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ON GO-COMPACT SPACES

M. Caldas, S. Jafari, S. P. Moshokoa and T. Noiri

Abstract

The purpose of this paper is to offer some more properties of GO-compact
spaces and to introduce and investigate some properties of g-continuous mul-
tifunctions. We also investigate GO-compact spaces in the context of multi-
functions.

1 Introduction and preliminaries

Levine [11] introduced the concept of generalized closed sets of a topological space.
Since the advent of these notions, several research papers with interesting results
in different respects came to existence (see, [1], [3], [4], [5], [6], [8], [9], [10], [12]).
Recently Caldas and Jafari [4] introduced and investigated the concepts of g-US
spaces, g-convergency, sequential GO-compactness, sequential g-continuity and se-
quential g-sub-continuity.

Throughout the present paper (X, τ) and (Y, σ) (or simply X and Y ) denote
topological spaces. Let A be a subset of X. We denote the interior and the closure
of a set A by Int(A) and Cl(A), respectively. A ⊂ X is called a generalized closed
set (briefly g-closed set) of X [11] if Cl(A) ⊂ G holds whenever A ⊂ G and G is
open in X. The union of two g-closed sets is a g-closed set. A subset A of X is
called a g-open set of X, if its complement Ac is g-closed in X. The intersection of
all g-closed sets containing a set A is called the g-closure of A [10] and is denoted
by gCl(A). If A ⊂ X, then A ⊂ gCl(A) ⊂ Cl(A). The collection of all g-closed
(resp. g-open) subsets of X will be denoted by GC(X) (resp. GO(X)). We set
GC(X, x) = {V ∈ GC(X)/x ∈ V } for x ∈ X. We define similarly GO(X, x). Let p
be a point of X and N be a subset of X. N is called a g-neighborhood of p in X
[3] if there exists a g-open set O of X such that p ∈ O ⊂ N .

A space X is GO-compact if every g-open cover of X has a finite subcover. Since
every open sets is a g-open set, it follows that every GO-compact space is compact.
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But, the converse may be false. Let X = {x} ∪ {xi : i ∈ I} where the indexed set
I is uncountable. Let τ = {∅, {x}, X} be the topology on X. Evidently, X is a
compact space. However, it is not a GO-compact space because {{x, xi} : i ∈ I} is
a g-open covering of X but it has no finite subcover. A subset A of a space X is said
to be GO-compact if A is GO-compact as a subspace of X. If the product space
of two no-empty spaces is GO-compact, then each factor space is GO-compact [1].
If A is g-open in X and B is g-open in Y , then A × B is g-open in X × Y [11].
A function f : X → Y is said to be g-continuous [1] if the inverse image of every
closed set in Y is g-closed in X.

It is the purpose of this paper to offer some more characterizations of GO-
compact spaces. We also introduce the notion of g-complete accumulation points
by which we give some characterizations of GO-compact spaces. By introducing
the notion of 1-lower (resp. 1-upper) g-continuous functions and considering the
known notion of 1-lower (resp. 1-upper) compatible partial orders we investigate
some more properties of GO-compactness. We also investigate GO-compact spaces
in the context of multifunctions by introducing 1-lower(resp. 1-upper) g-continuous
multifunctions. Lastly we also obtain some characterizations of GO-compact spaces
by using lower (resp. upper) g-continuous multifunctions. In this paper we are
working in ZFC.

Recall that a function f : X → Y is said to be g-continuous [3] if the inverse
image of each open set in Y is g-open in X.

Let Λ be a directed set. Now we introduce the following notions which will be
used in this paper. A net ξ = {xα | α ∈ Λ} g-accumulates at a point x ∈ X if
the net is frequently in every U ∈ GO(X,x), i.e. for each U ∈ GO(X,x) and for
each α0 ∈ Λ, there is some α ≥ α0 such that xα ∈ U . The net ξ g-converges to
a point x of X if it is eventually in every U ∈ gO(X, x). We say that a filterbase
Θ = {Fα | α ∈ Γ} g-accumulates at a point x ∈ X if x ∈ ⋂

α∈Γ gCl(Fα). Given a
set S with S ⊂ X, a g-cover of S is a family of g-open subsets Uα of X for each
α ∈ I such that S ⊂ ⋃

α∈I Uα. A filterbase Θ = {Fα | α ∈ Γ} g-converges to a point
x in X if for each U ∈ GO(X, x), there exists an Fα in Θ such that Fα ⊂ U .

