ON GO-COMPACT SPACES

M. Caldas, S. Jafari, S. P. Moshokoa and T. Noiri

Abstract

The purpose of this paper is to offer some more properties of GO-compact spaces and to introduce and investigate some properties of g-continuous multifunctions. We also investigate GO-compact spaces in the context of multifunctions.

1 Introduction and preliminaries

Levine [11] introduced the concept of generalized closed sets of a topological space. Since the advent of these notions, several research papers with interesting results in different respects came to existence (see, [1], [3], [4], [5], [6], [8], [9], [10], [12]). Recently Caldas and Jafari [4] introduced and investigated the concepts of g-US spaces, g-convergency, sequential GO-compactness, sequential g-continuity and sequential g-sub-continuity.

Throughout the present paper (X,τ) and (Y,σ) (or simply X and Y) denote topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by Int(A) and Cl(A), respectively. $A \subset X$ is called a generalized closed set (briefly g-closed set) of X [11] if $Cl(A) \subset G$ holds whenever $A \subset G$ and G is open in X. The union of two g-closed sets is a g-closed set. A subset A of X is called a g-open set of X, if its complement A^c is g-closed in X. The intersection of all g-closed sets containing a set A is called the g-closure of A [10] and is denoted by gCl(A). If $A \subset X$, then $A \subset gCl(A) \subset Cl(A)$. The collection of all g-closed (resp. g-open) subsets of X will be denoted by GC(X) (resp. GO(X)). We set $GC(X,x) = \{V \in GC(X)/x \in V\}$ for $x \in X$. We define similarly GO(X,x). Let g be a point of g and g be a subset of g. g is called a g-neighborhood of g in g if there exists a g-open set g of g such that $g \in G$.

A space X is GO-compact if every g-open cover of X has a finite subcover. Since every open sets is a g-open set, it follows that every GO-compact space is compact.

 $^{2000\} Mathematics\ Subject\ Classifications.\ 54B05,\ 54C08;\ Secondary:\ 54D05.$

Key words and Phrases. Ag-open sets, g-closed sets, g-complete accumulation point, GO-compact spaces, multifunctions.

Received: June 27, 2007

Communicated by Dragan S. Djordjević

But, the converse may be false. Let $X = \{x\} \cup \{x_i : i \in I\}$ where the indexed set I is uncountable. Let $\tau = \{\emptyset, \{x\}, X\}$ be the topology on X. Evidently, X is a compact space. However, it is not a GO-compact space because $\{\{x, x_i\} : i \in I\}$ is a g-open covering of X but it has no finite subcover. A subset A of a space X is said to be GO-compact if A is GO-compact as a subspace of X. If the product space of two no-empty spaces is GO-compact, then each factor space is GO-compact [1]. If A is g-open in X and B is g-open in Y, then $A \times B$ is g-open in $X \times Y$ [11]. A function $f: X \to Y$ is said to be g-continuous [1] if the inverse image of every closed set in Y is g-closed in X.

It is the purpose of this paper to offer some more characterizations of GO-compact spaces. We also introduce the notion of g-complete accumulation points by which we give some characterizations of GO-compact spaces. By introducing the notion of 1-lower (resp. 1-upper) g-continuous functions and considering the known notion of 1-lower (resp. 1-upper) compatible partial orders we investigate some more properties of GO-compactness. We also investigate GO-compact spaces in the context of multifunctions by introducing 1-lower(resp. 1-upper) g-continuous multifunctions. Lastly we also obtain some characterizations of GO-compact spaces by using lower (resp. upper) g-continuous multifunctions. In this paper we are working in ZFC.

Recall that a function $f: X \to Y$ is said to be g-continuous [3] if the inverse image of each open set in Y is g-open in X.

