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AN ISOMORPHISM THEOREM
FOR ANTI-ORDERED SETS

Daniel Abraham Romano∗

Abstract

In this paper we show some kind of isomorphism theorem for ordered
sets under antiorders. Let (X, =X , 6=X , α) and (Y, =Y , 6=Y , β) be ordered
sets under antiorders, where the apartness 6=Y is tight. If ϕ : X −→ Y is
reverse isotone strongly extensional mapping, then there exists a strongly
extensional and embedding reverse isotone bijection

((X, =X , 6=X , α, c(R))/q, =1, 6=1, γ) −→ (Im(ϕ), =Y , 6=Y , β)

where c(R) is the biggest quasi-antiorder relation on X under R = α ∩
Coker(ϕ), q = c(R)∪ c(R)−1 and γ is an antiorder induced by the quasi-
antiorder c(R). If the condition α ∩ α−1 = ∅ holds, then the above
bijection is isomorphism.

1 Introduction

1.1 Setting. The arguments in this paper conform to Constructive mathe-
matics in the sense of Bishop ([2]). So, our setting is Bishop’s constructive
mathematics, mathematics developed with Constructive logic (or Intuitionistic
logic ([24])) - logic without the Law of Excluded Middle P ∨ ¬P . We have to
note that ’the crazy axiom’ ¬P =⇒ (P =⇒ Q) is included in the Constructive
logic. Precisely, in Constructive logic the ’Double Negation Law’ P ⇐⇒ ¬¬P
does not hold, but the following implication P =⇒ ¬¬P holds even in Minimal
logic. In Constructive logic ’Weak Law of Excluded Middle’ ¬P ∨¬¬P does not
hold also. It is interesting, in Constructive logic the following deduction prin-
ciple A ∨ B,¬A ` B holds, but this is impossible to prove without ’the crazy
axiom’. As Intuitionistic logic is a fragment of Classical logic, our arguments
should be valid from a classical point of view.
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1.2 Set with apartness. Let (X, =, 6=) be a set, where ” 6=” is a apartness
([2],[4],[8],[12],[14],[23],[24]). Apartness is a binary relation on X which satisfies
the following properties:

¬(x 6= x), x 6= y =⇒ y 6= x, x 6= z =⇒ (∀y ∈ X)(x 6= y ∨ y 6= z)

for every x, y and z in X. The apartness is compatible with the equality in
the following sense (∀x, y, z ∈ X)(x = y ∧ y 6= z =⇒ x 6= z). The apartness
6= is tight ([23], [24]) if and only if ¬(x 6= y) =⇒ x = y for any element x and
y in X. Let x be an element of X and A subset of X. We write x ./ A if
(∀a ∈ A)(x 6= a), and AC = {x ∈ X : x ./ A}.
A relation q ⊆ X ×X is coequality relation on X ([10],[12]) if

q ⊆ 6=, q−1 = q, (∀x, z ∈ X)((x, z) ∈ q =⇒ (∀y ∈ X)((x, y) ∈ q ∨ (y, z) ∈ q)).

The relation qC = {(x, y) ∈ X ×X : (x, y) ./ q} is an equality on X compatible
with q, in the following sense

(∀a, b, c ∈ X)((a, b) ∈ qC ∧ (b, c) ∈ q =⇒ (a, c) ∈ q)

([18], Theorem 1). We can ([10], [12]) construct factor-sets

(X/(qC , q),=1, 6=1) = {aqC : a ∈ X} and (X/q,=1, 6=1) = {aq : a ∈ X},
where

aqC =1 bqC ⇐⇒ (a, b) ./ q, aqC 6=1 bqC ⇐⇒ (a, b) ∈ q,
aq =1 bq ⇐⇒ (a, b) ./ q, aq 6=1 bq ⇐⇒ (a, b) ∈ q.

It is easy to check that X/(qC , q) ∼= X/q.

Examples I: (1) The relation ¬(=) is an apartness on the set Z of integers.
(2) ([8]) The relation q, defined on the set QN by

(f, g) ∈ q ⇐⇒ (∃k ∈ N)(∃n ∈ N)(m ≥ n =⇒ |f(m)− g(m)| > k−1),

is a coequality relation.
(3) ([8]) A ring R is a local ring if for each r ∈ R, either r or 1 − r is a unit.
Let M be a module over R. Then the relation q on M , defined by (x, y) ∈ q
if there exists a homomorphism f : M −→ R such that f(x − y) is a unit, is a
coequality relation on M .
(4) ([12]) Let T be a set and J be a subfamily of ℘(T ) such that ∅ ∈ J ,
A ⊆ B ∧ B ∈ J =⇒ A ∈ J , A ∩ B ∈ J =⇒ A ∈ J ∨ B ∈ J . If (Xt)t∈T is
a family of sets, then the relation q on

∏
Xt (6= ∅ ), defined by (f, g) ∈ q ⇐⇒

{s ∈ T : f(s) = g(s)} ∈ J , is a coequality relation on the Cartesian product∏
Xt. ¨
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1.3 Algebraic structures with apartness. For a function

f : (X, =, 6=) −→ (Y, =, 6=)

we say that it is:
(a) ([8]) strongly extensional if and only if (∀a, b ∈ X)(f(a) 6= f(b) =⇒ a 6= b);
(b) ([7]) an embedding if and only if (∀a, b ∈ X)(a 6= b =⇒ f(a) 6= f(b)).
In general, all functions in this text are strongly extensional functions. For
example, if ω : X ×X −→ X is an internal binary operation on X, then must
be:

(∀a, b, x, y ∈ X)(ω(a, b) 6= ω(x, y) =⇒ (a, b) 6= (x, y)).

