Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 22:1 (2008), 161–172

ON \triangle -LACUNARY STATISTICAL ASYMPTOTICALLY EQUIVALENT SEQUENCES

Metin Başarir and Selma Altundağ

Abstract

This paper presents new definitions which are a natural combination of the definition for asymptotically equivalence Δ -lacunary statistically convergence. Using this definitions we have proved the S^L_{θ} (Δ)-asymptotically equivalence analogues theorems of [5] and [6].

1 Introduction

Let w be the set of all sequences of real or complex numbers and l_{∞} , c and c_0 be, respectively, the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup |x_k|$.

The idea of difference sequences was introduced by Kızmaz [1]. In 1981, Kızmaz defined the following sequence spaces

$$\begin{split} l_{\infty}\left(\Delta\right) &= \left\{x = \left(x_{k}\right) : \Delta x \in l_{\infty}\right\}, c\left(\Delta\right) = \left\{x = \left(x_{k}\right) : \Delta x \in c\right\} \\ c_{0}\left(\Delta\right) &= \left\{x = \left(x_{k}\right) : \Delta x \in c_{0}\right\} \end{split}$$

where $\Delta x = (\Delta x) = (x_k - x_{k+1})$ and showed that these are Banach spaces with norm $||x||_{\Delta} = |x_1| + ||\Delta x||_{\infty}$.

We call these sequence spaces Δ -bounded, Δ -convergent and Δ -null sequences.

Subsequently difference sequence spaces has been discussed in Çolak [2], Et and Başarır [3].

The idea of statistical convergence was introduced by Fast [8] and studied by various authors (see [9], [10], [11]). A sequence $x = (x_k)$ is said to be statistically convergent to the number L if for every $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{n} \mu \left(\{ k \le n : |x_k - L| \ge \varepsilon \} \right) = 0$$

²⁰⁰⁰ Mathematics Subject Classification. 40B05, 40H05.

Keywords and Phrases. Asymptotic equivalence, statistical convergence, $\Delta-{\rm convergence},$ lacunary sequence.

Received: September 27, 2007

Communicated by Dragan S. Djordjević

where $\mu(\{k \le n : |x_k - L| \ge \varepsilon\})$ denotes the number of element belonging to $\{k \le n : |x_k - L| \ge \varepsilon\}$. In this case, we write $S - \lim x = L x_k \to L(S)$ and S denotes the set of all statistically convergent sequences.

By a lacunary $\theta = (k_r)$; r = 0, 1, 2, ... where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r .

In 1993, Marouf [12] presented definitions for asymptotically equivalent sequences and asymptotic regular matrices. In 2003, Patterson [13] extend these concepts by presenting an asymptotically statistically equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices. Furthermore, asymptotically equivalent sequences has been studied in [14], [15], [16], [17], [18] and [19].

This paper presents new definitions which are a natural combination of the definition for asymptotically equivalence and Δ -lacunary statistically convergence. In addition to these definitions, some connections between Δ -lacunary statistical asymptotically equivalence and Δ -lacunary asymptotically equivalence have also been presented.

2 Definitions and notations

Definition 1 Two nonnegative sequences x, y are said to be asymptotically equivalent if

$$\lim_{k} \frac{x_k}{y_k} = 1$$

(denoted by $x \sim y$),[12].

Definition 2 Two nonnegative sequences x, y are said to be statistical asymptotically equivalent of multiple L provided that for every $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{n} \mu\left(\left\{k \le n : \left|\frac{x_k}{y_k} - L\right| \ge \varepsilon\right\}\right) = 0$$

(denoted by $x \stackrel{S_L}{\sim} y$) and simply statistical asymptotically equivalent, if L=1, [13].

Definition 3 A sequence $x = (x_n)$ is said to be Δ -statistically convergent to L if for every $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{n} \mu \left(\{ k \le n : |\Delta x_k - L| \ge \varepsilon \} \right) = 0.$$

We denote the set of these sequences by $S(\Delta)$, /4.