Let Λ be a directed set. Now we introduce the following notions which will be used in this paper. A net $\xi = \{x_{\alpha} \mid \alpha \in \Lambda\}$ g-accumulates at a point $x \in X$ if the net is frequently in every $U \in GO(X,x)$, i.e. for each $U \in GO(X,x)$ and for each $\alpha_0 \in \Lambda$, there is some $\alpha \geq \alpha_0$ such that $x_{\alpha} \in U$. The net ξ g-converges to a point x of X if it is eventually in every $U \in gO(X,x)$. We say that a filterbase $\Theta = \{F_{\alpha} \mid \alpha \in \Gamma\}$ g-accumulates at a point $x \in X$ if $x \in \bigcap_{\alpha \in \Gamma} gCl(F_{\alpha})$. Given a set S with $S \subset X$, a g-cover of S is a family of g-open subsets U_{α} of X for each $\alpha \in I$ such that $S \subset \bigcup_{\alpha \in I} U_{\alpha}$. A filterbase $\Theta = \{F_{\alpha} \mid \alpha \in \Gamma\}$ g-converges to a point x in X if for each $U \in GO(X,x)$, there exists an F_{α} in Θ such that $F_{\alpha} \subset U$.

Recall that a multifunction (also called multivalued function [2]) F on a set X into a set Y, denoted by $F: X \to Y$, is a relation on X into Y, i.e. $F \subset X \times Y$. Let $F: X \to Y$ be a multifunction. The upper and lower inverse of a set Y of Y are denoted by $F^+(V)$ and $F^-(V)$:

$$F^+(V) = \{x \in X \mid F(x) \subset V\} \text{ and } F^-(V) = \{x \in X \mid F(x) \cap V \neq \emptyset\}.$$

2 GO-compact spaces

We begin with the following notions:

Definition 1 A point x in a space X is said to be a g-complete accumulation point of a subset S of X if $Card(S \cap U) = Card(S)$ for each $U \in GO(X, x)$, where

Card(S) denotes the cardinality of S.

Example 2.1 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{a, b, c\}\}$. Observe that both b and c are g-complete accumulation points of $\{a, b\}$. Notice that a is not a g-complete accumulation point of $\{a, b\}$

Definition 2 In a topological space X, a point x is said to be a g-adherent point of a filterbase Θ on X if it lies in the g-closure of all sets of Θ .

Observe that the Frechet filter does not satisfy Definition 2. But take a topological space X such that $A \subset X$. Then any point of the g-closure of A is a g-adherent point of $\Omega = \{U \subset X \mid A \subset U\}$.

Theorem 2.2 A space X is GO-compact if and only if each infinite subset of X has a g-complete accumulation point.

Proof. Let the space X be GO-compact and S an infinite subset of X. Let K be the set of points x in X which are not q-complete accumulation points of S. Now it is obvious that for each point x in K, we are able to find $U(x) \in GO(X,x)$ such that $Card(S \cap U(x)) \neq Card(S)$. If K is the whole space X, then $\Theta = \{U(x) \mid x \in X\}$ is a g-cover of X. By the hypothesis X is GO-compact, so there exists a finite subcover $\Psi = \{U(x_i)\}, \text{ where } i = 1, 2, ..., n \text{ such that } S \subset \bigcup \{U(x_i) \cap S \mid i = 1, 2, ..., n\}.$ Then $Card(S) = max\{Card(U(x_i) \cap S) \mid i = 1, 2, ..., n\}$ which does not agree with what we assumed. This implies that S has a q-complete accumulation point. Now assume that X is not GO-compact and that every infinite subset $S \subset X$ has a q-complete accumulation point in X. It follows that there exists a q-cover Ξ with no finite subcover. Set $\delta = min\{Card(\Phi) \mid \Phi \subset \Xi, \text{ where } \Phi \text{ is a } g\text{-cover of } X\}$. Fix $\Psi \subset \Xi$ for which $Card(\Psi) = \delta$ and $\bigcup \{U \mid U \in \Psi\} = X$. Let N denote the set of natural numbers. Then by hypothesis $\delta \geq Card(N)$. By well-ordering of Ψ by some minimal well-ordering " \sim ", suppose that U is any member of Ψ . By minimal well-ordering " \sim " we have $Card(\{V \mid V \in \Psi, V \sim U\} < Card(\{V \mid V \in \Psi\})$. Since Ψ can not have any subcover with cardinality less than δ , then for each $U \in \Psi$ we have $X \neq \bigcup \{V \mid V \in \Psi, V \sim U\}$. For each $U \in \Psi$, choose a point $x(U) \in X \setminus \bigcup \{V \cup \{x(V)\} \mid V \in \Psi, V \sim U\}$. We are always able to do this if not one can choose a cover of smaller cardinality from Ψ . If $H = \{x(U) \mid U \in \Psi\}$, then to finish the proof we will show that H has no g-complete accumulation point in X. Suppose that z is a point of the space X. Since Ψ is a q-cover of X then z is a point of some set W in Ψ . By the fact that $U \sim W$, we have $x(U) \in W$. It follows that $T = \{U \mid U \in \Psi \text{ and } x(U) \in W\} \subset \{V \mid V \in \Psi, V \sim W\}$. But $Card(T) < \delta$. Therefore $Card(H \cap W) < \delta$. But $Card(H) = \delta \geq Card(N)$ since for two distinct points U and W in Ψ , we have $x(U) \neq x(W)$. This means that H has no q-complete accumulation point in X which contradicts our assumptions. Therefore X is GO-compact.

