Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 22:1 (2008), 97-106

ON δ -SETS IN γ -SPACES

V. Renuka Devi and D. Sivaraj

Abstract

We consider a collection of subsets of a set X defined in terms of a function on $\wp(X)$, called the γ -open sets, which is not a topology but we show that some of the results established for topologies are valid for this collection. In particular, we define δ_{γ} -open sets in a γ -space and characterize its properties. Also, we discuss the properties of γ -rare sets and characterize δ_{γ} -open sets in terms of γ -rare sets.

1. Introduction and Preliminaries.

Let X be a nonempty set and $\Gamma = \{\gamma : \wp(X) \to \wp(X) \mid \gamma(A) \subset \gamma(B) \text{ whenever}$ $A \subset B$. Also, the subcollections, $\Gamma_1 = \{\gamma \in \Gamma \mid \gamma(X) = X\}$ and $\Gamma_2 = \{\gamma \in \Gamma \mid \gamma(X) = X\}$ $\gamma(\gamma(A)) = \gamma(A)$ for every subset A of X of Γ are defined in [3]. If $\gamma \in \Gamma$, a subset A of X is said to be γ -open if $A \subset \gamma(A)$ [3]. The complement of a γ -open set is γ -closed. The family of all γ -open sets is denoted by μ_{γ} . In [3, Proposition 1.1], it is established that $\emptyset \in \mu_{\gamma}$ and arbitrary union of members of μ_{γ} is again in μ_{γ} . Collection of subsets of X satisfying these two conditions is called a *generalized* topology in [4]. X need not be γ -open [3] and so \emptyset need not be γ -closed. X is γ -open if $\gamma \in \Gamma_1$ [3]. The intersection of two γ -open sets need not be γ -open [3]. The γ -interior of A is the largest γ -open set contained in A and is denoted by $i_{\gamma}(A)$. Therefore, A is γ -open if and only if $A = i_{\gamma}(A)$. The smallest γ -closed set containing A is called the γ -closure of A and is denoted by $c_{\gamma}(A)$. Therefore, A is γ -closed if and only if $A = c_{\gamma}(A)$. In [3], it is established that $c_{\gamma} \in \Gamma_2, i_{\gamma} \in$ $\Gamma_2, i_\gamma \circ c_\gamma = i_\gamma c_\gamma \in \Gamma_2, c_\gamma i_\gamma \in \Gamma_2$ and $X - i_\gamma(A) = c_\gamma(X - A)$. A subset A of X is said to be γ -semiopen [5] if there exists a γ -open set G such that $G \subset A \subset c_{\gamma}(G)$. The complement of a γ -semiopen set is said to be γ -semiclosed. It is easy to verify that A is γ -semicopen if and only if $A \subset c_{\gamma}i_{\gamma}(A)$ and A is γ -semiclosed if and only if $i_{\gamma}(A) = i_{\gamma}c_{\gamma}(A) \subset A$. Recall that, a subset A of X is said to be γ -dense if $X = c_{\gamma}(A)$. $\sigma(\gamma)$ is the family of all γ -semiopen sets, $\pi(\gamma) = \{A \subset X \mid A \subset A\}$

²⁰⁰⁰ Mathematics Subject Classification. 54 A 05, 54 A 10.

Keywords and Phrases. γ -open, γ -interior, γ -closure, γ -semiopen, γ -preopen, $\gamma\alpha$ -open, $\gamma\beta$ -open, γb -open sets and generalized topology.

Received: November 16, 2007

Communicated by Dragan S. Djordjević

 $i_{\gamma}c_{\gamma}(A)$ is the family of all γ -preopen sets [4], $\alpha(\gamma) = \{A \subset X \mid A \subset i_{\gamma}c_{\gamma}i_{\gamma}(A)\}$ is the family of all $\gamma\alpha$ -open sets [4], $\beta(\gamma) = \{A \subset X \mid A \subset c_{\gamma}i_{\gamma}c_{\gamma}(A)\}$ is the family of all $\gamma\beta$ -open sets [4] and $b(\gamma) = \{A \subset X \mid A \subset c_{\gamma}i_{\gamma}(A) \cup i_{\gamma}c_{\gamma}(A)\}$ is the family of all $\gamma\beta$ -open sets [7]. The interior and closure operators of these generalized topologies are respectively denoted by, i_{σ} and c_{σ} , i_{π} and c_{π} , i_{α} and c_{α} , i_{β} and c_{β} and i_{b} and c_{b} . It is clear that $\mu_{\gamma} \subset \alpha(\gamma) \subset \sigma(\gamma) \cup \pi(\gamma) \subset b(\gamma) \subset \beta(\gamma)$. In [7], a new family of functions defined on $\wp(X)$, denoted by Γ_{4} , is introduced. $\Gamma_{4} = \{\gamma \in \Gamma \mid G \cap \gamma(A) \subset \gamma(G \cap A) \text{ for every } \gamma$ -open set G and $A \subset X\}$. If $\gamma \in \Gamma_{4}$, then the pair (X, μ_{γ}) is called a γ -space. In [7, Example 2.2], it is established that μ_{γ} is not a topology on X even if $\gamma \in \Gamma_{4}$ but the intersection of two γ -open sets is γ -open. It is interesting to note that in a topological space (X, τ) , if i is the interior operator, then $i \in \Gamma_{4}$ and the i-space is nothing but the topological space (X, τ) . The following lemma will be useful in the sequel.

Lemma 1.1. If (X, μ_{γ}) is a γ -space, then the following hold.

(a) If A and B are γ -open sets, then $A \cap B$ is a γ -open set [7, Theorem 2.1].

(b) $i_{\gamma}(A \cap B) = i_{\gamma}(A) \cap i_{\gamma}(B)$ for every subsets A and B of X [7, Theorem 2.3(a)]. (c) $c_{\gamma}(A \cup B) = c_{\gamma}(A) \cup c_{\gamma}(B)$ for every subsets A and B of X [7, Theorem 2.3(b)]. (d) $c_{\gamma}(c_{\sigma}(A)) = c_{\gamma}(A)$ for every subset A of X [7, Theorem 2.5(f)].

(e) $i_{\gamma}c_{\gamma}(i_{\pi}(A)) = i_{\gamma}c_{\gamma}(c_{\pi}(A)) = i_{\gamma}c_{\gamma}(A) = i_{\pi}(c_{\gamma}(A))$ for every subset A of X [7, Theorem 2.7(f)].

