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SOME FIXED POINT THEOREMS FOR WEAKLY
COMPATIBLE MULTIVALUED MAPPINGS
SATISFYING AN IMPLICIT RELATION

Ishak Altun and Duran Turkoglu

Abstract
In this paper, we prove a common fixed point theorem for multivalued
mappings under the condition of weak compatibility. Also, we define com-
patible maps of type (I) for multivalued mappings and prove a common fixed
point theorem for this type mappings. We use an implicit relation to prove
our main theorems.

1 Introduction and preliminaries

In this paper (X,d) denotes a metric space and B(X)stands for the set of all
bounded subsets of X. The function ¢ of B(X) x B(X) into [0, 00) is defined as

0(A,B) = sup{d(a,b):a€ Abe B},
D(A,B) = inf{d(a,b):a€ Abe B}

for all A,B in B(X). If A = {a} is singleton, we write 6(A, B) = d(a, B) and if
B = {b}, then we put 6(A, B) = 6(a,b) = d(a,b). It is easily seen that

0(A,B) = 6(B,A) >0,

0(A,B) < 4(A,C)+4(C,B),
0(A,A) = diamA,

0(A,B) = 0 implies A= B = {a}

for all A, B,C in B(X). We recall some definitions and basic lemmas of Fisher [4]
and Imdad et al. [5]. Let {A, : n =1,2,...} be a sequence of subsets of X. We say
that the sequence {A,} converges to a subset A of X if each point a in A is the
limit of a convergent sequence {a,} with a,, in A, for n = 1,2,... and if for any
€ > 0, there exists an integer N such that A, C A, for n > N, A, being the union
of all open spheres with centers in A and radius . The following lemmas hold.

2000 Mathematics Subject Classifications. 54H25, 47TH10.

Key words and Phrases. Fixed point, weakly compatible mappings, compatible mappings of
type (I), implicit relation.

Received: September 12, 2007

Communicated by Dragan S. Djordjevi¢



14 Ishak Altun and Duran Turkoglu

Lemma 1 ([4]). If{A,} and {B,} are sequences of bounded subsets of (X, d) which
converge to the bounded subsets A and B respectively, then the sequence {6(Ay, Bn)}
converges to (A, B).

Lemma 2 ([5]). If{A,} is a sequence of bounded sets in the complete metric space
(X,d) and if lim 6(A,,{y}) =0 for some y € X, then {A,} — {y}.
n—oo

A set-valued mapping F of X into B(X) is continuous at the point = in X if
whenever {z,} is a sequence of points of X converging to x, the sequence {Fz,} in
B(X) converges to Fx. F' is said to be continuous in X if it is continuous at each
point z in X. We say that z is a fixed point of F' if z is in Fz.

The following definition is given by Jungck and Rhoades [7].

Definition 1. Let A: X — X and F : X — B(X) two mappings. The pair (A, F)
s weakly compatible if A and F' are commute at coincidence points, i. e., for each
point u in X such that Fu = {Au}, we have FAu = AFu. (Note that the equation
Fu = {Au} implies that Fu is singleton).

Now we introduce the following definition.

Definition 2. Let A: X — X and F : X — B(X) two mappings. The pair (A, F)
is compatible of type (I) if
d(u, Au) < lim 6(u, FAzy,)
n—oo

whenever {x,} is a sequence in X such that FAx,, € B(X), Fz, — {u}, Az, — u
for some u € X.

The above definition is given by Pathak et al. [9] for single-valued mappings in
1999.

Proposition 1. Let A : X — X and F : X — B(X) two mappings. If (A, F)
is compatible of type (I) and {Ap} = Fp for some p € X, then 6(Fp, AAp) <
§(Fp, FAp).

Proof. Let {z,} be a sequence in X defined by x, = p for n = 1,2,3,... and
{Ap} = Fp for some p € X. Then we have Az, — Ap and Fz,, — {Ap}. Since the
pair (A, F) is compatible of type (I) we have

§(Fp, AAp) = d(Ap, AAp) < lim §(Ap, FAx,) = §(Ap, FAp) = §(Fp, F Ap).
O

There are two examples in [10] such that the concepts of weakly compatible
maps and compatible maps of type (I) are independent from each other for single
valued mappings. The following example shows that (A, F) is compatible of type
(I) but not weakly compatible.
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Example 1. Let X = [0,00) be with the usual metric. Define A : X — X and
F:X - B(X) by

(2 ifz 0,2 C([22+4] ifz€0,2)
A${2+x if x € (2,00) and Fx{ B+z,4+1z] ifxe200)

Note that 2 is a fized point of A, then (A, F) is compatible of type (I). On the
other hand, coincidence point of A and F is only 0 and these mappings are not
commuting at 0. Thus (A, F) is not weakly compatible.