Definition 4 Let θ be a lacunary sequence. A sequence $x = (x_n)$ is said to be Δ -lacunary statistically convergent to L if for every $\varepsilon > 0$

$$\lim_{r \to \infty} \frac{1}{h_r} \mu \left(\{ k \in I_r : |\Delta x_k - L| \ge \varepsilon \} \right) = 0.$$

We denote the set of these sequences by $S_{\theta}(\Delta)$, /5/.

Definition 5 A sequence $x = (x_n)$ is said to be Δ -Cesaro summable to L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\Delta x_k - L \right) = 0.$$

We denote the set of these sequences by $(\sigma_1)(\Delta)$, [5].

Definition 6 A sequence $x = (x_n)$ is said to be strongly Δ -Cesaro summable to L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |\Delta x_k - L| = 0.$$

We denote the set of these sequences by $|\sigma_1|(\Delta), [5]$.

Definition 7 Let θ be a lacunary sequence. A sequence $x = (x_n)$ is said to be strongly Δ -lacunary strongly convergent to L if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |\Delta x_k - L| = 0.$$

We denote the set of these sequences by $N_{\theta}(\Delta)$, [5].

Definition 8 A sequence $x = (x_n)$ is said to be strongly Δ -almost convergent to L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |\Delta x_{k+m} - L| = 0$$

uniformly in m. We denote the set of these sequences by $|AC|(\Delta), [5]$.

Following this definitions which are given above, we shall now introduce following new notions Δ -asymptotically equivalence, Δ -statistical asymptotically equivalent of multiple L, Δ -lacunary statistical asymptotically equivalent of multiple L and Δ -lacunary asymptotically equivalent of multiple L, Δ -Cesaro asymptotically equivalent of multiple L, strongly Δ -Cesaro asymptotically equivalent of multiple L, strongly Δ -almost asymptotically equivalent of multiple L. **Definition 9** Two nonnegative sequences x, y are said to be Δ -asymptotically equivalent if

$$\lim_{k} \frac{\Delta x_k}{\Delta y_k} = 1$$

(denoted by $x \stackrel{\Delta}{\sim} y$).

Definition 10 Two nonnegative sequences x, y are Δ -statistical asymptotically equivalent of multiple L provided that for every $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{n} \mu \left(\left\{ k \le n : \left| \frac{\Delta x_k}{\Delta y_k} - L \right| \ge \varepsilon \right\} \right) = 0$$

(denoted by $x \stackrel{S^{L}(\Delta)}{\sim} y$) and simply Δ -statistical asymptotically equivalent, if L=1.

Definition 11 Let θ be a lacunary sequence. Two nonnegative sequences x, y are Δ -lacunary statistical asymptotically equivalent of multiple L provided that for every $\varepsilon > 0$

$$\lim_{r \to \infty} \frac{1}{h_r} \mu\left(\left\{k \in I_r : \left|\frac{\Delta x_k}{\Delta y_k} - L\right| \ge \varepsilon\right\}\right) = 0$$

(denoted by $x \stackrel{S^L_{\theta}(\Delta)}{\sim} y$) and simply Δ -lacunary statistical asymptotically equivalent, if L=1.

Definition 12 Let θ be a lacunary sequence. Two nonnegative sequences x, y are Δ -lacunary strongly asymptotically equivalent of multiple L provided that

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| = 0$$

(denoted by $x \overset{N^L_{\theta}(\Delta)}{\sim} y$) and simply Δ -lacunary strongly asymptotically equivalent, if L=1.

Definition 13 Two nonnegative sequences x, y are Δ -Cesaro asymptotically equivalent of multiple L provided that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\Delta x_k}{\Delta y_k} - L \right) = 0$$

(denoted by $x \stackrel{(\sigma_1)^L(\Delta)}{\sim} y$) and simply Δ -Cesaro asymptotically equivalent, if L=1.