 $(f)c_{\gamma}(i_{\pi}(A)) = c_{\gamma}i_{\gamma}c_{\gamma}(A) \text{ for every subset } A \text{ of } X \text{ [7, Theorem 2.7(v)]}.$

(g) If X is a nonempty set, A is a subset of X and $\gamma \in \Gamma$, then $i_{\gamma}(c_{\sigma}(A)) = i_{\gamma}c_{\gamma}(A)$ [7, Theorem 2.4(e)].

2. More results in γ -spaces

In this section, we establish some of the properties of i_{γ} and c_{γ} in a γ -space and also we prove that $i_{\gamma} \in \Gamma_4$. Also, we characterize $\gamma\beta$ -open sets, γ -locally closed sets and γ -preopen sets.

Theorem 2.1. If (X, μ_{γ}) is a γ -space, then the following hold.

(a) If G is γ -open and $A \subset X$, then $G \cap i_{\gamma}(A) = i_{\gamma}(G \cap A)$ and so $i_{\gamma} \in \Gamma_4$.

(b) If G is γ -open and $A \subset X$, then $G \cap c_{\gamma}(A) \subset c_{\gamma}(G \cap A)$.

(c) $i_{\gamma}(A \cup F) \subset i_{\gamma}(A) \cup F$ where F is γ -closed and $A \subset X$.

(d) $c_{\gamma}(A \cup F) = c_{\gamma}(A) \cup F$ where F is γ -closed and $A \subset X$.

(e) If G is γ -open and D is γ -dense, then $c_{\gamma}(G \cap D) = c_{\gamma}(G)$.

Proof. (a) Let G be γ -open and A be any subset of X. Then $G \cap i_{\gamma}(A)$ is a γ -open set by Lemma 1.1(a), such that $G \cap i_{\gamma}(A) \subset G \cap A$. Therefore, $G \cap i_{\gamma}(A) \subset i_{\gamma}(G \cap A) = i_{\gamma}(G) \cap i_{\gamma}(A) = G \cap i_{\gamma}(A)$, by Lemma 1.1(b). Therefore, $G \cap i_{\gamma}(A) = i_{\gamma}(G \cap A)$. Since the set of all i_{γ} -open sets coincides with the set of all γ -open sets, it follows that $i_{\gamma} \in \Gamma_4$.

(b) Let $x \in G \cap c_{\gamma}(A)$ and U be an arbitrary γ -open set containing x. Since $U \cap G$ is a γ -open set containing x and $x \in c_{\gamma}(A)$, $(U \cap G) \cap A \neq \emptyset$ and so $U \cap (G \cap A) \neq \emptyset$ which implies that $x \in c_{\gamma}(G \cap A)$. Therefore, $G \cap c_{\gamma}(A) \subset c_{\gamma}(G \cap A)$.

(c) Now $X - i_{\gamma}(A \cup F) = c_{\gamma}(X - (A \cup F)) = c_{\gamma}((X - A) \cap (X - F)) \supset c_{\gamma}(X - A) \cap$

(X-F), by (b). Therefore, $X-i_{\gamma}(A\cup F) \supset (X-i_{\gamma}(A)) \cap (X-F) = X-(i_{\gamma}(A)\cup F)$ and so $i_{\gamma}(A\cup F) \subset i_{\gamma}(A) \cup F$.

(d) Now $X - c_{\gamma}(A \cup F) = i_{\gamma}(X - (A \cup F)) = i_{\gamma}((X - A) \cap (X - F)) = i_{\gamma}(X - A) \cap (X - F) = (X - c_{\gamma}(A)) \cap (X - F) = X - (c_{\gamma}(A) \cup F)$ and so $c_{\gamma}(A \cup F) = c_{\gamma}(A) \cup F$. (e) Since $G \cap D \subset G$, $c_{\gamma}(G \cap D) \subset c_{\gamma}(G)$. By (b), $c_{\gamma}(G \cap D) \supset c_{\gamma}(D) \cap G = G$ which implies that $c_{\gamma}(G \cap D) \supset c_{\gamma}(G)$ and so $c_{\gamma}(G \cap D) = c_{\gamma}(G)$.

The following Theorem 2.2 shows that the intersection of two $\gamma\alpha$ -open sets is a $\gamma\alpha$ -open set and the intersection of a γ -semiopen (resp. γ -preopen, $\gamma\beta$ -open, γb -open) set with a $\gamma\alpha$ -open set is a γ -semiopen (resp. γ -preopen, $\gamma\beta$ -open, γb -open) set. We will use Lemma 1.1(a), Lemma 1.1(b) and Lemma 1.1(c) in the following Theorem without mentioning them explicitly.

Theorem 2.2. If (X, μ_{γ}) is a γ -space, then the following hold.

(a) $G \cap A$ is γ -semiopen (resp. γ -preopen, $\gamma\beta$ -open, γb -open) whenever G is $\gamma\alpha$ -open and A is γ -semiopen (resp. γ -preopen, $\gamma\beta$ -open, γb -open).

(b) $G \cap A$ is $\gamma \alpha$ -open whenever G and A are $\gamma \alpha$ -open.

Proof. (a) Suppose G is $\gamma \alpha$ -open and A is γ -semiopen. Then $G \cap A \subset i_{\gamma}c_{\gamma}i_{\gamma}(G) \cap c_{\gamma}i_{\gamma}(A) \subset c_{\gamma}(i_{\gamma}c_{\gamma}i_{\gamma}(G) \cap i_{\gamma}(A)) = c_{\gamma}i_{\gamma}(c_{\gamma}i_{\gamma}(G) \cap i_{\gamma}(A)) \subset c_{\gamma}i_{\gamma}c_{\gamma}(i_{\gamma}(G) \cap i_{\gamma}(A)) = c_{\gamma}i_{\gamma}c_{\gamma}i_{\gamma}(G \cap A) = c_{\gamma}i_{\gamma}(G \cap A)$. Therefore, $G \cap A$ is γ -semiopen.

