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Abstract. In this paper, we have introduced a new subclass of p-valent harmonic functions
that are orientation preserving in the open unit disk and are related to Goodman-type analytic
uniformly starlike functions. Coefficient bounds, distortion bounds, extreme points,
convolution conditions and convex combination for the functions belonging to this class are
obtained.

1. INTRODUCTION

A continuous complex-valued function f =U+1V defined in a simply connected complex

domain D is said to be harmonic in D, if both U and V are real harmonic in D. There is a
close inter-relation between analytic functions and harmonic functions. For example, for real

harmonic functions U and V there exit analytic functions U and V so that U=Re(U) and

V=Im(V). Then

f(z)=h(2)+9(2).
where N and g are respectively, the analytic functions (U +V/2) and (U —V/2). In this
case, the Jacobian of f ()= h(z)+ g(z) is given by

J@=@f -|g'@)".

The mapping Z — f(Z) is orientation preserving and locally one to one in D, if and only if
J:(2) >0 in D. The necessity of this condition is a result of Lewy [6]. See also Clunie and

Sheil-Small [2].
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The function f(z)=h(z) +ﬁ is said to be harmonic univalent in D, if the mapping
Z — f(2) is orientation preserving, harmonic and one to one in D. We call h the analytic
partand ¢ the co-analytic part of f (z) =h(z)+ ﬁ

For fixed positive integer P, let H(p) denote the family of functions f(z)=h(z)+ ﬁ
that are harmonic, orientation preserving and p-valent in the open unit disk U = {Z : |Z| < 1}

with the normalization

hz)=2"+Ya,, 2", 9@)=hb,, 2", |b|<I. (1.1)
n=2 n=l1

Motivated by recent work of Rosy et al [9], we define a new subclass as follows:

Let G, (P, ) denote the subclass of H(P) consisting of functions f in H(p) that

satisfy the condition

z1'(2)
' f(2)

Re{(l +e') - pe‘“} > py, (1.2)

where z’:i(z =re") f’(z)=i(f(z) =f(re”)), p21, 0<r<l and @
60 b 89 b - 2 - b

0 are real .

We further let G (P, ) denote the subclass of G, (P, ), consisting of functions

f(z)= h(Z)+ﬁ such that N and @ are of the form

by |27 (1.3)

h@)=2"=3 [a.,.[2*",  9@)=2
n=2 n=l1

Forp=1and g =0 thatis, if T is analytic, the family G, (1,0) is uniformly starlike in U
and was first studied by Goodman [3]. In [8], Ronning investigated the uniformly starlike
functions of order ¥, 0 <y <1. Later, Jahangiri et al [5] constructed a class of harmonic

close to convex functions and studied basic properties. Recently, Jahangiri [4], Silverman
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[10], Silverman and Silvia [11] studied the harmonic starlike functions. Ahuja and Jahangiri
[1] proved that if, f(z)=h(z)+ g(2) is given by (1.1) and if,

> (n+m=1)(Jay, |+ [0y i|) < 2m (1.4)
n=

1

then f is harmonic, p-valent and starlike of order ¥ in U. This condition is proved to be

also necessary if h and g are of the form (1.3). In the present paper we have obtained
coefficient bounds, extreme points, distortion bounds, convolution conditions and convex

combinations for the class G (P, ).

2. COEFFICIENT BOUNDS

We being with a sufficient coefficient bounds for the class G, (P, ). These conditions are

shown to be necessary for the functions in G (P, ).

Theorem 1. Let f =h+ g with N and g are given by (1.1). If

2n+3p-2+y
pP=r

S 2N+ p-2—y
Z|:— an+p—1‘

b |l<2, (2.1)
n=1 p—r P 1‘:|

where |a1| =1,0<y<1. Then f isharmonic p-valentinUand f € G, (p,7).

Proof. Suppose that (2.1) holds. Then we have

. (1+€“)(zh'(2)-29'(2)) - pe" (h(2)+ 9(2) R A@

> py, 22
h(2)+9(2) 8y " P

as f(z)eH(p), h(z)+g(z)#0.

where Z=re", 0<r<1,0<y<1,0<0<27.

