∩ A) and so
G ∩A is γβ−open.

Suppose G is γα−open and A is γb−open. Then G ∩ A ⊂ G ∩ (cγiγ(A) ∪
iγcγ(A)) = (G∩ cγiγ(A))∪ (G∩ iγcγ(A)) ⊂ cγiγ(G∩A)∪ iγcγ(G∩A) and so G∩A
is γb−open.

(b) Suppose G and A are γα−open. Then G ∩ A ⊂ iγcγiγ(G) ∩ iγcγiγ(A) ⊂
iγ(cγiγ(G) ∩ iγcγiγ(A)) ⊂ iγcγ(iγ(G) ∩ iγcγiγ(A)) = iγcγiγ(iγ(G) ∩ cγiγ(A)) ⊂
iγcγiγcγ(iγ(G) ∩ iγ(A)) ⊂ iγcγiγcγiγ(G ∩ A) = iγcγiγ(G ∩ A) and so G ∩ A is
γα−open.
Theorem 2.3. If (X, µγ) is a γ−space, G is γ−open and A ⊂ X, then the following
hold.
(a)G ∩ iσ(A) ⊂ iσ(G ∩A).
(b)G ∩ iα(A) ⊂ iα(G ∩A).
(c)G ∩ iπ(A) ⊂ iπ(G ∩A).
(d)G ∩ iβ(A) ⊂ iβ(G ∩A).
(e)G ∩ ib(A) ⊂ ib(G ∩A).
(f)G ∩ cσ(A) ⊂ cσ(G ∩A).
(g)G ∩ cα(A) ⊂ cα(G ∩A).
(h)G ∩ cπ(A) ⊂ cπ(G ∩A).
(i)G ∩ cβ(A) ⊂ cβ(G ∩A).
(j)G ∩ cb(A) ⊂ cb(G ∩A).
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Proof. (a) Let G be γ−open and A be a subset of X. Then G ∩ iσ(A) is a
γ−semiopen set by Theorem 2.2(a), such that G ∩ iσ(A) ⊂ G ∩ A. Therefore,
G ∩ iσ(A) ⊂ iσ(G ∩A).
Similarly, we can prove (b), (c) (d) and (e).

(f) Let x ∈ G∩ cσ(A) and U be an arbitrary σ−open set containing x. Since U ∩G
is a σ−open set containing x and x ∈ cσ(A), (U ∩G)∩A 6= ∅ and so U ∩(G∩A) 6= ∅
which implies that x ∈ cσ(G ∩A). Therefore, G ∩ cσ(A) ⊂ cσ(G ∩A).
Similarly, we can prove (g), (h), (i) and (j).

The following Corollary 2.4 shows that if γ ∈ Γ4, then iα ∈ Γ4 and Theorem
2.3(b) above is also true for γα−open sets. The proof follows from Theorem 2.2(b)
and the fact that the set of all γα−open sets coincides with the set of all iα−open
sets.
Corollary 2.4. If (X,µγ) is a γ−space, G and A are subsets of X, then the
following hold.
(a) iα(G ∩A) = iα(G) ∩ iα(A).
(b) If G is γα−open, then G ∩ iα(A) = iα(G ∩A).
(c) iα ∈ Γ4.

The following Corollary 2.5 follows from Theorem 2.3.
Corollary 2.5. If (X, µγ) is a γ−space, A ⊂ X and G is γ−open, then the
following hold.
(a) cσ(G ∩ cσ(A)) = cσ(G ∩A).
(b) cα(G ∩ cα(A)) = cα(G ∩A).
(c) cπ(G ∩ cπ(A)) = cπ(G ∩A).
(d) cβ(G ∩ cβ(A)) = cβ(G ∩A).
(e) cb(G ∩ cb(A)) = cb(G ∩A).

