ON CLASSES OF STARLIKE AND CONVEX MEROMORPHICALLY MULTIVALENT FUNCTIONS INVOLVING COEFFICIENT INEQUALITIES

Abdul Rahman S. Juma and S. R. Kulkarni

Abstract

Let $T_{r}^{*}(p)$ be the class of multivalent meromorphic functions $f(z)$ in a punctured disk U_{r}^{*} with a simple pole of order p at the center of disk is defined. We considered the class of starlike multivalent meromorphic and convex multivalent meromorphic functions $S_{\alpha}^{*}(p), C_{\alpha}^{*}(p)$, respectively. The coefficient properties are obtained and the starlikeness and convexity of functions in $T_{r}^{*}(p)$ are also investigated with some other results.

1. Introduction

Let $T_{r}^{*}(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=e z^{-p}+{ }_{2} F_{1}(a, b ; c ; z)-\sum_{n=p-1}^{2 p-1} t_{n-p+1} z^{n-p+1} \tag{1}
\end{equation*}
$$

where

$$
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n) n!} z^{n} ; \quad|z|<1
$$

$a, b, c \in \mathbb{C}$ with $c \neq 0,-1,-2, \cdots,(a, n)=\frac{\Gamma(a+n)}{\Gamma(a)}=a(a+1, n-1), c>b>0$, $c>a+b, t_{n-p+1}=\frac{(a, n-p+1)(b, n-p+1)}{(c, n-p+1)(n-p+1)!}, p \in \mathbb{N}$ and $e>0$.

Also

$$
{ }_{2} F_{1}(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} .
$$

Thus

$$
\begin{equation*}
f(z)=e z^{-p}+\sum_{n=2 p}^{\infty} t_{n-p+1} z^{n-p+1}, \quad|z|<1 \tag{2}
\end{equation*}
$$

[^0]which are analytic and multivalent in $\mathcal{U}_{r}^{*}=\{z: z \in \mathbb{C}$ and $0<|z|<r \leq 1\}$ having simple pole at the origin.

A function $f(z) \in T_{r}^{*}(p)$ is said to be multivalent meromorphically starlike of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad 0 \leq \alpha<p, \quad z \in \mathcal{U}_{r}^{*} \tag{3}
\end{equation*}
$$

denoted by $f(z) \in S_{\alpha}^{*}(p)$.
Furthermore, a function $f(z) \in T_{r}^{*}(p)$ is said to be multivalent meromorphically convex of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha \quad 0 \leq \alpha<p, z \in \mathcal{U}_{r}^{*} \tag{4}
\end{equation*}
$$

denoted by $f(z) \in C_{\alpha}^{*}(p)$. We know that

$$
\begin{equation*}
f(z) \in C_{\alpha}^{*}(p) \text { iff }-z f^{\prime}(z) \in S_{\alpha}^{*}(p) \tag{5}
\end{equation*}
$$

There are many authors who have studied the various interesting properties of these classes, M. K. Aouf [1], Aouf and Srivastava [2], Kulkarni, Naik and Srivastava [3], Mogra [5], S. Owa and N. Pascu [6]. The present paper is essentially motivated by the paper due to Owa and Pascu [6], Ozaki [7] and T. Mathur [4].

2. Coefficient Inequalities for Functions

Theorem 2.1: Let $f(z) \in T_{r}^{*}(p)$, then $f(z) \in S_{\alpha}^{*}(p)$ if

$$
\begin{equation*}
\sum_{n=2 p}^{\infty}(k+n-p+1+|2 \alpha-k+n-p+1|)\left|t_{n-p+1}\right| r^{n+1}<2 e(p-\alpha) \tag{6}
\end{equation*}
$$

for $0 \leq \alpha<p$ and $\alpha<k \leq p, p \in \mathbb{N}, z \in \mathcal{U}_{r}^{*}$.
Proof : Let $f(z) \in T_{r}^{*}(p)$, then we have

$$
\begin{aligned}
& \left|z f^{\prime}(z)+k f(z)\right|-\left|z f^{\prime}(z)+(2 \alpha-k) f(z)\right| \\
& =\left|(k-p) e z^{-p}+\sum_{n=2 p}^{\infty}(k+n-p+1) t_{n-p+1} z^{n-p+1}\right| \\
& -\left|(2 \alpha-k-p) e z^{-p}+\sum_{n=2 p}^{\infty}(2 \alpha-k+n-p+1) t_{n-p+1} z^{n-p+1}\right| .
\end{aligned}
$$

