ON MIXED AND COMPONENTWISE CONDITION NUMBERS
 FOR HYPERBOLIC $Q R$ FACTORIZATION

Wei-guo Wang* and Nan Hao

Abstract

We present normwise and componentwise perturbation bounds for the hyperbolic $Q R$ factorization by using a new approach. The explicit expressions of mixed and componentwise condition numbers for the hyperbolic $Q R$ factorization are derived.

1 Introduction

The indefinite least squares problem (ILS) has the form

$$
\begin{equation*}
\text { ILS : } \quad \min _{x}(b-A x)^{T} J(b-A x) \tag{1.1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ are given and J is the signature matrix

$$
J=\left[\begin{array}{cc}
I_{p} & 0 \tag{1.2}\\
0 & -I_{q}
\end{array}\right], \quad p+q=m
$$

This problem was introduced by Chandrasekaran, Gu and Sayed [3] and further studied by Bojanczyk, Higham and Patel [1]. The theory and algorithms for the equality constrained indefinite least squares problem are presented in [2].

A matrix $Q \in \mathbb{R}^{m \times m}$ is J-orthogonal if

$$
\begin{equation*}
Q^{T} J Q=J \tag{1.3}
\end{equation*}
$$

Clearly, Q is nonsingular and $Q J Q^{T}=J$. For properties of J-orthogonal matrices see [8].

[^0]Consider the downdating problem of computing the Cholesky factorization of a positive definite matrix $C=A^{T} J A=A_{1}^{T} A_{1}-A_{2}^{T} A_{2}$, where $A_{1} \in \mathbb{R}^{p \times n}(p \geq$ $n)$ and $A_{2} \in \mathbb{R}^{q \times n}$. If there exists a J-orthogonal matrix Q such that

$$
Q^{T}\left[\begin{array}{l}
A_{1} \tag{1.4}\\
A_{2}
\end{array}\right]=\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

with $R \in \mathbb{R}^{n \times n}$ upper triangular, then

$$
C=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]^{T} J\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]^{T} Q J Q^{T}\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=R^{T} R
$$

so R is the desired Cholesky factor. The factorization (1.4) is a hyperbolic $Q R$ factorization; for details of how to compute it see, for example, [1].

$$
\text { Note that } Q^{-1}=J Q^{T} J \text {, let } Q=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right] \text {. Then } Q^{-1}=\left[\begin{array}{cc}
Q_{11}^{T} & -Q_{21}^{T} \\
-Q_{12}^{T} & Q_{22}^{T}
\end{array}\right] \text {. }
$$

From (1.4), the hyperbolic $Q R$ factorization can be rewritten as

$$
\left.A=Q_{1} R=\begin{array}{c}
p \tag{1.5}\\
q
\end{array} \begin{array}{c}
n \\
Q_{1 *} \\
-Q_{2 *}
\end{array}\right] R, \quad R \in \mathbb{R}^{n \times n}
$$

This factorization yields

$$
A^{T} J A=R^{T}\left[\begin{array}{c}
Q_{1 *} \\
-Q_{2 *}
\end{array}\right]^{T} J\left[\begin{array}{c}
Q_{1 *} \\
-Q_{2 *}
\end{array}\right] R=R^{T}\left(Q_{1 *}^{T} Q_{1 *}-Q_{2 *}^{T} Q_{2 *}\right) R=R^{T} R
$$

Let $\tilde{A}=A+\Delta A$ be a perturbation of A. We assume that \tilde{A} satisfies the uniqueness condition $\tilde{A}^{T} J \tilde{A}$ is positive definite, which will always be the case for ΔA sufficiently small in norm. Then \tilde{A} also has the unique hyperbolic $Q R$ factorization:

$$
\begin{equation*}
A+\Delta A=\left(Q_{1}+\Delta Q_{1}\right)^{T}(R+\Delta R) \tag{1.6}
\end{equation*}
$$

where $Q_{1}+\Delta Q_{1}$ is the first n columns of J-orthogonal matrix $Q+\Delta Q$.
In this paper, using a new approach (i.e., the columns of a new matrix is given by choosing appropriate columns from two Kronecker product matrices), we derive the explicit perturbation expressions. Secondly, using the mixed and componentwise condition numbers defined in [5], the mixed and componentwise perturbation bounds for the hyperbolic $Q R$ factorization are given.

