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ON MIXED AND COMPONENTWISE
CONDITION NUMBERS
FOR HYPERBOLIC Qr FACTORIZATION

Wei-guo Wang* and Nan Hao

Abstract
We present normwise and componentwise perturbation bounds for the
hyperbolic QR factorization by using a new approach. The explicit expres-
sions of mixed and componentwise condition numbers for the hyperbolic
QR factorization are derived.
1 Introduction
The indefinite least squares problem (ILS) has the form

ILS: min(b— Az)"J(b— Ax), (1.1)
where A € R™*™ ph € R™ are given and J is the signature matrix

_ | O _
J_[O _Lj, p+qg=m. (1.2)

This problem was introduced by Chandrasekaran, Gu and Sayed [3] and further
studied by Bojanczyk, Higham and Patel [1]. The theory and algorithms for
the equality constrained indefinite least squares problem are presented in [2].

A matrix Q € R™*™ is J-orthogonal if
QTJIQ =J. (1.3)

Clearly, Q is nonsingular and QJQT = J. For properties of J-orthogonal ma-
trices see [8].
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Consider the downdating problem of computing the Cholesky factorization
of a positive definite matrix C = AT JA = AT A;— AT A, where A; € RPX"™ (p >
n) and Ay € R9*™. If there exists a J-orthogonal matrix @ such that

elt)-[3

with R € R™*™ upper triangular, then

T T
_ A Al A r|A1| _ pr
- M J[AJ - [A2 Q|| =rr
so R is the desired Cholesky factor. The factorization (1.4) is a hyperbolic QR
factorization; for details of how to compute it see, for example, [1].

Notethan @t = 1@,k = [ 2], mhnr = [ ) ).

From (1.4), the hyperbolic QR factorization can be rewritten as

n
A=QR= P |9 } R,  ReR™™ (15)
q __Q2*

This factorization yields

T -
e[ 0[ %] v wiaton - aten- wtn

Let A = A+ AA be a perturbation of A. We assume that A satisfies the
uniqueness condition AT JA is positive definite, which will always be the case
for AA sufficiently small in norm. Then A also has the unique hyperbolic QR
factorization:

A+AA=(Q+AQ)T(R+AR), (1.6)
where Q1 + AQ); is the first n columns of J-orthogonal matrix @ + AQ.

In this paper, using a new approach (i.e., the columns of a new matrix is
given by choosing appropriate columuns from two Kronecker product matrices),
we derive the explicit perturbation expressions. Secondly, using the mixed and
componentwise condition numbers defined in [5], the mixed and componentwise
perturbation bounds for the hyperbolic QR factorization are given.

Throughout this paper, we use R™*" to denote the set of real m xn matrices,
AT denotes the transpose of the matrix A, I stands for the identity matrix, and
0 the null matrix. The symbol ||-||r stands for the Frobenius norm, and ||-||2 the
spectral norm and the Euclidean vector norm. For A = [a1,a9,...,a,] = (a;;) €
R™*™ and a matrix B, A® B = (a;;B) is a Kronecker product, and vec(A) is
a vector defined by vec(A) = [aT,al, ..., aL]T (see [6, 10] for properties of the

y'n
Kronecker product and vec operation).
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2 Preliminaries

To define mixed and componentwise condition numbers, the following form of
“distance” function will be useful. For any points a,b € R", we define § =
(Cl, Coy. .., Cn)T with

ai/bia if bl 7é Oa
C; = 0, 1fa1:b1:0,
oo, otherwise.

Then we define the componentwise relative “distance” between a and b by

a—2b o max |ai — bl|
bl T i=1.2,..m |54 ‘

d(a,b) =min{v >0 | |a; — b;| < v|bs|, fori=1,2,...,n}.

d(a,b) =

Note that if d(a,b) < oo,

The distance of two matrices is defined as

d(A, B) = d(vec(A),vec(B)).

It is easy to know that ||vec(A)||co = || Al|max, Where ||+ ||max is the max norm
given by
||A||max = H}?X |aij|'

We need the definition 2.1 below given in [5].