Therefore, by (6) we get

$$
\begin{aligned}
& r^{p}\left|z f^{\prime}(z)+k f(z)\right|-r^{p}\left|z f^{\prime}(z)+(2 \alpha-k) f(z)\right| \\
& \leq 2 e(\alpha-p)+\sum_{n=2 p}^{\infty}(k+n-p+1+|2 \alpha-k+n-p+1|)\left|t_{n-p+1}\right| r^{n+1} \leq 0
\end{aligned}
$$

then we have $\left|\frac{z f^{\prime}(z)+k f(z)}{z f^{\prime}(z)+(2 \alpha-k) f(z)}\right| \leq 1$. Thus $f(z) \in S_{\alpha}^{*}(p)$.

By taking $k=p$ in Theorem 2.1, we have
Corollary 2.1 : If $f \in T_{r}^{*}(p)$ satisfies

$$
\begin{equation*}
\sum_{n=2 p}^{\infty}(n-p+\alpha+1)\left|t_{n-p+1}\right| r^{n+1} \leq e(p-\alpha) \tag{7}
\end{equation*}
$$

for some $\frac{p}{2} \leq \alpha<p$, then $f \in S_{\alpha}^{*}(p)$.
Corollary 2.2: If $f \in T_{r}^{*}(p)$ and $t_{n-p+1}=\left|t_{n-p+1}\right| e^{-\frac{n+1}{2 \pi} i}$, then $f(z) \in S_{\alpha}^{*}(p)$ if and only if

$$
\begin{equation*}
\sum_{n=2 p}^{\infty}(n-p+\alpha+1)\left|t_{n-p+1}\right| r^{n+1} \leq e(p-\alpha) \tag{8}
\end{equation*}
$$

where $\frac{p}{2} \leq \alpha<p$.
Proof : By Corollary 2.1, we have $f(z) \in S_{\alpha}^{*}(p)$. Conversely, assume that $f(z) \in S_{\alpha}^{*}(p)$, then

$$
\begin{aligned}
\operatorname{Re}\left(-\frac{z f^{\prime}(z)}{f(z)}\right) & =\operatorname{Re}\left(-\frac{-p e z^{-p}+\sum_{n=2 p}^{\infty}(n-p+1) t_{n-p+1} z^{n-p+1}}{e z^{-p}+\sum_{n=2 p}^{\infty} t_{n-p+1} z^{n-p+1}}\right) \\
& =\operatorname{Re}\left(\frac{p e-\sum_{n=p}^{\infty}(n-p+1) t_{n-p+1} z^{n+1}}{e+\sum_{n=2 p}^{\infty} t_{n-p+1} z^{n+1}}\right)>\alpha
\end{aligned}
$$

Let $z=r e^{\frac{1}{2 \pi} i}$, then we have $t_{n-p+1} z^{n+1}=\left|t_{n-p+1}\right| r^{n+1}$. Therefore

$$
p e-\sum_{n=2 p}^{\infty}(n-p+1)\left|t_{n-p+1}\right| r^{n+1} \geq \alpha e+\alpha \sum_{n=2 p}^{\infty}\left|t_{n-p+1}\right| r^{n+1}
$$

