Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 22:1 (2008), 57-67

ON θ-(1,2)-SEMI-PREGENERALIZED CLOSED SETS

S. Athisaya Ponmani, R. Raja Rajeswari, M. Lellis Thivagar and Erdal Ekici

Abstract

The aim of this paper is to introduce the notion of θ -(1, 2)-semi-pregeneralized closed set in bitopological space and study its properties.

1 Introduction

In 1983, Abd El-Monsef et al.[1] defined β -open sets and Andrijevic [2] called these sets as semi-preopen sets. The notion of semi-pre- θ -open set was introduced by Noiri [6] in 2003. The concept of (1, 2)-semi-preopen sets was defined and investigated by Raja Rajeswari and Lellis Thivagar [7] in 2005. The notion of (1, 2)-semipreirresolute function what we call as (1, 2)- β -irresolute function, was introduced by Navalagi et al.[5]. The (1, 2)-semi-pre- θ -open sets and the vividly (1, 2)- β -irresolute function were introduced in [3].

In this paper, we introduce a new form of closed set called θ -(1,2)-semi-pregeneralized closed set in a bitopological space by utilizing the (1,2)-semipre- θ -closure operator. Moreover, the notions of θ -(1,2)-semi-pregeneralized -continuous function and θ -(1,2)-semi-pregeneralized-irresolute function are introduced and studied. We also define θ -(1,2)-semi-pregeneralized homeomorphism.

2 Preliminaries

The interior and the closure of a subset A of a topological space (X, τ) are denoted by int(A) and cl(A), respectively.

In the following sections by X, Y and Z, we mean a bitopological space (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, ρ_1, ρ_2) , respectively.

²⁰⁰⁰ Mathematics Subject Classifications. 54C55.

Key words and Phrases. θ -(1,2)-spg-closed set, θ -(1,2)- β -irresolute function, θ -(1,2)-spg-continuous function, θ -(1,2)-spg-irresolute function and θ -(1,2)-spg-homeomorphism.

Received: August 28, 2007

Communicated by Dragan S. Djordjević

Definition 1 A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -open [4] if $A \in \tau_1 \cup \tau_2$ and $\tau_1\tau_2$ -closed if its complement in X is $\tau_1\tau_2$ -open. The $\tau_1\tau_2$ -cl(A) is the intersection of all the $\tau_1\tau_2$ -closed sets containing A.

Definition 2 A subset A of a space X is said to be an (1, 2)-semi-preopen set [7] if $A \subset \tau_1\tau_2$ -cl $(\tau_1$ - int $(\tau_1\tau_2$ -cl(A))) and (1, 2)-semi-preclosed if its complement in X is (1, 2)-semi-preopen.

The family of all

- (i) (1, 2)-semi-preopen sets in X is denoted by (1, 2)-SPO(X).
- (ii) (1,2)-semi-preopen sets containing $x \in X$ is denoted by (1,2)-SPO(X,x).
- (iii) (1, 2)-semi-preclosed sets in X is denoted by (1, 2)-SPC(X).

Definition 3 For any subset A of a bitopological space X, the (1, 2)-semi-preclosure of A denoted by (1, 2)-spcl(A) [7] is the intersection of all the (1, 2)-semi-preclosed sets containing A. The (1, 2)-semi-preinterior of a subset A of X is the union of all the (1, 2)-semi-preopen sets contained in A, and is denoted by (1, 2)-spint(A) and A is (1, 2)-semi-preopen if (1, 2)-spint(A) = A.

Remark 4 It was observed that a subset A of a bitopological space X is (1,2)-semipreclosed if (1,2)-spcl(A) = A. If $A \subset B$, then(1,2)-spcl $(A) \subset (1,2)$ -spcl(B).

Definition 5 A function $f: X \to Y$ is called

(i) (1,2)- β -irresolute [5] if $f^{-1}(V)$ is (1,2)-semi-preopen for every (1,2)-semi-preopen set V in Y.

(ii) vividly (1,2)- β -irresolute [3] if for each point $x \in X$ and each $V \in (1,2)$ -SPO(X, f(x)), there exists a $U \in (1,2)$ -SPO(X,x) such that f((1,2)-spcl $(U)) \subset V$.

It is shown that every vividly (1,2)- β -irresolute function is (1,2)- β -irresolute but not the converse.

The (1, 2)-semipre- θ -interior and (1, 2)-semipre- θ -closure of a subset A of X are denoted by (1, 2)-spint_{θ}(A) and (1, 2)-spcl_{θ}(A) are defined as follows. (1, 2)-spint_{θ} $(A) = \{x \in X : x \in U \subset (1, 2)$ -spcl_{θ} $(U) \subset A$ for some (1, 2)-semi-preopen set U of $X\}$ and

(1,2)-spcl $_{\theta}(A) = \{x \in X : (1,2)$ -spcl $(U) \cap A \neq \emptyset$ for every (1,2)-semi-preopen set containing $x\}$.

Remark 6 Let A be a subset of X. Then A is (1, 2)-semipre- θ -open (briefly (1, 2)-sp- θ -open)[3] if and only if A = (1, 2)-spint $_{\theta}(A)$ and (1, 2)-semipre- θ -closed (briefly (1, 2)-sp- θ -closed) if and only if A = (1, 2)-spcl $_{\theta}(A)$. (1,2)-spint $_{\theta}(A)$ is (1, 2)-sp- θ -open and (1, 2)-spcl $_{\theta}(A)$ is (1, 2)-sp- θ -closed. It is observed that every (1, 2)-sp- θ -open set is (1, 2)-semi-preopen [3].