Recall that a multifunction ( also called multivalued function [2]) F on a set X
into a set Y , denoted by F : X → Y , is a relation on X into Y, i.e. F ⊂ X × Y .
Let F : X → Y be a multifunction. The upper and lower inverse of a set V of Y
are denoted by F+(V ) and F−(V ):

F+(V ) = {x ∈ X | F (x) ⊂ V } and F−(V ) = {x ∈ X | F (x) ∩ V 6= ∅}.

2 GO-compact spaces

We begin with the following notions:

Definition 1 A point x in a space X is said to be a g-complete accumulation point
of a subset S of X if Card(S ∩ U) = Card(S) for each U ∈ GO(X,x), where
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Card(S) denotes the cardinality of S.

Example 2.1 Let X = {a, b, c, d} with topology τ = {X, ∅, {a}, {a, b, c}}. Observe
that both b and c are g-complete accumulation points of {a, b}. Notice that a is not
a g-complete accumulation point of {a, b}
Definition 2 In a topological space X, a point x is said to be a g-adherent point
of a filterbase Θ on X if it lies in the g-closure of all sets of Θ.

Observe that the Frechet filter does not satisfy Definition 2. But take a topolog-
ical space X such that A ⊂ X. Then any point of the g-closure of A is a g-adherent
point of Ω = {U ⊂ X | A ⊂ U}.
Theorem 2.2 A space X is GO-compact if and only if each infinite subset of X
has a g-complete accumulation point.

Proof. Let the space X be GO-compact and S an infinite subset of X. Let K be
the set of points x in X which are not g-complete accumulation points of S. Now it
is obvious that for each point x in K, we are able to find U(x) ∈ GO(X, x) such that
Card(S∩U(x)) 6= Card(S). If K is the whole space X, then Θ = {U(x) | x ∈ X} is
a g-cover of X. By the hypothesis X is GO-compact, so there exists a finite subcover
Ψ = {U(xi)}, where i = 1, 2, ..., n such that S ⊂ ⋃{U(xi)∩S | i = 1, 2, ..., n}. Then
Card(S) = max{Card(U(xi) ∩ S) | i = 1, 2, ..., n} which does not agree with what
we assumed. This implies that S has a g-complete accumulation point. Now assume
that X is not GO-compact and that every infinite subset S ⊂ X has a g-complete
accumulation point in X. It follows that there exists a g-cover Ξ with no finite
subcover. Set δ = min{Card(Φ) | Φ ⊂ Ξ, where Φ is a g-cover of X}. Fix Ψ ⊂ Ξ
for which Card(Ψ) = δ and

⋃{U | U ∈ Ψ} = X. Let N denote the set of natural
numbers. Then by hypothesis δ ≥ Card(N). By well-ordering of Ψ by some
minimal well-ordering ” ∼ ”, suppose that U is any member of Ψ. By minimal
well-ordering ” ∼” we have Card({V | V ∈ Ψ, V ∼ U} < Card({V | V ∈ Ψ}).
Since Ψ can not have any subcover with cardinality less than δ, then for each
U ∈ Ψ we have X 6= ⋃{V | V ∈ Ψ, V ∼ U}. For each U ∈ Ψ, choose a point
x(U) ∈ X \ ⋃{V ∪ {x(V )} | V ∈ Ψ, V ∼ U}. We are always able to do this if
not one can choose a cover of smaller cardinality from Ψ. If H = {x(U) | U ∈ Ψ},
then to finish the proof we will show that H has no g-complete accumulation point
in X. Suppose that z is a point of the space X. Since Ψ is a g-cover of X then
z is a point of some set W in Ψ. By the fact that U ∼ W , we have x(U) ∈ W .
It follows that T = {U | U ∈ Ψ and x(U) ∈ W} ⊂ {V | V ∈ Ψ, V ∼ W}. But
Card(T ) < δ. Therefore Card(H ∩W ) < δ. But Card(H) = δ ≥ Card(N) since
for two distinct points U and W in Ψ, we have x(U) 6= x(W ). This means that
H has no g-complete accumulation point in X which contradicts our assumptions.
Therefore X is GO-compact.

