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SOME FIXED POINT THEOREMS FOR WEAKLY
COMPATIBLE MULTIVALUED MAPPINGS

SATISFYING AN IMPLICIT RELATION

Ishak Altun and Duran Turkoglu

Abstract

In this paper, we prove a common fixed point theorem for multivalued
mappings under the condition of weak compatibility. Also, we define com-
patible maps of type (I) for multivalued mappings and prove a common fixed
point theorem for this type mappings. We use an implicit relation to prove
our main theorems.

1 Introduction and preliminaries

In this paper (X, d) denotes a metric space and B(X) stands for the set of all
bounded subsets of X. The function δ of B(X)× B(X) into [0,∞) is defined as

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}

for all A,B in B(X). If A = {a} is singleton, we write δ(A,B) = δ(a,B) and if
B = {b}, then we put δ(A,B) = δ(a, b) = d(a, b). It is easily seen that

δ(A, B) = δ(B, A) ≥ 0,

δ(A, B) ≤ δ(A,C) + δ(C,B),
δ(A,A) = diam A,

δ(A, B) = 0 implies A = B = {a}
for all A,B, C in B(X). We recall some definitions and basic lemmas of Fisher [4]
and Imdad et al. [5]. Let {An : n = 1, 2, ...} be a sequence of subsets of X. We say
that the sequence {An} converges to a subset A of X if each point a in A is the
limit of a convergent sequence {an} with an in An for n = 1, 2, . . . and if for any
ε > 0, there exists an integer N such that An ⊆ Aε for n > N , Aε being the union
of all open spheres with centers in A and radius ε. The following lemmas hold.
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Lemma 1 ([4]). If {An} and {Bn} are sequences of bounded subsets of (X, d) which
converge to the bounded subsets A and B respectively, then the sequence {δ(An, Bn)}
converges to δ(A,B).

Lemma 2 ([5]). If {An} is a sequence of bounded sets in the complete metric space
(X, d) and if lim

n→∞
δ(An, {y}) = 0 for some y ∈ X, then {An} → {y}.

A set-valued mapping F of X into B(X) is continuous at the point x in X if
whenever {xn} is a sequence of points of X converging to x, the sequence {Fxn} in
B(X) converges to Fx. F is said to be continuous in X if it is continuous at each
point x in X. We say that z is a fixed point of F if z is in Fz.

The following definition is given by Jungck and Rhoades [7].

Definition 1. Let A : X → X and F : X → B(X) two mappings. The pair (A,F )
is weakly compatible if A and F are commute at coincidence points, i. e., for each
point u in X such that Fu = {Au}, we have FAu = AFu. (Note that the equation
Fu = {Au} implies that Fu is singleton).

Now we introduce the following definition.

Definition 2. Let A : X → X and F : X → B(X) two mappings. The pair (A,F )
is compatible of type (I) if

d(u,Au) ≤ lim
n→∞

δ(u, FAxn)

whenever {xn} is a sequence in X such that FAxn ∈ B(X), Fxn → {u}, Axn → u
for some u ∈ X.

The above definition is given by Pathak et al. [9] for single-valued mappings in
1999.

Proposition 1. Let A : X → X and F : X → B(X) two mappings. If (A,F )
is compatible of type (I) and {Ap} = Fp for some p ∈ X, then δ(Fp, AAp) ≤
δ(Fp, FAp).

Proof. Let {xn} be a sequence in X defined by xn = p for n = 1, 2, 3, ... and
{Ap} = Fp for some p ∈ X. Then we have Axn → Ap and Fxn → {Ap}. Since the
pair (A,F ) is compatible of type (I) we have

δ(Fp, AAp) = d(Ap, AAp) ≤ lim
n→∞

δ(Ap, FAxn) = δ(Ap, FAp) = δ(Fp, FAp).

There are two examples in [10] such that the concepts of weakly compatible
maps and compatible maps of type (I) are independent from each other for single
valued mappings. The following example shows that (A,F ) is compatible of type
(I) but not weakly compatible.
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Example 1. Let X = [0,∞) be with the usual metric. Define A : X → X and
F : X → B(X) by

Ax =
{

2 if x ∈ [0, 2]
2 + x if x ∈ (2,∞) and Fx =

{
[2, 2 + x] if x ∈ [0, 2)
[3 + x, 4 + x] if x ∈ [2,∞) .