Suppose G is $\gamma \alpha$ -open and A is γ -preopen. Then $G \cap A \subset i_{\gamma}c_{\gamma}i_{\gamma}(G) \cap i_{\gamma}c_{\gamma}(A) = i_{\gamma}(c_{\gamma}i_{\gamma}(G) \cap i_{\gamma}c_{\gamma}(A)) \subset i_{\gamma}c_{\gamma}(i_{\gamma}(G) \cap i_{\gamma}c_{\gamma}(A)) = i_{\gamma}c_{\gamma}i_{\gamma}(i_{\gamma}(G) \cap c_{\gamma}(A)) \subset i_{\gamma}c_{\gamma}i_{\gamma}c_{\gamma}(i_{\gamma}(G) \cap A) \subset i_{\gamma}c_{\gamma}(G \cap A)$ and so $G \cap A$ is γ -preopen.

Suppose G is $\gamma\alpha$ -open and A is $\gamma\beta$ -open. Then $G \cap A \subset i_{\gamma}c_{\gamma}i_{\gamma}(G) \cap c_{\gamma}i_{\gamma}c_{\gamma}(A) \subset c_{\gamma}(i_{\gamma}c_{\gamma}i_{\gamma}(G) \cap i_{\gamma}c_{\gamma}(A)) = c_{\gamma}i_{\gamma}(c_{\gamma}i_{\gamma}(G) \cap i_{\gamma}c_{\gamma}(A)) \subset c_{\gamma}i_{\gamma}c_{\gamma}(i_{\gamma}(G) \cap i_{\gamma}c_{\gamma}(A)) = c_{\gamma}i_{\gamma}c_{\gamma}i_{\gamma}(i_{\gamma}(G) \cap c_{\gamma}(A)) \subset c_{\gamma}i_{\gamma}c_{\gamma}i_{\gamma}c_{\gamma}(G \cap A) = c_{\gamma}i_{\gamma}c_{\gamma}(G \cap A)$ and so $G \cap A$ is $\gamma\beta$ -open.

Suppose G is $\gamma \alpha$ -open and A is γb -open. Then $G \cap A \subset G \cap (c_{\gamma}i_{\gamma}(A) \cup i_{\gamma}c_{\gamma}(A)) = (G \cap c_{\gamma}i_{\gamma}(A)) \cup (G \cap i_{\gamma}c_{\gamma}(A)) \subset c_{\gamma}i_{\gamma}(G \cap A) \cup i_{\gamma}c_{\gamma}(G \cap A)$ and so $G \cap A$ is γb -open.

(b) Suppose G and A are $\gamma \alpha$ -open. Then $G \cap A \subset i_{\gamma} c_{\gamma} i_{\gamma}(G) \cap i_{\gamma} c_{\gamma} i_{\gamma}(A) \subset i_{\gamma} (c_{\gamma} i_{\gamma}(G) \cap i_{\gamma} c_{\gamma} i_{\gamma}(A)) \subset i_{\gamma} c_{\gamma} (i_{\gamma}(G) \cap i_{\gamma} c_{\gamma} i_{\gamma}(A)) = i_{\gamma} c_{\gamma} i_{\gamma} (i_{\gamma}(G) \cap c_{\gamma} i_{\gamma}(A)) \subset i_{\gamma} c_{\gamma} i_{\gamma} c_{\gamma} (i_{\gamma}(G) \cap i_{\gamma}(A)) \subset i_{\gamma} c_{\gamma} i_{\gamma} c_{\gamma} i_{\gamma} c_{\gamma} i_{\gamma} (G \cap A) = i_{\gamma} c_{\gamma} i_{\gamma} (G \cap A)$ and so $G \cap A$ is $\gamma \alpha$ -open.

Theorem 2.3. If (X, μ_{γ}) is a γ -space, G is γ -open and $A \subset X$, then the following hold.

 $(a)G \cap i_{\sigma}(A) \subset i_{\sigma}(G \cap A).$ $(b)G \cap i_{\alpha}(A) \subset i_{\alpha}(G \cap A).$ $(c)G \cap i_{\pi}(A) \subset i_{\pi}(G \cap A).$ $(d)G \cap i_{\beta}(A) \subset i_{\beta}(G \cap A).$ $(e)G \cap i_{b}(A) \subset i_{b}(G \cap A).$ $(f)G \cap c_{\sigma}(A) \subset c_{\sigma}(G \cap A).$ $(g)G \cap c_{\pi}(A) \subset c_{\pi}(G \cap A).$ $(h)G \cap c_{\pi}(A) \subset c_{\pi}(G \cap A).$ $(i)G \cap c_{\beta}(A) \subset c_{\beta}(G \cap A).$ $(j)G \cap c_{b}(A) \subset c_{b}(G \cap A).$ **Proof.** (a) Let G be γ -open and A be a subset of X. Then $G \cap i_{\sigma}(A)$ is a γ -semiopen set by Theorem 2.2(a), such that $G \cap i_{\sigma}(A) \subset G \cap A$. Therefore, $G \cap i_{\sigma}(A) \subset i_{\sigma}(G \cap A)$.

Similarly, we can prove (b), (c) (d) and (e).

(f) Let $x \in G \cap c_{\sigma}(A)$ and U be an arbitrary σ -open set containing x. Since $U \cap G$ is a σ -open set containing x and $x \in c_{\sigma}(A)$, $(U \cap G) \cap A \neq \emptyset$ and so $U \cap (G \cap A) \neq \emptyset$ which implies that $x \in c_{\sigma}(G \cap A)$. Therefore, $G \cap c_{\sigma}(A) \subset c_{\sigma}(G \cap A)$. Similarly, we can prove (g), (h), (i) and (j).

The following Corollary 2.4 shows that if $\gamma \in \Gamma_4$, then $i_{\alpha} \in \Gamma_4$ and Theorem 2.3(b) above is also true for $\gamma \alpha$ -open sets. The proof follows from Theorem 2.2(b) and the fact that the set of all $\gamma \alpha$ -open sets coincides with the set of all i_{α} -open sets.

Corollary 2.4. If (X, μ_{γ}) is a γ -space, G and A are subsets of X, then the following hold.

(a) $i_{\alpha}(G \cap A) = i_{\alpha}(G) \cap i_{\alpha}(A).$

(b) If G is $\gamma \alpha$ -open, then $G \cap i_{\alpha}(A) = i_{\alpha}(G \cap A)$.

(c) $i_{\alpha} \in \Gamma_4$.

