INEQUALITIES FOR THE VOLUME
 OF THE UNIT BALL IN $\ell_{p}^{n *}$

Zhiyue Huang, Binwu He and Mengyuan Huang inequalities for the volume of the B_{p}^{n} :

$$
\begin{gathered}
V_{B_{p}^{n+1}}^{\frac{1}{n+1}}<V_{B_{p}^{n}}^{\frac{1}{n}} \\
2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+p}} V_{B_{p}^{n}} \leq V_{B_{p}^{n+1}}
\end{gathered}
$$

for all $n \geq 1$ and $p \geq 1$, where $V_{B_{p}^{n}}$ denotes the volumes of B_{p}^{n}. Furthermore, we obtain the upper and lower bounds of $V_{B_{p}^{n+1}}^{\frac{n}{n+1}} / V_{B_{p}^{n}}$ and $V_{B_{p}^{n+1}} / V_{B_{p}^{n}}$. Our results are generalizations for inequalities in R^{n} proved and refined by G.D. Anderson et al., K.H. Borgwardt, D.A.Klain and G.-C. Rota and H. Alzer.

1. Introduction

Let $B_{p}^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{p} \leq 1\right\}$ be the unit ball in ℓ_{p}^{n}, and $V_{B_{p}^{n}}$ denotes the volume of unit ball in ℓ_{p}^{n}. Then $V_{B_{2}^{n}}$ means the volume of unit ball in \mathbb{R}^{n}. In past several years, there have been many works about the inequalities for $V_{B_{2}^{n}}$. According to the results of G.D.Anderson, M.K.Vamanamurthy and M.Vuorinen in [3] and of D.A.Klain and G.-C. Rota in [7], we have

$$
\begin{equation*}
V_{B_{2}^{n+1}}^{\frac{1}{n+1}}<V_{B_{2}^{n}}^{\frac{1}{n}},(n=1,2, \ldots) \tag{1.1}
\end{equation*}
$$

Another inequality regarding the upper and lower bounds for the ratio of $V_{B_{2}^{n+1}} / V_{B_{2}^{n}}$ was obtained by Brogwardt in [5]:

$$
\begin{equation*}
\sqrt{\frac{2 \pi}{n+2}} \leq \frac{V_{B_{2}^{n+1}}}{V_{B_{2}^{n}}} \leq \sqrt{\frac{2 \pi}{n+1}},(n=1,2, \ldots) \tag{1.2}
\end{equation*}
$$

[^0]which leads to
\[

$$
\begin{equation*}
1<\frac{V_{B_{2}^{n}}^{2}}{V_{B_{2}^{n-1}} V_{B_{2}^{n+1}}}<\sqrt{\frac{n+2}{n}},(n=2,3, \ldots) \tag{1.3}
\end{equation*}
$$

\]

The next inequality about $V_{B_{2}^{n}}$ is proved by H. Alzer in [2], and he pointed out that

$$
\begin{equation*}
1<\frac{V_{B_{2}^{n}}^{2}}{V_{B_{2}^{n-1}} V_{B_{2}^{n+1}}}<1+\frac{1}{n},(n=2,3, \ldots) \tag{1.4}
\end{equation*}
$$

This inequality can also be deduced from the results in [3]. However, the right-hand side inequality of (1.4) is weaker than that of (1.3) as $\sqrt{\frac{n+2}{n}} \leq 1+\frac{1}{n}$.

Inequalities (1.1), (1.2) and (1.4) have been refined by Horst Alzer in [2]. His results are:

$$
\begin{gather*}
\frac{2}{\sqrt{\pi}} V_{B_{2}^{n+1}}^{\frac{n}{n+1}} \leq V_{B_{2}^{n}}<\sqrt{e} V_{B_{2}^{n+1}}^{\frac{n}{n+1}},(n=1,2, \ldots) \tag{1.5}\\
\sqrt{\frac{2 \pi}{n+\frac{8}{\pi}-1}} \leq \frac{V_{B_{2}^{n+1}}^{V_{B_{2}^{n}}}<\sqrt{\frac{2 \pi}{n+\frac{3}{2}}},(n=1,2, \ldots)}{\left(1+\frac{1}{n}\right)^{2-\frac{\log \pi}{\log 2}} \leq \frac{V_{B_{2}^{n}}^{2}}{V_{B_{2}^{n-1}} V_{B_{2}^{n+1}}}<\left(1+\frac{1}{n}\right)^{\frac{1}{2}},(n=2,3, \ldots) .} . \tag{1.6}
\end{gather*}
$$