2 Implicit relation

Tmplicit relation on metric spaces have been used in many articles (see [2], [3], [6],
1), [12], [13], [14)).

Let R denote the nonnegative real numbers and let 7' : RS — R be a continuous
mapping. We define the following properties:

Ty : T(t1,...,t6) is non-increasing in variables to, ..., tg.

T5 : there exist an upper semicontinuous and non-decreasing function f: R, —
R, f(0)=0, f(t) <t for t > 0, such that for u > 0,

T(u,v,v,u,u+v,0) <0

or
T(u,v,u,v,0,u+v) <0

implies u < f(v).
Ts: (a) T(u,u,0,u,u,u) >0 and (b) T'(u,u,u,0,u,u) > 0,vu > 0.
Ty : T(u,u,0,0,u,u) > 0,Vu > 0.
Note that Ty and T5(a) or T5(b) implies Ty.

Example 2. T'(ty,...,ts) = t1 —amax{ta, t3,t4} — (1 — )[ats + btg|, where 0 < a <
L0<a<31,0<b< i

Ty : Obviously.

Ty : Let u> 0 and T'(u,v,v,u,u~+v,0) = u—amax{u,v} — (1 —a)a(u+v) <O0.
If u > v, then (1 — a)u < av which implies a > L o contradiction. Thus u < v

29
and u < %v = B, Similarly, let u > 0 and T(u,v,u,v,0,u +v) < 0 imply

u < %v = yv. If u = 0 then u < yv. Thus Ty is satisfying with f(t) =

max{[3,v}t.
T3 : T(u,u,0,u,u,u) = T(u,u,u,0,u,u) = (1 —a)(l —a—>bu>0,Vu>0.

Example 3. T(ty,...,ts) = t1 — k max{ta, t3, t4, %(t5 +tg)}, where k € (0,1).

T1 : Obuiously.

Ty : Let w > 0 and T'(u,v,v,u,u 4+ v,0) = u — kmax{u,v} < 0. If u > v, then
u < ku, which is a contradiction. Thus u < v and u < kv. Similarly, let u > 0 and
T(u,v,u,v,0,u+v) < 0 then we have u < kv. If u = 0, then u < kv. Thus Ty is
satisfying with f(t) = kt.

T3 : T(u,u,0,u,u,u) =T(u,u,u,0,u,u) =u—ku>0, Vu>0.
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Example 4. T(t1,...,tg) = t1 — Y(max{ts, t3, 4, 5(t5 + t6)}), where ¥ : Ry — Ry
increasing and 1 (0) = 0,9 (t) <t fort > 0.

Ty : Obviously.

Ty : Let w >0 and T(u,v,v,u,u+v,0) = u — p(max{u,v}) < 0. If u > v, then
u—¥(u) <0, which is a contradiction. Thus u < v and u < ¥(v). Similarly, let
u >0 and T(u,v,u,v,0,u~+v) <0 then we have u < P(v). If u =0 then u < P(v).
Thus T is satisfying with f = 1.

Ts: T(u,u,0,u,u,u) = T (u,u,u, 0, u,u) = u— (u) > 0,Vu > 0.

Example 5. T(t1,...,tg) = t7 — t1(aty + btz + cty) — dtsts, where a > 0, b,c,d > 0,
a+b+c<l,a+b+d<landa+c+d<1.

T1 : Obviously.

Ty : Let u > 0 and T(u,v,v,u,u + v,0) = u? — u(av + bv + cu) < 0. Then
u < (%)v = hyv. Similarly, let w > 0 and T(u,v,u,v,0,u 4+ v) < 0 then we have
u < (‘ffg)v = hov. If u = 0, then u < hov. Thus Ty is satisfying with f(t) =
max{hl, hg}t.

Ty : T(u,u,0,u,u,u) = u? — u(au + cu) — du? = u?(1 —a—c—d) > 0,Vu > 0
and T (u,u,u,0,u,u) = u*(1 —a—b—d) > 0,Vu > 0.

3 Common fixed point theorems

We need the following lemma for the proof of our main theorems.

