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INEQUALITIES FOR THE VOLUME
OF THE UNIT BALL IN `n

p
∗

Zhiyue Huang, Binwu He and Mengyuan Huang

Abstract

Let Bn
p = {x ∈ Rn|‖x‖p ≤ 1} be the unit ball in `n

p . We prove the
inequalities for the volume of the Bn

p :

V
1

n+1

Bn+1
p

< V
1
n

Bn
p

2Γ(
1

p
+ 1) p

r
p

n + p
VBn

p
≤ V

Bn+1
p

for all n ≥ 1 and p ≥ 1, where VBn
p

denotes the volumes of Bn
p . Furthermore,

we obtain the upper and lower bounds of V
n

n+1

Bn+1
p

/VBn
p

and V
Bn+1

p
/VBn

p
. Our

results are generalizations for inequalities in Rn proved and refined by G.D.
Anderson et al., K.H. Borgwardt, D.A.Klain and G.-C. Rota and H. Alzer.

1. Introduction

Let Bn
p = {x ∈ Rn|‖x‖p ≤ 1} be the unit ball in `n

p , and VBn
p

denotes the volume
of unit ball in `n

p . Then VBn
2

means the volume of unit ball in Rn. In past several
years, there have been many works about the inequalities for VBn

2
. According to

the results of G.D.Anderson, M.K.Vamanamurthy and M.Vuorinen in [3] and of
D.A.Klain and G.-C. Rota in [7], we have

V
1

n+1

Bn+1
2

< V
1
n

Bn
2
, (n = 1, 2, ...). (1.1)

Another inequality regarding the upper and lower bounds for the ratio of VBn+1
2

/VBn
2

was obtained by Brogwardt in [5]:
√

2π

n + 2
≤

VBn+1
2

VBn
2

≤
√

2π

n + 1
, (n = 1, 2, ...), (1.2)
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which leads to

1 <
V 2

Bn
2

VBn−1
2

VBn+1
2

<

√
n + 2

n
, (n = 2, 3, ...). (1.3)

The next inequality about VBn
2

is proved by H. Alzer in [2], and he pointed out that

1 <
V 2

Bn
2

VBn−1
2

VBn+1
2

< 1 +
1
n

, (n = 2, 3, ...). (1.4)

This inequality can also be deduced from the results in [3]. However, the right-hand

side inequality of (1.4) is weaker than that of (1.3) as
√

n+2
n ≤ 1 + 1

n .
Inequalities (1.1), (1.2) and (1.4) have been refined by Horst Alzer in [2]. His

results are:
2√
π

V
n

n+1

Bn+1
2

≤ VBn
2

<
√

eV
n

n+1

Bn+1
2

, (n = 1, 2, ...); (1.5)

√
2π

n + 8
π − 1

≤
VBn+1

2

VBn
2

<

√
2π

n + 3
2

, (n = 1, 2, ...); (1.6)

(
1 +

1
n

)2− log π
log 2

≤
V 2

Bn
2

VBn−1
2

VBn+1
2

<

(
1 +

1
n

) 1
2

, (n = 2, 3, ...). (1.7)

On the other hand, there are also lots of results about the volume of Bn
p , such

as in M.Meyer and A.Pajor [8], M.Schmuckenschlager [10], Jesus Bastero etc [4]
and Peng Gao [6]. From these results and those inequalities for the volumes of
unit ball in Rn, it is natural to ask whether there exist similar inequalities for the
volumes of unit ball in `n

p ? In this paper, we give the answer to this question by
proving Theorem 1 and 2 and Corollary 1, which are similar to (1.1), (1.2) and
(1.3). Moreover, we prove Theorem 3 and 4, whose results are similar to (1.5) and
(1.6). Our results are:

V
1

n+1

Bn+1
p

< V
1
n

Bn
p
, (n = 1, 2, ...);

2Γ(
1
p

+ 1) p

√
p

n + p
VBn

p
≤ VBn+1

p
, (n = 1, 2, ...);