Definition 14 Two nonnegative sequences x, y are Δ -strongly Cesaro asymptotically equivalent of multiple L provided that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| = 0$$

(denoted by $x \stackrel{|\sigma_1|^L(\Delta)}{\sim} y$) and simply Δ -strongly Cesaro asymptotically equivalent, if L=1.

Definition 15 Two nonnegative sequences x, y are Δ -strongly almost asymptotically equivalent of multiple L provided that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| \frac{\Delta x_{k+m}}{\Delta y_{k+m}} - L \right| = 0$$

uniformly in *m* (denoted by $x \stackrel{|AC|^{L}(\Delta)}{\sim} y$) and simply Δ -strongly asymptotically equivalent, if L=1.

3 Main results

Theorem 1 If x and y Δ -bounded sequences are Δ -statistical asymptotically equivalent of multiple L then they are Δ -Cesaro asymptotically equivalent of multiple L.

Proof. Suppose x, y are in $l_{\infty}(\Delta)$ and $x \stackrel{S^{L}(\Delta)}{\sim} y$. Then we can assume that

$$\left|\frac{\Delta x_k}{\Delta y_k} - L\right| \le M$$

for almost all k. Given $\varepsilon>0$

$$\begin{aligned} \left| \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\Delta x_{k}}{\Delta y_{k}} - L \right) \right| &\leq \left| \frac{1}{n} \sum_{k=1}^{n} \left| \frac{\Delta x_{k}}{\Delta y_{k}} - L \right| \\ &= \left| \frac{1}{n} \sum_{\substack{k=1\\\frac{\Delta x_{k}}{\Delta y_{k}} - L \geq \varepsilon}}^{n} \left| \frac{\Delta x_{k}}{\Delta y_{k}} - L \right| + \frac{1}{n} \sum_{\substack{k=1\\\frac{\Delta x_{k}}{\Delta y_{k}} - L < \varepsilon}}^{n} \left| \frac{\Delta x_{k}}{\Delta y_{k}} - L \right| \\ &< \left| \frac{1}{n} M \mu \left(\left\{ k \leq n : \left| \frac{\Delta x_{k}}{\Delta y_{k}} - L \right| \geq \varepsilon \right\} \right) + \frac{1}{n} n \varepsilon. \end{aligned}$$

Thus $x \stackrel{(\sigma_1)^L(\Delta)}{\sim} y$.

Theorem 2 Let $\theta = \{k_r\}$ be a lacunary sequence with $\liminf q_r > 1$ then

$$x \overset{S^{L}(\Delta)}{\sim} y \text{ implies } x \overset{S^{L}_{\theta}(\Delta)}{\sim} y.$$

Proof. Suppose first that $\liminf q_r > 1$ then there exists a $\delta > 0$ such that $q_r \ge 1 + \delta$ for sufficiently large r, which implies that

$$\frac{h_r}{k_r} \ge \frac{\delta}{1+\delta}.$$

If $x \overset{S^{L}(\Delta)}{\sim} y$ then for every $\varepsilon > 0$ and for sufficiently large r we have

$$\begin{split} & \frac{1}{k_r} \mu\left(\left\{k \le k_r : \left|\frac{\Delta x_k}{\Delta y_k} - L\right| \ge \varepsilon\right\}\right) \ge \frac{1}{k_r} \mu\left(\left\{k \in I_r : \left|\frac{\Delta x_k}{\Delta y_k} - L\right| \ge \varepsilon\right\}\right) \\ & \ge \frac{\delta}{1+\delta} \frac{1}{h_r} \mu\left(\left\{k \in I_r : \left|\frac{\Delta x_k}{\Delta y_k} - L\right| \ge \varepsilon\right\}\right). \end{split}$$

This completes the proof. \blacksquare

Theorem 3 Let $\theta = \{k_r\}$ be a lacunary sequence with $\limsup q_r < \infty$ then

$$x \overset{S^L_{\theta}(\Delta)}{\sim} y$$
 implies $x \overset{S^L(\Delta)}{\sim} y$.