The following Corollary 2.5 follows from Theorem 2.3.

Corollary 2.5. If (X, μ_{γ}) is a γ -space, $A \subset X$ and G is γ -open, then the following hold.

(a) $c_{\sigma}(G \cap c_{\sigma}(A)) = c_{\sigma}(G \cap A).$ (b) $c_{\alpha}(G \cap c_{\alpha}(A)) = c_{\alpha}(G \cap A).$ (c) $c_{\pi}(G \cap c_{\pi}(A)) = c_{\pi}(G \cap A).$

(d) $c_{\beta}(G \cap c_{\beta}(A)) = c_{\beta}(G \cap A).$

(e) $c_b(G \cap c_b(A)) = c_b(G \cap A).$

Let X be any nonempty set and $\gamma \in \Gamma$. A subset A of X is said to be γ -regular [3] if $A = \gamma(A)$. The following Theorem 2.6 shows that the intersection of two $i_{\gamma}c_{\gamma}$ -regular sets is again a $i_{\gamma}c_{\gamma}$ -regular set and Theorem 2.7 below gives characterizations of $\gamma\beta$ -open sets in γ -spaces.

Theorem 2.6. If (X, μ_{γ}) is a γ -space, and A and B are $i_{\gamma}c_{\gamma}$ -regular sets, then $A \cap B$ is a $i_{\gamma}c_{\gamma}$ -regular set.

Proof. Suppose A and B are $i_{\gamma}c_{\gamma}$ -regular sets. Now $A \cap B = i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B) = i_{\gamma}(c_{\gamma}(A) \cap c_{\gamma}(B))$ by Lemma 1.1(b) and so $i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B) \supset i_{\gamma}c_{\gamma}(A \cap B)$. Since the intersection of two γ -open set is a γ -open set, by Lemma 1.1(a), $A \cap B = i_{\gamma}(A \cap B) \subset i_{\gamma}c_{\gamma}(A \cap B)$. Therefore, $A \cap B = i_{\gamma}c_{\gamma}(A \cap B)$ which implies that $A \cap B$ is $i_{\gamma}c_{\gamma}$ -regular.

Theorem 2.7. If (X, μ_{γ}) is a γ -space and A is a subset of X, then the following statements are equivalent.

(a) A is $\gamma\beta$ -open.

(b) $c_{\gamma}(A) = c_{\gamma}i_{\gamma}c_{\gamma}(A).$

(c) $c_{\gamma}(A)$ is $c_{\gamma}i_{\gamma}$ -regular.

(d) There is a γ -preopen set U such that $U \subset A \subset c_{\gamma}(U)$.

- (e) $c_{\gamma}(A)$ is γ -semiopen.
- (f) $c_{\sigma}(A)$ is γ -semiopen.

(g) $c_{\pi}(A)$ is $\gamma\beta$ -open.

Proof. The equivalence of (a) and (b) is clear.

(a) \Rightarrow (c). If A is $\gamma\beta$ -open, then $c_{\gamma}(A) = c_{\gamma}i_{\gamma}c_{\gamma}(A)$ and so $c_{\gamma}(A)$ is $c_{\gamma}i_{\gamma}$ -regular. (c) \Rightarrow (d). Let $U = i_{\pi}(A)$. Then U is a γ -preopen set such that $U \subset A$. Now $c_{\gamma}(U) = c_{\gamma}(i_{\pi}(A)) = c_{\gamma}i_{\gamma}c_{\gamma}(A)$, by Lemma 1.1(f). Therefore, $c_{\gamma}(U) = c_{\gamma}(A)$ and so $U \subset A \subset c_{\gamma}(U)$.

(d) \Rightarrow (a). Suppose U is a γ -preopen set such that $U \subset A \subset c_{\gamma}(U)$. Then $c_{\gamma}(U) = c_{\gamma}(A)$. Since U is γ -preopen, $U \subset i_{\gamma}c_{\gamma}(U)$ and so $A \subset c_{\gamma}(A) = c_{\gamma}(U) \subset c_{\gamma}i_{\gamma}c_{\gamma}(U) \subset c_{\gamma}i_{\gamma}c_{\gamma}(A)$ and so A is $\gamma\beta$ -open.

(c) implies (e) is clear.

(e) \Rightarrow (f). Suppose $c_{\gamma}(A)$ is γ -semiopen. Now $i_{\gamma}c_{\gamma}(A) = i_{\gamma}c_{\sigma}(A)$, by Lemma 1.1(g) and so $i_{\gamma}c_{\gamma}(A) \subset c_{\sigma}(A) \subset c_{\gamma}(c_{\sigma}(A)) = c_{\gamma}(A)$, by Lemma 1.1(d). Therefore, $i_{\gamma}c_{\gamma}(A) \subset c_{\sigma}(A) \subset c_{\gamma}(A) \subset c_{\gamma}i_{\gamma}c_{\gamma}(A)$. Since $i_{\gamma}c_{\gamma}(A)$ is γ -open, $c_{\sigma}(A)$ is γ -semiopen.

(f) \Rightarrow (a). Suppose $c_{\sigma}(A)$ is γ -semiopen. Then, $A \subset c_{\sigma}(A) \subset c_{\gamma}i_{\gamma}(c_{\sigma}(A)) = c_{\gamma}i_{\gamma}c_{\gamma}(A)$, by Lemma 1.1(g) and so A is $\gamma\beta$ -open.

(a) \Rightarrow (g). Suppose A is $\gamma\beta$ -open. Since every γ -open set is a γ -preopen set, $c_{\pi}(A) \subset c_{\gamma}(A) \subset c_{\gamma}i_{\gamma}c_{\gamma}(A) = c_{\gamma}i_{\gamma}c_{\gamma}(c_{\pi}(A))$, by Lemma 1.1(e) and so (g) follows. (g) \Rightarrow (a). Suppose $c_{\pi}(A)$ is $\gamma\beta$ -open. Then $A \subset c_{\pi}(A) \subset c_{\gamma}i_{\gamma}c_{\gamma}(c_{\pi}(A)) = c_{\gamma}i_{\gamma}c_{\gamma}(A)$, by Lemma 1.1(e). Therefore, A is $\gamma\beta$ -open.