2Γ(
1
p

+ 1) p

√
p

n + p
≤

VBn+1
p

VBn
p

≤ 2Γ(
1
p

+ 1) p

√
p

n + 1
, (n = p, p + 1, ...);

p

√
n + 1

p + n− 1
≤

V 2
Bn

p

VBn−1
p

VBn+1
p

≤ p

√
n + p

n
, (n = p, p + 1, ...);

aV
n

n+1

Bn+1
p

≤ VBn
p

< bV
n

n+1

Bn+1
p

, (n = p− 1, p, ...);

2Γ(
1
p

+ 1) p

√
p

n + A
≤

VBn+1
p

VBn
p

< 2Γ(
1
p

+ 1) p

√
p

n + B
, (n = 1, 2, ...),
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where a =
p−1

p

√
Γ(2)

Γ( p−1
p +1)

, b = p
√

e, A = p
(

Γ( 2
p +1)

Γ( 1
p +1)

)p

− 1 and B = p+1
2 .

2. Volume of the unit ball in `n
p and some inequalities of Γ(x)

and Ψ(x)

Before we start our proof, it is necessary for us to introduce the formula of the
volumes of unit ball in `n

p spaces and some properties of gamma function and psi
function (the logarithmic derivative of the gamma function).

Lemma 1. Let Bn
p = {x ∈ Rn|‖x‖p ≤ 1}, then

VBn
p

=
(2Γ( 1

p + 1))n

Γ(n
p + 1)

, (2.1)

where VBn
p

is the volume of unit ball in `n
p .

The proof of Lemma 1 can be found in [12].
Lemma 2. For all x > 0 we have

log Γ(x) =
(

x− 1
2

)
log x− x + log

√
2π +

1
12x

+ O

(
1
x3

)
, (2.2)

log Γ(x) >

(
x− 1

2

)
log x− x + log

√
2π, (2.3)

and

xb−a Γ(x + a)
Γ(x + b)

= 1 +
(a− b)(a + b− 1)

2x
+ O

(
1
x2

)
, (x →∞). (2.4)

Lemma 2 is provided by Horst Alzer in [2] , Another paper of him [1] gives us
the proof of (2.3), which is also found in [11], and the proofs of (2.2) and (2.4) can
is given in [9].

Lemma 3. For x > 0, let

Ψ(x) =
d log(Γ(x))

dx
=

1
Γ(x)

dΓ(x)
dx

.

We also have the integral representations

Ψ(x) = −C +
∫ ∞

0

e−t − e−xt

1− e−t
dt, (2.5)

where C = Euler′sconstant,

Ψ(n)(x) = (−1)n+1

∫ ∞

0

e−xt tn

1− e−t
dt, (2.6)
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and the asymptotic formula

Ψ(x) = log x− 1
2x

+ O

(
1
x2

)
(2.7)

Then,

Ψ(x) < log x− 1
2x

. (2.8)

Lemma 3 is also mentioned in [2] and [11]. The integral representation and
asymptotic formula of Ψ(x) is given in [9]. Actually, (2.6) follows from (2.5) by
differentiation, and the proof of (2.8) is proved in [1.3], which can be deduced from
(2.7) easily.

Lemma 4. Let n ≥ 0 be an integer and let x > 0 and s ∈ (0, 1) be real numbers.
Then

An(s; x) < Ψ(x + 1)−Ψ(x + s), (2.9)

where

An(s;x) = (1− s)

(
1

x + s + n
+

n−1∑

i=0

1
(x + i + 1)(x + i + s)

)
. (2.10)

We can find the proof of Lemma 4 in [1]. Horst Alzer proved this Lemma by
Jensen’s inequality,

h(su + (1− s)v) < sh(u) + (1− s)h(v), (u, v > 0; u 6= v; 0 < s < 1).

3. Inequalities for VBn
p

Theorem 1. For all integers n ≥ 1, we have

V
1

n+1

Bn+1
p

< V
1
n

Bn
p
. (3.1)

Proof. We define for positive real numbers x

f(x) =
2Γ( 1

p + 1)
(
Γ(x

p + 1)
) 1

x

.

Differentiation yields

df(x)
dx

=
2Γ( 1

p + 1)

x2
(
Γ(x

p + 1)
) 1

x

(
log Γ(

x

p
+ 1)− x

p
Ψ(

x

p
+ 1)

)
.