Proof. If $\limsup q_r < \infty$ then there exists B>0 such that $q_r < B$ for all r. Let $x \stackrel{S^L_{\theta}(\Delta)}{\sim} y$ and $\varepsilon_1 > 0$. There exist R>0 and $\varepsilon > 0$ such that for every $j \ge R$

$$A_j = \frac{1}{h_j} \mu \left(\left\{ k \in I_j : \left| \frac{\Delta x_k}{\Delta y_k} - L \right| \ge \varepsilon \right\} \right) < \varepsilon_1.$$

We can also find K > 0 such that $A_j < K$ for all j=1, 2, Now let n be any integer with $k_{r-1} < n < k_r$, where r > R. Then

$$\begin{split} & \frac{1}{n}\mu\left(\left\{k\leq n:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\leq\frac{1}{k_{r-1}}\mu\left(\left\{k\leq k_r:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\\ &= \frac{1}{k_{r-1}}\mu\left(\left\{k\in I_1:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\\ &+\frac{1}{k_{r-1}}\mu\left(\left\{k\in I_2:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\\ &+\ldots+\frac{1}{k_{r-1}}\mu\left(\left\{k\in I_r:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\\ &= \frac{k_1}{k_{r-1}k_1}\mu\left(\left\{k\in I_1:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\\ &+\frac{k_2-k_1}{k_{r-1}(k_2-k_1)}\mu\left(\left\{k\in I_2:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\\ &+\ldots+\frac{k_R-k_{R-1}}{k_{r-1}(k_R-k_{R-1})}\mu\left(\left\{k\in I_r:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\\ &+\ldots+\frac{k_r-k_{r-1}}{k_{r-1}(k_r-k_{r-1})}\mu\left(\left\{k\in I_r:\left|\frac{\Delta x_k}{\Delta y_k}-L\right|\geq\varepsilon\right\}\right)\\ &= \frac{k_1}{k_{r-1}}A_1+\frac{k_2-k_1}{k_{r-1}}A_2\\ &+\ldots+\frac{k_R-k_{R-1}}{k_{r-1}}A_R+\frac{k_{R+1}-k_R}{k_{r-1}}A_{R+1}\\ &+\ldots+\frac{k_r-k_{r-1}}{k_{r-1}}A_r\\ &\leq \left\{\sup_{j\geq 1}A_j\right\}\frac{k_R}{k_{r-1}}+\left\{\sup_{j\geq R}A_j\right\}\frac{k_r-k_R}{k_{r-1}}\\ \end{split}$$

Since $k_r \to \infty$ we have $\frac{k_R}{k_{r-1}} \to 0$. This conclude the proof.

Theorem 4 Let $\theta = \{k_r\}$ be a lacunary sequence with

 $1 < \liminf q_r \le \limsup q_r < \infty \ then$

$$x \stackrel{S^L_{\theta}(\Delta)}{\sim} y \iff x \stackrel{S^L(\Delta)}{\sim} y.$$

Proof. The result clearly follows from Theorem 2 and Theorem 3. \blacksquare

Theorem 5 Let $\theta = \{k_r\}$ be a lacunary sequence then

(i) If x ^{N^L_θ(Δ)} y then x ^{S^L_θ(Δ)} y
(ii) If x, y are Δ-bounded and x ^{S^L_θ(Δ)} y then x ^{N^L_θ(Δ)} y
(iii) Under the condition that x, y are Δ-bounded, we have the equivalence x ^{S^L_θ(Δ)} y ∩ l_∞(Δ) = x ^{N^L_θ(Δ)} y ∩ l_∞(Δ). **Proof.** (i) If ε > 0 and x ^{N^L_θ(Δ)} y then

$$\sum_{k \in I_r} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| \ge \sum_{\substack{k \in I_r \\ \frac{\Delta x_k}{\Delta y_k} - L \ge \varepsilon}} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| \ge \varepsilon \mu \left(\left\{ k \in I_r : \left| \frac{\Delta x_k}{\Delta y_k} - L \right| \ge \varepsilon \right\} \right).$$

Therefore $x \overset{S^L_{\theta}(\Delta)}{\sim} y$.