Theorem 2.3 For a space X the following statements are equivalent:
(1) X is GO-compact;
(2) Every net in X with a well-ordered directed set as its domain g-accumulates to
some point of X.
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Proof. (1) ⇒ (2): Suppose that X is GO-compact and ξ = {xα | α ∈ Λ} a net
with a well-ordered directed set Λ as domain. Assume that ξ has no g-adherent
point in X. Then for each point x in X, there exist V (x) ∈ GO(X, x) and an
α(x) ∈ Λ such that V (x) ∩ {xα | α ≥ α(x)} = ∅. This implies that {xα | α ≥ α(x)}
is a subset of X \ V (x). Then the collection C = {V (x) | x ∈ X} is a g-cover
of X. By hypothesis of the theorem, X is GO-compact and so C has a finite
subfamily {V (xi)}, where i = 1, 2, ..., n such that X =

⋃{V (xi)}. Suppose that
the corresponding elements of Λ be {α(xi)}, where i = 1, 2, ..., n. Since Λ is well-
ordered and {α(xi)}, where i = 1, 2, ..., n is finite, the largest element of {α(xi)}
exists. Suppose it is {α(xl)}. Then for γ ≥ {α(xl)}, we have {xδ | δ ≥ γ} ⊂⋂n

i=1(X \ V (xi)) = X \⋃n
i=1 V (xi) = ∅ which is impossible. This shows that ξ has

at least one g-adherent point in X.
(2) ⇒ (1): Now it is enough to prove that each infinite subset has a g-complete
accumulation point by utilizing Theorem 3.1. Suppose that S ⊂ X is an infinite
subset of X. According to Zorn’s Lemma, the infinite set S can be well-ordered.
This means that we can assume S to be a net with a domain which is a well-ordered
index set. It follows that S has a g-adherent point z. Therefore z is a g-complete
accumulation point of S. This shows that X is GO-compact.

Theorem 2.4 A space X is GO-compact if and only if each family of g-closed
subsets of X with the finite intersection property has a nonempty intersection.

Proof. Straightforward.

Question 2.5 Which condition or conditions should be imposed on a topological
space X such that the following statements are equivalent:
(1) X is GO-compact;
(2) Each filterbase on X with at most one g-adherent point is g-convergent.

3 GO-compactness and 1-lower and
1-upper g-continuous functions

In this section we further investigate properties of GO-compactness by 1-lower and
1-upper g-continuous functions. We begin with the following notions and in what
follows R denotes the set of real numbers.

Definition 3 A function f : X → R is said to be 1-lower (resp. 1-upper) g-
continuous at the point y in X if for each λ > 0, there exists a g-open set U(y) ∈
GO(X, y) such that f(x) > f(y) − λ (resp. f(x) > f(y) + λ) for every point x in
U(y). The function f is 1-lower (resp. 1-upper) g-continuous in X if it has these
properties for every point x of X.

Example 3.1 Take f : (R, τu) → (R, τ), where τu is the usual topology and τ is the
family of sets τ = {(η,∞) | η ∈ R} ∪ R. Such a function is 1-lower g-continuous.
Now take f : (R, τu) → (R, σ), where τu is the usual topology and σ is the family of
sets σ = {(−∞, η) | η ∈ R} ∪R. Such a function is 1-upper g-continuous.
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Theorem 3.2 A function f : X → R is 1-lower g-continuous if and only if for
each η ∈ R, the set of all x such that f(x) ≤ η is g-closed.

Proof. It is obvious that the family of sets τ = {(η,∞) | η ∈ R} ∪R establishes
a topology on R. Then the function f is 1-lower g-continuous if and only if f :
X → (R, τ) is g-continuous. The interval (−∞, η] is closed in (R, τ). It follows that
f−1((−∞, η]) is g-closed. Therefore the set of all x such that f(x) ≤ η is equal to
f−1((−∞, η]) and thus is g-closed.

Corollary 3.3 A subset S of X is GO-compact if and only if the characteristic
function XS is 1-lower g-continuous.

Theorem 3.4 A function f : X → R is 1-upper g-continuous if and only if for
each η ∈ R, the set of all x such that f(x) ≥ η is g-closed.

Corollary 3.5 A subset S of X is GO-compact if and only if the characteristic
function XS is 1-upper g-continuous.

Question 3.6 Is it true that if the function G(x) = infi∈Ifi(x) exists, where fi, are
1-upper g-continuous functions from X into R, then G(x) is 1-upper g-continuous?

Theorem 3.7 Let f : X → R be a 1-lower g-continuous function, where X is
GO-compact. Then f assumes the value m = infx∈Xf(x).

Proof. Suppose η > m. Since f is 1-lower g-continuous, then the set K(η) =
{x ∈ X | f(x) ≤ η} is a non-empty g-closed set in X by infimum property. Hence
the family {K(η) | η > m} is a collection of non-empty g-closed sets with finite
intersection property in X. By Theorem 2.4 this family has non-empty intersection.
Suppose z ∈ ⋂

η>m K(η). Therefore f(z) = m as we wished to prove.