Thus, the last inequality is equivalent to (8).
Example 2.1 : Let

$$
f(z)=\frac{e}{z^{p}}+t_{p+1} z^{p+1}+\left(\frac{e(p-\alpha)-(p+\alpha+1)\left|t_{p+1}\right|}{n-p+\alpha+1}\right) e^{i \theta} z^{n-p+1}
$$

where $t_{p+1}=\frac{(a, p+1)(b, p+1)}{(c, p+1)(p+1)!}$, for all a, b, c defined in (1) thus

$$
\begin{align*}
f(z)= & \frac{e}{z^{p}}+\frac{(a, p+1)(b, p+1)}{(c, p+1)(p+1)!} z^{p+1} \tag{1}\\
& +\left(\frac{e(p-\alpha)-(p+\alpha+1)}{n-p+\alpha+1}\left|\frac{(a, p+1)(b, p+1)}{(c, p+1)(p+1)!}\right|\right) e^{i \theta} z^{n-p+1} \tag{2}
\end{align*}
$$

for some real θ, with $\frac{p}{2} \leq a<p$, then $f(z) \in S_{\alpha}^{*}(p)$.

Remark 2.1: If $f(z) \in T_{r}^{*}(p)$ with $a=b=0$, then Corollary 2.2 holds true for $0 \leq \alpha<p$.
Corollary 2.3: If $f(z) \in T_{r}^{*}(p)$ given by (2) with $t_{n-p+1} \geq 0$, then $f(z) \in$ $S_{\alpha}^{*}(p)$ if and only if

$$
\begin{equation*}
\sum_{n=2 p}^{\infty}(n-p+\alpha+1) t_{n-p+1} r^{n+1} \leq e(p-\alpha) \tag{10}
\end{equation*}
$$

for some $\frac{p}{2} \leq \alpha<p$.
Theorem 2.2: Let $f(z) \in T_{r}^{*}(p)$ defined by (2). If $f(z)$ satisfies

$$
\begin{equation*}
\sum_{n=2 p}^{\infty}(n-p+1)(n-p+1+\alpha)\left|t_{n-p+1}\right| r^{n+1} \leq e(p-\alpha) \tag{11}
\end{equation*}
$$

then $f(z) \in C_{\alpha}^{*}(p)$, for $\frac{p}{2} \leq \alpha<p, p \in \mathbb{N}, z \in \mathcal{U}_{r}^{*}$.
Proof : Since $-z f^{\prime}(z) \in S_{\alpha}^{*}(p)$ if and only if $f(z) \in C_{\alpha}^{*}(p)$ then

$$
\begin{aligned}
-z f^{\prime}(z) & =-\left[-p e z^{-p}+\sum_{n=2 p}^{\infty}(n-p+1) t_{n-p+1} z^{n-p+1}\right] \\
& =p\left[\frac{e}{z^{p}}+\sum_{n=2 p}^{\infty} \frac{(p-n-1)}{p} t_{n-p+1} z^{n-p+1}\right]
\end{aligned}
$$

By (7), we get $-z f^{\prime}(z) \in S_{\alpha}^{*}(p)$, if

$$
\sum_{n=2 p}^{\infty}(n-p+\alpha+1)(n-p+1)\left|t_{n-p+1}\right| r^{n+1} \leq e(p-\alpha)
$$

Thus, $f(z) \in C_{\alpha}^{*}(p)$.
Corollary 2.4: If $f(z) \in T_{r}^{*}(p)$ be given by (2) with $t_{n-p+1}=\left|t_{n-p+1}\right| e^{-\frac{n+1}{2 \pi} i}$, then $f(z) \in C_{\alpha}^{*}(p)$ if and only if

$$
\begin{equation*}
\sum_{n=2 p}^{\infty}(n-p+1)(n-p+1+\alpha)\left|t_{n-p+1}\right| r^{n+1} \leq e(p-\alpha) \tag{12}
\end{equation*}
$$

for $0 \leq \alpha<p$.
Corollary 2.5 : If $f(z) \in T_{r}^{*}(p)$ be given by (2) with $t_{n-p+1} \geq 0$, then $f(z) \in$ $C_{\alpha}^{*}(p)$ if and only if

$$
\begin{equation*}
\sum_{n=2 p}^{\infty}(n-p+1)(n-p+1+\alpha) t_{n-p+1} r^{n+1} \leq e(p-\alpha) \tag{13}
\end{equation*}
$$