Then, we define for y > 1

g(y) = log Γ(y)− (y − 1)Ψ(y).
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Differentiation yields
dg(y)
dy

= −(y − 1)
dΨ(y)

dy
.

By (2.6), we know
dΨ(y)

dy
=

∫ ∞

0

e−yt t

1− e−t
dt > 0. (3.2)

According to (3.2), dg(y)
dy ≤ 0 for y ≥ 1. Thus, for y > 1

g(y) < g(1) = 0,

which implies
df(x)
dx

< 0.

Hence, we obtain that V
1

n+1

Bn+1
p

< V
1
n

Bn
p
.

Theorem 2. For all integers n ≥ 1, we have

2Γ(
1
p

+ 1) p

√
p

n + p
VBn

p
≤ VBn+1

p
. (3.3)

Proof. We define for positive real numbers x

f(x) = 2Γ(
1
p

+ 1)
Γ(x

p + 1)

Γ(x+1
p + 1)

.

Differentiation yields

df(x)
dx

= 2Γ(
1
p

+ 1)
Γ(x

p + 1)

Γ(x+1
p + 1)

(
Ψ(

x

p
+ 1)−Ψ(

x + 1
p

+ 1)
)

< 0.

As Ψ(x) is an increasing function by (3.5). Hence, we obtain

(
2Γ(

1
p

+ 1)
)p

p

n + p
=

n+p−1∏
n

f(i) ≤ fp(n).

Hence, the theorem is proved. It may be noted that the equality sign holds, if and
only if p = 1.

Corollary 1. For all integers n ≥ p, we have

2Γ(
1
p

+ 1) p

√
p

n + p
≤

VBn+1
p

VBn
p

≤ 2Γ(
1
p

+ 1) p

√
p

n + 1
, (3.4)
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and

p

√
n + 1

p + n− 1
≤

V 2
Bn

p

VBn−1
p

VBn+1
p

≤ p

√
n + p

n
. (3.5)

Proof. The above leads to (3.3). Proceeding precisely in the same way as what
we have done in the previous proof, we obtain that, for all n ≥ p,

(
2Γ(

1
p

+ 1)
)p

p

n + p
=

n+p−1∏
n

f(i) ≤ fp(n) ≤
n∏

n−p+1

f(i) =
(

2Γ(
1
p

+ 1)
)p

p

n + 1
.

(3.6)
Then, applying (3.3), we can obtain (3.4) easily. All equality sign hold, if and only
if p = 1.

4. Bounds of VBn
p

Theorem 3. For all integers n ≥ p− 1, we have

aV
n

n+1

Bn+1
p

≤ VBn
p

< bV
n

n+1

Bn+1
p

, (4.1)

with a =
p−1

p

√
Γ(2)

Γ( p−1
p +1)

and b = p
√

e.

Proof. First, we define the sequence

xn = log VBn
p
− n

n + 1
log VBn+1

p

=
n

n + 1
log Γ(

n + 1
p

+ 1)− log Γ(
n

p
+ 1), (n = p− 1, p, ...),

and for positive real number x, let

f(x) =
x

x + 1
p

log Γ(x +
1
p

+ 1)− log Γ(x + 1),

then,

p(x +
1
p
)2

df(x)
dx

= log Γ(x +
1
p

+ 1) + px(x +
1
p
)Ψ(x +

1
p

+ 1)− p(x +
1
p
)2Ψ(x + 1).

We define for y = x + 1 + 1
p ≥ 2

g(y) = log Γ(y) + (py − p− 1)(y − 1)Ψ(y)− p(y − 1)2Ψ(y − 1
p
).
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Applying (2.3),(2.8) and Lemma 4, we consider that

g(y) ≥ log
√

2π +
1
2

+
1
2

log y − y

− 1
2y

+ (y − 1)2
(

1
y − 1

p + 2
+

1
y(y − 1

p )
+

1
(y + 1)(y + 1− 1

p )

)

≥ log
√

2π +
1
2

+
1
2

log y − y − 1
2y

+ (y − 1)2
(

1
y + 2

+
1
y2

+
1

(y + 1)2

)
.