4 GO-compactness and g-continuous
multifunctions

In this section, we give some characterizations of GO-compact spaces by using lower
(resp. upper) g-continuous multifunctions.

Definition 4 A multifunction F : X → Y is said to be lower (resp. upper) g-
continuous if X \F−(S) (resp. F−(S)) is g-closed in X for each open (resp. closed)
set S in Y .

For the following two lemmas we shall assume that if gCl(A) = A, then A is
g-closed”.

Lemma 4.1 For a multifunction F : X → Y , the following statements are equiva-
lent:
(1) F is lower g-continuous;
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(2) If x ∈ F−(U) for a point x in X and an open set U ⊂ Y , then V ⊂ F−(U) for
some V ∈ GO(x);
(3) If x /∈ F+(D) for a point x in X and a closed set D ⊂ Y , then F+(D) ⊂ K for
some g-closed set K with x /∈ K;
(4) F−(U) ∈ GO(X) for each open set U ⊂ Y .

Proof. (1) ⇒ (4): Let U be any open set in Y . By (1), X − F−(U) is g-closed
in X and hence F−(U) ∈ GO(X)
(4) ⇒ (2): Let U be any open set of Y and x ∈ F−(U). By (4), F−(U) ∈ GO(X).
Put V = F−(U). Then V ∈ GO(X) and V ⊂ F−(U).
(2) ⇒ (3): Let D be closed in Y and x /∈ F+(D). Then Y −D is open in Y and
x ∈ X − F+(D) = F−(X − D). Therefore, There exists V ∈ GO(x) such that
V ⊂ F−(U). Now, put K = X − V , then x /∈ K, K is g-closed and K = X − V ⊃
X − F−(Y −D) = F+(D).
(3) ⇒ (1): We show that F+(H) is g-closed for any closed set H of Y . Let H
be any closed set and x /∈ F+(H). By (3) there exists a g-closed set K such that
x /∈ K and F+(H) ⊂ K; hence F+(H) ⊂ gCl(F+(H)) ⊂ K. Since x /∈ K, we
have x /∈ gCl(F+(H)). This implies that gCl(F+(H)) ⊂ F+(H). In general, we
have F+(H) ⊂ gCl(F+(H)) and hence F+(H) = gCl(F+(H)). Hence F+(H) is
g-closed for any closed set H of Y.

Lemma 4.2 For a multifunction F : X → Y , the following statements are equiva-
lent:
(1) F is upper g-continuous;
(2) If x ∈ F+(V ) for a point x in X and an open set V ⊂ Y , then F (U) ⊂ V for
some U ∈ GO(x);
(3) If x /∈ F−(D) for a point x in X and a closed set D ⊂ Y , then F−(D) ⊂ K for
some g-closed set K with x /∈ K;
(4) F+(U) ∈ GO(X) for each open set U ⊂ Y .

Proof. (1) ⇒ (4): Let U be any open set in Y . Then Y − U is closed. By (1),
F−(Y − U) = X − F+(U) is g-closed in X and hence F+(U) ∈ GO(X).
(4) ⇒ (2): Let V be any open set of Y and x ∈ F+(V ). By (4), F+(V ) ∈ GO(X).
Put U = F+(V ). Then U ∈ GO(X) and F (U) ⊂ V .
(2) ⇒ (3): Let D be closed in Y and x /∈ F−(D). Then Y − D is open and
x ∈ X − F−(D) = F+(Y − D). By (2), there exists U ∈ GO(X) such that
F (U) ⊂ Y − D. Now, put K = X − U , then x /∈ K, K is g-closed and K =
X − U ⊃ X − F+(Y −D) = F−(D).
(3) ⇒ (1): We show that F−(H) is g-closed for any closed set H of Y . Let H be
any closed set and x /∈ F−(H). By (3), there exists a g-closed set K such that
x /∈ K and F−(H) ⊂ K; hence F−(H) ⊂ gCl(F−(H)) ⊂ K. Since x /∈ K, we
have x /∈ gCl(F−(H)). This implies that gCl(F−(H)) ⊂ F−(H). In general, we
have F−(H) ⊂ gCl(F−(H)) and hence F−(H) = gCl(F−(H)). Hence F−(H) is
g-closed for any closed set H of Y .

Theorem 4.3 The following two statements are equivalent for a space X:
(1) X is GO-compact.
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(2) Every lower g-continuous multifunction from X into the closed sets of a space
assumes a minimal value with respect to set inclusion relation.