Examples II: Let (S, =, 6=, ·) be a semigroup with apartness. Let us note
that the internal operation ”· ” is a strongly extensional function in the following
sense:

(∀x, a, b ∈ S)((ax 6= bx =⇒ a 6= b) ∧ (xa 6= xb =⇒ a 6= b)).

A subset T of semigroup S is a right consistent subset of S ([3]) of S if and only
if

(∀x, y ∈ S)(xy ∈ T =⇒ y ∈ T );

a subset T of S is a left consistent subset of S ([3]) of S if and only if

(∀x, y ∈ S)(xy ∈ T =⇒ x ∈ T );

a subset T of S is a consistent subset of S ([3]) of S if and only if

(∀x, y ∈ S)(xy ∈ T =⇒ x ∈ T ∧ y ∈ T ).

Let q be a coequality relation on a semigroup S such that

(∀a, b, y ∈ S)((ay, by) ∈ q =⇒ (a, b) ∈ q).

Then we say that it is a left anticongruence on S. If for q holds

(∀a, b, x ∈ S)((xa, xb) ∈ q =⇒ (a, b) ∈ q)

then q is a right anticongruence on S. The coequality relation q on S is an
anticongruence on S, or relation compatible with semigroup operation on S, if
and only if it is a left and right anticongruence.
(1) ([17]) Let e and f be idempotents of a semigroup S with apartness. Then:
(a) the set X(e) = {a ∈ S : ae 6= a} is a strongly extensional right consistent
subset of S;
(b) the set Y (e) = {b ∈ S : eb 6= b} is a strongly extensional left consistent
subset of S;
(c) the set P (e) = {a ∈ S : e ./ Sa} is a strongly extensional left ideal of S;
(d) the set Q(e) = {a ∈ S : e ./ aS} is a strongly extensional right ideal of S;
(e) the set R(e) = {a ∈ S : e ./ SaS} is a strongly extensional ideal of S such
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that e ./ R(e);
(f) the set M(e) = X(e)∪Y (e)∪P (e)∪R(e) is a strongly extensional completely
prime subset of S such that e ./ M(e). Besides, if e 6= f , then M(e)∪M(f) = S.
(2) Let S = {0} × [0, 1] (⊂ R ×R, where R is the set of reals). The multipli-
cation in S is the coordinatewise usual multiplication. Then S is a semigroup
with apartness. The set {0} × [0, > is an ideal of S and the set {0} × [1/2, 1]
is a consistent subset of S.
(3) The set S = {(x, y) ∈ R×R : x ≥ 0 ∧ y ≥ 0} with the multiplication on S
defined by (x, y)(a, b) = (xa, xb + y) is a semigroup with apartness. The subset
Q = {(x, y) ∈ S : x > 0} is a consistent subset of S and filter in S.
(4) Let T be a strongly extensional consistent subset of semigroup S, i.e. let
(∀x, y ∈ S)(xy ∈ T =⇒ x ∈ T ∧y ∈ T ). Then relation q on semigroup S, defined
by (a, b) ∈ q if and only if a 6= b∧ (a ∈ T ∨ b ∈ T ), is a coequality relation on S.
(5) ([18], Theorem 5) Let q be a coequality relation on a semigroup S with apart-
ness. Then the relation q+ = {(x, y) ∈ S × S : (∃a, b ∈ S1)((axb, ayb) ∈ q)} is
an anticongruence on S such that q ⊆ q+. If ρ is an anticongruence on S such
that q ⊆ ρ, then q+ ⊆ ρ. ¨

Examples III: Let (R, =, 6=, +, 0, ·, 1) be a commutative ring. A subset Q
of R is a coideal of R if and only if

0 ./ Q,
−x ∈ Q =⇒ x ∈ Q,

x + y ∈ Q =⇒ x ∈ Q ∨ y ∈ Q,
xy ∈ Q =⇒ x ∈ Q ∧ y ∈ Q.

Coideals of commutative ring with apartness where studied by Ruitenburg 1982
([23]). After that, coideals (anti-ideals) studied by A.S. Troelstra and D. van
Dalen in their monograph [24]. The author proved, in his paper [9], if Q is a
coideal of a ring R, then the relation q on R, defined by (x, y) ∈ q ⇐⇒ x−y ∈ Q,
satisfies the following properties:
(a) q is a coequality relation on R;
(b) (∀x, y, u, v ∈ R)((x + u, y + v) ∈ q =⇒ (x, y) ∈ q ∨ (u, v) ∈ q);
(c) (∀x, y, u, v ∈ R)((xu, yv) ∈ q =⇒ (x, y) ∈ q ∨ (u, v) ∈ q).
A relation q on R, which satisfies the properties (a)-(c), is called anticongruence
on R ([9]) or relation compatible with ring operations. If q is an anticongruence
on a ring R, then the set Q = {x ∈ R : (x, 0) ∈ q} is a coideal of R ([9]). Let J
be an ideal of R and if Q is a coideal of R. Wim Ruitenburg, in his dissertation
([23], page 33) first stated a demanded that J ⊆ ¬Q. This condition is equivalent
with the following condition

(∀x, y ∈ R)(x ∈ J ∧ y ∈ Q =⇒ x + y ∈ Q).