Here, we let
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A(z) = (1+e“" )(z h'(z)-z g’(z))— pe" (h(z) +ﬁ)
B(2)=h(2)+9(2).

and

Using the fact that Rew = py, if and only if |p—7+a)| >
show that

, it suffices to

|A@)+(p-7)B(@)|-|A()-(p+7)B(2)|20. (2.3)

Substituting for A (z) and B (z) in (2.3), we obtain

\( p-y)h(2)+(1+e“)zh'(z)- pe“h(z)+(p-y)a(z)-(1+e“)zg'h(z)- pe“g(z)

- ‘( p+y)h(2)—(1+€e“)zh'(z)+ pe“h(z)+(p+7)g(2)+(1+e“)zgh(z)+ pe“g(z)

:(2p—y)z“+2[(n+2p 1-y)+e“(n- 1] ot
n=2

i[ n—1+y)+e“(n+2p- 1)]bn+plz"‘°"

0

—lr2" =Y [(n-1-y)+e“(n-1)]a,,, 2" +i[(n+2p—l+y)+ei"(n+2p—1)]bn+pflz“*”’I
n=2

n=l1

>2(p-7)lz° —g[(4n+2p—4—27x)] a

n+p-1

|z

b

n+p-1

nept —i[(4n+6p—4—2yﬂ
n=1

| |n+p—l

- 2- 4 = 2n+3p-2 -
Ve e LS e i

n=2 n=1 p-7

2N+ p—2—y S 2N+3p—-2+y
>2(p-p)|2P 1| Y ——M =L +
(p=7) |{ |:Zz p-y e Z; p-y

bmplﬂ} >0, by (2.1).

The functions
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VT e I U b AV 2.4
2n+p 2 y HZ:;2n+3p—2+yy"”’*1 24

f(2)= |z| +Z

o0
where Z
n=2

o0
Xn+p—1‘ +>,
n=2

Yoi p—l‘ =1,

show that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.4) are in G, (P, ) because

2n+3p—2+7
pP-r

i(2n+p 271,

n=l p-y

n+p IU 1+Z

n+p— 1‘+Z

yn+p 1‘

n+p-1 ‘
We next show that the condition (2.1) is also necessary for the function in Gﬁ( p,7).

Theorem 2. Let f =h +§ be so that N and g are given by (1.3). Then
f(z) € G, (P, ), ifand only if the inequality (2.1) holds for the coefficient of f =h+g.
Proof. In view of Theorem 1, we need only show that f(z) & G, (p,y) if the condition

(2.1) does not holds. We note that a necessary condition for f =h +a given by (1.3) to be

in G, (P, y)is that

zf'(2)

1 la
{(+e )———= 71 (2)

pe‘“} > py.

This is equivalent to

(1+e" )(z h'(z)-z g'(z))— pel* (h(z) +ﬁ)
h(z)+9(2)

Re

—p7r

2(p-7) —i2n+ p-2-7a,, |2 —i2n+3p—2+7 By | F
=Re 1= = >0

|Z|p_ian+p_l||z|n+p—l+ib —|n+p-1
n=2 n=1

A

n+ p—1|
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The above condition must hold for all values of z, |Z| =r<l.

Upon choosing the values of z on the positive real axis, we must have

rn+ p-2

b

an+ p-1

nn+p—2 + <

n+p-1

2(p-y)-D.2n+p-2-y
n=2

-y
n=2

P2 =% 2n+3p-2+y
n=1

> 0. (2.5)

|,.n+ p-2

an+ p-1 bn+ p-1

If the condition (2.1) does not hold, then the numerator in (2.5) is negative for r
sufficiently close to 1. Thus there exitsa Z;, = I, > 1, for which the quotient in (2.5) is

negative. This contradicts the condition for f(z) € G (P, ) and so the proof is complete.

3. DISTORTION BOUNDS AND EXTREME POINTS
In this section, we shall obtain distortion bounds for functions in G (P, ) and also we

determine the extreme points of the closed convex hulls of denoted by CIcO G (P, 7).

Theorem 3.1f f(z) € G;(p, ), then

|f(z)|s(1+‘bp‘)rp +(2f;7_/7/—23+p;_7}/‘bp0r"“, |z|=r <1
and

|f(2)|2(1—‘bp‘)rp —(22;2/—23+p;_7y‘bp‘jrp“, lz|=r<1.

Proof. We only prove the right hand inequality. The argument for left hand inequality is

similar and will be omitted. Let f(2) € G (P, y). Taking the absolute value of f, we

obtain
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|f(Z)| S(l-i-‘bp‘)rp +i( Anypa| T bn+p_1 )rn+p—1
n=2
S(l+‘bp‘)rp +§;‘( &y, pa| T bn+p—l )rp+1

=(1+‘bp‘)l’p+ p—y 2{24_ p—y a,., +3p+7 bmpl}rpﬂ
2+p-yazl P-y p-7
<(1+]p,|)r* 4= P2 zﬂ?n+p—2—7ampl ﬂHﬁp—2+7mwl}ﬂﬂ
2+p-7i= p-r p-y
- 3p+y
<(1+4p.[rP +—P=7 (1— b jrp“ by (2.1)
:(1+‘bp‘>rp +( pP—r _ 3p+7 ‘bp‘j P
24p-7 24Py
Theorem 4. f eclcoG.(p,y), ifand only if f can be expressed as
f(Z)ZZ Xn+p—lhn+p—1 +yn+p—lgn+p—1 (3-1)
nel
where Ze U,
h,,(2)=2", hmp_l(z):zp_L -1

2n+p-2-y

p—)/ —n+p-1
n=2,3,4,.), 0,.,,(2)=2"+
( ) 9r5a@) 2N+3p—2+y

NgE

(N=12.34...), D (Xopu + Youpa ) =1s Xpp 20 and vy, 20.