It is shown in [3] that $X \setminus (1,2)$ - $spint_{\theta}(A) = (1,2)$ - $spcl_{\theta}(X \setminus A)$ and (1,2)- $spint_{\theta}(X \setminus A) = X \setminus (1,2)$ - $spcl_{\theta}(A)$. If $A \subset B$, then (1,2)- $spcl_{\theta}(A) \subset (1,2)$ - $spcl_{\theta}(B)$.

Definition 7 A subset A of a space X is said to be (1,2)-semi-preregular (briefly (1,2)-sp-regular)[3] if it is both (1,2)-semi-preopen and (1,2)-semi-preclosed.

The family of all (1, 2)-semi-preregular sets in X is denoted by (1, 2)-SPR(X).

Definition 8 A space X is said to be (1,2)-semi-preregular [3] if for each (1,2)-semi-preclosed set F and each point $x \in X \setminus F$, there exist disjoint (1,2)semi-preopen sets U, V such that $x \in U$ and $F \subset V$.

Lemma 9 For a space X the following properties are equivalent.

(i) X is (1, 2)-semi-preregular.

(ii) For each $U \in (1,2)$ -SPO(X) and each $x \in U$, there exists $V \in (1,2)$ -SPO(X) such that $x \in V \subset (1,2)$ -spcl(V) $\subset U$.

(iii) For each $U \in (1,2)$ -SPO(X) and each $x \in U$, there exists $V \in (1,2)$ -SPR(X) such that $x \in V \subset U$.

3 θ -(1,2)-Semi-Pregeneralized Closed Sets

In this section we define the θ -(1, 2)-semi-pregeneralized closed sets and study some properties.

Definition 10 A subset A of a space X is called θ -(1,2)-semi-pregeneralized closed set(briefly θ -(1,2)-spg-closed set) if (1,2)-spcl $_{\theta}(A) \subset U$ whenever $A \subset U$ and U is (1,2)-semi-preopen in X.

The complement of a θ -(1,2)-*spg*-closed set in X is called θ -(1,2)-semi-pregeneralized open (briefly θ -(1,2)-*spg*-open).

Lemma 11 Every (1, 2)-sp- θ -closed set is θ -(1, 2)-spg-closed.

Proof. The proof follows from the fact that for an (1, 2)-sp- θ -closed set (1, 2)-spcl $_{\theta}A = A$.

Remark 12 The converse of Lemma 11 is not true as shown in the following example.

Example 13 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{a, c\}, X\}$. *X*. Then the set $\{b, c\}$ is (1, 2)-spg-closed but not (1, 2)-sp- θ -closed.

Theorem 14 A subset A of X is θ -(1,2)-spg-open if and only if $F \subset (1,2)$ -spint $_{\theta}(A)$ whenever F is (1,2)-semi-preclosed in X and $F \subset A$.

Proof. Necessity. Let A be θ -(1, 2)-spg-open and $F \subset A$, where F is (1, 2)-semi-preclosed. Then $X \setminus A \subset X \setminus F$ and $X \setminus F$ is (1, 2)-semi-preopen. Therefore, (1, 2)-spcl $_{\theta}(X \setminus A) \subset X \setminus F$. Hence (1, 2)-spcl $_{\theta}(X \setminus A) = X \setminus ((1, 2)$ -spint $_{\theta}(A)) \subset X \setminus F$. Thus we have $F \subset (1, 2)$ -spint $_{\theta}(A)$.

Sufficiency. If F is (1,2)-semi-preclosed and $F \subset (1,2)$ - $spint_{\theta}(A)$ whenever $F \subset A$, then $X \setminus A \subset X \setminus F$ and $X \setminus (1,2)$ - $spint_{\theta}(A) \subset X \setminus F$. That is, (1,2)- $spcl_{\theta}(X \setminus A) \subset X \setminus F$. Therefore, $X \setminus A$ is (1,2)-spg-closed and hence A is θ -(1,2)-spg-open.

Definition 15 A space X is said to be (1,2)- β - T_1 if for any two distinct points x, y of X, there exists (1,2)-semi-preopen sets U, V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Theorem 16 A bitopological space X is (1,2)- β - T_1 if and only if $\{x\}$ is (1,2)-semi-preclosed in X for every $x \in X$.

Proof. If $\{x\}$ is (1, 2)-semi-preclosed in X for every $x \in X$, for $x \neq y, X \setminus \{x\}$, $X \setminus \{y\}$ are (1, 2)-semi-preopen sets such that $y \in X \setminus \{x\}$ and $x \in X \setminus \{y\}$. Therefore, X is (1, 2)- β - T_1 . Conversely, if X is (1, 2)- β - T_1 and if $y \in X \setminus \{x\}$ then $x \neq y$. Therefore, there exist (1, 2)-semi-preopen sets U_x, V_y in X such that $x \in U_x$ but $y \notin U_x$ and $y \in V_y$ but $x \notin V_y$. Let G be the union of all such V_y . Then G is an (1, 2)-semi-preopen set and $G \subset X \setminus \{x\} \subset X$. Therefore, $X \setminus \{x\}$ is an (1, 2)-semi-preopen set in X.

Lemma 17 Let A be θ -(1,2)-spg-closed subset of X. Then

(i) (1,2)-spcl_{θ}(A) \ A does not contain a nonempty (1,2)-semi-preclosed set. (ii) (1,2)-spcl_{θ}(A) \ A is θ -(1,2)-spg-open.