A simple calculation reveals for y ≥ 2,

(y − 1)2
(

1
y + 2

+
1
y2

)
+

1
(y + 1)2

− y − 1
2y

≥ −2,

which means

g(y) ≥ log
√

2π +
1
2

+
1
2

log 2− 2 > 0

Thus, df(y)
dy > 0, so that xn(n = 1, 2, ...) is strictly increasing. Applying (2.2),

lim
n→∞

xn = lim
n→∞

(
2n + p

2p
log

n + p + 1
n + p

− 1
2(n + 1)

log (n + p + 1) + O

(
1
n

))

=
1
p
.

Hence, for all n ≥ p− 1

p−1
p

√
Γ(2)

Γ(p−1
p + 1)

V
n

n+1

Bn+1
p

≤ VBn
p

< p
√

eV
n

n+1

Bn+1
p

.

Theorem 4. For all integers n ≥ 1, we have

2Γ(
1
p

+ 1) p

√
p

n + A
≤

VBn+1
p

VBn
p

< 2Γ(
1
p

+ 1) p

√
p

n + B
(4.2)

with A = p
(

Γ( 2
p +1)

Γ( 1
p +1)

)p

− 1 and B = p+1
2 .

Proof. Double-inequality (4.2) is equivalent to

B < ph(
n

p
) ≤ A,

where

h(x) =

(
Γ(x + 1 + 1

p )

Γ(x + 1)

)p

− x, (x > 0).
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Define r = p
(

Γ(x+1+ 1
p )

Γ(x+1)

)p (
Ψ(x + 1 + 1

p )−Ψ(x + 1)
)

and L(r, s) = r−s
log r−log s . Let

s = 1. Differentiation yields

1
L(r, s)

dh(x)
dx

= p log Γ(x + 1 +
1
p
)− p log Γ(x + 1)

+ log
(

Ψ(x + 1 +
1
p
)−Ψ(x + 1)

)
+ log p.

Define q(x) = 1
L(r,s)

dh(x)
dx , and from (2.5) and (2.6), we obtain

(
Ψ(x + 1 +

1
p
)−Ψ(x + 1)

)
dq(x)
dx

=
dΨ(x + 1 + 1

p )

dx
− dΨ(x + 1)

dx

+p

(
Ψ(x + 1 +

1
p
)−Ψ(x + 1)

)2

= −
∫ ∞

0

e−xttδ(t)dt + p

(∫ ∞

0

e−xtδ(t)dt

)2

,

where

δ(t) =
−e−(1+ 1

p )t + e−t

1− e−t
.

Applying the convolution theorem for Laplace transforms, we get
(

Ψ(x + 1 +
1
p
)−Ψ(x + 1)

)
dq(x)
dx

=
∫ ∞

0

e−xt

∫ t

0

(pδ(s)δ(t− s)− δ(t))dsdt.

Let 0 < s < t, we have

pδ(s)δ(t− s)− δ(t)

=
p(1− e−

s
p )(1− e−

t−s
p )(1− e−t)− (1− e−

t
p )(1− e−s)(1− e−(t−s))

(es − 1)(et−s − 1)(et − 1)

=
(1− e−

s
p )(1− e−

t−s
p )(1− e−

t
p )(p

∑p−1
i=0 e−

i
p t −∑p−1

i=0 e−
i
p s ∑p−1

i=0 e−
i
p (t−s))

(es − 1)(et−s − 1)(et − 1)
> 0.

Thus, for x > 0,dq(x)
dx > 0.

Applying (2.4) and (2.7), we get

lim
z→∞

eq(z) = lim
z→∞

p

(
Γ(z + 1 + 1

p )

Γ(z + 1)
z−

1
p

)p

z

(
Ψ(z + 1 +

1
p
)−Ψ(z + 1)

)

= 1,

which means q(x) < 0.
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We conclude that h(x) is a decreasing function. Hence, for n ≥ 1

p lim
n→∞

h(
n

p
) < ph(

n

p
) ≤ ph(

1
p
) = p

(
Γ( 2

p + 1)

Γ( 1
p + 1)

)p

− 1.

From (2.4),

lim
n→∞

h(n) =
p + 1
2p

.

This is the end of the proof.
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