Note that 2 is a fixed point of A, then (A,F ) is compatible of type (I). On the
other hand, coincidence point of A and F is only 0 and these mappings are not
commuting at 0. Thus (A,F ) is not weakly compatible.

2 Implicit relation

Implicit relation on metric spaces have been used in many articles (see [2], [3], [6],
[11], [12], [13], [14]).

Let R+ denote the nonnegative real numbers and let T : R6
+ → R be a continuous

mapping. We define the following properties:
T1 : T (t1, ..., t6) is non-increasing in variables t2, ..., t6.
T2 : there exist an upper semicontinuous and non-decreasing function f : R+ →

R+, f(0) = 0, f(t) < t for t > 0, such that for u ≥ 0,

T (u, v, v, u, u + v, 0) ≤ 0

or
T (u, v, u, v, 0, u + v) ≤ 0

implies u ≤ f(v).
T3 : (a) T (u, u, 0, u, u, u) > 0 and (b) T (u, u, u, 0, u, u) > 0,∀u > 0.
T4 : T (u, u, 0, 0, u, u) > 0,∀u > 0.
Note that T1 and T3(a) or T3(b) implies T4.

Example 2. T (t1, ..., t6) = t1−α max{t2, t3, t4}− (1−α)[at5 + bt6], where 0 ≤ α <
1, 0 ≤ a < 1

2 , 0 ≤ b < 1
2 .

T1 : Obviously.
T2 : Let u > 0 and T (u, v, v, u, u+ v, 0) = u−α max{u, v}− (1−α)a(u+ v) ≤ 0.

If u ≥ v, then (1 − a)u ≤ av which implies a ≥ 1
2 , a contradiction. Thus u < v

and u ≤ α+(1−α)a
1−(1−α)a v = βv, Similarly, let u > 0 and T (u, v, u, v, 0, u + v) ≤ 0 imply

u ≤ α+(1−α)b
1−(1−α)b v = γv. If u = 0 then u ≤ γv. Thus T2 is satisfying with f(t) =

max{β, γ}t.
T3 : T (u, u, 0, u, u, u) = T (u, u, u, 0, u, u) = (1− α)(1− a− b)u > 0, ∀u > 0.

Example 3. T (t1, ..., t6) = t1 − k max{t2, t3, t4, 1
2 (t5 + t6)}, where k ∈ (0, 1).

T1 : Obviously.
T2 : Let u > 0 and T (u, v, v, u, u + v, 0) = u − k max{u, v} ≤ 0. If u ≥ v, then

u ≤ ku, which is a contradiction. Thus u < v and u ≤ kv. Similarly, let u > 0 and
T (u, v, u, v, 0, u + v) ≤ 0 then we have u ≤ kv. If u = 0, then u ≤ kv. Thus T2 is
satisfying with f(t) = kt.

T3 : T (u, u, 0, u, u, u) = T (u, u, u, 0, u, u) = u− ku > 0, ∀u > 0.
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Example 4. T (t1, ..., t6) = t1 − ψ(max{t2, t3, t4, 1
2 (t5 + t6)}), where ψ : R+ → R+

increasing and ψ(0) = 0, ψ(t) < t for t > 0.
T1 : Obviously.
T2 : Let u > 0 and T (u, v, v, u, u + v, 0) = u− ψ(max{u, v}) ≤ 0. If u ≥ v, then

u − ψ(u) ≤ 0, which is a contradiction. Thus u < v and u ≤ ψ(v). Similarly, let
u > 0 and T (u, v, u, v, 0, u + v) ≤ 0 then we have u ≤ ψ(v). If u = 0 then u ≤ ψ(v).
Thus T2 is satisfying with f = ψ.

T3 : T (u, u, 0, u, u, u) = T (u, u, u, 0, u, u) = u− ψ(u) > 0, ∀u > 0.