For ¢ > 0 we denote B%(a,e) = {z | d(z,a) < ¢}. For a partial function
F: RP — R?, we denote by Dom(F') the domain of definition of F'.

Definition 2.1 Let F : R? — RY be a continuous mapping defined on an open
set Dom(F') C R? such that 0 ¢ Dom(F). Let a € Dom(F) such that F(a) # 0.

(i) The mized condition number of F at a is defined by

m(F,a) = lim sup 1F(@) = Fla)oo 1
7 E_)OCEEBO(G,,E) HF(G’)HOO d(x,a)'

r#a
(i1) Suppose that F(a) = (fi(a), fa(a), -+, fq(a)) is such that f;j(a) # O for
j=1,2,...,q. Then the componentwise condition number of F' at a is

¢(F,a) = lim sup w.

e—0 zeBO(a,E) d(x,a)
T#a
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The explicit expressions of the mixed and componentwise condition numbers
of F' at a are given by the following lemma.

Lemma 2.2 [5] Suppose F is Fréchet differentiable at a. Then,
(a) If F(a) # 0, then

F@De@ee IF'(@)] Jallo
mE = e TF@le

(b) If (F(a)); #0 fori=1,2,...,q, then

- [F'(a)| |al
“(F.0) = [De (F(@) (o)D) = | 7
[F(a)] [l
where Dg(a) is the pxp diagonal matriz with a1, as, - - - , a, in the diagonal.

Remark 2.3 In the rest of this paper we assume when we deal with componen-
twise condition numbers, the computed solution has no zero components.

3 Condition numbers for hyperbolic QR
factorization

The mappings are defined as follows

vr: vec(A) — vec(R),
0@, © vec(A) — vec(Q1),

where Q1 and R are the hyperbolic QR factors of A.

3.1 The factor R

From (1.6), we have
(A+AA)TJ(A+AA) = (R+ART(R+ AR), (3.1)

omitting the second-order term, which turns to

RT(AR) + (AR)YTR~ ATJ(AA) + (AA)TJA. (3.2)
Using the vec function, we have

(I ® RT)vec(AR) + (R* @ Ivec((AR)T) (3.3)

~ (I ® (AT J))vec(AA) + ((ATJ) @ I)vec((AA)T). (3.4)

Let A € R™*™. Then we have (see [9])

vec((AA)T) =11 vec(AA),
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where the ver-permutation matrix II is expressed by

m n

M=> > E;®E],

i=1 j=1

where each E;; € R™*™ has entry “1” in position (7, j) and all other entries are
Z€T0.
From (3.3), we have

(I®RT)Vec(AR)+(RT®I)vec((AR)T) ~ [(I®(ATJ))+((ATJ)®I)H]vec(AA).
(3.5)
Choose

1 1 1
Dy = diag(5,0,...,0,1,5.0,...,0,.... 1 1,.... 2),
—_— —— ———

n n n

where each element “1” of D; corresponds to the nonzero element of vec(R)
(i.e., the strictly upper triangular part of R). Similarly, we choose

1 1
Dy = diag(5, 1, 1,0, 5,1, 1,...,0,0,..., 5),
—_——

n n n

where each element “1” of Dy corresponds to the nonzero element of vec(RT)
(i.e., the strictly lower triangular part of RT). “%” corresponds to the each
diagonal element of R.

For any matrices S and T', SDy + T' D5 is consisting of columns of S and T
corresponding to the nonzero elements of Dy and Ds. Let n? x n? matrices

S:[Sllv"'vsnlu 3127"'757127"'snlv"'asnn]
and
T = [tlla"' 7tn1a t127"' atha"' 7tn17"' atnn]a

where s;; and ¢;; are the ((j — 1)n + ¢)-th column of S and T, respectively. We
have