Lemma 3 ([15]). For any t > 0, f(t) < t if and only if lim f™ = 0, where f™

denotes the composition of f n—times with itself.
Now we give one of the our main theorem.

Theorem 1. Let A, B be mappings of a metric space (X, d) into itself and F,G be
mappings from X into B(X) such that

F(X)C B(X) and G(X) C A(X). (3.1)
Also, the mappings A, B, F and G are satisfying the following inequality
T(6(Fx,Gy),d(Az, By),6(Ax, Fz),6(By, Gy), D(Az, Gy), D(By, Fz)) <0 (3.2)

where T' satisfies conditions Ty, Ty and Ty. Suppose that any one of A(X) or B(X)
is complete. If both pairs (A, F) and (B, G) are weakly compatible, then there exists
a unique z € X such that {2z} = {Az} = {Bz} = Fz = G=z.

Proof. Let zp be an arbitrary point in X. From (3.1), we choose a point 7 in X
such that Bz, € Fxg = Zy. For this point x; there exists a point x5 in X such that
Azxo € Gxy = Z1, and so on. Continuing in this manner we can define a sequence
{z,} as follows

Bxopt1 € Fagy = Zop, ATonis € GTant1 = Zopt1 (3.3)
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for n = 0,1,2,....For simplicity, we put V,, = 6(Z,,, Z,41), for n = 0,1,2,.... From
(3.2) and (3.3), we have

T(8(Fxan, Grant1), d(Axapn, Bxoni1), 0(Axapn, Faoy),
(Bxon+t1, Grant1), D(Azon, Grony1), D(Bxont1, Fran) <0

and so we have
T(‘/Qny V2n—17 ‘/Zn—la ‘/an ‘/Qn—l + V2n; O) S O

From 75, there exist an upper semicontinuous and non-decreasing function f : Ry —
Ry, f(0)=0, f(t) <t for t > 0, such that

Similarly

T(0(Frant2, Grant1), d(Azony2, Brant1), 0(Av2nt2, Frania),
8(Bxont1,Grony1), D(Axonta, Grong1), D(Baanit, Frony2) <0

and so we have
T(‘/2n+1; ‘/2717 V2n+17 ‘/va 07 ‘/277, + V2n+1) S O

From T5, we have

From (3.4) and (3.5) we have, V,, < f"(Vp) and from Lemma 3, we have lim V,, = 0.

n—oo

Thus, if z, is an arbitrary point in the set Z,, for n =0, 1,2, ..., it follows that
d(znazn-i-l) < 5(Zn> Zn-i—l) =V, —0

as n — o0. Therefore the sequence {z,} and hence any subsequence thereof, is a
Cauchy sequence in X.

Now suppose B(X) is complete. Let {z,} be the sequence defined by (3.3).
Since Bxop41 € Fxgy = Zoy, for n =10,1,2,..., we have

d(Bzamt1, Bront1) < 6(Zom, Zan) < €

for m,n > ng,ng = 1,2,3,.... Therefore by the above, the sequence {Bxa,+1} is
Cauchy and hence Bzao,11 — p = Bq € B(X) for some ¢ € X. But Azq, €
Gxon—1 = Zan—1 by (3.3), so that we have

d(Axan, Brany1) < 0(Zan—1,Z2n) = Van—1 — 0
as n — o0o. Consequently Axs,, — p. Moreover, we have for n = 1,2, 3, ...

5(F1'2n7p) < 5(Fx2na Az2n) + d(A$2mp) = Vo, + d(Ax%up)-
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Therefore, §(Faa,,p) — 0. In like manner it follows that §(Gxa,—1,p) — 0.
Since, forn =1,2,3, ...

T((S(Fx?m GQ)a d(Ax2n7 BQ)7 5(143721“ F$2n)7
§(Bq, Gq), D(Axan, Gq), D(Bgq, Fas,) <0

and by 77 we have

T((S(F‘T%la GQ)7 d(AIQTM Bq)7 5(AI27L7 Fx?n)a
5(Bq, Gq), 6(141'27“ Gq)a 5(BQ7 Fx2n) S 0.

We get as n — oo
T(5(p,Gq),0,0,0(p, Gq),6(p,Gq),0) <0

and by 75 ,there exist an upper semicontinuous and non-decreasing function f :
R, — Ry, f(0) =0,f(t) <t for t > 0, we have §(p,Gq) < f(0) = 0 and {p} =
Gq = {Bq}.