Throughout this paper, we use $\mathbb{R}^{m \times n}$ to denote the set of real $m \times n$ matrices, A^{T} denotes the transpose of the matrix A, I stands for the identity matrix, and 0 the null matrix. The symbol $\|\cdot\|_{F}$ stands for the Frobenius norm, and $\|\cdot\|_{2}$ the spectral norm and the Euclidean vector norm. For $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left(a_{i j}\right) \in$ $\mathbb{R}^{m \times n}$ and a matrix $B, A \otimes B=\left(a_{i j} B\right)$ is a Kronecker product, and $\operatorname{vec}(A)$ is a vector defined by $\operatorname{vec}(A)=\left[a_{1}^{T}, a_{2}^{T}, \ldots, a_{n}^{T}\right]^{T}$ (see $[6,10]$ for properties of the Kronecker product and vec operation).

2 Preliminaries

To define mixed and componentwise condition numbers, the following form of "distance" function will be useful. For any points $a, b \in \mathbb{R}^{n}$, we define $\frac{a}{b}=$ $\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{T}$ with

$$
c_{i}=\left\{\begin{array}{cl}
a_{i} / b_{i}, & \text { if } b_{i} \neq 0 \\
0, & \text { if } a_{i}=b_{i}=0 \\
\infty, & \text { otherwise }
\end{array}\right.
$$

Then we define the componentwise relative "distance" between a and b by

$$
d(a, b)=\left\|\frac{a-b}{b}\right\|_{\infty}=\max _{i=1,2, \ldots, n}\left\{\frac{\left|a_{i}-b_{i}\right|}{\left|b_{i}\right|}\right\} .
$$

Note that if $d(a, b)<\infty$,

$$
d(a, b)=\min \left\{v \geq 0| | a_{i}-b_{i}|\leq v| b_{i} \mid, \text { for } i=1,2, \ldots, n\right\}
$$

The distance of two matrices is defined as

$$
d(A, B)=d(\operatorname{vec}(A), \operatorname{vec}(B))
$$

It is easy to know that $\|\operatorname{vec}(A)\|_{\infty}=\|A\|_{\text {max }}$, where $\|\cdot\|_{\text {max }}$ is the max norm given by

$$
\|A\|_{\max }=\max _{i, j}\left|a_{i j}\right| .
$$

We need the definition 2.1 below given in [5].
For $\varepsilon>0$ we denote $B^{0}(a, \varepsilon)=\{x \mid d(x, a) \leq \varepsilon\}$. For a partial function $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$, we denote by $\operatorname{Dom}(F)$ the domain of definition of F.

Definition 2.1 Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ be a continuous mapping defined on an open set $\operatorname{Dom}(F) \subset \mathbb{R}^{p}$ such that $0 \notin \operatorname{Dom}(F)$. Let $a \in \operatorname{Dom}(F)$ such that $F(a) \neq 0$.
(i) The mixed condition number of F at a is defined by

$$
m(F, a)=\lim _{\varepsilon \rightarrow 0} \sup _{\substack{x \in B^{0}(a, \varepsilon) \\ x \neq a}} \frac{\|F(x)-F(a)\|_{\infty}}{\|F(a)\|_{\infty}} \frac{1}{d(x, a)}
$$

(ii) Suppose that $F(a)=\left(f_{1}(a), f_{2}(a), \cdots, f_{q}(a)\right)$ is such that $f_{j}(a) \neq 0$ for $j=1,2, \ldots, q$. Then the componentwise condition number of F at a is

$$
c(F, a)=\lim _{\varepsilon \rightarrow 0} \sup _{\substack{x \in B^{0}(a, \varepsilon) \\ x \neq a}} \frac{d(F(x), F(a))}{d(x, a)}
$$

The explicit expressions of the mixed and componentwise condition numbers of F at a are given by the following lemma.

