ON Δ-LACUNARY STATISTICAL ASYMPTOTICALLY EQUIVALENT SEQUENCES

Metin Başarir and Selma Altundağ

Abstract

This paper presents new definitions which are a natural combination of the definition for asymptotically equivalence Δ-lacunary statistically convergence. Using this definitions we have proved the $S_{\theta}^{L}(\Delta)$-asymptotically equivalence analogues theorems of [5] and [6].

1 Introduction

Let w be the set of all sequences of real or complex numbers and l_{∞}, c and c_{0} be, respectively, the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ with the usual norm $\|x\|=\sup _{k}\left|x_{k}\right|$.

The idea of difference sequences was introduced by Kızmaz [1]. In 1981, Kızmaz defined the following sequence spaces

$$
\begin{aligned}
l_{\infty}(\Delta) & =\left\{x=\left(x_{k}\right): \Delta x \in l_{\infty}\right\}, c(\Delta)=\left\{x=\left(x_{k}\right): \Delta x \in c\right\} \\
c_{0}(\Delta) & =\left\{x=\left(x_{k}\right): \Delta x \in c_{0}\right\}
\end{aligned}
$$

where $\Delta x=(\Delta x)=\left(x_{k}-x_{k+1}\right)$ and showed that these are Banach spaces with norm $\|x\|_{\Delta}=\left|x_{1}\right|+\|\Delta x\|_{\infty}$.

We call these sequence spaces Δ-bounded, Δ-convergent and Δ-null sequences.

Subsequently difference sequence spaces has been discussed in Çolak [2], Et and Başarır [3].

The idea of statistical convergence was introduced by Fast [8] and studied by various authors (see $[9],[10],[11])$. A sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to the number L if for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mu\left(\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right)=0
$$

[^0]where $\mu\left(\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right)$ denotes the number of element belonging to $\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}$. In this case, we write $S-\lim x=L x_{k} \rightarrow L(S)$ and S denotes the set of all statistically convergent sequences.

By a lacunary $\theta=\left(k_{r}\right) ; r=0,1,2, \ldots$ where $k_{0}=0$, we shall mean an increasing sequence of non-negative integers with $k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and $h_{r}=$ $k_{r}-k_{r-1}$. The ratio $\frac{k_{r}}{k_{r-1}}$ will be denoted by q_{r}.

In 1993, Marouf [12] presented definitions for asymptotically equivalent sequences and asymptotic regular matrices. In 2003, Patterson [13] extend these concepts by presenting an asymptotically statistically equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices. Furthermore, asymptotically equivalent sequences has been studied in [14], [15], [16], [17], [18] and [19].

This paper presents new definitions which are a natural combination of the definition for asymptotically equivalence and Δ-lacunary statistically convergence. In addition to these definitions, some connections between Δ-lacunary statistical asymptotically equivalence and Δ-lacunary asymptotically equivalence have also been presented.

2 Definitions and notations

Definition 1 Two nonnegative sequences x, y are said to be asymptotically equivalent if

$$
\lim _{k} \frac{x_{k}}{y_{k}}=1
$$

(denoted by $x \sim y$),[12].
Definition 2 Two nonnegative sequences x, y are said to be statistical asymptotically equivalent of multiple L provided that for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mu\left(\left\{k \leq n:\left|\frac{x_{k}}{y_{k}}-L\right| \geq \varepsilon\right\}\right)=0
$$

(denoted by $x \stackrel{S_{L}}{\sim} y$) and simply statistical asymptotically equivalent, if $L=1$, [13].

Definition 3 A sequence $x=\left(x_{n}\right)$ is said to be Δ-statistically convergent to L if for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mu\left(\left\{k \leq n:\left|\Delta x_{k}-L\right| \geq \varepsilon\right\}\right)=0 .
$$

We denote the set of these sequences by $S(\Delta)$, [4].