S-VQC(AR)+T-V6C(ART) = Z Sij(é’l“ij)—f—z tij ((57“]‘2‘) = Z(sij(érij)—l—tij (5Tji))7
N ] i,
where 07;; is the element of vec(AR). Note that AR is a upper triangular

matrix, i.e., 6r;; = 0, for ¢ > j. Thus we obtain

tij(0rij + 6rjs), 1> 7,
81 (0rig) + i (0rji) = 81 (0735 + 0754), i <j, (3.6)
%(Sn‘ + ti)(0ri + 0ry), 0= 3.
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From (3.5), we can get
(I @ RT)D; 4 (RT @ I Dy][vec(AR) + vec((AR)T)] ~ vec(5A), (3.7)

where vec(6A) = [(I ® (ATJ)) + ((ATJ) ® I)H]vec(AA). It is easy to observe
that (I @ RT)D; + (RT @ I) Dy is lower triangular with diagonal elements

T11, 7115 s T11, 722,722, 3722, 5 TnmnyTnn, " sTnmn -

n n n

Note that (I ® RT)D; + (RT ® I)D5 is a nonsingular lower triangular matrix,
and from (3.7), we have

vec(AR) + vec((AR)T) ~ [(I ® RT)D; + (RT @ I)Ds] 'vec(5A). (3.8)

The solution of triangular systems are usually computed with high accuracy
even if they are ill-conditioned [7]. Note that the structure of the triangular
matrix, the triangular systems (3.8) can be easily solved.

Note that vec(AR) corresponds to upper triangular matrix. We have

vec(AR) ~ Di[(I ® RT)Dy + (RT ® I) D3]~ tvec(5A), (3.9)
vec((AR)T) =~ Ds[(I ® RT)Dy + (RT ® I) Do) tvec(5A). '

The normwise and componentwise perturbation bounds can be derived as
follows:

IAR|[F < IDA[(I @ RT)Dy + (R @ 1) Do] 216 Al (3.10)

and
vec(|AR|) < |Dy[(I ® RT)Dy + (R* @ I)Dy) ™t |vec(|6 Al). (3.11)

Using the hyperbolic QR factorization of A in the §A, the rounding-error of
perturbation bounds will be smaller.

The mixed and componentwise condition numbers for the factor R are de-
fined as follows:

. ||ARHmax 1
mg(A) = lim sup ,
R( ) €0 || AA/A|max<e HR”max HAA/AHmaX
1 AR

cr(A) = lim sup —_
a(4) e=0 | AA/Allmax<e 1AA/A|max

R max
Here £ is an entrywise division defined by £ := vec™!(vec(B)/vec(A)).

The main result in this subsection is the following theorem. It presents
explicit expressions for the condition numbers we defined for the factor R.

Theorem 3.1 Let A € R™*™ with AT JA is positive definite and A = Q1R be
the hyperbolic QR factorization. Then



On mixed and componentwise condition numbers for hyperbolic QR... 189

(a)
Dy Nafvec(A] e
med) = T e ®le (3.12)
)
H |D1NR|vec |A|)‘ , (3.13)

where Ng = [(I ® RT)D; + (RT ® I) D3]~ [(I ® (AT ) + ((ATJ) ® NII].
Proof. It follows from (3.9) that

©R(A) = Di[(I® RY)Dy + (RT @ I) Do) (I ® (AT ) + (AT J) @ D1I].
From Definition 2.1 and (a) of Lemma 2.2, we obtain

ller(@)] lalllo _ [ID1NR[vVec(|A])loo

mp(A) =m(pr;a) =

ler(@)lle— lvecB)llo
and DN DN (|A
)=y < [P ll] D0t
where a denotes vec(A). O

Theorem 3.1 gives explicit expressions for the condition numbers mp(A) and
cr(A). While these expressions are sharp they may not be easily computed by
their dependance on the vec-permutation matrix II and Kronecker products.
We need a lemma in [4].

Lemma 3.2 [4] For any matrices M, N, P,Q, R, and S with dimensions making
the following well defined

[M ® N + (P ® Q)]vec(R)

[M@N+(PeQ)]vec(R), 5

., NRMT and QRT PT

)
we have

M © N + (P @ @vec(|R])| o < [vee(IN| [R] [M[" + QI [RI"[P)]loo,

vec(IN| [R] [M|" + Q| [R[T|P|")
5]

‘|M®N+ (P®Q)II HVQC(RDH -
5] o

‘ o0

The following corollary gives computable upper bounds for these condition
numbers.