On the other hand, there are also lots of results about the volume of B_{p}^{n}, such as in M.Meyer and A.Pajor [8], M.Schmuckenschlager [10], Jesus Bastero etc [4] and Peng Gao [6]. From these results and those inequalities for the volumes of unit ball in \mathbb{R}^{n}, it is natural to ask whether there exist similar inequalities for the volumes of unit ball in ℓ_{p}^{n} ? In this paper, we give the answer to this question by proving Theorem 1 and 2 and Corollary 1, which are similar to (1.1), (1.2) and (1.3). Moreover, we prove Theorem 3 and 4, whose results are similar to (1.5) and (1.6). Our results are:

$$
\begin{gathered}
V_{B_{p}^{n+1}}^{\frac{1}{n+1}}<V_{B_{p}^{n}}^{\frac{1}{n}},(n=1,2, \ldots) \\
2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+p}} V_{B_{p}^{n}} \leq V_{B_{p}^{n+1}},(n=1,2, \ldots) ; \\
2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+p}} \leq \frac{V_{B_{p}^{n+1}}^{V_{B_{p}^{n}}} \leq 2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+1}},(n=p, p+1, \ldots) ;}{\sqrt[p]{\frac{n+1}{p+n-1}} \leq \frac{V_{B_{p}^{n}}^{2}}{V_{B_{p}^{n-1}} V_{B_{p}^{n+1}}} \leq \sqrt[p]{\frac{n+p}{n}},(n=p, p+1, \ldots) ;} \\
a V_{B_{p}^{n+1}}^{\frac{n}{n+1}} \leq V_{B_{p}^{n}}<b V_{B_{p}^{n+1}}^{\frac{n}{n+1}},(n=p-1, p, \ldots) \\
2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+A}} \leq \frac{V_{B_{p}^{n+1}}}{V_{B_{p}^{n}}}<2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+B}},(n=1,2, \ldots),
\end{gathered}
$$

where $a=\frac{\frac{\frac{p-1}{p} \sqrt{\Gamma(2)}}{\Gamma\left(\frac{p-1}{p}+1\right)}}{}, b=\sqrt[p]{e}, A=p\left(\frac{\Gamma\left(\frac{2}{p}+1\right)}{\Gamma\left(\frac{1}{p}+1\right)}\right)^{p}-1$ and $B=\frac{p+1}{2}$.

2. Volume of the unit ball in ℓ_{p}^{n} and some inequalities of $\Gamma(x)$
 $$
\text { and } \Psi(x)
$$

Before we start our proof, it is necessary for us to introduce the formula of the volumes of unit ball in ℓ_{p}^{n} spaces and some properties of gamma function and psi function (the logarithmic derivative of the gamma function).

Lemma 1. Let $B_{p}^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{p} \leq 1\right\}$, then

$$
\begin{equation*}
V_{B_{p}^{n}}=\frac{\left(2 \Gamma\left(\frac{1}{p}+1\right)\right)^{n}}{\Gamma\left(\frac{n}{p}+1\right)} \tag{2.1}
\end{equation*}
$$

where $V_{B_{p}^{n}}$ is the volume of unit ball in ℓ_{p}^{n}.
The proof of Lemma 1 can be found in [12].
Lemma 2. For all $x>0$ we have

$$
\begin{align*}
\log \Gamma(x)= & \left(x-\frac{1}{2}\right) \log x-x+\log \sqrt{2 \pi}+\frac{1}{12 x}+O\left(\frac{1}{x^{3}}\right) \tag{2.2}\\
& \log \Gamma(x)>\left(x-\frac{1}{2}\right) \log x-x+\log \sqrt{2 \pi} \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
x^{b-a} \frac{\Gamma(x+a)}{\Gamma(x+b)}=1+\frac{(a-b)(a+b-1)}{2 x}+O\left(\frac{1}{x^{2}}\right),(x \rightarrow \infty) \tag{2.4}
\end{equation*}
$$

Lemma 2 is provided by Horst Alzer in [2], Another paper of him [1] gives us the proof of (2.3), which is also found in [11], and the proofs of (2.2) and (2.4) can is given in [9].