Let X be a nonempty set and $\gamma \in \Gamma$. A subset A of X is said to be γ -locally closed if $A = G \cap F$ where G is γ -open and F is γ -closed. Since X is γ -closed, every γ -open set is a γ -locally closed set. The following Theorem 2.8 gives a characterization of γ -locally closed sets, the proof is similar to the proof of the characterizations of locally closed sets [1] in any topological space and hence is omitted. Theorem 2.9 shows that for γ -dense sets, the concepts γ -open and γ -locally closed on the subsets of X are equivalent.

Theorem 2.8. Let X be a nonempty set, $\gamma \in \Gamma$ and A be a subset of X. Then the following statements are equivalent.

(a) A is γ -locally closed.

(b) $A = G \cap c_{\gamma}(A)$ for some γ -open set G.

(c) $c_{\gamma}(A) - A$ is γ -closed.

- (d) $A \cup (X c_{\gamma}(A))$ is γ -open.
- (e) $A \subset i_{\gamma}(A \cup (X c_{\gamma}(A))).$

Theorem 2.9. Let X be a nonempty set, $\gamma \in \Gamma$ and A be a γ -dense subset of X. Then the following statements are equivalent.

(a) A is γ -open.

(b) A is γ -locally closed.

Proof. Enough to prove (b) implies (a). Suppose A is γ -dense and γ -locally closed. Then $A = G \cap c_{\gamma}(A)$ for some γ -open set G. Therefore, $A = G \cap X = G$ and so A is γ -open.

The following Theorem 2.10 gives decompositions of γ -open sets in γ -spaces. **Theorem 2.10.** Let (X, μ_{γ}) be a γ -space and A be a subset of X. Then the following statements are equivalent.

(a) A is γ -open.

(b) A is $\gamma \alpha$ -open and γ -locally closed.

(c) A is γ -preopen and γ -locally closed.

Proof. It is enough to prove that (c) implies (a).

(c) \Rightarrow (a). Suppose A is γ -preopen and γ -locally closed. Since A is γ -preopen, $A \subset i_{\gamma}c_{\gamma}(A)$. Since A is γ -locally closed, $A = G \cap c_{\gamma}(A)$ for some γ -open set G. Now $A = A \cap i_{\gamma}c_{\gamma}(A) = (G \cap c_{\gamma}(A)) \cap i_{\gamma}c_{\gamma}(A) = G \cap i_{\gamma}c_{\gamma}(A) = i_{\gamma}(G \cap c_{\gamma}(A))$, by Lemma 1.1(b). Therefore, $A = i_{\gamma}(A)$ which implies that A is γ -open.

The following Theorem 2.11 gives characterizations of γ -preopen sets in a γ -space.

Theorem 2.11. Let (X, μ_{γ}) be a γ -space and $A \subset X$. Then the following statements are equivalent.

(a) $A \in \pi(\gamma)$.

(b) There is an $i_{\gamma}c_{\gamma}$ -regular set G such that $A \subset G$ and $c_{\gamma}(A) = c_{\gamma}(G)$.

(c) $A = G \cap D$ where G is a $i_{\gamma}c_{\gamma}$ -regular set and D is a γ -dense set.

(d) $A = G \cap D$ where G is a γ -open set and D is a γ -dense set.

Proof. (a) \Rightarrow (b). If $A \in \pi(\gamma)$, then $A \subset i_{\gamma}c_{\gamma}(A) \subset c_{\gamma}(A)$ which implies that $c_{\gamma}(A) \subset c_{\gamma}i_{\gamma}c_{\gamma}(A) \subset c_{\gamma}(A)$ and so $c_{\gamma}i_{\gamma}c_{\gamma}(A) = c_{\gamma}(A)$. Let $G = i_{\gamma}c_{\gamma}(A)$. Then $A \subset G$ and $i_{\gamma}c_{\gamma}(G) = i_{\gamma}c_{\gamma}i_{\gamma}c_{\gamma}(A) = i_{\gamma}c_{\gamma}(A) = G$ which implies that G is $i_{\gamma}c_{\gamma}$ -regular. Also $c_{\gamma}(G) = c_{\gamma}i_{\gamma}c_{\gamma}(G) = c_{\gamma}(A)$.

(b) \Rightarrow (c). Let G be an $i_{\gamma}c_{\gamma}$ -regular set such that $A \subset G$ and $c_{\gamma}(A) = c_{\gamma}(G)$. Let $D = A \cup (X - G)$. Then $A = G \cap D$ where G is $i_{\gamma}c_{\gamma}$ -regular. Now $c_{\gamma}(D) = c_{\gamma}(A \cup (X - G)) = c_{\gamma}(A) \cup c_{\gamma}(X - G) = c_{\gamma}(G) \cup c_{\gamma}(X - G) = c_{\gamma}(G \cup (X - G)) = c_{\gamma}(X) = X$. Hence D is γ -dense.

(c) \Rightarrow (d). The proof follows from the fact that every $i_{\gamma}c_{\gamma}$ -regular set is a γ -open set.

(d) \Rightarrow (a). Suppose $A = G \cap D$ where G is γ -open and D is γ -dense. Now $G = G \cap X = G \cap c_{\gamma}(D) \subset c_{\gamma}(G \cap D)$ and so $G = i_{\gamma}(G) \subset i_{\gamma}c_{\gamma}(G \cap D) = i_{\gamma}c_{\gamma}(A)$ which implies that $A \subset i_{\gamma}c_{\gamma}(A)$. Hence $A \in \pi(\gamma)$.

3. δ_{γ} -open Sets

Let X be a nonempty set, $\gamma \in \Gamma$ and $A \subset X$. A is said to be δ_{γ} -open or $A \in \delta_{\gamma}$ if and only if $i_{\gamma}c_{\gamma}(A) \subset c_{\gamma}i_{\gamma}(A)$. In topological spaces, the set of all δ_i -open sets coincides with the set of all δ -sets [2]. The γ -boundary of a subset A of X, denoted by $bd_{\gamma}(A)$, is given by $bd_{\gamma}(A) = c_{\gamma}(A) - i_{\gamma}(A) = c_{\gamma}(A) \cap c_{\gamma}(X - A)$. A subset A of X is said to be μ_{γ} -rare if $i_{\gamma}c_{\gamma}(A) = \emptyset$. In topological spaces, the set of all μ_i -rare sets coincides with the set of all nowhere dense sets. Every μ_{γ} -rare set is a δ_{γ} -open set, since $i_{\gamma}c_{\gamma}(A) = \emptyset \subset c_{\gamma}i_{\gamma}(A)$. It is easy to show that every γ -closed set is a δ_{γ} -open set. The following Theorem 3.1 gives some properties of μ_{γ} -rare sets.