Proof. (1) ⇒ (2): Suppose that F is a lower g-continuous multifunction from X
into the closed subsets of a space Y . We denote the poset of all closed subsets of Y
with the set inclusion relation ”⊆” by Λ. Now we show that F : X → Λ is a lower
g-continuous function. We will show that N = F−({S ⊂ Y | S ∈ Λ and S ⊆ C}) is
g-closed in X for each closed set C of Y . Let z /∈ N , then F (z) 6= S for every closed
set S of Y . It is obvious that z ∈ F−(Y \C), where Y \C is open in Y . By Lemma
4.1 (2), we have W ⊂ F−(Y \C) for some W ∈ GO(z). Hence F (w) ∩ (Y \C) 6= ∅
for each w in W . So for each w in W , F (w) \ C 6= ∅. Consequently, F (w) \ S 6= ∅
for every closed subset S of Y for which S ⊆ C. We consider that W ∩N = ∅. This
means that N is g-closed. Thus we observe that F assumes a minimal value.

(2) ⇒ (1): Suppose that X is not GO-compact. It follows that we have a net
{xi | i ∈ Λ}, where Λ is a well-ordered set with no g-accumulation point by ([8],
Theorem 3.2). We give Λ the order topology. Let Mj = gCl{xi | i ≥ j} for every j
in Λ. We establish a multifunction F : X → Λ where F (x) = {i ∈ Λ | i ≥ jx}, jx is
the first element of all those j’s for which x /∈ Mj . Since Λ has the order topology,
F (x) is closed. By the fact that {jx | x ∈ X} has no greatest element in Λ, then
F does not assume any minimal value with respect to set inclusion. We now show
that F−(U) ∈ GO(X) for every open set U in Λ. If U = Λ, then F−(U) = X which
is g-open. Suppose that U ⊂ Λ and z ∈ F−(U). It follows that F (z) ∩ U 6= ∅.
Suppose j ∈ F (z) ∩ U . This means that j ∈ U and j ∈ F (z) = {i ∈ Λ | i ≥ jx}.
Therefore Mj ≥ Mjx . Since z /∈ Mjx , then z /∈ Mj . There exists W ∈ GO(z) such
that W ∩ {xi | i ∈ Λ} = ∅. This means that W ∩ Mj = ∅. Let w ∈ W . Since
W ∩ Mj = ∅, it follows that w /∈ Mj and since jw is the first element for which
w /∈ Mj , then jw ≤ j. Therefore j ∈ {i ∈ Λ | i ≥ jw} = F (w). By the fact that
j ∈ U , then j ∈ F (w) ∩U . It follows that F (w) ∩U 6= ∅ and therefore w ∈ F−(U).
So we have W ⊂ F−(U) and thus z ∈ W ⊂ F−(U). Therefore F−(U) is g-open.
This shows that F is lower g-continuous which contradicts the hypothesis of the
theorem. So the space X is GO-compact.

Theorem 4.4 The following two statements are equivalent for a space X:
(1) X is GO-compact.
(2) Every upper g-continuous multifunction from X into the subsets of a T1-space
attains a maximal value with respect to set inclusion relation.

Proof. Its proof is similar to that of Theorem 4.3.

The following result concerns the existence of a fixed point for multifunctions
on GO-compact spaces.

Theorem 4.5 Suppose that F : X → Y is a multifunction from a GO-compact
domain X into itself. Let F (S) be g-closed for S being a g-closed set in X. If
F (x) 6= ∅ for every point x ∈ X, then there exists a nonempty, g-closed set C of X
such that F (C) = C.
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Proof. Let Λ = {S ⊂ X | S 6= ∅, S ∈ GC(X) and F (S) ⊂ S}. It is evident that
x belongs to Λ. Therefore Λ 6= ∅ and also it is partially ordered by set inclusion.
Suppose that {Sγ} is a chain in Λ. Then F (Sγ) ⊂ Sγ for each γ. By the fact that
the domain is GO-compact and by ([8], Theorem 3.3), S =

⋂
γ Sγ 6= ∅ and also

S ∈ GC(X). Moreover, F (S) ⊂ F (Sγ) ⊂ Sγ for each γ. It follows that F (S) ⊂ Sγ .
Hence S ∈ Λ and S = inf{Sγ}. It follows from Zorn’s lemma that Λ has a minimal
element C. Therefore C ∈ GC(X) and F (C) ⊂ C. Since C is the minimal element
of Λ, we have F (C) = C.

We close with the following open question:

Question 4.6 Give a nontrivial example of a GO-compact space?
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