Lemma 3. For $x>0$, let

$$
\Psi(x)=\frac{d \log (\Gamma(x))}{d x}=\frac{1}{\Gamma(x)} \frac{d \Gamma(x)}{d x} .
$$

We also have the integral representations

$$
\begin{equation*}
\Psi(x)=-C+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} d t \tag{2.5}
\end{equation*}
$$

where $C=$ Euler'sconstant,

$$
\begin{equation*}
\Psi^{(n)}(x)=(-1)^{n+1} \int_{0}^{\infty} e^{-x t} \frac{t^{n}}{1-e^{-t}} d t \tag{2.6}
\end{equation*}
$$

and the asymptotic formula

$$
\begin{equation*}
\Psi(x)=\log x-\frac{1}{2 x}+O\left(\frac{1}{x^{2}}\right) \tag{2.7}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\Psi(x)<\log x-\frac{1}{2 x} \tag{2.8}
\end{equation*}
$$

Lemma 3 is also mentioned in [2] and [11]. The integral representation and asymptotic formula of $\Psi(x)$ is given in [9]. Actually, (2.6) follows from (2.5) by differentiation, and the proof of (2.8) is proved in [1.3], which can be deduced from (2.7) easily.

Lemma 4. Let $n \geq 0$ be an integer and let $x>0$ and $s \in(0,1)$ be real numbers. Then

$$
\begin{equation*}
A_{n}(s ; x)<\Psi(x+1)-\Psi(x+s) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}(s ; x)=(1-s)\left(\frac{1}{x+s+n}+\sum_{i=0}^{n-1} \frac{1}{(x+i+1)(x+i+s)}\right) \tag{2.10}
\end{equation*}
$$

We can find the proof of Lemma 4 in [1]. Horst Alzer proved this Lemma by Jensen's inequality,

$$
h(s u+(1-s) v)<\operatorname{sh}(u)+(1-s) h(v),(u, v>0 ; u \neq v ; 0<s<1) .
$$

3. Inequalities for $V_{B_{p}^{n}}$

Theorem 1. For all integers $n \geq 1$, we have

$$
\begin{equation*}
V_{B_{p}^{n+1}}^{\frac{1}{n+1}}<V_{B_{p}^{n}}^{\frac{1}{n}} \tag{3.1}
\end{equation*}
$$

Proof. We define for positive real numbers x

$$
f(x)=\frac{2 \Gamma\left(\frac{1}{p}+1\right)}{\left(\Gamma\left(\frac{x}{p}+1\right)\right)^{\frac{1}{x}}}
$$

Differentiation yields

$$
\frac{d f(x)}{d x}=\frac{2 \Gamma\left(\frac{1}{p}+1\right)}{x^{2}\left(\Gamma\left(\frac{x}{p}+1\right)\right)^{\frac{1}{x}}}\left(\log \Gamma\left(\frac{x}{p}+1\right)-\frac{x}{p} \Psi\left(\frac{x}{p}+1\right)\right)
$$

Then, we define for $y>1$

$$
g(y)=\log \Gamma(y)-(y-1) \Psi(y)
$$

Differentiation yields

$$
\frac{d g(y)}{d y}=-(y-1) \frac{d \Psi(y)}{d y}
$$

By (2.6), we know

$$
\begin{equation*}
\frac{d \Psi(y)}{d y}=\int_{0}^{\infty} e^{-y t} \frac{t}{1-e^{-t}} d t>0 \tag{3.2}
\end{equation*}
$$

According to (3.2), $\frac{d g(y)}{d y} \leq 0$ for $y \geq 1$. Thus, for $y>1$

$$
g(y)<g(1)=0
$$

which implies

$$
\frac{d f(x)}{d x}<0
$$

Hence, we obtain that $V_{B_{p}^{n+1}}^{\frac{1}{n+1}}<V_{B_{p}^{n}}^{\frac{1}{n}}$.

Theorem 2. For all integers $n \geq 1$, we have

$$
\begin{equation*}
2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+p}} V_{B_{p}^{n}} \leq V_{B_{p}^{n+1}} \tag{3.3}
\end{equation*}
$$

Proof. We define for positive real numbers x

$$
f(x)=2 \Gamma\left(\frac{1}{p}+1\right) \frac{\Gamma\left(\frac{x}{p}+1\right)}{\Gamma\left(\frac{x+1}{p}+1\right)}
$$

Differentiation yields

$$
\frac{d f(x)}{d x}=2 \Gamma\left(\frac{1}{p}+1\right) \frac{\Gamma\left(\frac{x}{p}+1\right)}{\Gamma\left(\frac{x+1}{p}+1\right)}\left(\Psi\left(\frac{x}{p}+1\right)-\Psi\left(\frac{x+1}{p}+1\right)\right)<0
$$

As $\Psi(x)$ is an increasing function by (3.5). Hence, we obtain

$$
\left(2 \Gamma\left(\frac{1}{p}+1\right)\right)^{p} \frac{p}{n+p}=\prod_{n}^{n+p-1} f(i) \leq f^{p}(n)
$$

Hence, the theorem is proved. It may be noted that the equality sign holds, if and only if $p=1$.