Proof. (*i*). Let *F* be an (1,2)-semi-preclosed set contained in (1,2)- $spcl_{\theta}(A) \setminus A$. Then $X \setminus F$ is (1,2)-semi-preopen and $A \subset X \setminus F$, it follows that (1,2)- $spcl_{\theta}(A) \subset X \setminus F$. Thus we get $F \subset X \setminus (1,2)$ - $spcl_{\theta}(A)$ and $F \subset (1,2)$ - $spcl_{\theta}(A)$. Hence $F = \emptyset$.

(*ii*). If A is θ -(1,2)-spg-closed and F is an (1,2)-semi-preclosed set contained in (1,2)-spcl_{θ}(A) \ A, then F is empty by (*i*). Therefore, $F \subset (1,2)$ -spint_{θ} ((1,2)spcl_{θ}(A) \ A). By Theorem 14, (1,2)-spcl_{θ}(A) \ A is θ -(1,2)-spg-open.

Theorem 18 In a (1,2)- β - T_1 space X, every θ -(1,2)-spg-closed set is (1,2)-sp- θ -closed.

Proof. Let $A \subset X$ be θ -(1, 2)-spg-closed and $x \in (1, 2)$ -spcl $_{\theta}(A)$. Since X is (1, 2)- β - T_1 , $\{x\}$ is (1, 2)-semi-preclosed and by Lemma 17, $x \notin (1, 2)$ -spcl $_{\theta}(A) \setminus A$. This implies that $x \in A$ and hence (1, 2)-spcl $_{\theta}(A) \subset A$ and hence A is (1, 2)-sp- θ -closed.

Theorem 19 [3] Let A be a subset of X. Then

(i) $A \in (1,2)$ -SPO(X) if and only if (1,2)-spcl(A) $\in (1,2)$ -SPR(X). (ii) $A \in (1,2)$ -SPC(X) if and only if (1,2)-spint(A) $\in (1,2)$ -SPR(X).

Theorem 20 For any subset A of a space X, the following are equivalent. (i) (1,2)-spcl $_{\theta}(A) = \bigcap \{V:A \subset V \text{ and } V \text{ is } (1,2)$ -sp- θ -closed $\}$. (ii) (1,2)-spcl $_{\theta}(A) = \bigcap \{V:A \subset V \text{ and } V \in (1,2)$ -SPR(X) $\}$.

Proof. (i). If $x \notin (1,2)$ - $spcl_{\theta}(A)$, then there exists $V \in (1,2)$ -SPO(X,x) such that (1,2)- $spcl(V) \cap A = \emptyset$. By Theorem 19, $X \setminus (1,2)$ -spcl(V) is (1,2)-semi-preregular. Hence, $X \setminus (1,2)$ -spcl(V) is an (1,2)- $sp-\theta$ -closed set containing A and $x \notin X \setminus (1,2)$ -spcl(V). Therefore, $x \notin \bigcap \{V: A \subset V \text{ and } V \text{ is } (1,2)$ - $sp-\theta$ -closed $\}$.

Conversely, if $x \notin \bigcap \{V: A \subset V \text{ and } V \text{ is } (1, 2) \text{-} sp\text{-} \theta\text{-} \text{closed} \}$, then there exists an $(1, 2) \text{-} sp\text{-} \theta\text{-} \text{closed}$ set V such that $A \subset V$ and $x \notin V$. Then there exists $U \in (1, 2) \text{-} SPO(X)$ such that $x \in U \subset (1, 2) \text{-} spcl(U) \subset X \setminus V$, Therefore, $(1, 2) \text{-} spcl(U) \cap A \subset (1, 2) \text{-} scl(U) \cap V = \emptyset$. Hence $x \notin (1, 2) \text{-} spcl_{\theta}(A)$.

(*ii*). It can be proved in a similar manner. \blacksquare

Theorem 21 Let A and B be subsets of X. Then the following properties hold. (i) If $A \subset B$, then (1,2)-spcl $_{\theta}(A) \subset (1,2)$ -spcl $_{\theta}(B)$. (ii) (1,2)-spcl $_{\theta}((1,2)$ -spcl $_{\theta}(A)) = (1,2)$ -spcl $_{\theta}(A)$.

Proof. (*i*). Proof is obvious.

(ii). (1,2)- $spcl_{\theta}A \subset (1,2)$ - $spcl_{\theta}((1,2)$ - $spcl_{\theta}(A))$, in general. If $x \notin (1,2)$ - $spcl_{\theta}(A)$, then there exists $V \in (1,2)$ -SPR(X,x) such that $V \cap A = \emptyset$. Since $V \in (1,2)$ - $SPR(X), V \cap (1,2)$ - $spcl_{\theta}(A) = \emptyset$ which shows that $x \notin (1,2)$ - $spcl_{\theta}((1,2)$ - $spcl_{\theta}(A))$. Therefore, (1,2)- $spcl_{\theta}((1,2)$ - $spcl_{\theta}(A)) \subset (1,2)$ - $spcl_{\theta}(A)$.

Lemma 22 If A is a θ -(1,2)-spg-closed set of a space X such that $A \subset B \subset (1,2)$ spcl $_{\theta}(A)$, then B is also θ -(1,2)-spg-closed in X.

Proof. Let U be (1, 2)-semi-preopen in X such that $B \subset U$. Then $A \subset U$. Since A is θ -(1, 2)-spg-closed, (1, 2)-spcl $_{\theta}(A) \subset U$ and by Theorem 21, (1, 2)-spcl $_{\theta}(B) \subset (1, 2)$ -spcl $_{\theta}((1, 2)$ -spcl $_{\theta}(A)) = (1, 2)$ -spcl $_{\theta}(A) \subset U$. Therefore, B is θ -(1, 2)-spg-closed.