Theorem 3.1. Let X be a nonempty set and $\gamma \in \Gamma$. Then the following hold. (a) \emptyset is μ_{γ} -rare.

- (b) Subset of a μ_{γ} -rare set is a μ_{γ} -rare set.
- (c) If A is a μ_{γ} -rare set, then $bd_{\gamma}(A)$ is a μ_{γ} -rare set.

102

Proof. (a) If $M_{\gamma} = \bigcup \{A \mid A \in \mu_{\gamma}\}$, then $c_{\gamma}i_{\gamma}(X) = c_{\gamma}(M_{\gamma}) = X$ and so $X - c_{\gamma}i_{\gamma}(X) = \emptyset$ which implies that $i_{\gamma}c_{\gamma}(\emptyset) = \emptyset$.

(b) The proof is clear.

(c) Since A is μ_{γ} -rare, $i_{\gamma}c_{\gamma}(A) = \emptyset$. Now $i_{\gamma}c_{\gamma}(bd_{\gamma}(A)) = i_{\gamma}c_{\gamma}(c_{\gamma}(A) - i_{\gamma}(A)) = i_{\gamma}c_{\gamma}(c_{\gamma}(A) \cap (X - i_{\gamma}(A))) \subset i_{\gamma}(c_{\gamma}(A) \cap c_{\gamma}(X - i_{\gamma}(A))) \subset i_{\gamma}c_{\gamma}(A) = \emptyset$. Therefore, $bd_{\gamma}(A)$ is a μ_{γ} -rare set.

The following Theorems 3.2, 3.3 and 3.4 deal with μ_{γ} -rare sets and γ -boundary of subsets of X in a γ -space, which are essential to characterize δ_{γ} -open sets in Theorem 3.9. Also, in a γ -space, one can easily prove the formulas 1 to 15 in [6, Page 56].

Theorem 3.2. Let (X, μ_{γ}) be a γ -space and A and B be subsets X. Then the following hold.

(a) If A is γ -open, then $bd_{\gamma}(A) = c_{\gamma}(A) - A$ is μ_{γ} -rare. (b) $bd_{\gamma}(A \cup B) \subset bd_{\gamma}(A) \cup bd_{\gamma}(B)$.

Proof. (a) $i_{\gamma}c_{\gamma}(c_{\gamma}(A) - A) = i_{\gamma}c_{\gamma}(c_{\gamma}(A) \cap (X - A)) \subset i_{\gamma}(c_{\gamma}(A) \cap c_{\gamma}(X - A)) = i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(X - A) = i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}(X - A) = i_{\gamma}c_{\gamma}(A) \cap (X - c_{\gamma}(A)) = \emptyset.$ (b) $bd_{\gamma}(A \cup B) = c_{\gamma}(A \cup B) \cap c_{\gamma}(X - (A \cup B)) = c_{\gamma}(A \cup B) \cap (c_{\gamma}(X - A) \cap c_{\gamma}(X - B)) \subset A$

 $(c_{\gamma}(A) \cup c_{\gamma}(B)) \cap (c_{\gamma}(X-A) \cap c_{\gamma}(X-B)) = (c_{\gamma}(A) \cap (c_{\gamma}(X-A) \cap c_{\gamma}(X-B))) \cup (c_{\gamma}(B) \cap (c_{\gamma}(X-A) \cap c_{\gamma}(X-B))) \subset (c_{\gamma}(A) \cap c_{\gamma}(X-A)) \cup (c_{\gamma}(B) \cap c_{\gamma}(X-B)) = bd_{\gamma}(A) \cup bd_{\gamma}(B).$

Theorem 3.3. Let (X, μ_{γ}) be a γ -space. If A and B are μ_{γ} -rare subsets of X, then $A \cup B$ is also a μ_{γ} -rare set.

Proof. $i_{\gamma}c_{\gamma}(A \cup B) = i_{\gamma}(c_{\gamma}(A) \cup c_{\gamma}(B))$, by Lemma 1.1(c) and so $i_{\gamma}c_{\gamma}(A \cup B) \subset i_{\gamma}c_{\gamma}(A) \cup c_{\gamma}(B) = \emptyset \cup c_{\gamma}(B)$ by Theorem 2.1(c). Therefore, $i_{\gamma}c_{\gamma}(A \cup B) \subset i_{\gamma}c_{\gamma}(B) = \emptyset$ and so $A \cup B$ is μ_{γ} -rare.

Theorem 3.4. If (X, μ_{γ}) is a γ -space, G is γ -open and both A-Gand G-A are μ_{γ} -rare, then B-H and H-B are μ_{γ} -rare, where $H = X - c_{\gamma}(G)$ and B = X - A.

Proof. Since $A - c_{\gamma}(G) \subset A - G$ and A - G is μ_{γ} -rare, $A - c_{\gamma}(G)$ is μ_{γ} -rare. Since $c_{\gamma}(G) - A = (G - A) \cup ((c_{\gamma}(G) - G) - A)$, by Theorem 3.1(b) and Theorem 3.3, $c_{\gamma}(G) - A$ is μ_{γ} -rare. Now $B - H = B - (X - c_{\gamma}(G)) = (X - A) \cap c_{\gamma}(G) = c_{\gamma}(G) - A$ and $H - B = (X - c_{\gamma}(G)) - B = (X - c_{\gamma}(G)) - (X - A) = A - c_{\gamma}(G)$. Therefore, B - H and H - B are μ_{γ} -rare.

The following Theorem 3.5 shows that every γ -semiopen is a δ_{γ} -open set and the complement of a δ_{γ} -open set is a δ_{γ} -open set. Theorems 3.6 and 3.8 give more properties of δ_{γ} -open sets.

Theorem 3.5. Let X be a nonempty set and $\gamma \in \Gamma$. Then the following hold. (a) If A is γ -semiopen, then $A \in \delta_{\gamma}$.

(b) If $A \in \delta_{\gamma}$, then $X - A \in \delta_{\gamma}$.