Example 2.2: Let

$$
\begin{aligned}
f(z)= & \frac{e}{z^{p}}+\frac{(a, p+1)(b, p+1)}{(c, p+1)(p+1)!} z^{p+1} \\
& +\left(\frac{e(p-\alpha)-(p+\alpha+1)}{(n-p+1)(n-p+1+\alpha)}\left|\frac{(a, p+1)(b, p+1)}{(c, p+1)(p+1)!}\right|\right) e^{i \theta} z^{n-p+1}
\end{aligned}
$$

for some real θ, with $0 \leq \alpha<p$, then $f(z) \in C_{\alpha}^{*}(p)$.
Remark 2.2: If $f(z) \in T_{r}^{*}(p)$ given by (2) with $a=b=0$, then Corollary 2.4 holds true for $0 \leq \alpha<p$.

3. Starlikeness and Convexity of Functions

Theorem 3.1: Let $f(z) \in T_{r}^{*}(p)$, then $f(z) \in S_{\alpha}^{*}(p)$ for $0 \leq r<r_{0}$, where r_{0} is the smallest positive roof of the equation
$(p+1+\alpha)\left|t_{p+1}\right| r^{2 p+3}-\delta(\sqrt{p+2}) r^{2 p+2}-(p+1+\alpha) \mid r^{2 p+1}-e(p-\alpha) r^{2}+e(p-\alpha)=0$
where

$$
\begin{equation*}
\delta=\sqrt{\sum_{n=2 p+1}^{\infty}(n-p+1)\left|t_{n-p+1}\right|^{2}}+\alpha \sqrt{\sum_{n=2 p+1}^{\infty} \frac{1}{n-p+1}\left|t_{n-p+1}\right|^{2}} \tag{15}
\end{equation*}
$$

Proof: We know that

$$
\sum_{n=2 p}^{\infty}(n-p+1+\alpha)\left|t_{n-p+1}\right| r^{n+1}=(p+1+\alpha)\left|t_{p+1}\right| r^{2 p+1}+\sum_{n=2 p+1}^{\infty}(-p+1+\alpha)\left|t_{n-p+1}\right| r^{n+1}
$$

So, by Cauchy inequality, we have

$$
\begin{aligned}
& \sum_{n=2 p}^{\infty}(n-p+1+\alpha)\left|t_{n-p+1}\right| r^{n+1} \leq(p+1+\alpha)\left|t_{p+1}\right| r^{2 p+1} \\
& +\sqrt{\sum_{n=2 p+1}^{\infty}(n-p+1)\left|t_{n-p+1}\right|^{2}} \sqrt{\sum_{n=2 p+1}^{\infty}(n-p+1) r^{2 n+2}} \\
& +\alpha \sqrt{\sum_{n=2 p+1}^{\infty} \frac{1}{n-p+1}\left|t_{n-p+1}\right|^{2}} \sqrt{\sum_{n=2 p+1}^{\infty}(n-p+1) r^{2 n+2}} \\
& \leq(p+1+\alpha)\left|t_{p+1}\right| r^{2 p+1}+\sqrt{\sum_{n=2 p+1}^{\infty}(n-p+1) r^{2 n+2}} \\
& \left(\sqrt{\sum_{n=2 p+1}^{\infty}(n-p+1)\left|t_{n-p+1}\right|^{2}+\alpha \sqrt{\sum_{n=2 p+1}^{\infty}} \frac{1}{n-p+1}\left|t_{n-p+1}\right|^{2}}\right) \\
& \leq(p+1+\alpha)\left|t_{p+1}\right| r^{2 p+1}+\sqrt{\frac{(p+2) r^{2(2 p+2)}}{\left(1-r^{2}\right)^{2}} \delta}
\end{aligned}
$$

where δ defined above

$$
\leq(p+1+\alpha)\left|t_{p+1}\right| r^{2 p+1}+\frac{\sqrt{p+2} r^{2 p+2}}{1-r^{2}} \delta<e(p-\alpha)
$$

by using Corollary 2.2.
Thus, $f(z) \in S_{\alpha}^{*}(p)$ for $0 \leq r<r_{0}$.
Putting $t_{p+1}=0$ we obtain the following
Corollary 3.1 : A function $f(z) \in T_{r}^{*}(p)$ with $t_{p+1}=0$ belongs to the class $S_{\alpha}^{*}(p)$ for $0 \leq r<r_{0}$ where r_{0} is the smallest positive root of the equation