But G(X) C A(X), so r € X exists such that {Ar} = Gq = {Bq}. Now if
Fr # Gq, 6(Fr,Gq) # 0 so that we have

T(6(Fr,Gq),d(Ar, Bq),6(Ar, Fr),0(Bq,Gq), D(Ar,Gq), D(Bgq, Fr)) <0

so we have
T(6(Fr,p),0,5(Fr,p),0,0,d(Fr,p)) <0
and by Ty we have §(Fr,p) < f(0) = 0. It follows that F'r = {p} = Gq = {Ar} =

{Bq}.
Since F'r = {Ar} and the pair (4, F) is weakly compatible, we obtain Fp =
FAr = AFr = Ap. Now using (3.2) we have

T(0(Fp,Gq),d(Ap, Bq),0(Ap, Fp),6(Bq, Gq), D(Ap,Gq), D(Bq, Fp)) <0
and so

T(0(Fp,p),d(Fp,p),0,0,6(Fp,p),d(Fp,p)) <0

which is a contradiction to Ty. Thus, §(Fp,p) = 0 and Fp = {p} = {Ap}. Similarly,
{p} = Gp = {Bp} if the pair (B,G) is weakly compatible. Therefore we obtain
{p} ={Ap} = {Bp} = Fp=Gp. , , , , ,

To see the p is unique, suppose that {p } = {Ap} = {Bp } = Fp = Gp for
some p/ € X, then

T(5(Fp,Gp'),d(Ap, Bp ), 6(Ap, Fp),8(Bp ,Gp'), D(Ap,Gp'), D(Bp', Fp))<0

and so ) ) ) )
T(0(p,p ),d(p,p ),0,0,0(p,p ),0(p,p)) <0

which is a contradiction to T4. Thus we have p = p/. O
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Remark 1. If we use Example 2 and Theorem 1, we get Theorem 2. 1 of Ahmed
[1]. If we choose A,B,F and G are single valued mappings in Theorem 1 with
Ezample 3, we get an improved version of Theorem 3. 1 of Kang and Kim [8].
Similarly, many results can obtain by Theorem 1 and some examples.

Now we give the other our main theorem.

Theorem 2. Let A, B be mappings of a complete metric space (X,d) into itself
and F,G be mappings from X into B(X) such that (3.1) holds. Also, the mappings
A, B, F and G are satisfying the following inequality

1 1
T(6(Fz,Gy),d(Azx, By), 5(5(14:5, Fx), §§(By, Gy), D(Ax,Gy), D(By, Fx))

<0 (3.6)

where T satisfies conditions T, Ty and Ts. Suppose that the pairs (A, F) and (B, G)
are compatible of type (I) and A or B is continuous, then there exists z € X such
that {z} = {Az} = {Bz} = Fz = G=.

Proof. Let the sequence {x,} is defined by (3.3). Similar operation in proof of
Theorem 1, we have Axay,, Bxon+1, Fxon, GTans1 — p for some p € X since X is
complete.
Now suppose that B is continuous. Then the pair (B, G) is compatible of type
(I), we have
d(pa Bp) < @6(2% GBanJrl) (37)

and BBxop+1 — Bp. Setting x = x9, and y = Bxa,41 in (3.6) we have

1
T(é(FxQna GBxQn—Q—l)a d(AZQny BB$2n+1)a ié(A‘xQ’ﬂ? FxZn)a

1
§§(BB(E2n+1, GBCL'gn+1), D(A.’EQn, GBZL’QH+1), D(BB$2n+1, Fl’gn) S 0
then taking limit superior we have

o 1
T( lim 6(p, GBxany1),d(p, Bp),0, 3 lim §(Bp, GBZant1),
n—oo

n—oo

lim 6(]?, GB$2n+1)7 d(pa Bp)) < 0
and so

T( lim 0(p, GBxanyt1), lim 6(p, GBxap41),0, lim 6(p, GBxany1),

n—oo

lim §(p, GBxap+1), lim §(p, GBxayy1) <0

which is a contradiction to T3 if lim §(p, GB%ap41) # 0. Thus we have

n—oo

lim §(p, GBxan+1) = 0 and so from (3.7) p = Bp.
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Again setting = 2, and y = p in (3.6) and allowing n — oo we have
1
T(3(p. Gp), 0,0, 56(p, Gp), 3(p, Gp), 0) < 0

with 77 and T5, there exist an upper semicontinuous and non-decreasing function
f: Ry — Ry, f(0) =0,f(t) <tfort >0, we have d(p,Gp) < f(0) = 0, thus
{p} = {Bp} = Gp.