Corollary 1. For all integers $n \geq p$, we have

$$
\begin{equation*}
2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+p}} \leq \frac{V_{B_{p}^{n+1}}}{V_{B_{p}^{n}}} \leq 2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+1}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt[p]{\frac{n+1}{p+n-1}} \leq \frac{V_{B_{p}^{n}}^{2}}{V_{B_{p}^{n-1}} V_{B_{p}^{n+1}}} \leq \sqrt[p]{\frac{n+p}{n}} \tag{3.5}
\end{equation*}
$$

Proof. The above leads to (3.3). Proceeding precisely in the same way as what we have done in the previous proof, we obtain that, for all $n \geq p$,

$$
\begin{equation*}
\left(2 \Gamma\left(\frac{1}{p}+1\right)\right)^{p} \frac{p}{n+p}=\prod_{n}^{n+p-1} f(i) \leq f^{p}(n) \leq \prod_{n-p+1}^{n} f(i)=\left(2 \Gamma\left(\frac{1}{p}+1\right)\right)^{p} \frac{p}{n+1} . \tag{3.6}
\end{equation*}
$$

Then, applying (3.3), we can obtain (3.4) easily. All equality sign hold, if and only if $p=1$.

4. Bounds of $V_{B_{p}^{n}}$

Theorem 3. For all integers $n \geq p-1$, we have

$$
\begin{equation*}
a V_{B_{p}^{n+1}}^{\frac{n}{n+1}} \leq V_{B_{p}^{n}}<b V_{B_{p}^{n+1}}^{\frac{n}{n+1}}, \tag{4.1}
\end{equation*}
$$

with $a=\frac{\frac{p-1}{p} \sqrt{\Gamma(2)}}{\Gamma\left(\frac{p-1}{p}+1\right)}$ and $b=\sqrt[p]{e}$.
Proof. First, we define the sequence

$$
\begin{aligned}
x_{n} & =\log V_{B_{p}^{n}}-\frac{n}{n+1} \log V_{B_{p}^{n+1}} \\
& =\frac{n}{n+1} \log \Gamma\left(\frac{n+1}{p}+1\right)-\log \Gamma\left(\frac{n}{p}+1\right),(n=p-1, p, \ldots),
\end{aligned}
$$

and for positive real number x, let

$$
f(x)=\frac{x}{x+\frac{1}{p}} \log \Gamma\left(x+\frac{1}{p}+1\right)-\log \Gamma(x+1),
$$

then,
$p\left(x+\frac{1}{p}\right)^{2} \frac{d f(x)}{d x}=\log \Gamma\left(x+\frac{1}{p}+1\right)+p x\left(x+\frac{1}{p}\right) \Psi\left(x+\frac{1}{p}+1\right)-p\left(x+\frac{1}{p}\right)^{2} \Psi(x+1)$.
We define for $y=x+1+\frac{1}{p} \geq 2$

$$
g(y)=\log \Gamma(y)+(p y-p-1)(y-1) \Psi(y)-p(y-1)^{2} \Psi\left(y-\frac{1}{p}\right) .
$$

Applying (2.3),(2.8) and Lemma 4, we consider that

$$
\begin{aligned}
g(y) \geq & \log \sqrt{2 \pi}+\frac{1}{2}+\frac{1}{2} \log y-y \\
& -\frac{1}{2 y}+(y-1)^{2}\left(\frac{1}{y-\frac{1}{p}+2}+\frac{1}{y\left(y-\frac{1}{p}\right)}+\frac{1}{(y+1)\left(y+1-\frac{1}{p}\right)}\right) \\
\geq & \log \sqrt{2 \pi}+\frac{1}{2}+\frac{1}{2} \log y-y-\frac{1}{2 y}+(y-1)^{2}\left(\frac{1}{y+2}+\frac{1}{y^{2}}+\frac{1}{(y+1)^{2}}\right)
\end{aligned}
$$