Definition 23 For a subset A of a space X we define $A_{\theta}^{\Lambda(1,2)sp}$ as follows : $A_{\theta}^{\Lambda(1,2)sp} = \{x \in X: (1,2)\text{-spcl}_{\theta}(\{x\}) \cap A \neq \emptyset\}$

Proposition 24 $A_{\theta}^{\Lambda(1,2)sp} = \bigcap \{U: A \subset U, U \text{ is } (1,2)\text{-sp-}\theta\text{-open}\} \text{ for any subset } A \text{ of } X.$

Proof. Let $x \in A_{\theta}^{\Lambda(1,2)sp}$ and $x \notin \bigcap \{U:A \subset U, U \text{ is } (1,2)\text{-}sp\text{-}\theta\text{-}open\}$. Then there exists an $(1,2)\text{-}sp\text{-}\theta\text{-}open$ set U containing A such that $x \notin U$. Let $y \in (1,2)\text{-}spcl_{\theta}(\{x\}) \cap A$. Thus $y \in U$ and $x \notin U$, a contradiction. If $x \in \bigcap \{U:A \subset U, U$ is $(1,2)\text{-}sp\text{-}\theta\text{-}open\}$ and $x \notin A_{\theta}^{\Lambda(1,2)sp}$, then $(1,2)\text{-}spcl_{\theta}(\{x\}) \cap A = \emptyset$. Hence $x \notin X \setminus (1,2)\text{-}spcl_{\theta}(\{x\})$, where $X \setminus (1,2)\text{-}spcl_{\theta}(\{x\})$ is an $(1,2)\text{-}sp\text{-}\theta\text{-}open$. Therefore, $x \in A_{\theta}^{\Lambda(1,2)sp}$.

Thus $A_{\theta}^{\Lambda(1,2)sp}$ is the intersection of all the (1,2) -sp- θ -open sets containing A which is by the usual notation, (1,2)-spker $_{\theta}(A)$.

Lemma 25 Let X be a topological space and $x \in X$. The following are equivalent. (i) $x \in (1,2)$ -spcl $_{\theta}(\{y\})$. (ii) $y \in (1,2)$ -spker $_{\theta}(\{x\})$. **Proof.** $(i) \Rightarrow (ii)$. If $y \notin (1, 2)$ -spker $_{\theta}(\{x\})$, then there exists an (1, 2)-sp- θ -open set U containing x such that $x \notin (1, 2)$ -spcl $_{\theta}(\{y\})$. $(ii) \Rightarrow (i)$. Proof is similar.

Lemma 26 The following statements are equivalent for any two points x, y in a space X.

(i) (1,2)-spker $_{\theta}(\{x\}) \neq (1,2)$ -spker $_{\theta}(\{y\})$. (ii) (1,2)-spcl $_{\theta}(\{x\}) \neq (1,2)$ -spcl $_{\theta}(\{y\})$.

Proof. $(i) \Rightarrow (ii)$. Let (1,2)-spker $_{\theta}(\{x\}) \neq (1,2)$ -spker $_{\theta}(\{y\})$. Then there exists a point z in X such that $z \in (1,2)$ -spker $_{\theta}(\{x\})$ and $z \notin (1,2)$ -spker $_{\theta}(\{y\})$. From $z \in (1,2)$ -spker $_{\theta}(\{x\})$, it follows that $\{x\} \cap (1,2)$ -spcl $_{\theta}(\{z\}) \neq \emptyset$. This implies that $x \in (1,2)$ -spcl $_{\theta}(\{z\})$. From $z \notin (1,2)$ -spker $_{\theta}(\{y\})$ it follows that $\{y\} \cap (1,2)$ -spcl $_{\theta}(\{z\}) = \emptyset$. Since $x \in (1,2)$ -spcl $_{\theta}(\{z\}), (1,2)$ -spcl $_{\theta}(\{x\}) \subset (1,2)$ -spcl $_{\theta}(\{z\})$ and $\{y\} \cap (1,2)$ -spcl $_{\theta}(\{x\}) = \emptyset$. Hence (1,2)-spcl $_{\theta}(\{x\}) \neq (1,2)$ -spcl $_{\theta}(\{y\})$.

 $(ii) \Rightarrow (i)$. Let (1, 2)- $spcl_{\theta}(\{x\}) \neq (1, 2)$ - $spcl_{\theta}(\{y\})$. Then there exists a point z in X such that $z \in (1, 2)$ - $spcl_{\theta}(\{x\})$ and $z \notin (1, 2)$ - $spcl_{\theta}(\{y\})$. Hence there exists an (1, 2)-sp- θ -open set containing z and therefore, x but not y. Therefore, $y \notin (1, 2)$ - $spker_{\theta}(\{x\})$ and (1, 2)- $spker_{\theta}(\{x\}) \neq (1, 2)$ - $spker_{\theta}(\{y\})$.

Definition 27 A space X is said to be (1,2)- β - θ - R_0 if every (1,2)-sp- θ -open set contains the (1,2)-semipre- θ -closure of each of its singletons.

Theorem 28 A space X is (1,2)- β - θ - R_0 if and only if for any x and y in X,(1,2)spcl $_{\theta}(\{x\}) \neq (1,2)$ -spcl $_{\theta}(\{y\})$ implies (1,2)-spcl $_{\theta}(\{x\}) \cap (1,2)$ -spcl $_{\theta}(\{y\}) = \emptyset$.