Proof. (a) If A is γ -semiopen, then $A \subset c_{\gamma}i_{\gamma}(A)$. Now, $i_{\gamma}c_{\gamma}(A) \subset i_{\gamma}c_{\gamma}c_{\gamma}i_{\gamma}(A) \subset c_{\gamma}i_{\gamma}(A)$ and so $A \in \delta_{\gamma}$.

(b) $A \in \delta_{\gamma}$ implies that $i_{\gamma}c_{\gamma}(A) \subset c_{\gamma}i_{\gamma}(A)$ and so $X - c_{\gamma}i_{\gamma}(A) \subset X - i_{\gamma}c_{\gamma}(A)$ which in turn implies that $i_{\gamma}(X - i_{\gamma}(A)) \subset c_{\gamma}(X - c_{\gamma}(A))$ and so $i_{\gamma}c_{\gamma}(X - A) \subset c_{\gamma}i_{\gamma}(X - A)$. Hence $X - A \in \delta_{\gamma}$.

Theorem 3.6. Let (X, μ_{γ}) be a γ -space. If $A \in \delta_{\gamma}$ and $B \in \delta_{\gamma}$, then $A \cap B \in \delta_{\gamma}$.

Proof. $A, B \in \delta_{\gamma}$ implies that $i_{\gamma}c_{\gamma}(A) \subset c_{\gamma}i_{\gamma}(A)$ and $i_{\gamma}c_{\gamma}(B) \subset c_{\gamma}i_{\gamma}(B)$. Now $i_{\gamma}c_{\gamma}(A\cap B) \subset i_{\gamma}(c_{\gamma}(A)\cap c_{\gamma}(B)) = i_{\gamma}c_{\gamma}(A)\cap i_{\gamma}c_{\gamma}(B)$ by Lemma 1.1(b). Since $A \in \delta_{\gamma}$, it follows that $i_{\gamma}c_{\gamma}(A\cap B) \subset c_{\gamma}i_{\gamma}(A)\cap i_{\gamma}c_{\gamma}(B) \subset c_{\gamma}(i_{\gamma}(A)\cap i_{\gamma}c_{\gamma}(B))$, by Theorem 2.1(b). Since $B \in \delta_{\gamma}$, $i_{\gamma}c_{\gamma}(A\cap B) \subset c_{\gamma}(i_{\gamma}(A)\cap c_{\gamma}i_{\gamma}(B)) \subset c_{\gamma}c_{\gamma}(i_{\gamma}(A)\cap i_{\gamma}(B)) = c_{\gamma}(i_{\gamma}(A)\cap i_{\gamma}(B))$. Hence $i_{\gamma}c_{\gamma}(A\cap B) \subset c_{\gamma}i_{\gamma}(A\cap B)$ and so $A\cap B \in \delta_{\gamma}$. **Corollary 3.7.** Let (X, μ_{γ}) be a γ -space. If $A \in \delta_{\gamma}$ and $B \in \delta_{\gamma}$, then $A \cup B \in \delta_{\gamma}$. **Proof.** The proof follows from Theorem 3.5(b) and Theorem 3.6.

Theorem 3.8. Let (X, μ_{γ}) be a γ -space and A and B be subsets of X such that $A \in \delta_{\gamma}$. Then $i_{\gamma}c_{\gamma}(A \cap B) = i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B)$.

Proof. Since $i_{\gamma}c_{\gamma}(A)$ and $i_{\gamma}c_{\gamma}(B)$ are γ -open sets, $i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B)$ is also γ -open by Lemma 1.1(a) and so $i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B) = i_{\gamma}(i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B)) \subset i_{\gamma}(c_{\gamma}i_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B))$, since $A \in \delta_{\gamma}$. Therefore, $i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B) \subset i_{\gamma}c_{\gamma}(i_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B)) \subset i_{\gamma}c_{\gamma}(i_{\gamma}(A) \cap c_{\gamma}(B)) \subset i_{\gamma}c_{\gamma}c_{\gamma}(i_{\gamma}(A) \cap B) \subset i_{\gamma}c_{\gamma}(A \cap B)$. Also, $i_{\gamma}c_{\gamma}(A \cap B) \subset i_{\gamma}(c_{\gamma}(A) \cap c_{\gamma}(B)) = i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B)$. Hence $i_{\gamma}c_{\gamma}(A \cap B) = i_{\gamma}c_{\gamma}(A) \cap i_{\gamma}c_{\gamma}(B)$.

Theorem 3.9. Let (X, μ_{γ}) be a γ -space and $A \subset X$. Then the following are equivalent.

(a) $A \in \delta_{\gamma}$.

(b) A is the union of a γ -semiopen set and a μ_{γ} -rare set.

(c) A is the union of a γ -open set and a μ_{γ} -rare set.

(d) $bd_{\gamma}(A)$ is μ_{γ} -rare.

(e) There is a γ -open set G such that A - G and G - A are μ_{γ} -rare.

(f) $A = B \cap C$ where B is γ -semiopen and C is γ -closed.

(g) $A = B \cap C$ where B is γ -semiopen and C is $\gamma \alpha$ -closed.

(h) $A = B \cap C$ where B is γ -semiopen and C is γ -semiclosed.

Proof. (a) \Rightarrow (b). $A = (A \cap c_{\gamma}i_{\gamma}(A)) \cup (A - c_{\gamma}i_{\gamma}(A))$. Let $B = A \cap c_{\gamma}i_{\gamma}(A)$ and $C = A - c_{\gamma}i_{\gamma}(A)$. Then $i_{\gamma}(A) \subset B$ and $B \subset c_{\gamma}i_{\gamma}(A)$ which implies that $B \subset c_{\gamma}i_{\gamma}(B)$ and so B is γ -semiopen. Now $C \cap i_{\gamma}(A) = (A - c_{\gamma}i_{\gamma}(A)) \cap i_{\gamma}(A) = \emptyset$ and $c_{\gamma}(C) \cap i_{\gamma}(A) = c_{\gamma}(A - c_{\gamma}i_{\gamma}(A)) \cap i_{\gamma}(A) \subset (c_{\gamma}(A) - i_{\gamma}c_{\gamma}i_{\gamma}(A)) \cap i_{\gamma}(A) = \emptyset$. Again, by Lemma 1.1(b), $i_{\gamma}c_{\gamma}(C) = i_{\gamma}c_{\gamma}(A - c_{\gamma}i_{\gamma}(A)) \subset i_{\gamma}(c_{\gamma}(A) - i_{\gamma}c_{\gamma}i_{\gamma}(A)) = i_{\gamma}c_{\gamma}(A) - c_{\gamma}i_{\gamma}(A) = i_{\gamma}c_{\gamma}(A) - c_{\gamma}i_{\gamma}(A) = i_{\gamma}c_{\gamma}(A) - c_{\gamma}i_{\gamma}(A) = i_{\gamma}c_{\gamma}(A) - c_{\gamma}i_{\gamma}(A)$, since $c_{\gamma}i_{\gamma} \in \Gamma_{2}$. Since $A \in \delta_{\gamma}, i_{\gamma}c_{\gamma}(C) \subset c_{\gamma}i_{\gamma}(A) - c_{\gamma}i_{\gamma}(A) = \emptyset$ and so C is μ_{γ} -rare.