A simple calculation reveals for $y \geq 2$,

$$
(y-1)^{2}\left(\frac{1}{y+2}+\frac{1}{y^{2}}\right)+\frac{1}{(y+1)^{2}}-y-\frac{1}{2 y} \geq-2
$$

which means

$$
g(y) \geq \log \sqrt{2 \pi}+\frac{1}{2}+\frac{1}{2} \log 2-2>0
$$

Thus, $\frac{d f(y)}{d y}>0$, so that $x_{n}(n=1,2, \ldots)$ is strictly increasing. Applying (2.2),

$$
\begin{aligned}
\lim _{n \rightarrow \infty} x_{n} & =\lim _{n \rightarrow \infty}\left(\frac{2 n+p}{2 p} \log \frac{n+p+1}{n+p}-\frac{1}{2(n+1)} \log (n+p+1)+O\left(\frac{1}{n}\right)\right) \\
& =\frac{1}{p}
\end{aligned}
$$

Hence, for all $n \geq p-1$

$$
\frac{\frac{p-1}{p} \sqrt{\Gamma(2)}}{\Gamma\left(\frac{p-1}{p}+1\right)} V_{B_{p}^{n+1}}^{\frac{n}{n+1}} \leq V_{B_{p}^{n}}<\sqrt[p]{e} V_{B_{p}^{n+1}}^{\frac{n}{n+1}} .
$$

Theorem 4. For all integers $n \geq 1$, we have

$$
\begin{equation*}
2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+A}} \leq \frac{V_{B_{p}^{n+1}}}{V_{B_{p}^{n}}}<2 \Gamma\left(\frac{1}{p}+1\right) \sqrt[p]{\frac{p}{n+B}} \tag{4.2}
\end{equation*}
$$

with $A=p\left(\frac{\Gamma\left(\frac{2}{p}+1\right)}{\Gamma\left(\frac{1}{p}+1\right)}\right)^{p}-1$ and $B=\frac{p+1}{2}$.
Proof. Double-inequality (4.2) is equivalent to

$$
B<p h\left(\frac{n}{p}\right) \leq A
$$

where

$$
h(x)=\left(\frac{\Gamma\left(x+1+\frac{1}{p}\right)}{\Gamma(x+1)}\right)^{p}-x,(x>0)
$$

Define $r=p\left(\frac{\Gamma\left(x+1+\frac{1}{p}\right)}{\Gamma(x+1)}\right)^{p}\left(\Psi\left(x+1+\frac{1}{p}\right)-\Psi(x+1)\right)$ and $L(r, s)=\frac{r-s}{\log r-\log s}$. Let $s=1$. Differentiation yields

$$
\begin{aligned}
\frac{1}{L(r, s)} \frac{d h(x)}{d x}= & p \log \Gamma\left(x+1+\frac{1}{p}\right)-p \log \Gamma(x+1) \\
& +\log \left(\Psi\left(x+1+\frac{1}{p}\right)-\Psi(x+1)\right)+\log p
\end{aligned}
$$

Define $q(x)=\frac{1}{L(r, s)} \frac{d h(x)}{d x}$, and from (2.5) and (2.6), we obtain

$$
\begin{aligned}
\left(\Psi\left(x+1+\frac{1}{p}\right)-\Psi(x+1)\right) \frac{d q(x)}{d x}= & \frac{d \Psi\left(x+1+\frac{1}{p}\right)}{d x}-\frac{d \Psi(x+1)}{d x} \\
& +p\left(\Psi\left(x+1+\frac{1}{p}\right)-\Psi(x+1)\right)^{2} \\
= & -\int_{0}^{\infty} e^{-x t} t \delta(t) d t+p\left(\int_{0}^{\infty} e^{-x t} \delta(t) d t\right)^{2}
\end{aligned}
$$

where

$$
\delta(t)=\frac{-e^{-\left(1+\frac{1}{p}\right) t}+e^{-t}}{1-e^{-t}}
$$

Applying the convolution theorem for Laplace transforms, we get

$$
\left(\Psi\left(x+1+\frac{1}{p}\right)-\Psi(x+1)\right) \frac{d q(x)}{d x}=\int_{0}^{\infty} e^{-x t} \int_{0}^{t}(p \delta(s) \delta(t-s)-\delta(t)) d s d t
$$