Definition 4 Let θ be a lacunary sequence. A sequence $x=\left(x_{n}\right)$ is said to be Δ-lacunary statistically convergent to L if for every $\varepsilon>0$

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \mu\left(\left\{k \in I_{r}:\left|\Delta x_{k}-L\right| \geq \varepsilon\right\}\right)=0
$$

We denote the set of these sequences by $S_{\theta}(\Delta),[5]$.
Definition $5 A$ sequence $x=\left(x_{n}\right)$ is said to be Δ-Cesaro summable to L if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\Delta x_{k}-L\right)=0
$$

We denote the set of these sequences by $\left(\sigma_{1}\right)(\Delta)$, [5].
Definition 6 A sequence $x=\left(x_{n}\right)$ is said to be strongly Δ-Cesaro summable to L if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|\Delta x_{k}-L\right|=0
$$

We denote the set of these sequences by $\left|\sigma_{1}\right|(\Delta)$, [5].
Definition 7 Let θ be a lacunary sequence. A sequence $x=\left(x_{n}\right)$ is said to be strongly Δ-lacunary strongly convergent to L if

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\Delta x_{k}-L\right|=0
$$

We denote the set of these sequences by $N_{\theta}(\Delta)$, [5].
Definition 8 A sequence $x=\left(x_{n}\right)$ is said to be strongly Δ-almost convergent to L if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|\Delta x_{k+m}-L\right|=0
$$

uniformly in m. We denote the set of these sequences by $|A C|(\Delta)$, [5].
Following this definitions which are given above, we shall now introduce following new notions Δ-asymptotically equivalence, Δ-statistical asymptotically equivalent of multiple L, Δ-lacunary statistical asymptotically equivalent of multiple L and Δ-lacunary asymptotically equivalent of multiple L, Δ-Cesaro asymptotically equivalent of multiple L, strongly Δ-Cesaro asymptotically equivalent of multiple L, strongly Δ-almost asymptotically equivalent of multiple L.

Definition 9 Two nonnegative sequences x, y are said to be Δ-asymptotically equivalent if

$$
\lim _{k} \frac{\Delta x_{k}}{\Delta y_{k}}=1
$$

(denoted by $x \stackrel{\Delta}{\sim} y$).

Definition 10 Two nonnegative sequences x, y are Δ-statistical asymptotically equivalent of multiple L provided that for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mu\left(\left\{k \leq n:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right)=0
$$

(denoted by $x \stackrel{S^{L}(\Delta)}{\sim} y$) and simply Δ-statistical asymptotically equivalent, if $L=1$.

Definition 11 Let θ be a lacunary sequence. Two nonnegative sequences x, y are Δ-lacunary statistical asymptotically equivalent of multiple L provided that for every $\varepsilon>0$

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \mu\left(\left\{k \in I_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right)=0
$$

(denoted by $x \stackrel{S_{\theta}^{L}(\Delta)}{\sim} y$) and simply Δ-lacunary statistical asymptotically equivalent, if $L=1$.

Definition 12 Let θ be a lacunary sequence. Two nonnegative sequences x, y are Δ-lacunary strongly asymptotically equivalent of multiple L provided that

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right|=0
$$

(denoted by $x \stackrel{N}{\theta}_{\sim}^{\sim}(\Delta) y$) and simply Δ-lacunary strongly asymptotically equivalent, if $L=1$.

Definition 13 Two nonnegative sequences x, y are Δ-Cesaro asymptotically equivalent of multiple L provided that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\frac{\Delta x_{k}}{\Delta y_{k}}-L\right)=0
$$

(denoted by $x{ }^{\left(\sigma_{1}\right)^{L}(\Delta)}$ y) and simply Δ-Cesaro asymptotically equivalent, if $L=1$.

Definition 14 Two nonnegative sequences x, y are Δ-strongly Cesaro asymptotically equivalent of multiple L provided that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right|=0
$$

(denoted by $x{ }^{\left|\sigma_{1}\right|_{\sim}^{L}(\Delta)}$ y) and simply Δ-strongly Cesaro asymptotically equivalent, if $L=1$.

Definition 15 Two nonnegative sequences x, y are Δ-strongly almost asymptotically equivalent of multiple L provided that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|\frac{\Delta x_{k+m}}{\Delta y_{k+m}}-L\right|=0
$$

uniformly in m (denoted by $x{ }^{|A C|^{L}(\Delta)} y$) and simply Δ-strongly asymptotically equivalent, if $L=1$.

3 Main results

Theorem 1 If x and $y \Delta$-bounded sequences are Δ-statistical asymptotically equivalent of multiple L then they are Δ-Cesaro asymptotically equivalent of multiple L.