Theorem 2.3 For a space X the following statements are equivalent:

- (1) X is GO-compact;
- (2) Every net in X with a well-ordered directed set as its domain g-accumulates to some point of X.

Proof. (1) \Rightarrow (2): Suppose that X is GO-compact and $\xi = \{x_{\alpha} \mid \alpha \in \Lambda\}$ a net with a well-ordered directed set Λ as domain. Assume that ξ has no g-adherent point in X. Then for each point x in X, there exist $V(x) \in GO(X,x)$ and an $\alpha(x) \in \Lambda$ such that $V(x) \cap \{x_{\alpha} \mid \alpha \geq \alpha(x)\} = \emptyset$. This implies that $\{x_{\alpha} \mid \alpha \geq \alpha(x)\}$ is a subset of $X \setminus V(x)$. Then the collection $C = \{V(x) \mid x \in X\}$ is a g-cover of X. By hypothesis of the theorem, X is GO-compact and so C has a finite subfamily $\{V(x_i)\}$, where i = 1, 2, ..., n such that $X = \bigcup \{V(x_i)\}$. Suppose that the corresponding elements of Λ be $\{\alpha(x_i)\}$, where i = 1, 2, ..., n. Since Λ is well-ordered and $\{\alpha(x_i)\}$, where i = 1, 2, ..., n is finite, the largest element of $\{\alpha(x_i)\}$ exists. Suppose it is $\{\alpha(x_l)\}$. Then for $\gamma \geq \{\alpha(x_l)\}$, we have $\{x_{\delta} \mid \delta \geq \gamma\} \subset \bigcap_{i=1}^n (X \setminus V(x_i)) = X \setminus \bigcup_{i=1}^n V(x_i) = \emptyset$ which is impossible. This shows that ξ has at least one g-adherent point in X.

 $(2)\Rightarrow (1)$: Now it is enough to prove that each infinite subset has a g-complete accumulation point by utilizing Theorem 3.1. Suppose that $S\subset X$ is an infinite subset of X. According to Zorn's Lemma, the infinite set S can be well-ordered. This means that we can assume S to be a net with a domain which is a well-ordered index set. It follows that S has a g-adherent point S. Therefore S is a S-complete accumulation point of S. This shows that S is S-compact.

Theorem 2.4 A space X is GO-compact if and only if each family of g-closed subsets of X with the finite intersection property has a nonempty intersection.

Proof. Straightforward.

Question 2.5 Which condition or conditions should be imposed on a topological space X such that the following statements are equivalent:

- (1) X is GO-compact;
- (2) Each filterbase on X with at most one g-adherent point is g-convergent.