Example 5. T (t1, ..., t6) = t21 − t1(at2 + bt3 + ct4)− dt5t6, where a > 0, b, c, d ≥ 0,
a + b + c < 1, a + b + d < 1 and a + c + d < 1.

T1 : Obviously.
T2 : Let u > 0 and T (u, v, v, u, u + v, 0) = u2 − u(av + bv + cu) ≤ 0. Then

u ≤ (a+b
1−c )v = h1v. Similarly, let u > 0 and T (u, v, u, v, 0, u + v) ≤ 0 then we have

u ≤ (a+c
1−b )v = h2v. If u = 0, then u ≤ h2v. Thus T2 is satisfying with f(t) =

max{h1, h2}t.
T3 : T (u, u, 0, u, u, u) = u2 − u(au + cu) − du2 = u2(1 − a − c − d) > 0, ∀u > 0

and T (u, u, u, 0, u, u) = u2(1− a− b− d) > 0,∀u > 0.

3 Common fixed point theorems

We need the following lemma for the proof of our main theorems.

Lemma 3 ([15]). For any t > 0, f(t) < t if and only if lim
n→∞

fn = 0, where fn

denotes the composition of f n−times with itself.

Now we give one of the our main theorem.

Theorem 1. Let A, B be mappings of a metric space (X, d) into itself and F, G be
mappings from X into B(X) such that

F (X) ⊆ B(X) and G(X) ⊆ A(X). (3.1)

Also, the mappings A,B, F and G are satisfying the following inequality

T (δ(Fx, Gy), d(Ax,By), δ(Ax,Fx), δ(By, Gy), D(Ax,Gy), D(By, Fx)) ≤ 0 (3.2)

where T satisfies conditions T1, T2 and T4. Suppose that any one of A(X) or B(X)
is complete. If both pairs (A,F ) and (B, G) are weakly compatible, then there exists
a unique z ∈ X such that {z} = {Az} = {Bz} = Fz = Gz.

Proof. Let x0 be an arbitrary point in X. From (3.1), we choose a point x1 in X
such that Bx1 ∈ Fx0 = Z0. For this point x1 there exists a point x2 in X such that
Ax2 ∈ Gx1 = Z1, and so on. Continuing in this manner we can define a sequence
{xn} as follows

Bx2n+1 ∈ Fx2n = Z2n, Ax2n+2 ∈ Gx2n+1 = Z2n+1 (3.3)
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for n = 0, 1, 2, ....For simplicity, we put Vn = δ(Zn, Zn+1), for n = 0, 1, 2, .... From
(3.2) and (3.3), we have

T (δ(Fx2n, Gx2n+1), d(Ax2n, Bx2n+1), δ(Ax2n, Fx2n),
δ(Bx2n+1, Gx2n+1), D(Ax2n, Gx2n+1), D(Bx2n+1, Fx2n) ≤ 0

and so we have

T (V2n, V2n−1, V2n−1, V2n, V2n−1 + V2n, 0) ≤ 0.

From T2, there exist an upper semicontinuous and non-decreasing function f : R+ →
R+, f(0) = 0, f(t) < t for t > 0, such that

V2n ≤ f(V2n−1). (3.4)

Similarly

T (δ(Fx2n+2, Gx2n+1), d(Ax2n+2, Bx2n+1), δ(Ax2n+2, Fx2n+2),
δ(Bx2n+1, Gx2n+1), D(Ax2n+2, Gx2n+1), D(Bx2n+1, Fx2n+2) ≤ 0

and so we have

T (V2n+1, V2n, V2n+1, V2n, 0, V2n + V2n+1) ≤ 0.

From T2, we have
V2n+1 ≤ f(V2n). (3.5)

From (3.4) and (3.5) we have, Vn ≤ fn(V0) and from Lemma 3, we have lim
n→∞

Vn = 0.

Thus, if zn is an arbitrary point in the set Zn for n = 0, 1, 2, ..., it follows that

d(zn, zn+1) ≤ δ(Zn, Zn+1) = Vn → 0

as n → ∞. Therefore the sequence {zn} and hence any subsequence thereof, is a
Cauchy sequence in X.