Proof. Suppose x, y are in $l_{\infty}(\Delta)$ and $x \stackrel{S^{L}(\Delta)}{\sim} y$. Then we can assume that

$$
\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \leq M
$$

for almost all k. Given $\varepsilon>0$

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{k=1}^{n}\left(\frac{\Delta x_{k}}{\Delta y_{k}}-L\right)\right| & \leq \frac{1}{n} \sum_{k=1}^{n}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \\
& =\frac{1}{n} \sum_{\substack{k=1 \\
\frac{\Delta x_{k}}{\Delta y_{k}-L} \geq \varepsilon}}^{n}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right|+\frac{1}{n} \sum_{\substack{k=1 \\
\frac{\Delta x_{k}}{\Delta y_{k}-L<\varepsilon}}}^{n}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \\
& <\frac{1}{n} M \mu\left(\left\{k \leq n:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right)+\frac{1}{n} n \varepsilon .
\end{aligned}
$$

Thus $x{ }_{\left(\sigma_{1}\right)^{L}(\Delta)}^{\sim} y$.

Theorem 2 Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence with $\lim \inf q_{r}>1$ then

$$
x \stackrel{S^{L}(\Delta)}{\sim} y \text { implies } x{\stackrel{S_{\theta}^{L}(\Delta)}{\sim} y}^{\sim}
$$

Proof. Suppose first that liminf $q_{r}>1$ then there exists a $\delta>0$ such that $q_{r} \geq 1+\delta$ for sufficiently large r , which implies that

$$
\frac{h_{r}}{k_{r}} \geq \frac{\delta}{1+\delta}
$$

If $x \stackrel{S^{L}(\Delta)}{\sim} y$ then for every $\varepsilon>0$ and for sufficiently large r we have

$$
\begin{aligned}
& \frac{1}{k_{r}} \mu\left(\left\{k \leq k_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \geq \frac{1}{k_{r}} \mu\left(\left\{k \in I_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
& \geq \frac{\delta}{1+\delta} \frac{1}{h_{r}} \mu\left(\left\{k \in I_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right)
\end{aligned}
$$

This completes the proof.

Theorem 3 Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence with $\lim \sup q_{r}<\infty$ then

$$
x \stackrel{S_{\theta}^{L}(\Delta)}{\sim} y \text { implies } x \stackrel{S^{L}(\Delta)}{\sim} y
$$

Proof. If $\limsup q_{r}<\infty$ then there exists $\mathrm{B}>0$ such that $q_{r}<B$ for all r. Let $x \stackrel{S_{\theta}^{L}(\Delta)}{\sim} y$ and $\varepsilon_{1}>0$. There exist $\mathrm{R}>0$ and $\varepsilon>0$ such that for every $j \geq R$

$$
A_{j}=\frac{1}{h_{j}} \mu\left(\left\{k \in I_{j}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right)<\varepsilon_{1}
$$

We can also find $K>0$ such that $A_{j}<K$ for all $\mathrm{j}=1,2, \ldots$. Now let n be any integer with $k_{r-1}<n<k_{r}$, where $r>R$. Then

$$
\begin{aligned}
& \frac{1}{n} \mu\left(\left\{k \leq n:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \leq \frac{1}{k_{r-1}} \mu\left(\left\{k \leq k_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
= & \frac{1}{k_{r-1}} \mu\left(\left\{k \in I_{1}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
& +\frac{1}{k_{r-1}} \mu\left(\left\{k \in I_{2}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
& +\ldots+\frac{1}{k_{r-1}} \mu\left(\left\{k \in I_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
= & \frac{k_{1}}{k_{r-1} k_{1}} \mu\left(\left\{k \in I_{1}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
& +\frac{k_{2}-k_{1}}{k_{r-1}\left(k_{2}-k_{1}\right)} \mu\left(\left\{k \in I_{2}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
& +\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}\left(k_{R}-k_{R-1}\right)} \mu\left(\left\{k \in I_{R}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
& +\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}\left(k_{r}-k_{r-1}\right)} \mu\left(\left\{k \in I_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right) \\
= & \frac{k_{1}}{k_{r-1}} A_{1}+\frac{k_{2}-k_{1}}{k_{r-1}} A_{2} \\
& +\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}} A_{R}+\frac{k_{R+1}-k_{R}}{k_{r-1}} A_{R+1} \\
& +\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}} A_{r} \\
\leq & \left\{\sup _{j \geq 1} A_{j}\right\} \frac{k_{R}}{k_{r-1}}+\left\{\sup _{j \geq R} A_{j}\right\} \frac{k_{r}-k_{R}}{k_{r-1}} \\
\leq & K \frac{k_{R}}{k_{r-1}}+\varepsilon_{1} B .
\end{aligned}
$$

Since $k_{r} \rightarrow \infty$ we have $\frac{k_{R}}{k_{r-1}} \rightarrow 0$. This conclude the proof.
Theorem 4 Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence with $1<\lim \inf q_{r} \leq \lim \sup q_{r}<\infty$ then

$$
x \stackrel{S_{\theta}^{L}(\Delta)}{\sim} y \Longleftrightarrow x \stackrel{S^{L}(\Delta)}{\sim} y .
$$

Proof. The result clearly follows from Theorem 2 and Theorem 3.