Let X be any nonempty set and γ ∈ Γ. A subset A of X is said to be γ−regular
[3] if A = γ(A). The following Theorem 2.6 shows that the intersection of two
iγcγ−regular sets is again a iγcγ−regular set and Theorem 2.7 below gives charac-
terizations of γβ−open sets in γ−spaces.
Theorem 2.6. If (X,µγ) is a γ−space, and A and B are iγcγ−regular sets, then
A ∩B is a iγcγ−regular set.
Proof. Suppose A and B are iγcγ−regular sets. Now A∩B = iγcγ(A)∩iγcγ(B) =
iγ(cγ(A)∩ cγ(B)) by Lemma 1.1(b) and so iγcγ(A)∩ iγcγ(B) ⊃ iγcγ(A∩B). Since
the intersection of two γ−open set is a γ−open set, by Lemma 1.1(a), A ∩ B =
iγ(A∩B) ⊂ iγcγ(A∩B). Therefore, A∩B = iγcγ(A∩B) which implies that A∩B
is iγcγ−regular.
Theorem 2.7. If (X, µγ) is a γ−space and A is a subset of X, then the following
statements are equivalent.
(a) A is γβ−open.
(b) cγ(A) = cγiγcγ(A).
(c) cγ(A) is cγiγ−regular.
(d) There is a γ−preopen set U such that U ⊂ A ⊂ cγ(U).
(e) cγ(A) is γ−semiopen.
(f) cσ(A) is γ−semiopen.
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(g) cπ(A) is γβ−open.
Proof. The equivalence of (a) and (b) is clear.
(a)⇒(c). If A is γβ−open, then cγ(A) = cγiγcγ(A) and so cγ(A) is cγiγ−regular.
(c)⇒(d). Let U = iπ(A). Then U is a γ−preopen set such that U ⊂ A. Now
cγ(U) = cγ(iπ(A)) = cγiγcγ(A), by Lemma 1.1(f). Therefore, cγ(U) = cγ(A) and
so U ⊂ A ⊂ cγ(U).
(d)⇒(a). Suppose U is a γ−preopen set such that U ⊂ A ⊂ cγ(U). Then cγ(U) =
cγ(A). Since U is γ−preopen, U ⊂ iγcγ(U) and so A ⊂ cγ(A) = cγ(U) ⊂ cγiγcγ(U) ⊂
cγiγcγ(A) and so A is γβ−open.
(c) implies (e) is clear.
(e)⇒(f). Suppose cγ(A) is γ−semiopen. Now iγcγ(A) = iγcσ(A), by Lemma
1.1(g) and so iγcγ(A) ⊂ cσ(A) ⊂ cγ(cσ(A)) = cγ(A), by Lemma 1.1(d). There-
fore, iγcγ(A) ⊂ cσ(A) ⊂ cγ(A) ⊂ cγiγcγ(A). Since iγcγ(A) is γ−open, cσ(A) is
γ−semiopen.
(f)⇒(a). Suppose cσ(A) is γ−semiopen. Then, A ⊂ cσ(A) ⊂ cγiγ(cσ(A)) =
cγiγcγ(A), by Lemma 1.1(g) and so A is γβ−open.
(a)⇒(g). Suppose A is γβ−open. Since every γ−open set is a γ−preopen set,
cπ(A) ⊂ cγ(A) ⊂ cγiγcγ(A) = cγiγcγ(cπ(A)), by Lemma 1.1(e) and so (g) follows.
(g)⇒(a). Suppose cπ(A) is γβ−open. Then A ⊂ cπ(A) ⊂ cγiγcγ(cπ(A)) =
cγiγcγ(A), by Lemma 1.1(e). Therefore, A is γβ−open.

Let X be a nonempty set and γ ∈ Γ. A subset A of X is said to be γ−locally
closed if A = G ∩ F where G is γ−open and F is γ−closed. Since X is γ−closed,
every γ−open set is a γ−locally closed set. The following Theorem 2.8 gives a
characterization of γ−locally closed sets, the proof is similar to the proof of the
characterizations of locally closed sets [1] in any topological space and hence is
omitted. Theorem 2.9 shows that for γ−dense sets, the concepts γ−open and
γ−locally closed on the subsets of X are equivalent.
Theorem 2.8. Let X be a nonempty set, γ ∈ Γ and A be a subset of X. Then the
following statements are equivalent.
(a) A is γ−locally closed.
(b) A = G ∩ cγ(A) for some γ−open set G.
(c) cγ(A)−A is γ−closed.
(d) A ∪ (X − cγ(A)) is γ−open.
(e) A ⊂ iγ(A ∪ (X − cγ(A))).
Theorem 2.9. Let X be a nonempty set, γ ∈ Γ and A be a γ−dense subset of X.
Then the following statements are equivalent.
(a) A is γ−open.
(b) A is γ−locally closed.
Proof. Enough to prove (b) implies (a). Suppose A is γ−dense and γ−locally
closed. Then A = G ∩ cγ(A) for some γ−open set G. Therefore, A = G ∩X = G
and so A is γ−open.