Lemma 2.2 [5] Suppose F is Fréchet differentiable at a. Then,
(a) If $F(a) \neq 0$, then

$$
m(F, a)=\frac{\left\|F^{\prime}(a) \mathrm{Dg}(a)\right\|_{\infty}}{\|F(a)\|_{\infty}}=\frac{\left\|F^{\prime}(a)| | a \mid\right\|_{\infty}}{\|F(a)\|_{\infty}}
$$

(b) If $(F(a))_{i} \neq 0$ for $i=1,2, \ldots, q$, then

$$
c(F, a)=\left\|\mathrm{Dg}^{-1}(F(a)) F^{\prime}(a) \operatorname{Dg}(a)\right\|_{\infty}=\left\|\frac{\left|F^{\prime}(a)\right||a|}{|F(a)|}\right\|_{\infty}
$$

where $\operatorname{Dg}(a)$ is the $p \times p$ diagonal matrix with $a_{1}, a_{2}, \cdots, a_{p}$ in the diagonal.
Remark 2.3 In the rest of this paper we assume when we deal with componentwise condition numbers, the computed solution has no zero components.

3 Condition numbers for hyperbolic $Q R$ factorization

The mappings are defined as follows

$$
\begin{aligned}
\varphi_{R}: \operatorname{vec}(A) & \rightarrow \operatorname{vec}(R) \\
\varphi_{Q_{1}}: & \operatorname{vec}(A)
\end{aligned} \rightarrow \operatorname{vec}\left(Q_{1}\right),
$$

where Q_{1} and R are the hyperbolic $Q R$ factors of A.

3.1 The factor R

From (1.6), we have

$$
\begin{equation*}
(A+\Delta A)^{T} J(A+\Delta A)=(R+\Delta R)^{T}(R+\Delta R) \tag{3.1}
\end{equation*}
$$

omitting the second-order term, which turns to

$$
\begin{equation*}
R^{T}(\Delta R)+(\Delta R)^{T} R \approx A^{T} J(\Delta A)+(\Delta A)^{T} J A \tag{3.2}
\end{equation*}
$$

Using the vec function, we have

$$
\begin{align*}
& \left(I \otimes R^{T}\right) \operatorname{vec}(\Delta R)+\left(R^{T} \otimes I\right) \operatorname{vec}\left((\Delta R)^{T}\right) \tag{3.3}\\
& \approx\left(I \otimes\left(A^{T} J\right)\right) \operatorname{vec}(\Delta A)+\left(\left(A^{T} J\right) \otimes I\right) \operatorname{vec}\left((\Delta A)^{T}\right) \tag{3.4}
\end{align*}
$$

Let $A \in \mathbb{R}^{m \times n}$. Then we have (see [9])

$$
\operatorname{vec}\left((\Delta A)^{T}\right)=\Pi \operatorname{vec}(\Delta A)
$$

where the ver-permutation matrix Π is expressed by

$$
\Pi=\sum_{i=1}^{m} \sum_{j=1}^{n} E_{i j} \otimes E_{i j}^{T}
$$

where each $E_{i j} \in \mathbb{R}^{m \times n}$ has entry " 1 " in position (i, j) and all other entries are zero.