Corollary 3.3 In the hypothesis of Theorem 3.1, assume that the upper trian-
gular part of R has no zero components. We have
(o) ]
D, S 21417 A x
mn(A) < [ D150 [I21A]” [ Alllma ’
[ Rl max

(3.14)
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(b)

cr(A) < D' (vec(R)) D18 |[21A[7 4] (3.15)

max ’

where S = [(I ® RT)D;y + (RT ® I)Dy]™" and Dg'(a) is the Moore-Penrose
inverse of the diagonal matriz diag(a).

3.2 The factor @)

From (1.6), omitting the second-order term, which changes to
Q1(AR) + (AQ1)R =~ AA. (3.16)
Note that R is nonsingular in (3.16), right-multiplying by R~! leads to
AQ; ~ (AAR™ — Qi (AR)R™. (3.17)
Using the vec function, we have
vec(AQy) =~ (R™T @ Ivec(AA) — (R™T @ Qy)vec(AR). (3.18)
Substituting (3.9) into (3.18), we get
vec(AQy) = {(R"T @ 1) — (R"T ® Q1) D1 Nr}vec(AA). (3.19)

The normwise and componentwise perturbation bounds can be derived as
follows:

1AQ:]IF S I(R™T @ 1) = (R ® Qu)DiNrl2 [ AA| F, (3.20)

and
vec(|AQ1|) S |(R7T ®I)— (RfT ® Q1)D1 Ng|vec(|AA|). (3.21)

The mixed and componentwise condition numbers for the factor @1 are
defined as follows:

1 ”Aanmax 1
m 1(A) = lim sup ,
¢ e=0 | AA/Almax<e Q1 lImax [[AA/Almax
1 AQy

cg,(A) = lim sup
ald)=lny = S TRA/ Al

@

max

Here £ is an entrywise division defined by £ := vec™!(vec(B)/vec(A)).
The main result in this subsection is the following theorem. It presents
explicit expressions for the condition numbers we defined for the factor Q).

Theorem 3.4 Let A € R™*"™ with AT JA is positive definite and A = Q1R be
the hyperbolic QR factorization. Then

(a)
RT®I)— (RT ®Q1)D1Nglvec(|A])] o
[[vec(Q1)][oo 7

ma, (4) = It (3.22)
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(b)
(R~ ® 1) — (BT ® Q1) D1 Np|vec(|A])
A) = 3.23
cau() = | 2 e
where Ng = [(I ® RT)Dy + (RT @ I)Do] 1 [(I ® (AT J)) + (ATJ) @ DII).
Proof. The proof is similar to Theorem 3.1. a

The following corollary gives computable upper bounds for these condition
numbers.

Corollary 3.5 In the hypothesis of Theorem 3.4, we have

(a)
o (1) < AL IR 4 1 © QDS A Al 5
HQIHmax
(b)
|A| [R7!| -1 -7 T
cQ.(A) < o +[Dg ™ (vee(Q1)) (R~ ®@Q1) D15 || 21AIT A .. »
- (3.25)

where S = [(I ® RT)Dy + (RT ® I)Do] 1.

We give a simple example as the following. All computations are performed
in MATLAB 6.5, with precision 2.22 x 10716,

Example 3.6 Let

7 8
121 | I 0 T . » .
A= 31| J = [ 0 —1 } , A* JA is positive definite.
11

The mized and componentwise condition numbers of the hyperbolic QR fac-
torization are shown in Table 1.

Table 1. Mixed and componentwise condition numbers

Acknowledgements. The authors would like to thank the referee for their

mr(4) | mg™"(A) | cr(4) | g (4)
14230 | 137987 | 45463 | 44.0578
m,(4) | mgP(A) | c,(4) | " (A)
2.1023 | 51.9557 | 245.9453 | 387.1674
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