(ii) Suppose x,y are in $l_{\infty}(\Delta)$ and $x \stackrel{S^L_{\theta}(\Delta)}{\sim} y$. Then we can assume that

$$\left|\frac{\Delta x_k}{\Delta y_k} - L\right| \le M$$

for almost all k. Given $\varepsilon > 0$

$$\begin{aligned} \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| &= \frac{1}{h_r} \sum_{\substack{k \in I_r \\ \frac{\Delta x_k}{\Delta y_k} - L \ge \varepsilon}} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| + \frac{1}{h_r} \sum_{\substack{k \in I_r \\ \frac{\Delta x_k}{\Delta y_k} - L < \varepsilon}} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| \\ &\leq \frac{M}{h_r} \mu \left(\left\{ k \in I_r : \left| \frac{\Delta x_k}{\Delta y_k} - L \right| \ge \varepsilon \right\} \right) + \varepsilon. \end{aligned}$$

Therefore $x \overset{N^L_{\theta}(\Delta)}{\sim} y$.

(iii) This immediately follows from (i) and (ii).

In order to show that the converse of Theorem 5 (i) is not generally true, we now give the following example. \blacksquare

Example 1 Take L=1, let $\theta = \{k_r\}$ be given and define Δx_k to be

$$1, 2, \ldots, \left[\sqrt{h_r}\right];$$

for $k = k_{r-1} + 1$, $k_{r-1} + 2$, ..., $k_{r-1} + \left[\sqrt{h_r}\right]$; and $\Delta x_k = 1$ otherwise (where [] denotes the greatest integer function) and $\Delta y_k = 1$ for all k. Note that x is not Δ -bounded.

Further, for $\varepsilon > 0$, we have

$$\frac{1}{h_r}\mu\left(\left\{k\in I_r: \left|\frac{\Delta x_k}{\Delta y_k}-1\right|\geq\varepsilon\right\}\right) = \frac{\left[\sqrt{h_r}\right]}{h_r}\to 0 \text{ as } r\to\infty,$$

i.e., $x \stackrel{S_{\theta}(\Delta)}{\sim} y$. On the other hand, since I_r is the union of the intervals $[k_{r-1}+i, k_{r-1}+i+1]$ for $i=0,1,\ldots, \left[\sqrt{h_r}\right]-1$ we have

168

$$\sum_{k \in I_r} \left| \frac{\Delta x_k}{\Delta y_k} - 1 \right| = 0 + 1 + 2 + \ldots + \left(\left[\sqrt{h_r} \right] - 1 \right) = \frac{\left[\sqrt{h_r} \right] \left(\left[\sqrt{h_r} \right] - 1 \right)}{2}.$$

Hence
$$x \stackrel{N_{\theta}(\Delta)}{\sim} y$$
 (x,y are not simply $N_{\theta}(\Delta)$ -asymptotically equivalent).

Note that any Δ -bounded, Δ -lacunary statistical asymptotically equivalent of multiple L sequences are Δ -Cesaro lcunary asymptotically equivalent of multiple L.

Theorem 6 For every lacunary $\theta = \{k_r\}$

$$x \overset{|AC|^{L}(\Delta)}{\sim} y \text{ implies } x \overset{N^{L}_{\theta}(\Delta)}{\sim} y.$$

Proof. If $x \stackrel{|AC|^{L}(\Delta)}{\sim} y$ and $\varepsilon > 0$ there exist N > 0 and L such that

$$\frac{1}{n}\sum_{i=m+1}^{m+n} \left| \frac{\Delta x_i}{\Delta y_i} - L \right| < \varepsilon$$

for n > N, $m = 0, 1, 2, \ldots$.

Since θ is lacunary, we can choose R > 0 such that $r \ge R$ implies $h_r > N$ and consequently $\tau_r = \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| < \varepsilon$. Thus $x \stackrel{N_{\theta}^L(\Delta)}{\sim} y$.