In this case we say that they are compatible ([11]) and we can construct the
quotient-ring R/(J,Q). W.Ruitenburg, in his dissertation, first stated the ques-
tion on the existence an ideal J of R compatible with a given coideal Q and the
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question on the existence of a coideal Q of R compatible with a given ideal J . If
e is a congruence on R, determined by the ideal J and if q is an anticongruence
on R, determined by Q, then J and Q are compatible if and only if

(∀x, y, z ∈ R)((x, y) ∈ e ∧ (y, z) ∈ q =⇒ (x, z) ∈ q).

In this case we say that e and q are compatible.
(1) Let R = (R, =, 6=, +, 0, ·, 1) be a commutative ring with apartness. Then the
sets ∅ and R = {a ∈ R : a 6= 0} are coideals of R. Let a be an element of the
ring R. Then the ideal Ann(a) and the coideal Cann(a) = {x ∈ R : ax 6= 0}
are compatible.
(2) Let m and i ∈ {1, 2, ..., m−1} be integers. We set mZ+i = {mz+i : z ∈ Z}.
Then the set ∪{mZ + i : i ∈ {1, ..., m− 1}} is a coideal of the ring Z.
(3) Let K be a Richman field and x be an unknown variable under K. Then
the set C = {f ∈ K[x] : f(0) 6= 0} is a coideal of the ring K[x].
(4) Let R be a commutative ring. Then the set B = RN is a ring. For n ∈ N ,
the set M = {f ∈ B : f(n) 6= 0} is a coideal of B.
(5) Let R be a local ring. Then the set M = {a ∈ R : (∃x ∈ R)(ax = 1)} is a
coideal of R.
(6) Let S be a coideal of a ring R and let X be a subset of R. Then the set
[S : X] = {a ∈ R : (∃x ∈ X)(ax ∈ S)} is a coideal of R.
(7) Let H be a nonempty family of inhabited subsets of T . Then the set
S(H) = {r ∈ ∏

Rt : (∃A ∈ H)(A ∩ Z(r) 6= ∅)}, where Z(r) = {t ∈ T : r(t) 6= 0},
is a coideal of the ring

∏
Rt (6= ∅ ). ¨

1.3 Filed product. Let α ⊆ X × Y and β ⊆ Y × Z be relations. As in
[15], we define

β ∗ α = {(x, z) ∈ X ∈ Z : (∀y ∈ Y )((x, y) ∈ α ∨ (y, z) ∈ β)}.

For a relation R ⊆ X ×X we put 1R = R , nR = R ∗ R ∗ ... ∗ R (n ≥ 2) and
c(R) =

⋂
n∈N

nR. In [14] and [15] this author proved that the relation c(R) is a
cotransitive relation under R. This relation is called the cotransitive fulfillment
of R.

1.4 Goal of this paper. We will briefly recall the constructive definition
of linear order and we will use a generalization of J. von Plato ([9]) and M.A.
Baroni’s ([1]) excess relation for the definition of a partially ordered set. Let
X be a nonempty set. A binary relation < (less than) on X is called a linear
order if the following axioms are satisfied for all elements x and y:

¬(x < y ∧ y < x),
x < y =⇒ (∀z ∈ S)(x < z ∨ z < y).

An example is the standard strict order relation < on R, as described in [2], [4],
[8] and [9]. For an axiomatic definition of the real number line as a constructive
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ordered field, the reader is referred to [2], [4], [9]. A detailed investigation of
linear orders in lattices can be found in [9]. The binary relation 
 on X is called
an excess relation if it satisfies the following axioms:

¬(x 
 x),
x 
 y =⇒ (∀z ∈ S)(x 
 z ∨ z 
 y).

Clearly, each linear order is an excess relation. As shown in [9], we obtain an
apartness relation 6= and a partial order ≤ on X by the following definitions:

x 6= y ⇐⇒ (x 
 y ∨ y 
 x) ,
x ≤ y ⇐⇒ ¬(x 
 y).

Note that the statement ¬(x ≤ y) =⇒ x 
 y does not hold in general.

Let (X, =, 6=) be a set with apartness. A relation α ⊆ X×X is an antiorder
relation on X if and only if

α ⊆6= ,
(∀x, y, z ∈ X)((x, z) ∈ α =⇒ (x, y) ∈ α ∨ (y, z) ∈ α),

(∀x, y ∈ X)(x 6= y =⇒ (x, y) ∈ α ∨ (y, x) ∈ α).

A ordered set under an antiorder α is a structure (X, =, 6=, α) where α is an
antiorder relation on X. Antiorder relation on a set was first defined by author
in paper [14] and [16].