3 GO-compactness and 1-lower and 1-upper g-continuous functions

In this section we further investigate properties of GO-compactness by 1-lower and 1-upper g-continuous functions. We begin with the following notions and in what follows R denotes the set of real numbers.

Definition 3 A function $f: X \to R$ is said to be 1-lower (resp. 1-upper) g-continuous at the point y in X if for each $\lambda > 0$, there exists a g-open set $U(y) \in GO(X,y)$ such that $f(x) > f(y) - \lambda$ (resp. $f(x) > f(y) + \lambda$) for every point x in U(y). The function f is 1-lower (resp. 1-upper) g-continuous in X if it has these properties for every point x of X.

Example 3.1 Take $f:(R,\tau_u) \to (R,\tau)$, where τ_u is the usual topology and τ is the family of sets $\tau = \{(\eta,\infty) \mid \eta \in R\} \cup R$. Such a function is 1-lower g-continuous. Now take $f:(R,\tau_u) \to (R,\sigma)$, where τ_u is the usual topology and σ is the family of sets $\sigma = \{(-\infty,\eta) \mid \eta \in R\} \cup R$. Such a function is 1-upper g-continuous.

Theorem 3.2 A function $f: X \to R$ is 1-lower g-continuous if and only if for each $\eta \in R$, the set of all x such that $f(x) \le \eta$ is g-closed.

Proof. It is obvious that the family of sets $\tau = \{(\eta, \infty) \mid \eta \in R\} \cup R$ establishes a topology on R. Then the function f is 1-lower g-continuous if and only if $f: X \to (R, \tau)$ is g-continuous. The interval $(-\infty, \eta]$ is closed in (R, τ) . It follows that $f^{-1}((-\infty, \eta])$ is g-closed. Therefore the set of all x such that $f(x) \leq \eta$ is equal to $f^{-1}((-\infty, \eta])$ and thus is g-closed.

Corollary 3.3 A subset S of X is GO-compact if and only if the characteristic function X_S is 1-lower g-continuous.

Theorem 3.4 A function $f: X \to R$ is 1-upper g-continuous if and only if for each $\eta \in R$, the set of all x such that $f(x) \ge \eta$ is g-closed.

Corollary 3.5 A subset S of X is GO-compact if and only if the characteristic function X_S is 1-upper g-continuous.

Question 3.6 Is it true that if the function $G(x) = \inf_{i \in I} f_i(x)$ exists, where f_i , are 1-upper g-continuous functions from X into R, then G(x) is 1-upper g-continuous?

Theorem 3.7 Let $f: X \to R$ be a 1-lower g-continuous function, where X is GO-compact. Then f assumes the value $m = \inf_{x \in X} f(x)$.

Proof. Suppose $\eta > m$. Since f is 1-lower g-continuous, then the set $K(\eta) = \{x \in X \mid f(x) \leq \eta\}$ is a non-empty g-closed set in X by infimum property. Hence the family $\{K(\eta) \mid \eta > m\}$ is a collection of non-empty g-closed sets with finite intersection property in X. By Theorem 2.4 this family has non-empty intersection. Suppose $z \in \bigcap_{n > m} K(\eta)$. Therefore f(z) = m as we wished to prove.

4 GO-compactness and g-continuous multifunctions

In this section, we give some characterizations of GO-compact spaces by using lower (resp. upper) g-continuous multifunctions.

Definition 4 A multifunction $F: X \to Y$ is said to be lower (resp. upper) g-continuous if $X \setminus F^-(S)$ (resp. $F^-(S)$) is g-closed in X for each open (resp. closed) set S in Y.

For the following two lemmas we shall assume that if gCl(A) = A, then A is g-closed".