=1

=}

Proof. For the functions f given by (3.1), we may write
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f (Z) = Z (Xn+p—lhn+p—l(z) + yn+p—lgn+p—l (Z))
n=1

ks p—-y n+p-
:Xp—lhp—l(z)"'yp—lgp—l(z)+nz_;4x”+p"(zp +2n+ p—2—7JZ "

2 — —n+p-1
+zyn+pl(zp p 7 JZ
n=1

2n+3p-2+y

N . p—7y +p-
=nz_:,(xn+p1 + yn+p—1) z° —nzz;, mxmﬂn "

p—-y —n+p-1
z .
n:12n+3p—2+yy”*"*1

Then
:Zw:Zn+p—2—y p-y X +izn+3p—2+y p-y y
-, p—y 2n+p-2—y M) p—y 2n+3p—2+4y P
:mep—l +Z yn+p—1 = 1_Xl <1,
n=2 n=2
andso f EC|COGﬁ(p,7).
Conversely, suppose that f € clco G, (p,7) - Set
2n+p-2-y
e+ p-1 :p——y a.m_p_l‘ (n:2,3,...)
and
2n+3p-2+y
n+p-1 = bn+p—1‘ (n :192939-'-)'

pP—7
Then note that by Theorem 2,
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0< Xo-1 <1 and Yo = _prl _Z(XHHH + ynﬂH)'

=1

>

Consequently, we obtain f(z) = Z (me Moo YnipOnipa ) Using Theorem 2, it

n=l
is easily seen that G- (P, 7) is convex and closed, so CIcOG-(p,y) =G, (p,y).
4. CONVOLUTION AND CONVEX LINEAR COMBINATION

In this section, we show that the class Gﬁ( P,y) is invariant under convolution and convex

combinations of its members.

For harmonic functions

f=2"-Ya,, 2" +3hb,, . 2" and F()=2" - A,, 2 +3B,,, . 2"
n=1 n=1 p -

we define the convolution of f and F as

(F*F)@=2" =2 8, Ay + 20,582 (4.1
n=l1 n=l

Using this definition, we show that the class G_; (P, ) is closed under convolution.

Theorem 5. For 0< S <y <1,let f(z) e G, (p,y) and F(2) € G (P, ). Then
f*F eGr(p,7) = Gy(p, B).
Proof. Let

2" bein G (p,7)

f(z)=12" —i‘aw_l‘ A +i b
n=1 n=1

n+p-1

and

2" bein G_(p,f3).

n+p-1

F(2)=2° —i\AHH\zWP-] +YB
n=1 n=1
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Note that A, | <1 and B < 1. Obviously, the coefficients of f and F must satisfy

n+p-1

conditions similar to the inequality (2.1). So for the coefficients of f * F we can write

Z{2n+ p-2-y n+p71'%p,1‘ N 2n+3p-2+y bmplepl@
n=1 p- Ve p_]/

S| 2N+ p-2—y 2n+3p-2+y
SZ‘: an+p—1‘ . bn+p—1‘ :

n=1 p—r p—7

This right hand side of the above inequality is bounded by 2 because f(z) € G- (p,7). By
the same token, we then conclude that f *F € G (p,y) < G- (p, B).

Finally, we show that Gﬁ( P, ) is closed under convex combination of its members.
Theorem 6. The family G (P, 7) is closed under convex combination.

Proof. For i =1,2,3,..., let f; € G, (p,y) where f is given by

f(Z)— Zp z‘al n+p-1 n+p 1+Z‘b| n+p-1 n+p h
Then, by (2.1),
2N+ p-2—y 2n+3p-2+y
P = 7la b , 4.2
nZ:; p_}/ ‘ |,n+p—l‘ p_]/ ‘ 1,n+p— 1‘ ( )

o0

for Zti =1, 0<t <1, the convex combination of f; may be written as
i1

zti fi(z) =2’ _Z(ztl ‘ai,n+p—1‘] Zn+p71 + z (Ztl ‘bi’ner_lUEn*PI‘
n=1 =\~ £ | £

Then, by (4.2),
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2n+3p 2+y
pP—7

-3 {iw\%w\* 43247y, 1\}

P=r

3 (1)

n=1

|

|
[\
2[Ms
-t

This is the condition required by (2.1) and so zti f e G, (p,7)-
izt
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