Example IV: Let S = {a, b, c, d, e} with multiplication defined by schema

a b c d e
a a e c d e
b a b c d e
c a e c d e
d a e c d e
e a e c d e

The relation α ⊆ S × S, defined by α = {(a, b),(a, c),(a, e),(b, a),(b, c),(b, d),
(b, e),(c, a),(c, b),(c, d),(d, a),(d, b), (d, c), (d, e),(e, a),(e, b),(e, c), (e, d)} is an an-
tiorder relation on semigroup S. ¨

A relation σ on (X, =, 6=) is a quasi-antiorder relation on X if and only if

σ ⊆6= ,
(∀x, y, z ∈ X)((x, z) ∈ σ =⇒ (x, y) ∈ σ ∨ (y, z) ∈ σ).

If there exists an antiorder α on the set (X, =, 6=), different from 6=, then we
have to put a stronger demand in the definition of quasi-antiorder: σ ⊆ α in-
stead of σ ⊆6=. A quasi-antiordered set is a structure (X, =, 6=, σ) where σ is a
quasi-antiorder relation on X. Note that if σ is a quasi-antiorder on X, then
σ−1 is a quasi-antiorder in X too. Indeed:
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(a) σ ⊆ 6==⇒ σ−1 ⊆ 6=−1= 6=(because the relation 6= is symmetric);
(b) (x, z) ∈ σ−1 ⇐⇒ (z, x) ∈ σ

=⇒ (∀y ∈ X)((z, y) ∈ σ ∨ (y, x) ∈ σ)
=⇒ (∀y ∈ X)((y, z) ∈ σ−1 ∨ (x, y) ∈ σ−1)
⇐⇒ (∀y ∈ X)((x, y) ∈ σ−1 ∨ (y, z) ∈ σ−1).

There is a theory of quasi-order relation in ordered semigroup. See, for
example, papers [5] and [6]. In this paper we continue the research parallel
relations of antiorder and quasi-antiorder.

Example V: Let S = {a, b, c, d, e} with multiplication defined by schema

a b c d e
a b b d d d
b b b d d d
c d d c d c
d d d d d d
e d d c d c

Relation α , defined by α = {(a, c), (a, d),(a, e), (b, a),(b, c), (b, d),(b, e), (c, a),
(c, b), (c, d),(c, e), (d, a),(d, e), (e, a),(e, b), (e, d)}, is an antiorder relation on semi-
group S. The relation σ = {(a, e), (b, e), (c, a), (c, b),(c, d), (c, e), (d, e),(e, a),(e, b),
(e, d)} is a quasi-antiorder relation on semigroup S. ¨

The notion of quasi-antiorder relation in set with apartness was introduced
for first time is in paper [14]. After that, quasi-antiorders are studied by this
author in his paper [18], [19], [20] [21], [22]. Sometime, in the definition of an-
tiorder relation on a set (X, =, 6=), we add the condition α ∩ α−1 = ∅. In that
case, in the definition of quasi-antiorder relation on the ordered set (X, =, 6=, α)
under the antiorder α, we must add the following condition σ ∩ σ−1 = ∅. What
is different between anti-order relation and excess relation? Clearly, an anti-
order relation on set with tight apartness is an excess relation, and, opposite,
an excess relation is an anti-order relation.

In this note we proved some kind of isomorphism theorem for ordered sets
under antiorders. Let (X, =X , 6=X , α) and (Y, =Y , 6=Y , β) be ordered sets under
antiorders, where the apartness 6=Y is tight. If ϕ : X −→ Y is reverse iso-
tone function, then there exists a strongly extensional, injective and embedding
reverse isotone bijection

((X, =X , 6=X , α, c(R))/q, =1, 6=1, γ) −→ (Im(ϕ),=Y , 6=Y , β),

where c(R) is the biggest quasi-antiorder relation on X under R = α∩Coker(ϕ),
q = c(R) ∪ c(R)−1 and γ is the antiorder induced by the quasi-antiorder c(R).
If the condition α∩α−1 = ∅ holds, then the above bijection is an isomorphism.
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1.5 References. For undefined notions and notations for Constructive
mathematics we refer to the books [2], [4], [8], [23] and [24], and to papers
[7], [11]-[20]. For classical and constructive semigroup theory we refer to [3], [5],
[6] and [7], [17]-[20].

2 Preliminaries

In this section we start with the following explanations:

Remarks A.
(0) A relation q on a set (X, =, 6=) is a coequality relation on X if and only if

q ⊆ 6=, q−1 = q, q ⊆ q ∗ q.

(1) A relation α is an antiorder relation on a set (X, =, ) if and only if

α ⊆ 6=, α ⊆ α ∗ α, 6=⊆ α ∪ α−1.

(2) A relation σ on a ordered set (X, =, 6=, α) under an antiorder α is a quasi-
antiorder relation on X iff

σ ⊆ α, σ ⊆ σ ∗ σ.

(3) Sometimes, in the definition of antiorder relation on set (X, =, 6=), we add
another condition

(∀x, y ∈ X)((x, y) ∈ α =⇒ ¬((y, x) ∈ α)),

which is equivalent with the condition

α ∩ α−1 = ∅.