Lemma 4.1 For a multifunction $F: X \to Y$, the following statements are equivalent:

(1) F is lower g-continuous;

- (2) If $x \in F^-(U)$ for a point x in X and an open set $U \subset Y$, then $V \subset F^-(U)$ for some $V \in GO(x)$;
- (3) If $x \notin F^+(D)$ for a point x in X and a closed set $D \subset Y$, then $F^+(D) \subset K$ for some g-closed set K with $x \notin K$;
- (4) $F^-(U) \in GO(X)$ for each open set $U \subset Y$.
- *Proof.* (1) \Rightarrow (4): Let U be any open set in Y. By (1), $X-F^-(U)$ is g-closed in X and hence $F^-(U) \in GO(X)$
- $(4) \Rightarrow (2)$: Let U be any open set of Y and $x \in F^-(U)$. By (4), $F^-(U) \in GO(X)$. Put $V = F^-(U)$. Then $V \in GO(X)$ and $V \subset F^-(U)$.
- (2) \Rightarrow (3): Let D be closed in Y and $x \notin F^+(D)$. Then Y D is open in Y and $x \in X F^+(D) = F^-(X D)$. Therefore, There exists $V \in GO(x)$ such that $V \subset F^-(U)$. Now, put K = X V, then $x \notin K$, K is g-closed and $K = X V \supset X F^-(Y D) = F^+(D)$.
- $(3)\Rightarrow (1)$: We show that $F^+(H)$ is g-closed for any closed set H of Y. Let H be any closed set and $x\notin F^+(H)$. By (3) there exists a g-closed set K such that $x\notin K$ and $F^+(H)\subset K$; hence $F^+(H)\subset gCl(F^+(H))\subset K$. Since $x\notin K$, we have $x\notin gCl(F^+(H))$. This implies that $gCl(F^+(H))\subset F^+(H)$. In general, we have $F^+(H)\subset gCl(F^+(H))$ and hence $F^+(H)=gCl(F^+(H))$. Hence $F^+(H)$ is g-closed for any closed set H of Y.

Lemma 4.2 For a multifunction $F: X \to Y$, the following statements are equivalent:

- (1) F is upper g-continuous;
- (2) If $x \in F^+(V)$ for a point x in X and an open set $V \subset Y$, then $F(U) \subset V$ for some $U \in GO(x)$;
- (3) If $x \notin F^-(D)$ for a point x in X and a closed set $D \subset Y$, then $F^-(D) \subset K$ for some g-closed set K with $x \notin K$;
- (4) $F^+(U) \in GO(X)$ for each open set $U \subset Y$.
- *Proof.* (1) \Rightarrow (4): Let U be any open set in Y. Then Y-U is closed. By (1), $F^-(Y-U)=X-F^+(U)$ is g-closed in X and hence $F^+(U)\in GO(X)$.
- $(4) \Rightarrow (2)$: Let V be any open set of Y and $x \in F^+(V)$. By (4), $F^+(V) \in GO(X)$. Put $U = F^+(V)$. Then $U \in GO(X)$ and $F(U) \subset V$.
- (2) \Rightarrow (3): Let D be closed in Y and $x \notin F^-(D)$. Then Y D is open and $x \in X F^-(D) = F^+(Y D)$. By (2), there exists $U \in GO(X)$ such that $F(U) \subset Y D$. Now, put K = X U, then $x \notin K$, K is g-closed and $K = X U \supset X F^+(Y D) = F^-(D)$.
- $(3)\Rightarrow (1)$: We show that $F^-(H)$ is g-closed for any closed set H of Y. Let H be any closed set and $x\notin F^-(H)$. By (3), there exists a g-closed set K such that $x\notin K$ and $F^-(H)\subset K$; hence $F^-(H)\subset gCl(F^-(H))\subset K$. Since $x\notin K$, we have $x\notin gCl(F^-(H))$. This implies that $gCl(F^-(H))\subset F^-(H)$. In general, we have $F^-(H)\subset gCl(F^-(H))$ and hence $F^-(H)=gCl(F^-(H))$. Hence $F^-(H)$ is g-closed for any closed set H of Y.