From (3.3), we have
$\left(I \otimes R^{T}\right) \operatorname{vec}(\Delta R)+\left(R^{T} \otimes I\right) \operatorname{vec}\left((\Delta R)^{T}\right) \approx\left[\left(I \otimes\left(A^{T} J\right)\right)+\left(\left(A^{T} J\right) \otimes I\right) \Pi\right] \operatorname{vec}(\Delta A)$.
Choose

$$
D_{1}=\operatorname{diag}(\underbrace{\frac{1}{2}, 0, \ldots, 0}_{n}, \underbrace{1, \frac{1}{2}, 0, \ldots, 0}_{n}, \ldots, \underbrace{1,1, \ldots, \frac{1}{2}}_{n})
$$

where each element " 1 " of D_{1} corresponds to the nonzero element of $\operatorname{vec}(\bar{R})$ (i.e., the strictly upper triangular part of R). Similarly, we choose

$$
D_{2}=\operatorname{diag}(\underbrace{\frac{1}{2}, 1, \ldots, 1}_{n}, \underbrace{0, \frac{1}{2}, 1, \ldots, 1}_{n}, \ldots, \underbrace{0,0, \ldots, \frac{1}{2}}_{n})
$$

where each element " 1 " of D_{2} corresponds to the nonzero element of $\operatorname{vec}\left(\bar{R}^{T}\right)$ (i.e., the strictly lower triangular part of R^{T}). " $\frac{1}{2}$ " corresponds to the each diagonal element of R.

For any matrices S and $T, S D_{1}+T D_{2}$ is consisting of columns of S and T corresponding to the nonzero elements of D_{1} and D_{2}. Let $n^{2} \times n^{2}$ matrices

$$
S=\left[s_{11}, \cdots, s_{n 1}, s_{12}, \cdots, s_{n 2}, \cdots s_{n 1}, \cdots, s_{n n}\right]
$$

and

$$
T=\left[t_{11}, \cdots, t_{n 1}, t_{12}, \cdots, t_{n 2}, \cdots, t_{n 1}, \cdots, t_{n n}\right]
$$

where $s_{i j}$ and $t_{i j}$ are the $((j-1) n+i)$-th column of S and T, respectively. We have
$S \cdot \operatorname{vec}(\Delta R)+T \cdot \operatorname{vec}\left(\Delta R^{T}\right)=\sum_{i, j} s_{i j}\left(\delta r_{i j}\right)+\sum_{i, j} t_{i j}\left(\delta r_{j i}\right)=\sum_{i, j}\left(s_{i j}\left(\delta r_{i j}\right)+t_{i j}\left(\delta r_{j i}\right)\right)$,
where $\delta r_{i j}$ is the element of $\operatorname{vec}(\Delta R)$. Note that ΔR is a upper triangular matrix, i.e., $\delta r_{i j}=0$, for $i>j$. Thus we obtain

$$
s_{i j}\left(\delta r_{i j}\right)+t_{i j}\left(\delta r_{j i}\right)= \begin{cases}t_{i j}\left(\delta r_{i j}+\delta r_{j i}\right), & i>j \tag{3.6}\\ s_{i j}\left(\delta r_{i j}+\delta r_{j i}\right), & i<j \\ \frac{1}{2}\left(s_{i i}+t_{i i}\right)\left(\delta r_{i i}+\delta r_{i i}\right), & i=j\end{cases}
$$

From (3.5), we can get

$$
\begin{equation*}
\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]\left[\operatorname{vec}(\Delta R)+\operatorname{vec}\left((\Delta R)^{T}\right)\right] \approx \operatorname{vec}(\delta A) \tag{3.7}
\end{equation*}
$$

where $\operatorname{vec}(\delta A)=\left[\left(I \otimes\left(A^{T} J\right)\right)+\left(\left(A^{T} J\right) \otimes I\right) \Pi\right] \operatorname{vec}(\Delta A)$. It is easy to observe that $\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}$ is lower triangular with diagonal elements

$$
\underbrace{r_{11}, r_{11}, \cdots, r_{11}}_{n}, \underbrace{r_{22}, r_{22}, \cdots, r_{22}}_{n}, \cdots, \underbrace{r_{n, n}, r_{n, n}, \cdots, r_{n, n}}_{n}
$$

Note that $\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}$ is a nonsingular lower triangular matrix, and from (3.7), we have

$$
\begin{equation*}
\operatorname{vec}(\Delta R)+\operatorname{vec}\left((\Delta R)^{T}\right) \approx\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1} \operatorname{vec}(\delta A) \tag{3.8}
\end{equation*}
$$

The solution of triangular systems are usually computed with high accuracy even if they are ill-conditioned [7]. Note that the structure of the triangular matrix, the triangular systems (3.8) can be easily solved.