The following Theorem 2.10 gives decompositions of γ−open sets in γ−spaces.
Theorem 2.10. Let (X,µγ) be a γ−space and A be a subset of X. Then the
following statements are equivalent.
(a) A is γ−open.
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(b) A is γα−open and γ−locally closed.
(c) A is γ−preopen and γ−locally closed.
Proof. It is enough to prove that (c) implies (a).
(c)⇒(a). Suppose A is γ−preopen and γ−locally closed. Since A is γ−preopen,
A ⊂ iγcγ(A). Since A is γ−locally closed, A = G ∩ cγ(A) for some γ−open set G.
Now A = A ∩ iγcγ(A) = (G ∩ cγ(A)) ∩ iγcγ(A) = G ∩ iγcγ(A) = iγ(G ∩ cγ(A)), by
Lemma 1.1(b). Therefore, A = iγ(A) which implies that A is γ−open.

The following Theorem 2.11 gives characterizations of γ−preopen sets in a
γ−space.
Theorem 2.11. Let (X, µγ) be a γ−space and A ⊂ X. Then the following state-
ments are equivalent.
(a) A ∈ π(γ).
(b) There is an iγcγ−regular set G such that A ⊂ G and cγ(A) = cγ(G).
(c) A = G ∩D where G is a iγcγ−regular set and D is a γ−dense set.
(d) A = G ∩D where G is a γ−open set and D is a γ−dense set.
Proof. (a)⇒(b). If A ∈ π(γ), then A ⊂ iγcγ(A) ⊂ cγ(A) which implies that
cγ(A) ⊂ cγiγcγ(A) ⊂ cγ(A) and so cγiγcγ(A) = cγ(A). Let G = iγcγ(A). Then A ⊂
G and iγcγ(G) = iγcγiγcγ(A) = iγcγ(A) = G which implies that G is iγcγ−regular.
Also cγ(G) = cγiγcγ(G) = cγ(A).
(b) ⇒(c). Let G be an iγcγ−regular set such that A ⊂ G and cγ(A) = cγ(G). Let
D = A∪ (X −G). Then A = G∩D where G is iγcγ−regular. Now cγ(D) = cγ(A∪
(X−G)) = cγ(A)∪cγ(X−G) = cγ(G)∪cγ(X−G) = cγ(G∪(X−G)) = cγ(X) = X.
Hence D is γ−dense.
(c)⇒(d). The proof follows from the fact that every iγcγ−regular set is a γ−open
set.
(d)⇒(a). Suppose A = G ∩ D where G is γ−open and D is γ−dense. Now G =
G∩X = G∩ cγ(D) ⊂ cγ(G∩D) and so G = iγ(G) ⊂ iγcγ(G∩D) = iγcγ(A) which
implies that A ⊂ iγcγ(A). Hence A ∈ π(γ).