Theorem 4.3 The following two statements are equivalent for a space X: (1) X is GO-compact.

(2) Every lower g-continuous multifunction from X into the closed sets of a space assumes a minimal value with respect to set inclusion relation.

Proof. (1) \Rightarrow (2): Suppose that F is a lower g-continuous multifunction from X into the closed subsets of a space Y. We denote the poset of all closed subsets of Y with the set inclusion relation " \subseteq " by Λ . Now we show that $F: X \to \Lambda$ is a lower g-continuous function. We will show that $N = F^-(\{S \subset Y \mid S \in \Lambda \text{ and } S \subseteq C\})$ is g-closed in X for each closed set C of Y. Let $z \notin N$, then $F(z) \neq S$ for every closed set S of Y. It is obvious that $z \in F^-(Y \setminus C)$, where $Y \setminus C$ is open in Y. By Lemma 4.1 (2), we have $W \subset F^-(Y \setminus C)$ for some $W \in GO(z)$. Hence $F(w) \cap (Y \setminus C) \neq \emptyset$ for each w in W. So for each w in W, $F(w) \setminus C \neq \emptyset$. Consequently, $F(w) \setminus S \neq \emptyset$ for every closed subset S of Y for which $S \subseteq C$. We consider that $W \cap N = \emptyset$. This means that N is g-closed. Thus we observe that F assumes a minimal value.

 $(2) \Rightarrow (1)$: Suppose that X is not GO-compact. It follows that we have a net $\{x_i \mid i \in \Lambda\}$, where Λ is a well-ordered set with no g-accumulation point by ([8], Theorem 3.2). We give Λ the order topology. Let $M_j = gCl\{x_i \mid i \geq j\}$ for every jin Λ . We establish a multifunction $F: X \to \Lambda$ where $F(x) = \{i \in \Lambda \mid i \geq j_x\}, j_x$ is the first element of all those j's for which $x \notin M_i$. Since Λ has the order topology, F(x) is closed. By the fact that $\{j_x \mid x \in X\}$ has no greatest element in Λ , then F does not assume any minimal value with respect to set inclusion. We now show that $F^-(U) \in GO(X)$ for every open set U in Λ . If $U = \Lambda$, then $F^-(U) = X$ which is g-open. Suppose that $U \subset \Lambda$ and $z \in F^-(U)$. It follows that $F(z) \cap U \neq \emptyset$. Suppose $j \in F(z) \cap U$. This means that $j \in U$ and $j \in F(z) = \{i \in \Lambda \mid i \geq j_x\}$. Therefore $M_i \geq M_{i_x}$. Since $z \notin M_{i_x}$, then $z \notin M_i$. There exists $W \in GO(z)$ such that $W \cap \{x_i \mid i \in \Lambda\} = \emptyset$. This means that $W \cap M_j = \emptyset$. Let $w \in W$. Since $W \cap M_j = \emptyset$, it follows that $w \notin M_j$ and since j_w is the first element for which $w \notin M_j$, then $j_w \leq j$. Therefore $j \in \{i \in \Lambda \mid i \geq j_w\} = F(w)$. By the fact that $j \in U$, then $j \in F(w) \cap U$. It follows that $F(w) \cap U \neq \emptyset$ and therefore $w \in F^{-}(U)$. So we have $W \subset F^-(U)$ and thus $z \in W \subset F^-(U)$. Therefore $F^-(U)$ is g-open. This shows that F is lower q-continuous which contradicts the hypothesis of the theorem. So the space X is GO-compact.

Theorem 4.4 The following two statements are equivalent for a space X:

- (1) X is GO-compact.
- (2) Every upper g-continuous multifunction from X into the subsets of a T_1 -space attains a maximal value with respect to set inclusion relation.

Proof. Its proof is similar to that of Theorem 4.3.

The following result concerns the existence of a fixed point for multifunctions on GO-compact spaces.