Note that $\operatorname{vec}(\Delta R)$ corresponds to upper triangular matrix. We have

$$
\begin{array}{lc}
\operatorname{vec}(\Delta R) & \approx D_{1}\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1} \operatorname{vec}(\delta A) \\
\operatorname{vec}\left((\Delta R)^{T}\right) & \approx D_{2}\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1} \operatorname{vec}(\delta A) \tag{3.9}
\end{array}
$$

The normwise and componentwise perturbation bounds can be derived as follows:

$$
\begin{equation*}
\|\Delta R\|_{F} \lesssim\left\|D_{1}\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1}\right\|_{2}\|\delta A\|_{F} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{vec}(|\Delta R|) \lesssim\left|D_{1}\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1}\right| \operatorname{vec}(|\delta A|) \tag{3.11}
\end{equation*}
$$

Using the hyperbolic $Q R$ factorization of \tilde{A} in the δA, the rounding-error of perturbation bounds will be smaller.

The mixed and componentwise condition numbers for the factor R are defined as follows:

$$
\begin{aligned}
& m_{R}(A)=\lim _{\varepsilon \rightarrow 0} \sup _{\|\Delta A / A\|_{\max } \leq \varepsilon} \frac{\|\Delta R\|_{\max }}{\|R\|_{\max }} \frac{1}{\|\Delta A / A\|_{\max }}, \\
& c_{R}(A)=\lim _{\varepsilon \rightarrow 0} \sup _{\|\Delta A / A\|_{\max } \leq \varepsilon} \frac{1}{\|\Delta A / A\|_{\max }}\left\|\frac{\Delta R}{R}\right\|_{\max } .
\end{aligned}
$$

Here $\frac{B}{A}$ is an entrywise division defined by $\frac{B}{A}:=\operatorname{vec}^{-1}(\operatorname{vec}(B) / \operatorname{vec}(A))$.
The main result in this subsection is the following theorem. It presents explicit expressions for the condition numbers we defined for the factor R.

Theorem 3.1 Let $A \in \mathbb{R}^{m \times n}$ with $A^{T} J A$ is positive definite and $A=Q_{1} R$ be the hyperbolic $Q R$ factorization. Then
(a)

$$
\begin{equation*}
m_{R}(A)=\frac{\left\|\left|D_{1} N_{R}\right| \operatorname{vec}(|A|)\right\|_{\infty}}{\|\operatorname{vec}(R)\|_{\infty}} \tag{3.12}
\end{equation*}
$$

(b)

$$
\begin{equation*}
c_{R}(A)=\left\|\frac{\left|D_{1} N_{R}\right| \operatorname{vec}(|A|)}{\operatorname{vec}(R)}\right\|_{\infty} \tag{3.13}
\end{equation*}
$$

where $N_{R}=\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1}\left[\left(I \otimes\left(A^{T} J\right)\right)+\left(\left(A^{T} J\right) \otimes I\right) \Pi\right]$.
Proof. It follows from (3.9) that

$$
\varphi_{R}^{\prime}(A)=D_{1}\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1}\left[\left(I \otimes\left(A^{T} J\right)\right)+\left(\left(A^{T} J\right) \otimes I\right) \Pi\right]
$$