Let $0<s<t$, we have

$$
\begin{aligned}
& p \delta(s) \delta(t-s)-\delta(t) \\
= & \frac{p\left(1-e^{-\frac{s}{p}}\right)\left(1-e^{-\frac{t-s}{p}}\right)\left(1-e^{-t}\right)-\left(1-e^{-\frac{t}{p}}\right)\left(1-e^{-s}\right)\left(1-e^{-(t-s)}\right)}{\left(e^{s}-1\right)\left(e^{t-s}-1\right)\left(e^{t}-1\right)} \\
= & \frac{\left(1-e^{-\frac{s}{p}}\right)\left(1-e^{-\frac{t-s}{p}}\right)\left(1-e^{-\frac{t}{p}}\right)\left(p \sum_{i=0}^{p-1} e^{-\frac{i}{p} t}-\sum_{i=0}^{p-1} e^{-\frac{i}{p} s} \sum_{i=0}^{p-1} e^{-\frac{i}{p}(t-s)}\right)}{\left(e^{s}-1\right)\left(e^{t-s}-1\right)\left(e^{t}-1\right)} \\
> & 0 .
\end{aligned}
$$

Thus, for $x>0, \frac{d q(x)}{d x}>0$.
Applying (2.4) and (2.7), we get

$$
\begin{aligned}
\lim _{z \rightarrow \infty} e^{q(z)} & =\lim _{z \rightarrow \infty} p\left(\frac{\Gamma\left(z+1+\frac{1}{p}\right)}{\Gamma(z+1)} z^{-\frac{1}{p}}\right)^{p} z\left(\Psi\left(z+1+\frac{1}{p}\right)-\Psi(z+1)\right) \\
& =1
\end{aligned}
$$

which means $q(x)<0$.

We conclude that $h(x)$ is a decreasing function. Hence, for $n \geq 1$

$$
p \lim _{n \rightarrow \infty} h\left(\frac{n}{p}\right)<p h\left(\frac{n}{p}\right) \leq p h\left(\frac{1}{p}\right)=p\left(\frac{\Gamma\left(\frac{2}{p}+1\right)}{\Gamma\left(\frac{1}{p}+1\right)}\right)^{p}-1 .
$$

From (2.4),

$$
\lim _{n \rightarrow \infty} h(n)=\frac{p+1}{2 p}
$$

This is the end of the proof.

Acknowledgement

The authors wish to thank G.D.Anderson, M.K.Vamanamurthy and M.Vuorinen for giving us a copy of their paper and anonymous referees for their valuable remarks and suggestions.

References

[1] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput. 1997: 373-389.
[2] H. Alzer, Inequalities for the volume of the unit ball in R^{n}, J. Math. Anal. Appl. 2000, 136:353-363.
[3] G.D.Anderson, M.K.Vamanamurthy, and M.Vuorinen, Special function of quasiconformal theory, Exposition. Math 1989: 97-136.
[4] J.Bastero, F.Galve, A.Pena, M.Romance, Inequalities for the gamma function and estimates for the volume of section B_{p}^{n}, Proc. Amer. Math. Soc. 2002, 130 183-192.
[5] K.H.Borgwardt, The simplex method, Berlin: Spring-Verlag Press, 1987.
[6] P. Gao, A note on the volume of section of B_{p}^{n}, J. Math. Anal. Appl. 2007, 326:632-640.
[7] D.A.Klain and G.-C.Rota, A continuous analogue of Sperner's theorem, Comm. Pure Appl. 1997, 50:118-123.
[8] M.Meyer, A.Pajor, Sections of the unit ball of L_{p}^{n}, J. Funct. Anal. 1988, 80:109-123.
[9] A.F.Nikiforov and V.B.Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, 1988.
[10] M. Schmuckenschlager, Volume of intersection and sections of the unit ball of ℓ_{p}^{n}, Proc. Amer. Math. Soc 1998, 126: 1527-1530.
[11] Z. Wang, D. Guo, Introduction to Special Function, Bejing: Peking University Press, 2000.
[12] G. M. Fihtengolc, Kurs differencialnogo i integralnogo ischislenija, Peking: Higher Education Press, 2005.

Address

Department of Mathematics, Shanghai University, Shanghai,200444, P. R. China E-mail: hebinwu@shu.edu.cn

[^0]: *Supported in part by the National Natural Science Foundation of China (Grant No. 10671119) 2000 Mathematics Subject Classification. 33B15, 51M16, 51N20.
 Keywords and Phrases. Gamma function, inequalities, psi function, unit ball, volume.
 Received: September 14, 2007
 Communicated by Dragan S. Djordjević