Theorem 5 Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence then
(i) If $x \stackrel{N_{\theta}^{L}(\Delta)}{\sim} y$ then $x \stackrel{S_{\theta}^{L}(\Delta)}{\sim} y$
(ii) If x, y are Δ-bounded and $x{ }_{S_{\theta}^{L}(\Delta)}^{\sim} y$ then $x{ }^{N_{\theta}^{L}(\Delta)} \sim y$
(iii) Under the condition that x, y are Δ-bounded, we have the equivalence $x \stackrel{S_{\theta}^{L}(\Delta)}{\sim} y \cap l_{\infty}(\Delta)=x \stackrel{N_{\theta}^{L}(\Delta)}{\sim} y \cap l_{\infty}(\Delta)$.
Proof. (i) If $\varepsilon>0$ and $x^{N_{\theta}^{L}(\Delta)} y$ then

$$
\sum_{k \in I_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \sum_{\substack{k \in I_{r} \\ \Delta x_{k} \\ \Delta y_{k}}-L \geq \varepsilon}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon \mu\left(\left\{k \in I_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right)
$$

Therefore $x \stackrel{S_{\theta}^{L}(\Delta)}{\sim} y$.
(ii) Suppose x, y are in $l_{\infty}(\Delta)$ and $x \stackrel{S_{\theta}^{L}(\Delta)}{\sim} y$.Then we can assume that

$$
\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \leq M
$$

for almost all k. Given $\varepsilon>0$

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| & =\frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\
\frac{\Delta x_{k}-L}{\Delta y_{k}-L}}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right|+\frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\
\frac{\Delta x_{k}}{\Delta y_{k}-L<\varepsilon}}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \\
& \leq \frac{M}{h_{r}} \mu\left(\left\{k \in I_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \geq \varepsilon\right\}\right)+\varepsilon .
\end{aligned}
$$

Therefore $x \stackrel{N_{\theta}^{L}(\Delta)}{\sim} y$.
(iii) This immediately follows from (i) and (ii).

In order to show that the converse of Theorem 5 (i) is not generally true, we now give the following example.

Example 1 Take $L=1$, let $\theta=\left\{k_{r}\right\}$ be given and define Δx_{k} to be

$$
1,2, \ldots,\left[\sqrt{h_{r}}\right]
$$

for $k=k_{r-1}+1, k_{r-1}+2, \ldots, k_{r-1}+\left[\sqrt{h_{r}}\right]$; and $\Delta x_{k}=1$ otherwise (where [] denotes the greatest integer function) and $\Delta y_{k}=1$ for all k. Note that x is not Δ-bounded.

Further, for $\varepsilon>0$, we have

$$
\frac{1}{h_{r}} \mu\left(\left\{k \in I_{r}:\left|\frac{\Delta x_{k}}{\Delta y_{k}}-1\right| \geq \varepsilon\right\}\right)=\frac{\left[\sqrt{h_{r}}\right]}{h_{r}} \rightarrow 0 \text { as } r \rightarrow \infty
$$

i.e., $x \stackrel{S_{\theta}(\Delta)}{\sim} y$. On the other hand, since I_{r} is the union of the intervals $\left[k_{r-1}+i, k_{r-1}+i+1\right]$ for $i=0,1, \ldots,\left[\sqrt{h_{r}}\right]-1$ we have

$$
\sum_{k \in I_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-1\right|=0+1+2+\ldots+\left(\left[\sqrt{h_{r}}\right]-1\right)=\frac{\left[\sqrt{h_{r}}\right]\left(\left[\sqrt{h_{r}}\right]-1\right)}{2}
$$

Hence $x \stackrel{N_{\theta}(\Delta)}{\nsim} y\left(x, y\right.$ are not simply $N_{\theta}(\Delta)$-asymptotically equivalent).
Note that any Δ-bounded, Δ-lacunary statistical asymptotically equivalent of multiple L sequences are Δ-Cesaro lcunary asymptotically equivalent of multiple L.