In that case, in the definition of quasi-antiorder relation on the ordered set
(X, =, 6=, α) under the antiorder α , we must add the following condition

(∀x, y ∈ X)((x, y) ∈ σ =⇒ ¬((y, x) ∈ σ)),

i.e. the demand
σ ∩ σ−1 = ∅.

Let (X, =, 6=, α), (Y, =, 6=, β) be ordered sets under antiorders α and β respec-

tive, f : X −→ Y a mapping from X into Y . f is called isotone if

(∀x, y ∈ S)((x, y) ∈ α =⇒ (f(x), f(y)) ∈ β).

f is called reverse isotone if and only if

(∀x, y ∈ S)((f(x), f(y)) ∈ β =⇒ (x, y) ∈ α).
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The mapping f is called an isomorphism if it is injective and embedding,
onto, isotone and reverse isotone. X and Y are called isomorphic, symboli-
cally X ∼= Y , if exists an isomorphism between them.

Remarks B.
B.1. Every isotone mapping f : X −→ Y satisfies the following condition:
(1) Let x, y ∈ X and x 6=X y. Then (x, y) ∈ α or (y, x) ∈ α by linearity of α
and we have (f(x), f(y)) ∈ β ⊆6=Y or (f(y), f(x)) ∈ β ⊆6=Y . So, the mapping
f is an embedding.
(2) Let x, y ∈ X and f(x) = f(y). Then ¬(f(x) 6=Y f(y)), and from this we
conclude ¬((f(x), f(y)) ∈ β) and ¬((f(y), f(x)) ∈ β). Hence ¬((x, y) ∈ α) and
¬((y, x) ∈ α). Therefore ¬(x 6=X y). If the apartness 6=X on set X is tight, then
x = y. So, in that case when the apartness is tight, the mapping f is an injective.

B.2. Every reverse isotone mapping f : X −→ Y satisfies the following
condition:
(3) Let x, y ∈ X such that f(x) 6=Y f(y). Then (f(x), f(y)) ∈ β or (f(y), f(x)) ∈
β by linearity of β and we have (x, y) ∈6=X or (y, x) ∈6=X . So, the mapping f
is strongly extensional.
(4) Let x =X y. Then ¬(x 6=X y), i.e. then ¬((x, y) ∈ α ∪ α−1). Suppose
that f(x) 6=Y f(x), i.e. suppose that (f(x), f(y)) ∈ β ∪ β−1. Thus we con-
clude (x, y) ∈ α∪α−1 which is impossible. So, our proposition f(x) 6=Y f(x) is
wrong, i.e. must holds ¬(f(x) 6=Y f(x)). If the apartness Y is tight, then holds
f(x) =Y f(y). So, in this case when the apartness 6=X is tight, antiorders are
compatible with the function f .

Lemma 0: Let σ be a quasi-antiorder relation on an anti-ordered set (X, =
, 6=, α). Then q = σ ∪ σ−1 is a coequality relation on X such that (X/q, =1, 6=1)
is an ordered set under the antiorder relation β defined by (xq, yq) ∈ β ⇐⇒
(x, y) ∈ σ.
Proof : Let (uq, vq) be an arbitrary element of β , i.e. let (u, v) ∈ σ. Since
σ ⊆ q, we have uq 6=1 vq. Therefore, β ⊆ 6=1 (in X/q). Let (xq, zq) and
yqX/q, i.e. let (x, z) and yX. Since (x, y)(y, z), we have (xq, yq) or (yq, zq).
Let (xq, yq) ∈ β and aq, bq ∈ X/q, i.e. (x, y) ∈ σ and a, b ∈ X. Let xq 6=1 yq,
i.e. let (x, y) ∈ q = σ∪σ−1. Since (x, y) ∈ σ or (y, x) ∈ σ , we have (xq, yq) ∈ β
or (yq, xq) ∈ β. So, the relation β is linear. Therefore, the relation β is an
antiorder relation on X/q.
Now, suppose that σ∩σ−1 = ∅. Then also β∩β−1 = ∅. Indeed, let (xq, yq) ∈ β
, i.e. let (x, y) ∈ σ . Then ¬((y, x) ∈ σ), i.e. then ¬((yq, xq) ∈ β). 2

Example VI: Let S, α and σ as in the example II. Then the relation q = σ∪
σ−1 = {(a, e),(b, e),(c, a),(c, b),(c, d),(c, e),(e, a),(e, b),(e, d),(e, a),(e, b),(a, c),(b, c),
(d, c), (e, c),(a, e),(b, e),(d, e)} is an anticongruence on S. Then aq = {c, e},
bq = {c, e}, cq = {a, b, d, e}, dq = {c, e}, eq = {a, b, c, d} and S/q = {{c, e},
{a, b, d, e}, {a, b, c, d}}. So, the relation β is defined in the following way: β =
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{(aq, eq), (bq, eq), (cq, aq), (cq, bq), (cq, dq), (cq, eq), (eq, aq), (eq, bq), (eq, dq)}.
¨

Corollary 0.1: The mapping π : X −→ X/q is a reverse isotone surjective
function.

