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ON MIXED AND COMPONENTWISE
CONDITION NUMBERS

FOR HYPERBOLIC QR FACTORIZATION

Wei-guo Wang∗ and Nan Hao

Abstract

We present normwise and componentwise perturbation bounds for the
hyperbolic QR factorization by using a new approach. The explicit expres-
sions of mixed and componentwise condition numbers for the hyperbolic
QR factorization are derived.

1 Introduction

The indefinite least squares problem (ILS) has the form

ILS : min
x

(b−Ax)T J(b−Ax), (1.1)

where A ∈ Rm×n, b ∈ Rm are given and J is the signature matrix

J =
[
Ip 0
0 −Iq

]
, p + q = m. (1.2)

This problem was introduced by Chandrasekaran, Gu and Sayed [3] and further
studied by Bojanczyk, Higham and Patel [1]. The theory and algorithms for
the equality constrained indefinite least squares problem are presented in [2].

A matrix Q ∈ Rm×m is J-orthogonal if

QT JQ = J. (1.3)

Clearly, Q is nonsingular and QJQT = J . For properties of J-orthogonal ma-
trices see [8].
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Consider the downdating problem of computing the Cholesky factorization
of a positive definite matrix C = AT JA = AT

1 A1−AT
2 A2, where A1 ∈ Rp×n (p ≥

n) and A2 ∈ Rq×n. If there exists a J-orthogonal matrix Q such that

QT

[
A1

A2

]
=

[
R
0

]
, (1.4)

with R ∈ Rn×n upper triangular, then

C =
[
A1

A2

]T

J

[
A1

A2

]
=

[
A1

A2

]T

QJQT

[
A1

A2

]
= RT R,

so R is the desired Cholesky factor. The factorization (1.4) is a hyperbolic QR
factorization; for details of how to compute it see, for example, [1].

Note that Q−1 = JQT J , let Q =
[
Q11 Q12

Q21 Q22

]
. Then Q−1 =

[
QT

11 −QT
21

−QT
12 QT

22

]
.

From (1.4), the hyperbolic QR factorization can be rewritten as

n

A = Q1R = p
q

[
Q1∗
−Q2∗

]
R, R ∈ Rn×n.

(1.5)

This factorization yields

AT JA = RT

[
Q1∗
−Q2∗

]T

J

[
Q1∗
−Q2∗

]
R = RT (QT

1∗Q1∗ −QT
2∗Q2∗)R = RT R.

Let Ã = A + ∆A be a perturbation of A. We assume that Ã satisfies the
uniqueness condition ÃT JÃ is positive definite, which will always be the case
for ∆A sufficiently small in norm. Then Ã also has the unique hyperbolic QR
factorization:

A + ∆A = (Q1 + ∆Q1)T (R + ∆R), (1.6)

where Q1 + ∆Q1 is the first n columns of J-orthogonal matrix Q + ∆Q.

In this paper, using a new approach (i.e., the columns of a new matrix is
given by choosing appropriate columns from two Kronecker product matrices),
we derive the explicit perturbation expressions. Secondly, using the mixed and
componentwise condition numbers defined in [5], the mixed and componentwise
perturbation bounds for the hyperbolic QR factorization are given.

Throughout this paper, we use Rm×n to denote the set of real m×n matrices,
AT denotes the transpose of the matrix A, I stands for the identity matrix, and
0 the null matrix. The symbol ‖·‖F stands for the Frobenius norm, and ‖·‖2 the
spectral norm and the Euclidean vector norm. For A = [a1, a2, . . . , an] = (aij) ∈
Rm×n and a matrix B, A ⊗ B = (aijB) is a Kronecker product, and vec(A) is
a vector defined by vec(A) = [aT

1 , aT
2 , . . . , aT

n ]T (see [6, 10] for properties of the
Kronecker product and vec operation).
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2 Preliminaries

To define mixed and componentwise condition numbers, the following form of
“distance” function will be useful. For any points a, b ∈ Rn, we define a

b =
(c1, c2, . . . , cn)T with

ci =





ai/bi, if bi 6= 0,
0, if ai = bi = 0,
∞, otherwise.