Theorem 6 For every lacunary $\theta=\left\{k_{r}\right\}$

$$
x \stackrel{|A C|^{L}(\Delta)}{\sim} y \text { implies } x \stackrel{N_{\theta}^{L}(\Delta)}{\sim} y .
$$

Proof. If $x \stackrel{|A C|^{L}(\Delta)}{\sim} y$ and $\varepsilon>0$ there exist $N>0$ and L such that

$$
\frac{1}{n} \sum_{i=m+1}^{m+n}\left|\frac{\Delta x_{i}}{\Delta y_{i}}-L\right|<\varepsilon
$$

for $n>N, m=0,1,2, \ldots$
Since θ is lacunary, we can choose $R>0$ such that $r \geq R$ implies $h_{r}>N$ and consequently $\tau_{r}=\frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right|<\varepsilon$. Thus $x \stackrel{N_{\theta}^{L}(\Delta)}{\sim} y$.

To show the converse of Theorem 6 is not generally true, we have to obtain x and y sequences that $x \stackrel{N_{\theta}^{L}(\Delta)}{\sim} y$ and $x \stackrel{|A C|^{L}(\Delta)}{\sim} y$. Take $L=1$ and define $\Delta x=\left(\Delta x_{i}\right)$ by

$$
\Delta x_{i}=\begin{array}{cc}
2, & k_{r-1}<i \leq k_{r-1}+\left[\sqrt{h_{r}}\right] \\
1, & \text { otherwise }
\end{array}
$$

and $\Delta y_{i}=1$ for $i=1,2, \ldots$.
Then $x \stackrel{N_{\theta}(\Delta)}{\sim} y$ since

$$
\frac{1}{h_{r}} \sum_{i \in I_{r}}\left|\frac{\Delta x_{i}}{\Delta y_{i}}-1\right|=\frac{1}{h_{r}}\left[\sqrt{h_{r}}\right]
$$

(where [] denotes the greatest integer function), which converges to 0 as $r \rightarrow \infty$.

Theorem 7 Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence
(i) $\lim \inf q_{r}>1$ then $x \stackrel{\left|\sigma_{1}\right|^{L}(\Delta)}{\sim} y$ implies $x \stackrel{N}{\theta}_{\sim}^{\sim}(\Delta) y$
(ii) $\limsup q_{r}<\infty$ then $x{\stackrel{N_{\theta}^{L}(\Delta)}{\sim}}_{\sim}^{\sim}$ implies $x \stackrel{\left|\sigma_{1}\right|_{\sim}^{L}(\Delta)}{\sim} y$
(iii) $1<\liminf q_{r} \leq \limsup q_{r}<\infty$ then $x \stackrel{N_{\theta}^{L}(\Delta)}{\sim} y \Leftrightarrow x^{\left|\sigma_{1}\right|_{\sim}^{L}(\Delta)} y$.

Proof. (i) Suppose $\lim \inf q_{r}>1$. There exists $\delta>0$ such that $q_{r} \geq 1+\delta$ for sufficiently large r. We have

$$
\frac{h_{r}}{k_{r}} \geq \frac{\delta}{1+\delta}
$$

Now write

$$
\begin{aligned}
\frac{1}{k_{r}} \sum_{k=1}^{k_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| & \geq \frac{1}{k_{r}} \sum_{k \in I_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right|=\frac{h_{r}}{k_{r}} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right| \\
& \geq \frac{\delta}{1+\delta} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right|
\end{aligned}
$$

from which we deduce that $x{\left|\sigma_{1}\right|_{\sim}^{L}(\Delta)}_{\sim}^{\sim}$ implies $x{ }^{N_{\theta}^{L}(\Delta)} y$.
This completes the proof.
(ii) If $\lim \sup q_{r}<\infty$ then there exists $M>0$ such that $q_{r}<M$ for all r. Let $\varepsilon>0, x \stackrel{N_{\theta}^{L}(\Delta)}{\sim} y$ and $\tau_{i}=\frac{1}{h_{i}} \sum_{k \in I_{i}}\left|\frac{\Delta x_{k}}{\Delta y_{k}}-L\right|$. We can then find $R>0$ and $K>0$ such that $\sup _{i>R} \tau_{i}<\varepsilon$ and $\tau_{i}<K$ for all $i=1,2, \ldots$.Then if t is any integer with $k_{r-1}<t \stackrel{i \geq R}{\leq} k_{r}$, where $r>R$, we can write