From Definition 2.1 and (a) of Lemma 2.2, we obtain

$$
m_{R}(A)=m\left(\varphi_{R} ; a\right)=\frac{\left\|\left|\varphi_{R}^{\prime}(a)\right||a|\right\|_{\infty}}{\left\|\varphi_{R}(a)\right\|_{\infty}}=\frac{\left\|\left|D_{1} N_{R}\right| \operatorname{vec}(|A|)\right\|_{\infty}}{\|\operatorname{vec}(R)\|_{\infty}}
$$

and

$$
c_{R}(A)=c\left(\varphi_{R} ; a\right)=\left\|\frac{\left|D_{1} N_{R}\right||a|}{\left|\varphi_{R}(a)\right|}\right\|_{\infty}=\left\|\frac{\left|D_{1} N_{R}\right| \operatorname{vec}(|A|)}{\operatorname{vec}(R)}\right\|_{\infty}
$$

where a denotes $\operatorname{vec}(A)$.
Theorem 3.1 gives explicit expressions for the condition numbers $m_{R}(A)$ and $c_{R}(A)$. While these expressions are sharp they may not be easily computed by their dependance on the vec-permutation matrix Π and Kronecker products. We need a lemma in [4].

Lemma 3.2 [4] For any matrices M, N, P, Q, R, and S with dimensions making the following well defined
$[M \otimes N+(P \otimes Q) \Pi] \operatorname{vec}(R), \frac{[M \otimes N+(P \otimes Q) \Pi] \operatorname{vec}(R)}{S}, \quad N R M^{T}$ and $Q R^{T} P^{T}$, we have

$$
\||[M \otimes N+(P \otimes Q) \Pi]| \operatorname{vec}(|R|)\|_{\infty} \leq\left\|\operatorname{vec}\left(|N||R||M|^{T}+|Q||R|^{T}|P|^{T}\right)\right\|_{\infty}
$$

and

$$
\left\|\frac{|[M \otimes N+(P \otimes Q) \Pi]| \operatorname{vec}(|R|)}{|S|}\right\|_{\infty} \leq\left\|\frac{\operatorname{vec}\left(|N||R||M|^{T}+|Q||R|^{T}|P|^{T}\right)}{|S|}\right\|_{\infty}
$$

The following corollary gives computable upper bounds for these condition numbers.

Corollary 3.3 In the hypothesis of Theorem 3.1, assume that the upper triangular part of R has no zero components. We have
(a)

$$
\begin{equation*}
m_{R}(A) \leq \frac{\left\|D_{1} S\right\|_{\infty}\left\|2|A|^{T}|A|\right\|_{\max }}{\|R\|_{\max }} \tag{3.14}
\end{equation*}
$$

(b)

$$
\begin{equation*}
c_{R}(A) \leq\left\|\mathrm{Dg}^{\dagger}(\operatorname{vec}(R)) D_{1} S\right\|_{\infty}\left\|2|A|^{T}|A|\right\|_{\max } \tag{3.15}
\end{equation*}
$$

where $S=\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1}$ and $\operatorname{Dg}^{\dagger}(a)$ is the Moore-Penrose inverse of the diagonal matrix $\operatorname{diag}(a)$.

3.2 The factor Q

From (1.6), omitting the second-order term, which changes to

$$
\begin{equation*}
Q_{1}(\Delta R)+\left(\Delta Q_{1}\right) R \approx \Delta A \tag{3.16}
\end{equation*}
$$

Note that R is nonsingular in (3.16), right-multiplying by R^{-1} leads to

$$
\begin{equation*}
\Delta Q_{1} \approx(\Delta A) R^{-1}-Q_{1}(\Delta R) R^{-1} \tag{3.17}
\end{equation*}
$$

Using the vec function, we have

$$
\begin{equation*}
\operatorname{vec}\left(\Delta Q_{1}\right) \approx\left(R^{-T} \otimes I\right) \operatorname{vec}(\Delta A)-\left(R^{-T} \otimes Q_{1}\right) \operatorname{vec}(\Delta R) \tag{3.18}
\end{equation*}
$$