Lemma 1: If {σk}k∈J is a family of quasi-antiorders on a set (X, =, 6=)
relatively to a certain antiorder α, then

⋃
k∈J σk is a quasi-antiorder in X.

Proof : Let (x, z) be an arbitrary elements of X×X such that (x, z) ∈ ⋃
k∈J σk.

Then there exists k in J such that (x, z) ∈ σk. Hence for every y ∈ X we have
(x, y) ∈ σk ∨ (y, z) ∈ σk . So, (x, y) ∈ ⋃

k∈J σk ∨ (y, z) ∈ ⋃
k∈J σk. At the other

side, for every k in J holds σk ⊆ α . From this we conclude
⋃

k∈J σk ⊆ α. 2

3 The main results

First, we show a construction of maximal quasi-antiorder under a given relation:

Theorem 3: Let R (⊆ 6=) be a relation on a set (X, =, 6=). Then for
an inhabited family of quasi-antiorders under R there exists the biggest quasi-
antiorder relation under R. That relation is exactly the relation c(R).
Proof : By Lemma 1, there exists the biggest quasi-antiorder relation on X
under R. Let AR be the inhabited family of all quasi-antiorder relation on X
under R. With (R) we denote the biggest quasi-antiorder relation ∪AR on X
under R. The fulfillment c(R) =

⋂
n∈N

nR of the relation R is a cotransitive
relation on set X under R. Therefore, c(R) ⊆ (R) holds.
We need to show that (R) ⊆ c(R). Let s be a quasi-antiorder relation in X un-
der R. First, we have s ⊆ R = 1R. Let (x, z) ∈ s. Then from (∀y ∈ X)((x, y) ∈
s ∨ (y, z) ∈ s) we conclude that for every y in X holds (x, y) ∈ R ∨ (y, z) ∈ R,
i.e. holds (x, z) ∈ R ∗R = 2R. So, s ⊆ 2R. Now, we will suppose that s ⊆ nR
and let (x, z) ∈ s. Then from (∀y ∈ X)((x, y) ∈ s ∨ (y, z) ∈ s) implies that
(x, y) ∈ R ∨ (y, z) ∈ nR holds for every y ∈ X. Therefore, (x, z) ∈ n+1R.
So, we have s ⊆ n+1R . Thus, by induction, we have s ⊆ ∩ nR. Remember
that s is an arbitrary quasi-antiorder on X under R. Hence, we proved that
(R) = ∪AR ⊆ c(R). 2

Corollary 3.1: Let (X, =, 6=, α) be an ordered set under an antiorder α .
Then the family A = {τ : τ is a quasi-antiorder on X under α} is a complete
lattice.

Example VII ([18]): Let a and b be elements of semigroup S. Then ([18],
Theorem 6) the set - C(a) = {x ∈ S : x ./ SaS} is a consistent subset of S such
that :
- a ./ C(a) ;
- C(a) 6= ∅ =⇒ 1 ∈ C(a);



An isomorphism theorem for anti-ordered sets 155

- Let a be an invertible element of S. Then C(a) = ∅ ;
- (∀x, y ∈ S)(C(a) ⊆ C(xay));
- C(a) ∪ C(b)C(ab).
Let a be an arbitrary element of a semigroup S with apartness. The consistent
subset C(a) is called a principal consistent subset of S generated by a. We
introduce relation f , defined by (a, b) ∈ f ⇐⇒ b ∈ C(a) and in the next assertion
we will give some description of the relation f : The relation f has the following
properties ([17], Theorem 7)
- f is a consistent relation ;
- (a, b) ∈ f =⇒ (∀x, y ∈ S)((xay, b) ∈ f) ;
- (a, b) ∈ f =⇒ (∀n ∈ N)((an, b) ∈ f) ;
- (∀x, y ∈ S)((a, xby) ∈ f =⇒ (a, b) ∈ f) ;
- (∀x, y ∈ S)¬((a, xay) ∈ f) .
We can construct the cotransitive relation c(f) =

⋂
n∈N

nf as cotransitive
fulfillment of the relation f ([7],[14],[18]). As corollary of theses assertions we
have the following results: The relation c(f) satisfies the following properties:
- c(f) is a consistent relation on S ;
- c(f) is a cotransitive relation ;
- (∀x, y ∈ S)((a, xay) ./ c(f)) ;
- (∀n ∈ N)((a, an) ./ c(f)) ;
- (∀x, y ∈ S)((a, b) ∈ c(f) =⇒ (xay, b) ∈ c(f)) ;
- (∀n ∈ N)((a, b) ∈ c(f) =⇒ (an, b) ∈ c(f)) ;
- (∀x, y ∈ S)((a, xby) ∈ c(f) =⇒ (a, b) ∈ c(f)).
For an element a of a semigroup S and for n ∈ N we introduce the following
notations

An(a) = {x ∈ S : (a, x) ∈ nf}, A(a) = {x ∈ S : (a, x) ∈ c(f)}

By the following results we will present some basic characteristics of these sets.
Let a and b be elements of a semigroup S. Then:
- A1(a) = C(a);
- An+1(a) ⊆ An(a) ;
- An+1(a) = {x ∈ S : S = An(a) ∪B1(x)} where B1(x) = {u ∈ S : (u, x) ∈ f};
- A(a) =