Proof. Necessity. If X is (1, 2)- β - θ - R_0 and x, y in X such that (1, 2)- $spcl_{\theta}(\{x\}) \neq (1, 2)$ - $spcl_{\theta}(\{y\})$, then there exists $z \in (1, 2)$ - $spcl_{\theta}(\{x\})$ such that $z \notin (1, 2)$ - $spcl_{\theta}(\{y\})$, say. Therefore, there exists $V \in (1, 2)$ -SPO(X) such that $y \notin V$ and $z \in V$ and hence $x \in V$. Thus we get $x \notin (1, 2)$ - $spcl_{\theta}(\{y\})$ and therefore, $x \in X \setminus (1, 2)$ - $spcl_{\theta}(\{y\})$. This implies that (1, 2)- $spcl_{\theta}(\{x\}) \subset X \setminus (1, 2)$ - $spcl_{\theta}(\{y\})$ and therefore, (1, 2)- $spcl_{\theta}(\{x\}) \cap (1, 2)$ - $spcl_{\theta}(\{y\}) = \emptyset$.

Sufficiency. Let V be (1, 2)-sp- θ -open and $x \in V$. If $y \in X \setminus V$, then $x \neq y$ and $x \notin (1, 2)$ -spcl $_{\theta}(\{y\})$. This shows that (1, 2)-spcl $_{\theta}(\{x\}) \neq (1, 2)$ -spcl $_{\theta}(\{y\})$ and hence by our assumption, (1, 2)-spcl $_{\theta}(\{x\}) \cap (1, 2)$ -spcl $_{\theta}(\{y\}) = \emptyset$. Hence $y \notin (1, 2)$ -spcl $_{\theta}(\{x\})$. Therefore, (1, 2)-spcl $_{\theta}(\{x\}) \subset V$

Theorem 29 A space X is (1,2)- β - θ - R_0 if and only if for any x and y in X, (1,2)-spker $_{\theta}(\{x\}) \neq (1,2)$ -spker $_{\theta}(\{y\})$ implies (1,2)-spker $_{\theta}(\{x\}) \cap (1,2)$ -spker $_{\theta}(\{y\}) = \emptyset$.

Proof. Suppose that X is (1,2)- β - θ - R_0 and if for any x and y in X, (1,2)spker $_{\theta}(\{x\}) \neq (1,2)$ -spker $_{\theta}(\{y\})$, then by Lemma 26,(1,2)-spcl $_{\theta}(\{x\}) \neq (1,2)$ spcl $_{\theta}(\{y\})$. If $z \in (1,2)$ -spker $_{\theta}(\{x\}) \cap (1,2)$ - spker $_{\theta}(\{y\})$, then from $z \in (1,2)$ spker $_{\theta}(\{x\})$ and by Lemma 25, it follows that $x \in (1,2)$ -spcl $_{\theta}(\{z\})$. Since $x \in (1,2)$ -spcl $_{\theta}(\{x\})$, by Theorem 28, (1,2)-spcl $_{\theta}(\{x\}) = (1,2)$ -spcl $_{\theta}(\{z\})$. Similarly, we have (1, 2)- $spcl_{\theta}(\{y\}) = (1, 2)$ - $spcl_{\theta}(\{z\})$, a contradiction. Therefore, (1, 2)- $spker_{\theta}(\{x\}) \cap (1, 2)$ - $spker_{\theta}(\{y\}) = \emptyset$.

Conversely, let x, y be any two points in X such that (1,2)- $spker_{\theta}(\{x\}) \neq (1,2)$ - $spker_{\theta}(\{y\})$ implies (1,2)- $spker_{\theta}(\{x\}) \cap (1,2)$ - $spker_{\theta}(\{y\}) = \emptyset$. If (1,2)- $spcl_{\theta}(\{x\}) \neq (1,2)$ - $spcl_{\theta}(\{y\})$, then by Lemma 26, (1,2)- $spker_{\theta}(\{x\}) \neq (1,2)$ - $spker_{\theta}(\{y\})$. Hence (1,2)- $spker_{\theta}(\{x\}) \cap (1,2)$ - $spker_{\theta}(\{y\}) = \emptyset$ which implies that (1,2)- $spcl_{\theta}(\{x\}) \cap (1,2)$ - $spcl_{\theta}(\{y\}) = \emptyset$. For, if $z \in (1,2)$ - $spker_{\theta}(\{z\})$, then $x \in (1,2)$ - $spker_{\theta}(\{z\})$ and therefore, (1,2)- $spker_{\theta}(\{x\}) \cap (1,2)$ - $spker_{\theta}(\{z\}) \neq \emptyset$. Therefore, by hypothesis, (1,2)- $spker_{\theta}(\{z\}) = (1,2)$ - $spker_{\theta}(\{x\}) \cap (1,2)$ - $spker_{\theta}(\{z\}) = (1,2)$ - $spker_{\theta}(\{z\})$.

4 θ -(1,2)- β -Irresolute Functions

In this section we introduce the notion of θ -(1, 2)- β -irresolute functions.

Definition 30 A map $f: X \to Y$ is called θ -(1,2)- β -irresolute if for each $x \in X$ and each $V \in (1,2)$ -SPO(Y, f(x)), there exists $U \in (1,2)$ -SPO(X,x) such that f((1,2)-spcl $(U)) \subset (1,2)$ -spcl(V).

Theorem 31 Every (1, 2)- β -irresolute map is θ -(1, 2)- β -irresolute.

Proof. Let $x \in X$ and $V \in (1,2)$ -SPO(X, f(x)). Since f is (1,2)- β -irresolute, $f^{-1}(V)$ is (1,2)-semi-preopen and $f^{-1}((1,2)$ -spcl(V)) is (1,2)-semi-preclosed in X. Let $U = f^{-1}(V)$. Then $U \in (1,2)$ -SPO(X,x) and (1,2)- $spcl(U) \subset f^{-1}((1,2)$ -spcl(V)). Therefore, f((1,2)- $spcl(U)) \subset (1,2)$ -spcl(V). Hence f is θ -(1,2)- β -irresolute.