Substituting (3.9) into (3.18), we get

$$
\begin{equation*}
\operatorname{vec}\left(\Delta Q_{1}\right) \approx\left\{\left(R^{-T} \otimes I\right)-\left(R^{-T} \otimes Q_{1}\right) D_{1} N_{R}\right\} \operatorname{vec}(\Delta A) \tag{3.19}
\end{equation*}
$$

The normwise and componentwise perturbation bounds can be derived as follows:

$$
\begin{equation*}
\left\|\Delta Q_{1}\right\|_{F} \lesssim\left\|\left(R^{-T} \otimes I\right)-\left(R^{-T} \otimes Q_{1}\right) D_{1} N_{R}\right\|_{2}\|\Delta A\|_{F} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{vec}\left(\left|\Delta Q_{1}\right|\right) \lesssim\left|\left(R^{-T} \otimes I\right)-\left(R^{-T} \otimes Q_{1}\right) D_{1} N_{R}\right| \operatorname{vec}(|\Delta A|) \tag{3.21}
\end{equation*}
$$

The mixed and componentwise condition numbers for the factor Q_{1} are defined as follows:

$$
\begin{aligned}
& m_{Q_{1}}(A)=\lim _{\varepsilon \rightarrow 0} \sup _{\|\Delta A / A\|_{\max } \leq \varepsilon} \frac{\left\|\Delta Q_{1}\right\|_{\max }}{\left\|Q_{1}\right\|_{\max }} \frac{1}{\|\Delta A / A\|_{\max }}, \\
& c_{Q_{1}}(A)=\lim _{\varepsilon \rightarrow 0} \sup _{\|\Delta A / A\|_{\max } \leq \varepsilon} \frac{1}{\|\Delta A / A\|_{\max }}\left\|\frac{\Delta Q_{1}}{Q_{1}}\right\|_{\max }
\end{aligned}
$$

Here $\frac{B}{A}$ is an entrywise division defined by $\frac{B}{A}:=\operatorname{vec}^{-1}(\operatorname{vec}(B) / \operatorname{vec}(A))$.
The main result in this subsection is the following theorem. It presents explicit expressions for the condition numbers we defined for the factor Q_{1}.

Theorem 3.4 Let $A \in \mathbb{R}^{m \times n}$ with $A^{T} J A$ is positive definite and $A=Q_{1} R$ be the hyperbolic $Q R$ factorization. Then
(a)

$$
\begin{equation*}
m_{Q_{1}}(A)=\frac{\left\|\left|\left(R^{-T} \otimes I\right)-\left(R^{-T} \otimes Q_{1}\right) D_{1} N_{R}\right| \operatorname{vec}(|A|)\right\|_{\infty}}{\left\|\operatorname{vec}\left(Q_{1}\right)\right\|_{\infty}}, \tag{3.22}
\end{equation*}
$$

(b)

$$
\begin{equation*}
c_{Q_{1}}(A)=\left\|\frac{\|\left(R^{-T} \otimes I\right)-\left(R^{-T} \otimes Q_{1}\right) D_{1} N_{R} \mid \operatorname{vec}(|A|)}{\operatorname{vec}\left(Q_{1}\right)}\right\|_{\infty} \tag{3.23}
\end{equation*}
$$

where $N_{R}=\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1}\left[\left(I \otimes\left(A^{T} J\right)\right)+\left(\left(A^{T} J\right) \otimes I\right) \Pi\right]$.
Proof. The proof is similar to Theorem 3.1.
The following corollary gives computable upper bounds for these condition numbers.