Theorem 4.5 Suppose that $F: X \to Y$ is a multifunction from a GO-compact domain X into itself. Let F(S) be g-closed for S being a g-closed set in X. If $F(x) \neq \emptyset$ for every point $x \in X$, then there exists a nonempty, g-closed set C of X such that F(C) = C.

Proof. Let $\Lambda = \{S \subset X \mid S \neq \emptyset, S \in GC(X) \text{ and } F(S) \subset S\}$. It is evident that x belongs to Λ . Therefore $\Lambda \neq \emptyset$ and also it is partially ordered by set inclusion. Suppose that $\{S_\gamma\}$ is a chain in Λ . Then $F(S_\gamma) \subset S_\gamma$ for each γ . By the fact that the domain is GO-compact and by ([8], Theorem 3.3), $S = \bigcap_\gamma S_\gamma \neq \emptyset$ and also $S \in GC(X)$. Moreover, $F(S) \subset F(S_\gamma) \subset S_\gamma$ for each γ . It follows that $F(S) \subset S_\gamma$. Hence $S \in \Lambda$ and $S = \inf\{S_\gamma\}$. It follows from Zorn's lemma that Λ has a minimal element C. Therefore $C \in GC(X)$ and $F(C) \subset C$. Since C is the minimal element of Λ , we have F(C) = C.

We close with the following open question:

Question 4.6 Give a nontrivial example of a GO-compact space?

Acknowledgment. S. P. Moshokoa acknowledges the support by the South African National Research Foundation under Grant number 2053847. Parts of this paper were written while S. Jafari was a visitor to the Department of Mathematical Sciences of the University of South Africa during october 2005.

References

- [1] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, *Mem. Fac. Sci. Kochi Univ. (Math.)*, **12** (1991), 5-13.
- [2] C. Berge, Topological spaces, Macmillan, New York, 1963.
- [3] M. Caldas, On g-closed sets and g-continuous mappings, Kyungpook Math. J. 33(1993),205-209.
- [4] M. Caldas and S. Jafari, On g-US spaces, Univ. Bacau. Stud. Cerc. St. Ser. Mat. Romania, 14 (2005), 13-20.
- [5] M. Caldas and S. Jafari, On rarely g-continuous functions, Glasnik Mat., 40(2) (2005), 317-322.
- [6] M. Caldas, S. Jafari and T. Noiri, Notions via g-open sets, Kochi J. Math. 2(2007), 43-50.
- [7] M. Caldas, S. Jafari, T. Noiri and M. Simões, A new generalization of contra-continuity via Levine's g-closed sets, Chaos, Solitons and Fractals, 32 (4)(2007), 1597-1603.
- [8] W. Dunham and N. Levine, Further results on generalized closed sets in topology, *Kyunqpook Math. J.*, **20** (1980), 169-175.
- [9] W. Dunham, $T_{1/2}$ -spaces, Kyungpook Math. J., **17**(1977), 161-169.
- [10] W. Dunham, A new closure operator for non- T_1 topologies, $Kyungpook\ Math.$ $J.,\ \mathbf{22}(1982),\ 55\text{-}60.$

- [11] N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo* (2), **19** (1970), 89-96.
- [12] S. R. Malghan, Generalized closed sets maps, *J. Karnatak Univ. Sci.*, **27**(1982), 82-88.

Addresses:

M. Caldas

Departamento de Matemática Aplicada, Universidade Federal Fluminense, Rua Mário Santos Braga, $\rm s/n^o$ 24020-140, Niterói, RJ BRAZIL. $\it E-mail$: gmamccs@vm.uff.br

S. Jafari

College of Vestsjaelland South, Herrestraede 11 4200 Slagelse, DENMARK. *E-mail*: jafari@stofanet.dk

S. P. Moshokoa

Department of Mathematical Sciences, University of South Africa, P.O. Box 392, Pretoria 0003, SOUTH AFRICA. E-mail: moshosp@unisa.ac.za

T. Noiri

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 JAPAN *E-mail*: t.noiri@nifty.com