Then we define the componentwise relative “distance” between a and b by

d(a, b) =
∥∥∥∥

a− b

b

∥∥∥∥
∞

= max
i=1,2,...,n

{ |ai − bi|
|bi|

}
.

Note that if d(a, b) < ∞,

d(a, b) = min{v ≥ 0 | |ai − bi| ≤ v|bi|, for i = 1, 2, . . . , n}.

The distance of two matrices is defined as

d(A,B) = d(vec(A), vec(B)).

It is easy to know that ‖vec(A)‖∞ = ‖A‖max, where ‖·‖max is the max norm
given by

‖A‖max = max
i,j

|aij |.

We need the definition 2.1 below given in [5].

For ε > 0 we denote B0(a, ε) = {x | d(x, a) ≤ ε}. For a partial function
F : Rp → Rq, we denote by Dom(F ) the domain of definition of F .

Definition 2.1 Let F : Rp → Rq be a continuous mapping defined on an open
set Dom(F ) ⊂ Rp such that 0 6∈ Dom(F ). Let a ∈ Dom(F ) such that F (a) 6= 0.

(i) The mixed condition number of F at a is defined by

m(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x 6=a

‖F (x)− F (a)‖∞
‖F (a)‖∞

1
d(x, a)

.

(ii) Suppose that F (a) = (f1(a), f2(a), · · · , fq(a)) is such that fj(a) 6= 0 for
j = 1, 2, . . . , q. Then the componentwise condition number of F at a is

c(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x 6=a

d(F (x), F (a))
d(x, a)

.
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The explicit expressions of the mixed and componentwise condition numbers
of F at a are given by the following lemma.

Lemma 2.2 [5] Suppose F is Fréchet differentiable at a. Then,

(a) If F (a) 6= 0, then

m(F, a) =
‖F ′(a)Dg(a)‖∞

‖F (a)‖∞ =
‖|F ′(a)| |a|‖∞
‖F (a)‖∞ .

(b) If (F (a))i 6= 0 for i = 1, 2, . . . , q, then

c(F, a) = ‖Dg−1(F (a))F ′(a)Dg(a)‖∞ =
∥∥∥∥
|F ′(a)| |a|
|F (a)|

∥∥∥∥
∞

,

where Dg(a) is the p×p diagonal matrix with a1, a2, · · · , ap in the diagonal.

Remark 2.3 In the rest of this paper we assume when we deal with componen-
twise condition numbers, the computed solution has no zero components.

3 Condition numbers for hyperbolic QR

factorization

The mappings are defined as follows

ϕR : vec(A) → vec(R),
ϕQ1 : vec(A) → vec(Q1),

where Q1 and R are the hyperbolic QR factors of A.

3.1 The factor R

From (1.6), we have

(A + ∆A)T J(A + ∆A) = (R + ∆R)T (R + ∆R), (3.1)

omitting the second-order term, which turns to

RT (∆R) + (∆R)T R ≈ AT J(∆A) + (∆A)T JA. (3.2)

Using the vec function, we have

(I ⊗RT )vec(∆R) + (RT ⊗ I)vec((∆R)T ) (3.3)
≈ (I ⊗ (AT J))vec(∆A) + ((AT J)⊗ I)vec((∆A)T ). (3.4)

Let A ∈ Rm×n. Then we have (see [9])

vec((∆A)T ) = Π vec(∆A),



On mixed and componentwise condition numbers for hyperbolic QR... 187

where the ver-permutation matrix Π is expressed by

Π =
m∑

i=1

n∑

j=1

Eij ⊗ ET
ij ,

where each Eij ∈ Rm×n has entry “1” in position (i, j) and all other entries are
zero.