Corollary 3.5 In the hypothesis of Theorem 3.4, we have
(a)

$$
\begin{equation*}
m_{Q_{1}}(A) \leq \frac{\left\||A|\left|R^{-1}\right|\right\|_{\max }+\left\|\left(R^{-T} \otimes Q_{1}\right) D_{1} S\right\|_{\infty}\left\|2|A|^{T}|A|\right\|_{\max }}{\left\|Q_{1}\right\|_{\max }}, \tag{3.24}
\end{equation*}
$$

(b)
$c_{Q_{1}}(A) \leq\left\|\frac{\| A| | R^{-1} \mid}{Q_{1}}\right\|_{\max }+\left\|\operatorname{Dg}^{-1}\left(\operatorname{vec}\left(Q_{1}\right)\right)\left(R^{-T} \otimes Q_{1}\right) D_{1} S\right\|_{\infty}\left\|2|A|^{T}|A|\right\|_{\max }$,
where $S=\left[\left(I \otimes R^{T}\right) D_{1}+\left(R^{T} \otimes I\right) D_{2}\right]^{-1}$.

We give a simple example as the following. All computations are performed in MATLAB 6.5 , with precision 2.22×10^{-16}.

Example 3.6 Let

$$
A=\left[\begin{array}{ll}
7 & 8 \\
2 & 1 \\
3 & 1 \\
1 & 1
\end{array}\right], \quad J=\left[\begin{array}{rr}
I_{3} & 0 \\
0 & -1
\end{array}\right], \quad A^{T} J A \text { is positive definite. }
$$

The mixed and componentwise condition numbers of the hyperbolic $Q R$ factorization are shown in Table 1.

Table 1. Mixed and componentwise condition numbers

$m_{R}(A)$	$m_{R}^{\text {upper }}(A)$	$c_{R}(A)$	$c_{R}^{\text {upper }}(A)$
1.4239	13.7987	4.5463	44.0578
$m_{Q_{1}}(A)$	$m_{Q_{1}}^{\text {uper }}(A)$	$c_{Q_{1}}(A)$	$c_{Q_{1}}^{\text {upper }}(A)$
2.1023	51.9557	245.9453	387.1674

Acknowledgements. The authors would like to thank the referee for their very useful comments.

References

[1] A. Bojanczyk, N. Higham, and H. Patel, Solving the indefinite least squares problem by hyperbolic $Q R$ factorization, SIAM J. Matrix Anal. Appl., 24 (2003) pp. 914-931.
[2] A. Bojanczyk, N. Higham, and H. Patel, The equality constrained indefinite least squares problem : theory and algorithms, BIT, 43 (2003) pp. 505-517.
[3] S. Chandrasekaran, M. Gu, and A. H. Sayed, A table and efficient algorithm for the indefinite least-squares problem, SIAM J. Matrix Anal. Appl., 20 (1998) pp. 354-362.
[4] F. Cucker, H. Diao and Y.Wei, On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems, Math. Comput., 76 (2007) pp. 947-963.
[5] I. Gohberg and I. Koltracht, Mixed, componentwise, and structured condition numbers, SIAM J. Matrix Anal. Appl., 14 (1993) pp. 688-704.
[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, MD, 1996.
[7] N. J. Higham, The accuracy of solutions to triangular systems, SIAM J. Numer. Anal., 26 (1989) pp. 1252-1265.
[8] N. Higham, J-orthogonal matrices properties and generation, SIAM Review, 45 (2003) pp. 504-519.
[9] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[10] J.-G. Sun, Matrix Perturbation Analysis, Academic Press, 2nd Edition, Beijing, 2002. (in Chinese)

Address

School of Mathematical Sciences, Ocean University of China, Qingdao, 266071, P.R. CHINA

E-mail
Wei-guo Wang: wgwang@ouc.edu.cn
Nan Hao: colasky@163.com

[^0]: * Corresponding author.

 2000 Mathematics Subject Classification. 15A12, 65F35.
 Keywords and Phrases. Mixed, componentwise, condition numbers, hyperbolic $Q R$ factorization, J-orthogonal.

 Received: November 15, 2007
 Communicated by Yimin Wei