$$
\begin{equation*}
\delta\left(\sqrt{p+2} r^{2 p+2}\right)+e(p-\alpha) r^{2}=e(p-\alpha) \tag{16}
\end{equation*}
$$

where δ is given by (15).
Next we consider the problems of radius for convexity of functions $f(z) \in$ $T^{*}(p)$.
Theorem 3.2; Let $f(z) \in T_{r}^{*}(p)$, then $f(z) \in C_{\alpha}^{*}(p)$ for $0 \leq r<r_{1}$, where r_{1} is the smallest root of the equation

$$
\begin{align*}
& (p+1+\alpha)\left|t_{p+1}\right| r^{2 p+3}-\sigma(\sqrt{p+2}) r^{2 p+2}-(p+1+\alpha)\left|t_{p+1}\right| r^{2 p+1} \tag{3}\\
& -e(p-\alpha) r^{2}+e(p-\alpha)=0 \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
\sigma=\sqrt{\sum_{n=2 p+1}^{\infty}(n-p+1)^{3}\left|t_{n-p+1}\right|}+\alpha \sqrt{\sum_{n=2 p+1}^{\infty}(n-p+1)\left|t_{n-p+1}\right|^{2}} \tag{18}
\end{equation*}
$$

Proof : By using Theorem 3.1 and Theorem 2.2
So we can omit the details.
Putting $t_{p+1}=0$ in Theorem 3.2 we can obtain the following
Corollary 3.2: Let $\left.f(z) \in T_{(}^{*} p\right)$ with $t_{p+1}=0$ such that $f(z) \in C_{\alpha}^{*}(p)$ for $0 \leq r<r_{1}$, where r_{1} is the smallest positive root of the equation

$$
\begin{equation*}
\sigma\left(\sqrt{p+2} r^{2 p+2}\right)+e(p-\alpha) r^{2}=e(p-\alpha) \tag{19}
\end{equation*}
$$

where σ is given by (18).

REFERENCES

[1] M. K. Aouf, New criteria for multivalent meromorphic starlike functions of order alpha, Proc. Japan Acad. Math. Sci., Ser. A-69, (1993), 66-70.
[2] M. K. Aouf and H. M. Srivastava, A new criteria for meromorphically p-valent convex functions of order alpha, Math. Sci. Res. Hot-line, 1(8), (1997), 7-12.
[3] S. R. Kulkarni, U. H. Naik and H. M. Srivastava, A certain class of meromorphically p-valent Quasi-convex functions, Pan Amer. Math. J., 8(1), (1998), 57-64.
[4] T. Mathur, Coefficient inequalities for certain classes of meromorphically multivalent starlike and convex functions, Jour. Indian Acad. Math., 28, 1 (2006), 147-156.
[5] M. L. Mogra, Meromorphic multivalent functions with positive coefficients I and II, Math. Japan, 35, (1990), 1-11 and 10841098.
[6] S. Owa and N. N. Pascu, Coefficient inequalities for certain classes of meromorphically starlike and meromorphically convex functions, Inequal. Pure and Appl. Math., 4(1), (2003), 1-6.
[7] S. Ozaki, Some remarks on the univalency of functions, Sci. Rep. Tokyo Bunrika Daigaku, 2, (1934), 41-55.
[8] H. M. Srivastava and S. Owa (Editors), Current topics in analytic function theory, World Scientific Publishing Co., Singapore, New Jersey, London and Hong Kong (1992).

Address
Abdul Rahman S. Juma:
Department of Mathematics, University of Pune, Pune - 411007, India E-mail: absa662004@yahoo.com
S. R. Kulkarni:

Department of Mathematics, Fergusson College, Pune - 411004, India E-mail: kulkarni_ferg@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Keywords and Phrases. Multivalent functions, Hypergeometric functions, Meromorphic functions.

 Received: September 22, 2007
 Communicated by Dragan S. Djordjević