From (3.3), we have

(I⊗RT )vec(∆R)+(RT⊗I)vec((∆R)T ) ≈ [(I⊗(AT J))+((AT J)⊗I)Π]vec(∆A).
(3.5)

Choose

D1 = diag(
1
2
, 0, . . . , 0

︸ ︷︷ ︸
n

, 1,
1
2
, 0, . . . , 0

︸ ︷︷ ︸
n

, . . . , 1, 1, . . . ,
1
2︸ ︷︷ ︸

n

),

where each element “1” of D1 corresponds to the nonzero element of vec(R̄)
(i.e., the strictly upper triangular part of R). Similarly, we choose

D2 = diag(
1
2
, 1, . . . , 1

︸ ︷︷ ︸
n

, 0,
1
2
, 1, . . . , 1

︸ ︷︷ ︸
n

, . . . , 0, 0, . . . ,
1
2︸ ︷︷ ︸

n

),

where each element “1” of D2 corresponds to the nonzero element of vec(R̄T )
(i.e., the strictly lower triangular part of RT ). “ 1

2” corresponds to the each
diagonal element of R.

For any matrices S and T , SD1 + TD2 is consisting of columns of S and T
corresponding to the nonzero elements of D1 and D2. Let n2 × n2 matrices

S = [s11, · · · , sn1, s12, · · · , sn2, · · · sn1, · · · , snn]

and
T = [t11, · · · , tn1, t12, · · · , tn2, · · · , tn1, · · · , tnn],

where sij and tij are the ((j − 1)n + i)-th column of S and T , respectively. We
have

S·vec(∆R)+T ·vec(∆RT ) =
∑

i,j

sij(δrij)+
∑

i,j

tij(δrji) =
∑

i,j

(sij(δrij)+tij(δrji)),

where δrij is the element of vec(∆R). Note that ∆R is a upper triangular
matrix, i.e., δrij = 0, for i > j. Thus we obtain

sij(δrij) + tij(δrji) =





tij(δrij + δrji), i > j,
sij(δrij + δrji), i < j,
1
2 (sii + tii)(δrii + δrii), i = j.

(3.6)
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From (3.5), we can get

[(I ⊗RT )D1 + (RT ⊗ I)D2][vec(∆R) + vec((∆R)T )] ≈ vec(δA), (3.7)

where vec(δA) = [(I ⊗ (AT J)) + ((AT J) ⊗ I)Π]vec(∆A). It is easy to observe
that (I ⊗RT )D1 + (RT ⊗ I)D2 is lower triangular with diagonal elements

r11, r11, · · · , r11︸ ︷︷ ︸
n

, r22, r22, · · · , r22︸ ︷︷ ︸
n

, · · · , rn,n, rn,n, · · · , rn,n︸ ︷︷ ︸
n

.

Note that (I ⊗ RT )D1 + (RT ⊗ I)D2 is a nonsingular lower triangular matrix,
and from (3.7), we have

vec(∆R) + vec((∆R)T ) ≈ [(I ⊗RT )D1 + (RT ⊗ I)D2]−1vec(δA). (3.8)

The solution of triangular systems are usually computed with high accuracy
even if they are ill-conditioned [7]. Note that the structure of the triangular
matrix, the triangular systems (3.8) can be easily solved.

Note that vec(∆R) corresponds to upper triangular matrix. We have

vec(∆R) ≈ D1[(I ⊗RT )D1 + (RT ⊗ I)D2]−1vec(δA),
vec((∆R)T ) ≈ D2[(I ⊗RT )D1 + (RT ⊗ I)D2]−1vec(δA). (3.9)

The normwise and componentwise perturbation bounds can be derived as
follows:

‖∆R‖F . ‖D1[(I ⊗RT )D1 + (RT ⊗ I)D2]−1‖2‖δA‖F , (3.10)

and

vec(|∆R|) . |D1[(I ⊗RT )D1 + (RT ⊗ I)D2]−1|vec(|δA|). (3.11)

Using the hyperbolic QR factorization of Ã in the δA, the rounding-error of
perturbation bounds will be smaller.