Remark 32 The converse of Theorem 31, is not true in general, as shown in the following example.

Example 33 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X\}, \tau_2 = \{\emptyset, \{b, c\}, X\}$ and $Y = \{p, q, r\}, \sigma_1 = \{\emptyset, \{p\}, \{p, q\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p\}, Y\}$. Define a function $f: X \to Y$ as f(a) = p, f(b) = r and f(c) = q. Then f is θ -(1, 2)- β -irresolute but not (1, 2)- β -irresolute since $f^{-1}(\{p\}) = \{a, b\} \notin (1, 2)$ -SPO(X).

Remark 34 Thus we have

vividly (1,2)- β -irresolute \Rightarrow (1,2)- β -irresolute \Rightarrow θ -(1,2)- β -irresolute

and none of them is reversible.

Theorem 35 For a function $f: X \to Y$ the following properties are equivalent. (i) f is θ -(1,2)- β -irresolute.

(*ii*) (1,2)-spcl_{θ} $(f^{-1}(B)) \subset f^{-1}((1,2)$ -spcl_{θ}(B)) for every subset B of Y. (*iii*) f((1,2)-spcl_{θ} $(A)) \subset (1,2)$ -spcl_{θ}(f(A)) for every subset A of X.

Proof. $(i) \Rightarrow (ii)$.

Let B be any subset of Y. Suppose that $x \notin f^{-1}((1,2)\operatorname{-spcl}_{\theta}(B))$. Then $f(x) \notin (1,2)\operatorname{-spcl}_{\theta}(B)$ and there exists $V \in (1,2)\operatorname{-SPO}(X, f(x))$ such that $(1,2)\operatorname{-spcl}(V) \cap B = \emptyset$. Since f is θ - $(1,2)\operatorname{-}\beta$ -irresolute, there exists $U \in (1,2)\operatorname{-SPO}(X,x)$ such that $f((1,2)\operatorname{-spcl}(U)) \subset (1,2)\operatorname{-spcl}(V)$. Therefore, $f((1,2)\operatorname{-spcl}(U)) \cap B = \emptyset$ and $(1,2)\operatorname{-spcl}(U) \cap f^{-1}(B) = \emptyset$. Hence, $x \notin (1,2)\operatorname{-spcl}_{\theta}(f^{-1}(B))$. Therefore, $(1,2)\operatorname{-spcl}_{\theta}(f^{-1}(B)) \subset f^{-1}((1,2)\operatorname{-spcl}_{\theta}(B))$.

 $(ii) \Rightarrow (iii)$. Let A be any subset of X. Then (1,2)- $spcl_{\theta}(A) \subset (1,2)$ - $spcl_{\theta}(f^{-1}(f(A))) \subset f^{-1}((1,2)$ - $spcl_{\theta}(f(A)))$ and hence f((1,2)- $spcl_{\theta}(A)) \subset (1,2)$ - $spcl_{\theta}(f(A))$.

 $\begin{array}{l} (iii) \Rightarrow (ii). \ \text{Let } B \ \text{be a subset of } Y. \ \text{By (iii)}, \ f((1,2)\text{-}spcl_{\theta}(f^{-1}(B))) \subset (1,2)\text{-}spcl_{\theta}(f^{-1}(B))) \subset (1,2)\text{-}spcl_{\theta}(B) \ \text{and } (1,2)\text{-}spcl_{\theta}(f^{-1}(B)) \subset f^{-1}((1,2)\text{-}spcl_{\theta}(B)). \\ (ii) \Rightarrow (i). \ \text{Let } x \in X \ \text{and } V \in (1,2)\text{-}SPO(Y, f(x)). \ \text{Then } (1,2)\text{-}spcl(V) \ \text{and} \\ Y \setminus (1,2)\text{-}spcl(V) \ \text{are disjoint and} \ f(x) \notin (1,2)\text{-}spcl_{\theta}(Y \setminus (1,2)\text{-}spcl(V)). \ \text{Hence} \\ x \notin f^{-1}((1,2)\text{-}spcl_{\theta}(Y \setminus (1,2)\text{-}spcl(V))) \ \text{and by (ii)}, \ x \notin (1,2)\text{-}spcl_{\theta}(f^{-1}(Y \setminus (1,2)\text{-}spcl(V))) \\ \text{spcl}(V))). \ \text{Then there exists} \ U \in (1,2)\text{-}SPO(X,x) \ \text{such that } (1,2)\text{-}spcl(U) \cap \\ f^{-1}(Y \setminus (1,2)\text{-}spcl(V)) = \emptyset \ \text{and then } f(1,2)\text{-}spcl(U) \subset (1,2)\text{-}spcl(V). \ \text{Hence, } f(1,2) \ \text{and} \ f(1,2) \ \text{and} \ f(1,2)\text{-}spcl(V). \end{array}$

is
$$\theta$$
-(1,2)- β -irresolute.

Theorem 36 For a function $f: X \to Y$ the following properties are equivalent. (i) f is θ -(1, 2)- β -irresolute.

(ii) $f^{-1}(V) \subset (1,2)$ -spint_{θ} ($f^{-1}((1,2)$ -spcl(V))) for every $V \in (1,2)$ -SPO(Y). (iii) (1,2)-spcl_{θ}($f^{-1}(V)$) $\subset f^{-1}((1,2)$ -spcl(V)) for every $V \in (1,2)$ -SPO(Y).