$$
\begin{aligned}
& \frac{1}{t} \sum_{i=1}^{t}\left|\frac{\Delta x_{i}}{\Delta y_{i}}-L\right| \leq \frac{1}{k_{r-1}} \sum_{i=1}^{k_{r}}\left|\frac{\Delta x_{i}}{\Delta y_{i}}-L\right| \\
= & \frac{1}{k_{r-1}}\left(\sum_{i \in I_{1}}\left|\frac{\Delta x_{i}}{\Delta y_{i}}-L\right|+\sum_{i \in I_{2}}\left|\frac{\Delta x_{i}}{\Delta y_{i}}-L\right|+\ldots+\sum_{i \in I_{r}}\left|\frac{\Delta x_{i}}{\Delta y_{i}}-L\right|\right) \\
= & \frac{k_{1}}{k_{r-1}} \tau_{1}+\frac{k_{2}-k_{1}}{k_{r-1}} \tau_{2} \\
& +\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}} \tau_{R}+\frac{k_{R+1}-k_{R}}{k_{r-1}} \tau_{R+1} \\
& +\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}} \tau_{r} \\
\leq & \left\{\sup \tau_{i}\right\} \frac{k_{R}}{k_{r-1}}+\left\{\sup _{i \geq R} \tau_{i}\right\} \frac{k_{r}-k_{R}}{k_{r-1}} \\
< & K \frac{k_{R}}{k_{r-1}}+\varepsilon M .
\end{aligned}
$$

Since $k_{r-1} \rightarrow \infty$ as $t \rightarrow \infty$, it follows that $\frac{1}{t} \sum_{i=1}^{t}\left|\frac{\Delta x_{i}}{\Delta y_{i}}-L\right| \rightarrow 0$ and consequently $x \stackrel{\left|\sigma_{1}\right|^{L}(\Delta)}{\sim} y$.
(iii) The result clearly follows from (i) and (ii).

Acknowledgement 1 We would like to express our gratitude to the reviewer for his/her careful reading and valuable suggestions which is improved the presentation of the paper.

REFERENCES

[1] H. Kızmaz, On Certain Sequence Spaces, Canad. Math. Bull., 24 (1981), 169-176.
[2] R. Çolak, On Some Generalized Sequence Spaces, Commun. Fac. Sci. Uni. Ankara, 38 (1989), 35-46.
[3] M. Et and M. Başarır, On Some New Generalized Difference Sequence Spaces, Period. Math. Hung., 35 (1997), 169-175.
[4] M. Başarır, On the Δ-Statistical Convergence of Sequences, Fırat Univ. J. of Sci., 2 (1995), 1-6.
[5] M. Güngör, Y. Altın and M. Et, On Δ-Lacunary Statistical Convergence, Frrat Univ. J. of Sci., 14 (2002), 167-173.
[6] J. A. Fridy and C. Orhan, Lacunary statistical convergent, Pacific J. Math., 160 (1) (1993), 43-51.
[7] G. Das and B. K. Patel, Lacunary distribution of sequences, Indian J. Pure Appl. Math., 26 (1), (1989), 54-74.
[8] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
[9] J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988), 47-63.
[10] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
[11] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
[12] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Sci., 16 (4) (1993), 755-762.
[13] R. F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math., 36 (1) (2003), 149-153.
[14] R. Savaş and M. Başarır, (σ, λ)- asymptotically statistical equivalent sequences, Filomat, 20 (1), (2006), 35-42.
[15] R. F. Patterson and E. Savaş, On asymptotically lacunary statistically equivalent sequences, (in press).
[16] E. Savaş, On asymptotically λ-statistical equivalent sequences, (in press).
[17] E. Savaş, R. F. .Patterson, σ - asymptotically lacunary statistically equivalent sequences, Cent. Eur. J. of Math., 4 (4), (2006), 648-655.
[18] M. Başarır, S. Altundağ, On Δ^{m}-lacunary statistical asymptotically equivalent sequences, (in press).
[19] M. Başarır, S. Altundağ, On [w] $]_{\sigma, \theta^{-}}^{L}$ lacunary asymptotically equivalent sequences, (in press).

Address

Metin Başarir:
Department of Mathematics, Faculty of science and arts, Sakarya University, 54187, Sakarya, TURKEY

E-mail: basarir@sakarya.edu.tr
Selma Altundağ:
Department of Mathematics, Faculty of science and arts, Sakarya University,54187, Sakarya, TURKEY

E-mail: scaylan@sakarya.edu.tr

[^0]: 2000 Mathematics Subject Classification. 40B05, 40 H 05.
 Keywords and Phrases. Asymptotic equivalence, statistical convergence, Δ-convergence, lacunary sequence.

 Received: September 27, 2007
 Communicated by Dragan S. Djordjević