The mixed and componentwise condition numbers for the factor R are de-
fined as follows:

mR(A) = lim
ε→0

sup
‖∆A/A‖max≤ε

‖∆R‖max

‖R‖max

1
‖∆A/A‖max

,

cR(A) = lim
ε→0

sup
‖∆A/A‖max≤ε

1
‖∆A/A‖max

∥∥∥∥
∆R

R

∥∥∥∥
max

.

Here B
A is an entrywise division defined by B

A := vec−1(vec(B)/vec(A)).
The main result in this subsection is the following theorem. It presents

explicit expressions for the condition numbers we defined for the factor R.

Theorem 3.1 Let A ∈ Rm×n with AT JA is positive definite and A = Q1R be
the hyperbolic QR factorization. Then
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(a)

mR(A) =
‖|D1NR|vec(|A|)‖∞

‖vec(R)‖∞ , (3.12)

(b)

cR(A) =
∥∥∥∥
|D1NR|vec(|A|)

vec(R)

∥∥∥∥
∞

, (3.13)

where NR = [(I ⊗RT )D1 + (RT ⊗ I)D2]−1[(I ⊗ (AT J)) + ((AT J)⊗ I)Π].

Proof. It follows from (3.9) that

ϕ′R(A) = D1[(I ⊗RT )D1 + (RT ⊗ I)D2]−1[(I ⊗ (AT J)) + ((AT J)⊗ I)Π].

From Definition 2.1 and (a) of Lemma 2.2, we obtain

mR(A) = m(ϕR; a) =
‖|ϕ′R(a)| |a|‖∞
‖ϕR(a)‖∞ =

‖|D1NR|vec(|A|)‖∞
‖vec(R)‖∞ ,

and

cR(A) = c(ϕR; a) =
∥∥∥∥
|D1NR| |a|
|ϕR(a)|

∥∥∥∥
∞

=
∥∥∥∥
|D1NR|vec(|A|)

vec(R)

∥∥∥∥
∞

,

where a denotes vec(A). 2

Theorem 3.1 gives explicit expressions for the condition numbers mR(A) and
cR(A). While these expressions are sharp they may not be easily computed by
their dependance on the vec-permutation matrix Π and Kronecker products.
We need a lemma in [4].

Lemma 3.2 [4] For any matrices M, N,P, Q,R, and S with dimensions making
the following well defined

[M⊗N+(P⊗Q)Π]vec(R),
[M ⊗N + (P ⊗Q)Π]vec(R)

S
, NRMT and QRT PT ,

we have

‖|[M ⊗N + (P ⊗Q)Π]|vec(|R|)‖∞ ≤ ‖vec(|N | |R| |M |T + |Q| |R|T |P |T )‖∞,

and
∥∥∥∥
|[M ⊗N + (P ⊗Q)Π]|vec(|R|)

|S|

∥∥∥∥
∞
≤

∥∥∥∥
vec(|N | |R| |M |T + |Q| |R|T |P |T )

|S|

∥∥∥∥
∞

.

The following corollary gives computable upper bounds for these condition
numbers.

Corollary 3.3 In the hypothesis of Theorem 3.1, assume that the upper trian-
gular part of R has no zero components. We have

(a)

mR(A) ≤ ‖D1S‖∞‖2|A|T |A|‖max

‖R‖max
, (3.14)
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(b)
cR(A) ≤ ‖Dg†(vec(R))D1S‖∞

∥∥2|A|T |A|
∥∥

max
, (3.15)

where S = [(I ⊗ RT )D1 + (RT ⊗ I)D2]−1 and Dg†(a) is the Moore-Penrose
inverse of the diagonal matrix diag(a).