Proof. $(i) \Rightarrow (ii)$. Let $V \in (1,2)$ -*SPO*(*Y*) and $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists $U \in (1,2)$ -*SPO*(*X*, *x*) such that f((1,2)-*spcl*(*U*)) $\subset (1,2)$ -*spcl*(*V*). Thus $x \in U \subset (1,2)$ -*spcl*(*U*) $\subset f^{-1}((1,2)$ -*spcl*(*V*)) and $x \in (1,2)$ -*spint*_{θ}($f^{-1}((1,2)$ -*spcl*(*V*))). Hence $f^{-1}(V) \subset (1,2)$ -*spint*_{θ} ($f^{-1}((1,2)$ -*spcl*(*V*))).

 $\begin{array}{l} (ii) \Rightarrow (iii). \mbox{ Let } V \in (1,2)\text{-}SPO(Y) \mbox{ and } x \notin f^{-1}((1,2)\text{-}spcl(V)). \mbox{ Then } f(x) \notin (1,2)\text{-}spcl(V) \mbox{ and there exists } W \in (1,2)\text{-}SPO(Y,f(x)) \mbox{ such that } W \cap V = \emptyset \mbox{ and } (1,2)\text{-}spcl(W) \cap V = \emptyset. \mbox{ Then } f^{-1}((1,2)\text{-}spcl(W)) \cap f^{-1}(V) = \emptyset. \mbox{ Now } x \in f^{-1}(W) \mbox{ and by (ii), } x \in (1,2)\text{-}spit_{\theta}(f^{-1}((1,2)\text{-}spcl(W))). \mbox{ There exists } U \in (1,2)\text{-}SPO(X,x) \mbox{ such that } (1,2)\text{-}spcl(U) \subset f^{-1}((1,2)\text{-}spcl(W)). \mbox{ Thus } (1,2)\text{-}spcl(U) \cap f^{-1}(V) = \emptyset \mbox{ and hence } x \notin (1,2)\text{-}spcl_{\theta}(f^{-1}(V)). \mbox{ Thus we get } (1,2)\text{-}spcl_{\theta}(f^{-1}(V)) \subset f^{-1}((1,2)\text{-}spcl_{\theta}(f^{-1}(V)). \mbox{ Thus we get } (1,2)\text{-}spcl_{\theta}(f^{-1}(V)). \end{tabular}$

 $\begin{array}{l} (iii) \Rightarrow (i) \mbox{ Let } x \in X \mbox{ and } V \in (1,2) \mbox{-}SPO(Y,f(x)). \mbox{ Then } V \cap (Y \setminus (1,2) \mbox{-}spcl(V)) = \emptyset \mbox{ and } f(x) \notin (1,2) \mbox{-}spcl(Y \setminus (1,2) \mbox{-}spcl(V)). \mbox{ Therefore, } x \notin f^{-1}((1,2) \mbox{-}spcl(Y \setminus (1,2) \mbox{-}spcl(V))) \mbox{ and } by \mbox{ (iii), } x \notin (1,2) \mbox{-}spcl(F^{-1}(Y \setminus (1,2) \mbox{-}spcl(V))). \mbox{ There } exists \ U \in (1,2) \mbox{-}SPO(X,x) \mbox{ such that } (1,2) \mbox{-}spcl(U) \cap f^{-1}(Y \setminus (1,2) \mbox{-}spcl(V)) = \emptyset. \mbox{ Hence } f((1,2) \mbox{-}spcl(U)) \subset (1,2) \mbox{-}spcl(V) \mbox{ and hence } f \mbox{ is } \theta \mbox{-} (1,2) \mbox{-}\beta \mbox{-}irresolute. \end{tabular}$

Theorem 37 Let Y be an (1,2)-semi-preregular space. Then, for a function $f: X \to Y$ the following are equivalent.

(i) f is vividly (1,2)- β -irresolute.

(ii) f is (1,2)- β -irresolute.

(iii) f is θ -(1,2)- β -irresolute.

Proof. $(i) \Rightarrow (ii)$ It is proved in [3].

 $(ii) \Rightarrow (iii)$ By Theorem 31 it is obvious.

 $(iii) \Rightarrow (i)$. If $x \in X$ and $V \in (1,2)$ -SPO(Y, f(x)). Since Y is (1,2)-semipreregular, by (ii) of Lemma 9, there exists $W \in (1,2)$ -SPO(Y) such that $f(x) \in W \subset (1,2)$ - $spcl(W) \subset V$. Since f is θ -(1,2)- β -irresolute, there exists $U \in (1,2)$ -SPO(X,x) such that f((1,2)- $spcl(U)) \subset (1,2)$ - $spcl(W) \subset V$. Therefore, f is vividly (1,2)- β -irresolute. ■

5 θ -(1,2)-Semi-pregeneralized Continuous Functions

Definition 38 A function $f: X \to Y$ is called

(i) θ -(1,2)-semi-pregeneralized continuous (briefly θ -(1,2)-spg-continuous) if $f^{-1}(F)$ is θ -(1,2)-spg-closed set in X for every (1,2)-semi-preclosed set of Y.

(ii) θ -(1,2)-semi-pregeneralized irresolute (briefly θ -(1,2)-spg-irresolute) if $f^{-1}(F)$ is θ -(1,2)-spg-closed in X for every θ -(1,2)-spg-closed set F of Y.

Recall that a function $f: X \to Y$ is vividly (1, 2)- β -irresolute if and only if $f^{-1}(V)$ is (1, 2)-sp- θ -closed in X for every (1, 2)-semi-preclosed set in Y [3].