3. δγ−open Sets

Let X be a nonempty set, γ ∈ Γ and A ⊂ X. A is said to be δγ−open or
A ∈ δγ if and only if iγcγ(A) ⊂ cγiγ(A). In topological spaces, the set of all δi−open
sets coincides with the set of all δ−sets [2]. The γ−boundary of a subset A of X,
denoted by bdγ(A), is given by bdγ(A) = cγ(A) − iγ(A) = cγ(A) ∩ cγ(X − A). A
subset A of X is said to be µγ − rare if iγcγ(A) = ∅. In topological spaces, the set
of all µi−rare sets coincides with the set of all nowhere dense sets. Every µγ−rare
set is a δγ−open set, since iγcγ(A) = ∅ ⊂ cγiγ(A). It is easy to show that every
γ−closed set is a δγ−open set. The following Theorem 3.1 gives some properties of
µγ−rare sets.
Theorem 3.1. Let X be a nonempty set and γ ∈ Γ. Then the following hold.
(a) ∅ is µγ−rare.
(b) Subset of a µγ−rare set is a µγ−rare set.
(c) If A is a µγ−rare set, then bdγ(A) is a µγ−rare set.
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Proof. (a) If Mγ = ∪{A | A ∈ µγ}, then cγiγ(X) = cγ(Mγ) = X and so X −
cγiγ(X) = ∅ which implies that iγcγ(∅) = ∅.
(b) The proof is clear.
(c) Since A is µγ−rare, iγcγ(A) = ∅. Now iγcγ(bdγ(A)) = iγcγ(cγ(A) − iγ(A)) =
iγcγ(cγ(A) ∩ (X − iγ(A))) ⊂ iγ(cγ(A) ∩ cγ(X − iγ(A))) ⊂ iγcγ(A) = ∅. Therefore,
bdγ(A) is a µγ−rare set.

The following Theorems 3.2, 3.3 and 3.4 deal with µγ−rare sets and γ−boun-
dary of subsets of X in a γ−space, which are essential to characterize δγ−open sets
in Theorem 3.9. Also, in a γ−space, one can easily prove the formulas 1 to 15 in
[6, Page 56].
Theorem 3.2. Let (X,µγ) be a γ−space and A and B be subsets X. Then the
following hold.
(a) If A is γ−open, then bdγ(A) = cγ(A)−A is µγ−rare.
(b)bdγ(A ∪B) ⊂ bdγ(A) ∪ bdγ(B).
Proof. (a) iγcγ(cγ(A) − A) = iγcγ(cγ(A) ∩ (X − A)) ⊂ iγ(cγ(A) ∩ cγ(X − A)) =
iγcγ(A) ∩ iγcγ(X −A) = iγcγ(A) ∩ iγ(X −A) = iγcγ(A) ∩ (X − cγ(A)) = ∅.
(b) bdγ(A∪B) = cγ(A∪B)∩cγ(X−(A∪B)) = cγ(A∪B)∩(cγ(X−A)∩cγ(X−B)) ⊂
(cγ(A)∪ cγ(B))∩ (cγ(X −A)∩ cγ(X −B)) = (cγ(A)∩ (cγ(X −A)∩ cγ(X −B)))∪
(cγ(B)∩ (cγ(X −A)∩ cγ(X −B))) ⊂ (cγ(A)∩ cγ(X −A))∪ (cγ(B)∩ cγ(X −B)) =
bdγ(A) ∪ bdγ(B).
Theorem 3.3. Let (X, µγ) be a γ−space. If A and B are µγ−rare subsets of X,
then A ∪B is also a µγ−rare set.
Proof. iγcγ(A ∪ B) = iγ(cγ(A) ∪ cγ(B)), by Lemma 1.1(c) and so iγcγ(A ∪ B) ⊂
iγcγ(A)∪cγ(B) = ∅∪cγ(B) by Theorem 2.1(c). Therefore, iγcγ(A∪B) ⊂ iγcγ(B) =
∅ and so A ∪B is µγ−rare.
Theorem 3.4. If (X, µγ) is a γ−space, G is γ−open and both A − Gand G − A
are µγ−rare, then B − H and H − B are µγ−rare, where H = X − cγ(G) and
B = X −A.
Proof. Since A−cγ(G) ⊂ A−G and A−G is µγ−rare, A−cγ(G) is µγ−rare. Since
cγ(G) − A = (G − A) ∪ ((cγ(G) − G) − A), by Theorem 3.1(b) and Theorem 3.3,
cγ(G)−A is µγ−rare. Now B−H = B−(X−cγ(G)) = (X−A)∩cγ(G) = cγ(G)−A
and H −B = (X − cγ(G))−B = (X − cγ(G))− (X −A) = A− cγ(G). Therefore,
B −H and H −B are µγ−rare.