⋂
n∈N An(a);

- a ./ A(a) ;
- A(a) ∪A(b) ⊆ A(ab) ;
- The set A(a) is the maximal strongly extensional consistent subset of S such
that a ./ A(a). ¨

Example VIII: Let S = {a, b, c, d} be a ordered semigroup with the Cayley
table and antiorder shown below:
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a b c d
a b b c c
b b b c c
c c c c c
d c c c c

α = {(a, b), (a, c), (a, d), (b, a), (c, a), (c, b), (d, a), (d, b), (d, c)}. For relation α
holds α ∩ α−1 6= ∅. If we put β = {(a, b), (a, c), (a, d), (c, b), (d, b), (d, c)}, then
β ⊂ α and β ∩ β−1 = ∅ . ¨

Let f : X −→ Y be a strongly extensional function. It is easy to verify that
sets

Ker(f) = {(a, b) ∈ X ×X : f(a) = f(b)},
(q =)Coker(f) = {(a, b) ∈ X ×X : f(a) 6= f(b)}

are compatible equality and coequality relations on X and we can construct the
factor-set X/q .

The following theorem is the main result in this paper:

Theorem 4: Let (X, =X , 6=X , α) and (Y, =Y , 6=Y , β) be ordered sets under
antiorders, where the apartness 6=Y is tight. If ϕ : X −→ Y is reverse iso-
tone strongly extensional function, then there exists a strongly extensional and
embedding reverse isotone bijection

((X, =X , 6=X , α, c(R))/q, =1, 6=1, γ) −→ (Im(ϕ), =Y , 6=Y , β)

where c(R) is the biggest quasi-antiorder relation on X under R = α∩Coker(ϕ),
q = c(R) ∪ c(R)−1 and γ is the antiorder induced by the quasi-antiorder c(R).
If the condition α ∩ α−1 = ∅ holds, then the there exists the isomorphism

(X, =X , 6=X , α, c(R))/q, =1, 6=1, γ) ∼= (Im(ϕ), =Y , 6=Y , β).

Proof :
(1) Let (X, =X ,∼=X , α) and (Y, =Y , 6=Y , β) be ordered sets under antiorders α
and β respectively, and ϕ : X −→ Y a strongly extensional mapping. Then
the relation ϕ−1(β) = {(a, b) ∈ X ×X : (ϕ(a), ϕ(b)) ∈ β} is a quasi-antiorder
on X, the relation Coker = {(a, b) ∈ X × X : ϕ(a) 6=Y ϕ(b))} is coequal-
ity relation on X compatible with equality relation Kerϕ = ϕ−1 ◦ ϕ , and
Cokerϕ ⊇ ϕ−1(β) ∪ (ϕ−1(β))−1 holds. Also, since the relation β is linear we
have Cokerϕ = ϕ−1(β) ∪ (ϕ−1(β))−1. Indeed, α ⊆6= and ϕ−1(β) ⊆ α .
Since the relation β is linear, we have
(a, b) ∈ Cokerϕ ⇐⇒ ϕ(a) 6=Y ϕ(b)
=⇒ (ϕ(a), ϕ(b)) ∈ β ∨ (ϕ(b), ϕ(a)) ∈ β
⇐⇒ (a, b) ∈ ϕ−1(β) ∨ (b, a) ∈ ϕ− 1(β).
At the other side, if (a, b) ∈ ϕ − 1(β) or (b, a) ∈ ϕ−1(β), then (ϕ(a), ϕ(b)) ∈
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β ⊆6=Y or (ϕ(b), ϕ(a)) ∈ β ⊆6=Y . Therefore, Cokerϕ = ϕ−1(β)(ϕ−1(β))−1.
(2) It is easily to conclude that Coker(ϕ) ⊆ α ∪ α−1.
(3) The family AR of quasi-antiorder relations on X under relation R = α ∩
Coker(ϕ) is not empty, because ϕ−1(β) ⊆ R. Then, by Theorem 3, there exists
the biggest quasi-antiorder relation c(R) under R. Put q = c(R) ∪ c(R)−1.
We can construct, according Lemma 0, the ordered factor-set ((X, =X , 6=X

, c(R))/q, =1, 6=1) under antiorder relation γ on X/q, defined by (aq, bq) ∈ γ
if and only if (a, b) ∈ c(R).
(4) We wish to show that Coker(ϕ) = q = c(R) ∪ (c(R))−1. The first, by def-
inition of c(R), c(R) is the biggest quasi-antiorder relation under R. So, we
have c(R) ⊆ Coker(ϕ) and (c(R))−1 ⊆ (Coker(ϕ))−1 = Coker(ϕ) because the
relation Coker(ϕ) is symmetric. Therefore, holds c(R)∪ (c(R))−1 ⊆ Coker(ϕ).
The second, the relation ϕ−1(β) is a quasi-antiorder under R = α ∩ Coker(ϕ).
So, it must be ϕ−1(β) ⊆ c(R) because the relation c(R) is the biggest un-
der R. Thus, it must be (ϕ−1(β))−1 ⊆ (c(R))−1. Therefore, it must be
Coker(ϕ) = ϕ−1(β) ∪ (ϕ−1(β))−1 ⊆ c(R) ∪ (c(R))−1.
If α ∩ α−1 = ∅ holds, then easy to verify that c(R) ∩ (c(R))−1 = ∅ holds too.
(5) By Lemma 0, the set ((X, =X , 6=X , α)/q, =1, 6=1) is ordered set under the
antiorder γ on X/q defined by

(aq, bq) ∈ γ ⇐⇒ (a, b) ∈ c(R).