3.2 The factor Q

From (1.6), omitting the second-order term, which changes to

Q1(∆R) + (∆Q1)R ≈ ∆A. (3.16)

Note that R is nonsingular in (3.16), right-multiplying by R−1 leads to

∆Q1 ≈ (∆A)R−1 −Q1(∆R)R−1. (3.17)

Using the vec function, we have

vec(∆Q1) ≈ (R−T ⊗ I)vec(∆A)− (R−T ⊗Q1)vec(∆R). (3.18)

Substituting (3.9) into (3.18), we get

vec(∆Q1) ≈ {(R−T ⊗ I)− (R−T ⊗Q1)D1NR}vec(∆A). (3.19)

The normwise and componentwise perturbation bounds can be derived as
follows:

‖∆Q1‖F . ‖(R−T ⊗ I)− (R−T ⊗Q1)D1NR‖2‖∆A‖F , (3.20)

and

vec(|∆Q1|) . |(R−T ⊗ I)− (R−T ⊗Q1)D1NR|vec(|∆A|). (3.21)

The mixed and componentwise condition numbers for the factor Q1 are
defined as follows:

mQ1(A) = lim
ε→0

sup
‖∆A/A‖max≤ε

‖∆Q1‖max

‖Q1‖max

1
‖∆A/A‖max

,

cQ1(A) = lim
ε→0

sup
‖∆A/A‖max≤ε

1
‖∆A/A‖max

∥∥∥∥
∆Q1

Q1

∥∥∥∥
max

.

Here B
A is an entrywise division defined by B

A := vec−1(vec(B)/vec(A)).
The main result in this subsection is the following theorem. It presents

explicit expressions for the condition numbers we defined for the factor Q1.

Theorem 3.4 Let A ∈ Rm×n with AT JA is positive definite and A = Q1R be
the hyperbolic QR factorization. Then

(a)

mQ1(A) =
‖|(R−T ⊗ I)− (R−T ⊗Q1)D1NR|vec(|A|)‖∞

‖vec(Q1)‖∞ , (3.22)
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(b)

cQ1(A) =
∥∥∥∥
|(R−T ⊗ I)− (R−T ⊗Q1)D1NR|vec(|A|)

vec(Q1)

∥∥∥∥
∞

, (3.23)

where NR = [(I ⊗RT )D1 + (RT ⊗ I)D2]−1[(I ⊗ (AT J)) + ((AT J)⊗ I)Π].

Proof. The proof is similar to Theorem 3.1. 2

The following corollary gives computable upper bounds for these condition
numbers.

Corollary 3.5 In the hypothesis of Theorem 3.4, we have
(a)

mQ1(A) ≤ ‖|A| |R−1|‖max + ‖(R−T ⊗Q1)D1S‖∞‖2|A|T |A|‖max

‖Q1‖max
, (3.24)

(b)

cQ1(A) ≤
∥∥∥∥
|A| |R−1|

Q1

∥∥∥∥
max

+‖Dg−1(vec(Q1))(R−T⊗Q1)D1S‖∞
∥∥2|A|T |A|∥∥

max
,

(3.25)
where S = [(I ⊗RT )D1 + (RT ⊗ I)D2]−1.

We give a simple example as the following. All computations are performed
in MATLAB 6.5, with precision 2.22× 10−16.

Example 3.6 Let

A =




7 8
2 1
3 1
1 1


 , J =

[
I3 0
0 −1

]
, AT JA is positive definite.

The mixed and componentwise condition numbers of the hyperbolic QR fac-
torization are shown in Table 1.

Table 1. Mixed and componentwise condition numbers
mR(A) mupper

R (A) cR(A) cupper
R (A)

1.4239 13.7987 4.5463 44.0578
mQ1(A) mupper

Q1
(A) cQ1(A) cupper

Q1
(A)

2.1023 51.9557 245.9453 387.1674
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