Now suppose B(X) is complete. Let {xn} be the sequence defined by (3.3).
Since Bx2n+1 ∈ Fx2n = Z2n, for n = 0, 1, 2, ..., we have

d(Bx2m+1, Bx2n+1) ≤ δ(Z2m, Z2n) < ε

for m, n ≥ n0, n0 = 1, 2, 3, .... Therefore by the above, the sequence {Bx2n+1} is
Cauchy and hence Bx2n+1 → p = Bq ∈ B(X) for some q ∈ X. But Ax2n ∈
Gx2n−1 = Z2n−1 by (3.3), so that we have

d(Ax2n, Bx2n+1) ≤ δ(Z2n−1, Z2n) = V2n−1 → 0

as n →∞. Consequently Ax2n → p. Moreover, we have for n = 1, 2, 3, ...

δ(Fx2n, p) ≤ δ(Fx2n, Ax2n) + d(Ax2n, p) = V2n + d(Ax2n, p).
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Therefore, δ(Fx2n, p) → 0. In like manner it follows that δ(Gx2n−1, p) → 0.
Since, for n = 1, 2, 3, ...

T (δ(Fx2n, Gq), d(Ax2n, Bq), δ(Ax2n, Fx2n),
δ(Bq, Gq), D(Ax2n, Gq), D(Bq, Fx2n) ≤ 0

and by T1 we have

T (δ(Fx2n, Gq), d(Ax2n, Bq), δ(Ax2n, Fx2n),
δ(Bq, Gq), δ(Ax2n, Gq), δ(Bq, Fx2n) ≤ 0 .

We get as n →∞

T (δ(p,Gq), 0, 0, δ(p, Gq), δ(p,Gq), 0) ≤ 0

and by T2 ,there exist an upper semicontinuous and non-decreasing function f :
R+ → R+, f(0) = 0, f(t) < t for t > 0, we have δ(p,Gq) ≤ f(0) = 0 and {p} =
Gq = {Bq}.

But G(X) ⊆ A(X), so r ∈ X exists such that {Ar} = Gq = {Bq}. Now if
Fr 6= Gq, δ(Fr,Gq) 6= 0 so that we have

T (δ(Fr,Gq), d(Ar,Bq), δ(Ar, Fr), δ(Bq, Gq), D(Ar,Gq), D(Bq, Fr)) ≤ 0

so we have
T (δ(Fr, p), 0, δ(Fr, p), 0, 0, d(Fr, p)) ≤ 0

and by T2 we have δ(Fr, p) ≤ f(0) = 0. It follows that Fr = {p} = Gq = {Ar} =
{Bq}.

Since Fr = {Ar} and the pair (A,F ) is weakly compatible, we obtain Fp =
FAr = AFr = Ap. Now using (3.2) we have

T (δ(Fp, Gq), d(Ap, Bq), δ(Ap, Fp), δ(Bq,Gq), D(Ap,Gq), D(Bq, Fp)) ≤ 0

and so
T (δ(Fp, p), d(Fp, p), 0, 0, δ(Fp, p), δ(Fp, p)) ≤ 0

which is a contradiction to T4. Thus, δ(Fp, p) = 0 and Fp = {p} = {Ap}. Similarly,
{p} = Gp = {Bp} if the pair (B,G) is weakly compatible. Therefore we obtain
{p} = {Ap} = {Bp} = Fp = Gp.

To see the p is unique, suppose that {p′} = {Ap
′} = {Bp

′} = Fp
′

= Gp
′

for
some p

′ ∈ X, then

T (δ(Fp, Gp
′
), d(Ap,Bp

′
), δ(Ap, Fp), δ(Bp

′
, Gp

′
), D(Ap, Gp

′
), D(Bp

′
, Fp))≤0

and so
T (δ(p, p

′
), d(p, p

′
), 0, 0, δ(p, p

′
), δ(p, p

′
)) ≤ 0

which is a contradiction to T4. Thus we have p = p
′
.
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Remark 1. If we use Example 2 and Theorem 1, we get Theorem 2. 1 of Ahmed
[1]. If we choose A,B, F and G are single valued mappings in Theorem 1 with
Example 3, we get an improved version of Theorem 3. 1 of Kang and Kim [8].
Similarly, many results can obtain by Theorem 1 and some examples.