If α∩α−1 = ∅, then c(R)∩(c(R))−1 = ∅ , because c(R)∪(c(R))−1 ⊆ α∪α−1. It
remains to construct mapping φ : X/q −→ Im(ϕ) (⊆ Y ). Define φ(aq) = ϕ(a)
for any a in X.
(a) This mapping is well defined because if aq =1 bq , i.e. if (a, b) ./ q =
c(R) ∪ (c(R))−1 = Coker(ϕ), then ¬(ϕ(a) 6=Y ϕ(b)) holds. Since the apartness
6=Y is tight, it implies that ϕ(a) =Y ϕ(b), i.e. φ(aq) =Y φ(bq).
(b) Suppose that φ(aq) 6=Y φ(bq), i.e. suppose that ϕ(a) 6=Y ϕ(b), i.e. suppose
that (a, b) ∈ Coker(ϕ). Then aq 6=1 bq. Therefore, the mapping is strongly
extensional function from set X/q into Y .
(c) If y ∈ Im(ϕ), then for some x ∈ X, φ(xq) =Y ϕ(x) =Y y. Thus, the
mapping φ : X/q −→ Im(ϕ) is a strongly extensional and surjective function.
(d) If φ(aq) =Y φ(bq), then ϕ(a) =Y ϕ(b). Let (u, v) be an arbitrary element of
Coker(ϕ). Then from ϕ(u) 6=Y ϕ(v) follows

ϕ(u) 6=Y ϕ(a) ∨ ϕ(a) 6=Y ϕ(b) ∨ ϕ(b) 6=Y ϕ(v).

Since ϕ(a) 6=Y ϕ(b) is impossible, we conclude that above disjunction follows

ϕ(u) 6=Y ϕ(a)ϕ(b) 6=Y ϕ(v)

and u 6=X a or b 6=X v. So, (u, v) 6=X×Y (a, b). This means (a, b) ./ Coker(ϕ).
Therefore aq =1 bq. Hence, the mapping φ is an injective function.
(e) Now, let be aq 6=1 bq. Then (a, b) ∈ Coker(ϕ), i.e. then ϕ(a) 6=Y ϕ(b).
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Therefore, in this case, we have φ(aq) 6=Y φ(bq). So, the function φ is an em-
bedding.
(f) The first, we wish to prove that the function φ is reverse isotone bijection. If
(φ(aq), φ(bq)) ∈ β , i.e. if (ϕ(a), ϕ(b)) ∈ β (⊆6=Y ), then (a, b) ∈ ϕ−1(β) ⊆ c(R)
by the second part of the point (3) of this proof. Therefore, (aq, bq) ∈ γ . So,
the bijection is reverse isotone.
The second, we wish to prove that the function φ is isotone bijection. Let
(aq, bq) ∈ γ (⊆6=1), i.e. let (a, b) ∈ c(R) (⊆ α ). Since the function φ
is an embedding, then φ(aq) 6=Y φ(bq). So, must be (φ(aq), φ(bq)) ∈ β or
(φ(bq), φ(aq)) ∈ β . Suppose that (φ(bq), φ(aq)) ∈ β , i.e. suppose that
(ϕ(b), ϕ(a)) ∈ β holds. Thus we conclude that (b, a) ∈ α because the func-
tion ϕ is reverse isotone mapping. If the condition α ∩ α−1 = ∅ holds, then the
case (φ(bq), φ(aq)) ∈ β is impossible. Now, we have to have (φ(aq), φ(bq)) ∈ β .
So, in the case that the condition α ∩ α−1 = ∅ holds, the mapping φ is isotone.
At end of this conclusion we have that there exists strongly extensional and em-
bedding reverse isotone bijection from ((X, =X , 6=X , α, c(R))/q, =1, 6=1, ) onto
(Im(ϕ), =Y , 6=Y , γ). If the condition α ∩ α−1 = ∅ holds, then there exists the
isomorphism ((X, =X , 6=X , α, c(R))/q, =1, 6=1, γ) ∼= (Im(ϕ), =Y , 6=Y , ). 2

Note. Let (X, =, 6=, α), (Y, =, 6=, β) be ordered sets under antiorders α and
β respective, and let ϕ : X −→ Y be a strongly extensional mapping from X
into Y . Then, by point (1) in the proof of the Theorem 4, the relation induced
there ϕ−1(β) is quasi-antiorder relation on X. Then:
(i) ϕ is isotone if α ⊆ ϕ−1(β);
(ii) ϕ is reverse isotone if and only if ϕ−1(β) ⊆ α.
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