The following Theorem 3.5 shows that every γ−semiopen is a δγ−open set and
the complement of a δγ−open set is a δγ−open set. Theorems 3.6 and 3.8 give more
properties of δγ−open sets.
Theorem 3.5. Let X be a nonempty set and γ ∈ Γ. Then the following hold.
(a) If A is γ−semiopen, then A ∈ δγ .
(b) If A ∈ δγ , then X −A ∈ δγ .
Proof. (a) If A is γ−semiopen, then A ⊂ cγiγ(A). Now, iγcγ(A) ⊂ iγcγcγiγ(A) ⊂
cγiγ(A) and so A ∈ δγ .
(b) A ∈ δγ implies that iγcγ(A) ⊂ cγiγ(A) and so X − cγiγ(A) ⊂ X − iγcγ(A)
which in turn implies that iγ(X − iγ(A)) ⊂ cγ(X − cγ(A)) and so iγcγ(X − A) ⊂
cγiγ(X −A). Hence X −A ∈ δγ .
Theorem 3.6. Let (X,µγ) be a γ−space. If A ∈ δγ and B ∈ δγ , then A ∩B ∈ δγ .
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Proof. A,B ∈ δγ implies that iγcγ(A) ⊂ cγiγ(A) and iγcγ(B) ⊂ cγiγ(B). Now
iγcγ(A∩B) ⊂ iγ(cγ(A)∩cγ(B)) = iγcγ(A)∩iγcγ(B) by Lemma 1.1(b). Since A ∈ δγ ,
it follows that iγcγ(A∩B) ⊂ cγiγ(A)∩ iγcγ(B) ⊂ cγ(iγ(A)∩ iγcγ(B)), by Theorem
2.1(b). Since B ∈ δγ , iγcγ(A ∩ B) ⊂ cγ(iγ(A) ∩ cγiγ(B)) ⊂ cγcγ(iγ(A) ∩ iγ(B)) =
cγ(iγ(A)∩iγ(B)) = cγiγ(A∩B). Hence iγcγ(A∩B) ⊂ cγiγ(A∩B) and so A∩B ∈ δγ .

Corollary 3.7. Let (X,µγ) be a γ−space. If A ∈ δγ and B ∈ δγ , then A∪B ∈ δγ .