To show the converse of Theorem 6 is not generally true, we have to obtain x and y sequences that $x \stackrel{N^L_{\theta}(\Delta)}{\sim} y$ and $x \stackrel{|AC|^L(\Delta)}{\sim} y$. Take L = 1 and define $\Delta x = (\Delta x_i)$ by

$$\Delta x_i = \begin{array}{cc} 2, & k_{r-1} < i \le k_{r-1} + \left[\sqrt{h_r}\right] \\ 1, & otherwise \end{array}$$

and $\Delta y_i = 1$ for $i = 1, 2, \dots$ Then $x \stackrel{N_{\theta}(\Delta)}{\sim} y$ since

$$\frac{1}{h_r} \sum_{i \in I_r} \left| \frac{\Delta x_i}{\Delta y_i} - 1 \right| = \frac{1}{h_r} \left[\sqrt{h_r} \right]$$

(where [] denotes the greatest integer function), which converges to 0 as $r \to \infty$.

Theorem 7 Let $\theta = \{k_r\}$ be a lacunary sequence

(i) $\liminf_{r \to 1} q_r > 1$ then $x \stackrel{|\sigma_1|^L(\Delta)}{\sim} y$ implies $x \stackrel{N^L_{\theta}(\Delta)}{\sim} y$ (ii) $\limsup_{r \to \infty} q_r < \infty$ then $x \stackrel{N^L_{\theta}(\Delta)}{\sim} y$ implies $x \stackrel{|\sigma_1|^L(\Delta)}{\sim} y$ (iii) $1 < \liminf_{r \to \infty} q_r < \infty$ then $x \stackrel{N^L_{\theta}(\Delta)}{\sim} y \Leftrightarrow x \stackrel{|\sigma_1|^L(\Delta)}{\sim} y$. **Proof.** (i) Suppose $\liminf q_r > 1$. There exists $\delta > 0$ such that $q_r \ge 1 + \delta$ for sufficiently large r. We have

$$\frac{h_r}{k_r} \geq \frac{\delta}{1+\delta}$$

Now write

,

$$\frac{1}{k_r} \sum_{k=1}^{k_r} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| \geq \frac{1}{k_r} \sum_{k \in I_r} \left| \frac{\Delta x_k}{\Delta y_k} - L \right| = \frac{h_r}{k_r} \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{\Delta x_k}{\Delta y_k} - L \right|$$
$$\geq \frac{\delta}{1+\delta} \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{\Delta x_k}{\Delta y_k} - L \right|$$

from which we deduce that $x \stackrel{|\sigma_1|^L(\Delta)}{\sim} y$ implies $x \stackrel{N^L_{\theta}(\Delta)}{\sim} y$. This completes the proof.

(ii) If $\limsup q_r < \infty$ then there exists M > 0 such that $q_r < M$ for all r. Let $\varepsilon > 0, x \overset{N_{\theta}^L(\Delta)}{\sim} y$ and $\tau_i = \frac{1}{h_i} \sum_{k \in I_i} \left| \frac{\Delta x_k}{\Delta y_k} - L \right|$. We can then find R > 0 and K > 0 such that $\sup \tau_i < \varepsilon$ and $\tau_i < K$ for all $i = 1, 2, \ldots$. Then if t is any integer with $k_{r-1} < t \leq k_r$, where r > R, we can write