Now we give the other our main theorem.

Theorem 2. Let A, B be mappings of a complete metric space (X, d) into itself
and F,G be mappings from X into B(X) such that (3.1) holds. Also, the mappings
A,B, F and G are satisfying the following inequality

T (δ(Fx, Gy), d(Ax, By),
1
2
δ(Ax,Fx),

1
2
δ(By,Gy), D(Ax,Gy), D(By, Fx))

≤ 0 (3.6)

where T satisfies conditions T1, T2 and T3. Suppose that the pairs (A, F ) and (B, G)
are compatible of type (I) and A or B is continuous, then there exists z ∈ X such
that {z} = {Az} = {Bz} = Fz = Gz.

Proof. Let the sequence {xn} is defined by (3.3). Similar operation in proof of
Theorem 1, we have Ax2n, Bx2n+1, Fx2n, Gx2n+1 → p for some p ∈ X since X is
complete.

Now suppose that B is continuous. Then the pair (B,G) is compatible of type
(I), we have

d(p,Bp) ≤ lim
n→∞

δ(p, GBx2n+1) (3.7)

and BBx2n+1 → Bp. Setting x = x2n and y = Bx2n+1 in (3.6) we have

T (δ(Fx2n, GBx2n+1), d(Ax2n, BBx2n+1),
1
2
δ(Ax2n, Fx2n),

1
2
δ(BBx2n+1, GBx2n+1), D(Ax2n, GBx2n+1), D(BBx2n+1, Fx2n) ≤ 0

then taking limit superior we have

T ( lim
n→∞

δ(p,GBx2n+1), d(p,Bp), 0,
1
2

lim
n→∞

δ(Bp,GBx2n+1),

lim
n→∞

δ(p, GBx2n+1), d(p,Bp)) ≤ 0

and so

T ( lim
n→∞

δ(p,GBx2n+1), lim
n→∞

δ(p,GBx2n+1), 0, lim
n→∞

δ(p,GBx2n+1),

lim
n→∞

δ(p,GBx2n+1), lim
n→∞

δ(p,GBx2n+1) ≤ 0

which is a contradiction to T3 if lim
n→∞

δ(p,GBx2n+1) 6= 0. Thus we have

lim
n→∞

δ(p,GBx2n+1) = 0 and so from (3.7) p = Bp.
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Again setting x = x2n and y = p in (3.6) and allowing n →∞ we have

T (δ(p,Gp), 0, 0,
1
2
δ(p,Gp), δ(p,Gp), 0) ≤ 0

with T1 and T2, there exist an upper semicontinuous and non-decreasing function
f : R+ → R+, f(0) = 0, f(t) < t for t > 0, we have δ(p,Gp) ≤ f(0) = 0, thus
{p} = {Bp} = Gp.

Since G(X) ⊆ A(X), there exists a point q ∈ X such that {p} = {Bp} = Gp =
{Aq}. Setting x = q and y = p in (3.6), we have

T (δ(Fq, p), 0,
1
2
δ(p, Fq), 0, 0, δ(p, Fq)) ≤ 0

implies from T1 and T2 we have δ(p, Fq) ≤ f(0) = 0 and so {p} = Fq.
Since (A,F ) is compatible of type (I) and {Aq} = {Fq} = p, then using Prepo-

sition 1, we have δ(Fq, AAq) ≤ δ(Fq, FAq) and so

d(p,Ap) ≤ δ(p, Fp). (3.8)

Again setting x = p = y in (3.6) we have

T (δ(Fp, p), δ(Fp, p),
1
2
δ(Fp, p), 0, δ(Fp, p), δ(Fp, p)) ≤ 0

which is a contradiction to T3 if δ(Fp, p) 6= 0. Thus we have Fp = {p} and from
(3.8) we have p = Ap so {p} = {Ap} = {Bp} = Fp = Gp.

The other case, A is continuous, can be disposed of following a similar argument
as above.
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