Since G(X) C A(X), there exists a point ¢ € X such that {p} = {Bp} =Gp =
{Aq}. Setting x = g and y = p in (3.6), we have

1
T(6(Fq,p),0, 55(1?, Fq),0,0,d(p, F'q)) <0

implies from Ty and T3 we have §(p, Fiq) < f(0) =0 and so {p} = Fq.
Since (A4, F) is compatible of type (I) and {Aq} = {Fq} = p, then using Prepo-
sition 1, we have §(Fq, AAq) < §(Fq, FAq) and so

d(p, Ap) < d(p, Fp). (3.8)
Again setting x = p = y in (3.6) we have
1
2
which is a contradiction to T3 if §(Fp,p) # 0. Thus we have Fp = {p} and from
(3.8) we have p = Ap so {p} = {Ap} = {Bp} = Fp = Gp.

The other case, A is continuous, can be disposed of following a similar argument
as above. O

T(6(Fp,p),5(Fp,p), s6(Fp,p),0,6(Fp,p),5(Fp,p)) <0

Acknowledgemets. The authors are grateful to the referees for their valuable
comments in modifying the first version of this paper.

References

[1] M. A. Ahmed, Common fized point theorems for weakly compatible mappings,
Rocky Mountain J. Math. 33 (2) (2003), 1189-1203.

[2] I. Altun and D. Turkoglu, Fized point and homotopy result for mappings satis-
fying an implicit relation, Discuss. Math. Differ. Incl. Control Optim., accepted.

[3] I. Altun, H. A. Hancer and D. Turkoglu, A fized point theorem for multi-
maps satisfying an implicit relation on metrically convex metric spaces, Math.
Commun. 11 (2006), 17-23.

[4] B. Fisher, Common fized point of mappings and set-valued mappings, Rostock
Math. Kolloqg. 18 (1981), 69-77.

[6] M. Imdad, M. S. Khan and S. Sessa, On some weak conditions of commutativity
in common fized point theorems, Int. J. Math. Math. Sci. 11 (2) (1988), 289-296.



Fixed point theorem 21

[6]

M. Imdad, S. Kumar and M. S. Khan, Remarks on some fized point theorems
satisfying implicit relations, Rad. Math. 11 (1) (2002), 135-143.

G. Jungck and B. E. Rhoades, Fized points for set-valued functions without
continuity, Indian J. Pure Appl. Math. 16 (1998), 227-238.

S. M. Kang and Y. P. Kim, Common fixed point theorems, Math. Japonica, 37
(6) (1992), 1031-1039.

H. K. Pathak, S. N. Mishra and A. K. Kalinde, Common fized point theorems
with applications to nonlinear integral equations, Demonstratio Math. 3 (1999),
547-564.

H. K. Pathak, M.S. Khan and R. Tiwari, A common fized point theorem and its
application to nonlinear integral equations, Comp. Math. Appl. 53 (6) (2007),
961-971.

V. Popa, Fized point theorems for implicit contractive mappings, Stud. Cerc.
St. Ser. Math. Univ. Bacau 7 (1997), 127-133.

V. Popa, Some fixed point theorems for compatible mappings satisfying an im-
plicit relation, Demonstratio Math. 32 (1) (1999), 157-163.

R. A. Rashwan and M. A. Ahmed, Common fized points for weakly §-compatible
mappings, Ital. J. Pure Appl. Math. 8 (2000), 33-44.

S. Sharma and B. Desphande, On compatible mappings satisfying an implicit
relation in common fized point consideration, Tamkang J. Math. 33 (3) (2002),
245-252.

S. P. Singh and B. A. Meade, A common fized point theorem, Bull. Austral.
Math. Soc., 16 (1977), 49-53.

Address

Ishak Altun: Department of mathematics, Faculty of Science and Arts, Kirikkale
University, 71450 Yahsihan, Kirikkale, Turkey

FE-mail: ialtun@kku.edu.tr, ishakaltun@yahoo.com

Duran Turkoglu: Department of mathematics, Faculty of Science and Arts, Gazi
University, 06500 Teknikokullar, Ankara, Turkey

E-mail: dturkoglu@gazi.edu.tr