Theorem 39 If a function $f: X \to Y$ is vividly (1,2)- β -irresolute, then it is θ -(1,2)-spg-continuous.

Proof. If V is (1, 2)-semi-preclosed in Y, then $f^{-1}(V)$ is (1, 2)-sp- θ -closed in X. Therefore, by Lemma 11, $f^{-1}(V)$ is θ -(1, 2)-spg-closed.

Remark 40 The converse of the Theorem 39 is not true in general, as shown in the following example.

Example 41 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, X\}, \tau_2 = \{\emptyset, \{a, c\}, X\}$ and $Y = \{p, q\}, \sigma_1 = \{\emptyset, \{p\}, Y\}$ and $\sigma_2 = \{\emptyset, \{q\}, Y\}$. Define a function $f: X \to Y$ as f(a) = p, f(b) = f(c) = q. Then f is θ -(1, 2)-spg-continuous but not vividly (1, 2)- β -irresolute since for $a \in X$, there does not exist an (1, 2)-semi-preopen set U such that f((1, 2)-spcl $(U)) \subset \{p\}$.

Definition 42 A function $f: X \to Y$ is called always (1, 2)-sp- θ -open (resp. always (1, 2)-sp- θ -closed) if f(U) is (1, 2)-sp- θ -open (resp. (1, 2)-sp- θ -closed) in Y for every (1, 2)-sp- θ -open (resp.(1, 2)-sp- θ -closed) set U of X.

Theorem 43 For a function $f: X \to Y$ the following are equivalent.

(i) f is always (1, 2)-sp- θ -closed.

(ii) For each $U \subset X$, (1,2)-spcl $_{\theta}(f(U)) \subset f((1,2)$ -spcl $_{\theta}(U)$.

(iii) If $f^{-1}(V) \subset U$, where $V \subset Y$ and U is (1,2)-sp- θ -open in X, then there exists an (1,2)-sp- θ -open set $W \subset Y$ such that $V \subset W$ and $f^{-1}(W) \subset U$.

(iv) If $f^{-1}(y) \subset U$, where $y \in Y$ and U is (1, 2)-sp- θ -open in X, then there exists an (1, 2)-sp- θ -open set $W \subset Y$ such that $y \in W$ and $f^{-1}(W) \subset U$.

Theorem 44 Let $f: X \to Y$ and $g: Y \to Z$ be two functions.

(i) If f is θ -(1,2)-spg-irresolute and g is θ -(1,2)-spg-continuous, then $g \circ f$ is θ -(1,2)-spg-continuous.

(ii) If both f and g are θ -(1,2)-spg-irresolute, then $g \circ f$ is θ -(1,2)-spg-irresolute.

Definition 45 A function $f: X \to Y$ is called a θ -(1,2)-spg-homeomorphism if (i) f is bijective.

(ii) f is θ -(1,2)-spg-irresolute.

(iii) f^{-1} is θ -(1,2)-spg- irresolute.

We denote the collection of all the θ -(1, 2)-*spg*-homeomorhisms $f: X \to Y$ by θ (1, 2)-*spgh*(X).

Theorem 46 The collection $\theta(1,2)$ -spgh(X) is a group.

Proof. Define a binary operation $\star :(1,2)$ - $spgh(X) \times (1,2)$ - $spgh(X) \rightarrow (1,2)$ -spgh(X) by $\star(f,g) = g \circ f$. Then \star is well-defined and it is easily proved that under this binary operation $\theta(1,2)$ -spgh(X) is a group.

References

- Abd. El-Monsef. M.E, El Deeb. S.N. and Mahmoud. R.A, "β-open sets and β -continuous mappings", Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] Andrijevic. D, "Semi-preopen sets" Mat. Vesnik, 38 (1986), no.1, 24-32.
- [3] S. Athisaya Ponmani, R. Raja Rajeswari, M. Lellis Thivagar and Erdal Ekici," On Some Characterizations of Vividly and Blurly (1,2)-β-Irresolute Mappings", Filomat, 21: 2 (2007), 87-100.
- [4] Lellis Thivagar. M, "Generalization of pairwise α-continuous functions", Pure and Applied Mathematika Sciences, Vol.XXXIII, No. 1-2, (1991), 55-63.
- [5] Navalagi. G. B, Lellis Thivagar. M and Raja Rajeswari. R, "Generalized Semipreclosed sets in Bitopological spaces", Mathematical Forum, Vol. XXVII (2004-2005).
- [6] Noiri. T, "Weak and Strong forms of β-irresolute functions", Acta Math. Hungar. 99(4)(2002), 315-328.
- [7] Raja Rajeswari. R and Lellis Thivagar. M, "On Extension of Semi-pre open sets in Bitopological Spaces", Proc. of the National Conference in Pure and Applied Mathematics, (2005), 28-32.

Address S. Athisaya Ponmani: Department of Mathematics, Jayaraj Annapackiam College for Women, Periyakulam, Theni (Dt.)-625601,Tamilnadu,India. *E-mail*: athisayaponmani@yahoo.co.in R. Raja Rajeswari Department of Mathematics, Sri Parasakthi College, Courtalam, Tirunelveli (Dt.) -627802,Tamilnadu,India. *E-mail*: raji_arul2000@yahoo.co.in M. Lellis Thivagar Department of Mathematics, Arul Anandar College, Karumathur, Madurai (Dt.)-625514, Tamilnadu, India. *E-mail*: mlthivagar@yahoo.co.in

Erdal Ekici

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey. *E-mail*: eekici@comu.edu.tr