Proof. The proof follows from Theorem 3.5(b) and Theorem 3.6.
Theorem 3.8. Let (X,µγ) be a γ−space and A and B be subsets of X such that
A ∈ δγ . Then iγcγ(A ∩B) = iγcγ(A) ∩ iγcγ(B).
Proof. Since iγcγ(A)and iγcγ(B) are γ−open sets, iγcγ(A)∩iγcγ(B) is also γ−open
by Lemma 1.1(a) and so iγcγ(A)∩ iγcγ(B) = iγ(iγcγ(A)∩ iγcγ(B)) ⊂ iγ(cγiγ(A)∩
iγcγ(B)), since A ∈ δγ . Therefore, iγcγ(A) ∩ iγcγ(B) ⊂ iγcγ(iγ(A) ∩ iγcγ(B)) ⊂
iγcγ(iγ(A) ∩ cγ(B)) ⊂ iγcγcγ(iγ(A) ∩ B) ⊂ iγcγ(A ∩ B). Also, iγcγ(A ∩ B) ⊂
iγ(cγ(A) ∩ cγ(B)) = iγcγ(A) ∩ iγcγ(B). Hence iγcγ(A ∩B) = iγcγ(A) ∩ iγcγ(B).
Theorem 3.9. Let (X, µγ) be a γ−space and A ⊂ X. Then the following are
equivalent.
(a) A ∈ δγ .
(b) A is the union of a γ−semiopen set and a µγ−rare set.
(c) A is the union of a γ−open set and a µγ−rare set.
(d) bdγ(A) is µγ−rare.
(e) There is a γ−open set G such that A−G and G−A are µγ−rare.
(f) A = B ∩ C where B is γ−semiopen and C is γ−closed.
(g) A = B ∩ C where B is γ−semiopen and C is γα−closed.
(h) A = B ∩ C where B is γ−semiopen and C is γ−semiclosed.
Proof. (a)⇒(b). A = (A ∩ cγiγ(A)) ∪ (A − cγiγ(A)). Let B = A ∩ cγiγ(A)
and C = A − cγiγ(A). Then iγ(A) ⊂ B and B ⊂ cγiγ(A) which implies that
B ⊂ cγiγ(B) and so B is γ−semiopen. Now C ∩ iγ(A) = (A− cγiγ(A))∩ iγ(A) = ∅
and cγ(C) ∩ iγ(A) = cγ(A − cγiγ(A)) ∩ iγ(A) ⊂ (cγ(A) − iγcγiγ(A)) ∩ iγ(A) = ∅.
Again, by Lemma 1.1(b), iγcγ(C) = iγcγ(A− cγiγ(A)) ⊂ iγ(cγ(A)− iγcγiγ(A)) =
iγcγ(A)−cγiγcγiγ(A) = iγcγ(A)−cγiγ(A), since cγiγ ∈ Γ2. Since A ∈ δγ , iγcγ(C) ⊂
cγiγ(A)− cγiγ(A) = ∅ and so C is µγ−rare.
(b)⇒(c). Suppose A = B ∪ C where B is γ−semiopen and C is µγ−rare. Since
B is γ−semiopen, there exists a γ−open set G such that G ⊂ B ⊂ cγ(G) and so
B = G∪ (B−G). Since B−G ⊂ cγ(G)−G and cγ(G)−G is µγ−rare by Theorem
3.2(a), B −G is µγ−rare. Therefore, A = G ∪ (B −G) ∪C and so (c) follows from
Theorem 3.3.
(c)⇒(d). Suppose A = G∪B where G is γ−open and B is µγ−rare. Now bdγ(A) =
bdγ(G ∪ B) ⊂ bdγ(G) ∪ bdγ(B), by Theorem 3.2(b). By Theorem 3.2(a), bdγ(G)
is µγ−rare and by Theorem 3.1(c), bdγ(B) is µγ−rare. By Theorem 3.3, bdγ(G) ∪
bdγ(B) is µγ−rare and so bdγ(A) is µγ−rare.
(d)⇒(e). Suppose G = iγ(A). Then G − A = ∅ and A − G = A − iγ(A) ⊂
cγ(A)− iγ(A) = bdγ(A). G is the required γ−open set such that G−A and A−G
are µγ−rare.
(e)⇒(f). Suppose G is a γ−open set such that G−A and A−G are µγ−rare sets.
If H = G− cγ(G− A), then H is a γ−open set such that H ⊂ A and so H − A is
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µγ−rare. Moreover, A−H = A−(G−cγ(G−A)) = (A−G)∪cγ(G−A). Since G−A
and A−G are µγ−rare, it follows that A−H is µγ−rare. Thus A = H ∪ (A−H),
union of a γ−open set and a µγ−rare set which is nothing but (c). If B = X − A
and K = X − cγ(H), then B −K and K − B are µγ−rare by Theorem 3.4. Thus
K is a γ−open set such that B − K and K − B are µγ−rare. Therefore, by (c),
B = U ∪R where U is γ−open and R is µγ−rare. Hence A = (X − U) ∩ (X −R)
where X − U is γ−closed. Now, cγiγ(X −R) = X − iγcγ(R) = X and so X −R is
γ−semiopen. Therefore, A is the intersection of a γ−closed set and a γ−semiopen
set.
(f)⇒(g). The proof follows from the fact that every γ−closed set is a γα−closed
set.
(g)⇒(h). The proof follows from the fact that every γα−closed set is a γ−semiclosed
set.
(h)⇒(a). Suppose A = B∩C where B is γ−semiopen and C is γ−semiclosed. Now
iγcγ(A) = iγcγ(B ∩ C) ⊂ iγcγ(cγiγ(B) ∩ C) ⊂ iγ(cγiγ(B) ∩ cγ(C)) = iγcγiγ(B) ∩
iγcγ(C) ⊂ cγiγ(B)∩ iγcγ(C) ⊂ cγ(iγ(B)∩ iγcγ(C)) = cγ(iγ(B)∩ iγ(C)), since C is
γ−semiclosed. Therefore, iγcγ(A) ⊂ cγiγ(B ∩ C) = cγiγ(A). Hence A is δγ−open.
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