(b) \Rightarrow (c). Suppose $A = B \cup C$ where B is γ -semiopen and C is μ_{γ} -rare. Since B is γ -semiopen, there exists a γ -open set G such that $G \subset B \subset c_{\gamma}(G)$ and so $B = G \cup (B - G)$. Since $B - G \subset c_{\gamma}(G) - G$ and $c_{\gamma}(G) - G$ is μ_{γ} -rare by Theorem 3.2(a), B - G is μ_{γ} -rare. Therefore, $A = G \cup (B - G) \cup C$ and so (c) follows from Theorem 3.3.

(c) \Rightarrow (d). Suppose $A = G \cup B$ where G is γ -open and B is μ_{γ} -rare. Now $bd_{\gamma}(A) = bd_{\gamma}(G \cup B) \subset bd_{\gamma}(G) \cup bd_{\gamma}(B)$, by Theorem 3.2(b). By Theorem 3.2(a), $bd_{\gamma}(G)$ is μ_{γ} -rare and by Theorem 3.1(c), $bd_{\gamma}(B)$ is μ_{γ} -rare. By Theorem 3.3, $bd_{\gamma}(G) \cup bd_{\gamma}(B)$ is μ_{γ} -rare and so $bd_{\gamma}(A)$ is μ_{γ} -rare.

(d) \Rightarrow (e). Suppose $G = i_{\gamma}(A)$. Then $G - A = \emptyset$ and $A - G = A - i_{\gamma}(A) \subset c_{\gamma}(A) - i_{\gamma}(A) = bd_{\gamma}(A)$. G is the required γ -open set such that G - A and A - G are μ_{γ} -rare.

(e) \Rightarrow (f). Suppose G is a γ -open set such that G - A and A - G are μ_{γ} -rare sets. If $H = G - c_{\gamma}(G - A)$, then H is a γ -open set such that $H \subset A$ and so H - A is μ_{γ} -rare. Moreover, $A-H = A - (G - c_{\gamma}(G - A)) = (A - G) \cup c_{\gamma}(G - A)$. Since G - Aand A - G are μ_{γ} -rare, it follows that A - H is μ_{γ} -rare. Thus $A = H \cup (A - H)$, union of a γ -open set and a μ_{γ} -rare set which is nothing but (c). If B = X - Aand $K = X - c_{\gamma}(H)$, then B - K and K - B are μ_{γ} -rare by Theorem 3.4. Thus K is a γ -open set such that B - K and K - B are μ_{γ} -rare. Therefore, by (c), $B = U \cup R$ where U is γ -open and R is μ_{γ} -rare. Hence $A = (X - U) \cap (X - R)$ where X - U is γ -closed. Now, $c_{\gamma}i_{\gamma}(X - R) = X - i_{\gamma}c_{\gamma}(R) = X$ and so X - R is γ -semiopen. Therefore, A is the intersection of a γ -closed set and a γ -semiopen set.

(f) \Rightarrow (g). The proof follows from the fact that every γ -closed set is a $\gamma\alpha$ -closed set.

(g) \Rightarrow (h). The proof follows from the fact that every $\gamma \alpha$ -closed set is a γ -semiclosed set.

(h) \Rightarrow (a). Suppose $A = B \cap C$ where B is γ -semiopen and C is γ -semiclosed. Now $i_{\gamma}c_{\gamma}(A) = i_{\gamma}c_{\gamma}(B \cap C) \subset i_{\gamma}c_{\gamma}(c_{\gamma}i_{\gamma}(B) \cap C) \subset i_{\gamma}(c_{\gamma}i_{\gamma}(B) \cap c_{\gamma}(C)) = i_{\gamma}c_{\gamma}i_{\gamma}(B) \cap i_{\gamma}c_{\gamma}(C) \subset c_{\gamma}i_{\gamma}(B) \cap i_{\gamma}c_{\gamma}(C)) = c_{\gamma}(i_{\gamma}(B) \cap i_{\gamma}(C))$, since C is γ -semiclosed. Therefore, $i_{\gamma}c_{\gamma}(A) \subset c_{\gamma}i_{\gamma}(B \cap C) = c_{\gamma}i_{\gamma}(A)$. Hence A is δ_{γ} -open.

REFERENCES

- N. Bourbaki, General Topology (Part I), Addison-Wesley Publishing Company, Inc., 1966.
- [2] C. Chattopadhyay and C. Bandyopadhyay, On structure of δ-sets, Bull. Calcutta Math. Soc., 83(1991), 281 - 290.
- [3] Á. Császár, Generalized Open Sets, Acta Math. Hungar., 75(1-2)(1997), 65
 87.
- [4] Å. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351 - 357.
- [5] A. Güldürdek and O. B. Ozbakir, On γ-semiopen sets, Acta Math. Hungar., 109(4)(2005), 347 -355.
- [6] K. Kuratowski, Topology I, Academic Press, New York, 1966.
- [7] P. Sivagami, Remark on γ -interior, Acta Math. Hungar., To appear.

Address

V. Renuka Devi:

Department of Mathematics, A. J. College, Sivakasi, Tamil Nadu, INDIA *E-mail*: renu_siva2003@yahoo.com

D. Sivaraj:

Department of Computer Applications, D. J. Academy for Managerial Excellence, Coimbatore - 641 032, Tamil Nadu, INDIA *E-mail*: ttn_sivaraj@yahoo.com