$$\begin{split} \frac{1}{t} \sum_{i=1}^{t} \left| \frac{\Delta x_i}{\Delta y_i} - L \right| &\leq \frac{1}{k_{r-1}} \sum_{i=1}^{k_r} \left| \frac{\Delta x_i}{\Delta y_i} - L \right| \\ &= \left| \frac{1}{k_{r-1}} \left(\sum_{i \in I_1} \left| \frac{\Delta x_i}{\Delta y_i} - L \right| + \sum_{i \in I_2} \left| \frac{\Delta x_i}{\Delta y_i} - L \right| + \dots + \sum_{i \in I_r} \left| \frac{\Delta x_i}{\Delta y_i} - L \right| \right) \\ &= \left| \frac{k_1}{k_{r-1}} \tau_1 + \frac{k_2 - k_1}{k_{r-1}} \tau_2 + \dots + \frac{k_R - k_{R-1}}{k_{r-1}} \tau_R + \frac{k_{R+1} - k_R}{k_{r-1}} \tau_{R+1} + \dots + \frac{k_r - k_{r-1}}{k_{r-1}} \tau_r \\ &+ \dots + \frac{k_r - k_{r-1}}{k_{r-1}} \tau_r \\ &\leq \left\{ \sup_{i \geq 1} \tau_i \right\} \frac{k_R}{k_{r-1}} + \left\{ \sup_{i \geq R} \tau_i \right\} \frac{k_r - k_R}{k_{r-1}} \\ &< K \frac{k_R}{k_{r-1}} + \varepsilon M. \end{split}$$

Since $k_{r-1} \to \infty$ as $t \to \infty$, it follows that $\frac{1}{t} \sum_{i=1}^{t} \left| \frac{\Delta x_i}{\Delta y_i} - L \right| \to 0$ and consequently $x \stackrel{|\sigma_1|^L(\Delta)}{\sim} y$.

(iii) The result clearly follows from (i) and (ii). \blacksquare

170

Acknowledgement 1 We would like to express our gratitude to the reviewer for his/her careful reading and valuable suggestions which is improved the presentation of the paper.

REFERENCES

[1] H. Kızmaz, On Certain Sequence Spaces, Canad. Math. Bull., 24 (1981), 169-176.

[2] R. Çolak, On Some Generalized Sequence Spaces, Commun. Fac. Sci. Uni. Ankara, 38 (1989), 35-46.

[3] M. Et and M. Başarır, On Some New Generalized Difference Sequence Spaces, Period. Math. Hung., 35 (1997), 169-175.

[4] M. Başarır, On the Δ -Statistical Convergence of Sequences, First Univ. J. of Sci., 2 (1995), 1-6.

[5] M. Güngör, Y. Altın and M. Et, $On \Delta$ -Lacunary Statistical Convergence, Fırat Univ. J. of Sci., 14 (2002), 167-173.

[6] J. A. Fridy and C. Orhan, *Lacunary statistical convergent*, Pacific J. Math., 160 (1) (1993), 43-51.

[7] G. Das and B. K. Patel, *Lacunary distribution of sequences*, Indian J. Pure Appl. Math., 26 (1), (1989), 54-74.

[8] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.

[9] J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988), 47-63.

[10] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.

[11] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.

[12] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Sci., 16 (4) (1993), 755-762.

[13] R. F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math., 36 (1) (2003), 149-153.

[14] R. Savaş and M. Başarır, (σ, λ) - asymptotically statistical equivalent sequences, Filomat, 20 (1), (2006), 35-42.

[15] R. F. Patterson and E. Savaş, On asymptotically lacunary statistically equivalent sequences, (in press).

[16] E. Savaş, On asymptotically λ -statistical equivalent sequences, (in press).

[17] E. Savaş, R. F. Patterson, σ - asymptotically lacunary statistically equivalent sequences, Cent. Eur. J. of Math., 4 (4), (2006), 648-655.

[18] M. Başarır, S. Altundağ, On Δ^m -lacunary statistical asymptotically equivalent sequences, (in press).

[19] M. Başarır, S. Altundağ, On $[w]_{\sigma,\theta}^{L}$ - lacunary asymptotically equivalent sequences, (in press).

Address

Metin Başarir: Department of Mathematics, Faculty of science and arts, Sakarya University, 54187, Sakarya, TURKEY

E-mail: basarir@sakarya.edu.tr

Selma Altundağ:

Department of Mathematics, Faculty of science and arts, Sakarya University,54187, Sakarya, TURKEY

E-mail: scaylan@sakarya.edu.tr

172