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THE NUMERICAL RANGE OF LINEAR OPERATORS

Salah Mecheri

Abstract

We offer a simple proof that convexoid operators on Hilbert space are
normaloid, and given an example to show that the converse fails.

1 Introduction

Let H be a Hilbert space equipped with the inner product (x, y), and let B(H) be
the algebra of bounded linear operators acting on H. The numerical range (also
known as the field of values) W (A) of A ∈ B(H) is the collection of all complex
numbers of the form (Ax, x), where x is a unit vector in H, and the numerical radius
r(A) of A is the radius of the smallest circle centered at the origin containing W (A).
The study of the numerical range and numerical radius has an extensive history, and
there is a great deal of current research on these concepts and their generalizations.
In particular, the subject has connections and applications to various areas including
C∗− algebras, iterations methods, several operator theory, dilation theory, Krein
space operators, factorizations of matrix polynomials, unitary similarity,etc.(e.g.,
see[1, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 22], and their reference). All
this constitutes a very active field of research in operator theory. The numerical
range of an operator, like the spectrum, is a subset of the complex plane whose
geometrical properties should says something about that operator. The goal of this
paper is to give some idea of what this “something” might be. A major theme will
be to compare the properties and utility of the numerical range and the spectrum.
In [27] J.P.Williams showed that an operator A ∈ B(H) is normaloid if and only
if it is convexoid. It is known that the part if in J.P.Williams’ result is not true as
it mentioned in the review MR0264445. In this paper we will present an example
which contractics the part “ if ” in J.P. Williams’ result. We also give a simple
proof of the part “only if” of this result. A necessary and sufficient condition for
an operator A ∈ B(H) to be convexoid is also given.
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2 Numerical range in a Banach algebra

We begin by the following definitions and well-known propositions.

Definition 2.1. Let A be a C∗-algebra with identity 1, a linear functional ϕ on
A is positive if, ϕ(a∗a) ≥ 0, for all a ∈ A (denoted ϕ ≥ 0), a state if ϕ ≥ 0 and
||ϕ|| = 1. The set of all states of A is denoted by P(A) = P.

Recall that
(i) ϕ ≥ 0 ⇒ ϕ = ϕ∗, ||ϕ|| = 1,
(ii) ϕ ∈ A′

,∃a ∈ A, a ≤ 0 such that ϕ(a) = ||ϕ||||a|| ⇒ ϕ ≤ 0.
(iii) for all a ∈ A, ||a|| = sup{|ϕ(a)|, ϕ ∈ P},
(iv) P is nonvoid, since by the Hahn-Banach theorem, there exists f ∈ A′

such
that f(e) = 1 and ||f || = 1.

(v) P is a convex and compact set for the w∗-topology

Definition 2.2. The numerical range V (a) of an element a ∈ A is defined by

V (a) = {f(a), f ∈ P}.

Proposition 2.1. V (a) is a non empty convex and compact set.

Definition 2.3. Let a be an element of the Banach algebra A. The spectrum of
a, σ(a) is defined by

{λ ∈ C : a− λ is not invertible}.

Proposition 2.2. σ(a) ⊂ V (a).

Remark 2.1. As every convex compact subset of C, V (a) is determined by its
support lines, V (αa + β) = αV (a) + β by the definition of V. Hence it suffices to
identify one support vertical line to know how to identify them all. This justifies
the following proposition which is Theorem 2.5 in [8] and holds for general Banach
algebras.

Proposition 2.3.

sup{Reµ, µ ∈ V (a)} = inf
t>0

(
1
t
(||1 + ta|| − 1)) = lim

t→0+
(
1
t
(||1 + ta|| − 1)).

Proof. Let
h = sup{Reµ, µ ∈ V (a)} = sup{Ref(a), f ∈ P}.

We have

∀y > 0, 1 + tRef(a) ≤ |1 + tf(a)| = |f(1 + ta)| ≤ ||1 + ta||.

Hence
h ≤ inf

t>0
{(1

t
(||1 + ta|| − 1))}.
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If we put m = inft>0{( 1
t (||1 + ta|| − 1))}, then h ≤ m.

For the inverse inequality, let x ∈ A be such that ||x|| = 1, f ∈ A′
and f(x) =

||f || = 1. Let’s consider the map g : A 7→ C defined by g(y) = f(yx). We have
g ∈ P. Indeed, it is clear that g is linear and |g(y)| ≤ ||y||, g(1) = 1. Hence g ∈ P
and we have

||(1− ta)x|| ≥ f((1− ta)x) ≥ 1− tRef(ax) = 1− tReg(a) ≥ 1− th.

Hence,
||(1− ta)x|| ≥ (1− th)||x||, ∀x ∈ H.

Choose x = 1 + ta, we get

(1− th)||1 + ta|| ≤ ||(1− ta)(1 + ta)|| ≤ (1 + t2)||a||2.
By choosing t ≤ h−1, we obtain

m ≤ t−1(||1 + ta|| − 1) ≤ h + t||a||2
1− th

and m ≤ inf
t>0

h + t||a||2
1− th

= h

= lim
t→0+

h + t||a||2
1− th

.

Which establishes also the existence of limt→0+ t−1(||1 + ta|| − 1).

Proposition 2.4. [27] Let a ∈ A. Then the following properties hold
(i) 0 ∈ V (a) ⇔ ∀λ ∈ C, |λ| ≤ ||a− λ||.
(ii) V (a) = ∩{{µ ∈ C : |λ′ − µ| ≤ ||a− λ

′ ||, λ
′ ∈ C}}.

Remark 2.2. 1) The previous proposition (i) implies that {a ∈ A : 0 ∈ V (a)} is
closed in A. Indeed, if a = limn an, |λ| ≤ ||an − λ|| ⇒ |λ| ≤ ||a− λ||.

2) We use in a Banach algebra A the notion (x orthogonal to y), x⊥y, if

∀λ ∈ C, ||λy|| ≤ ||x− λy||.
Thus the previous proposition (i) implies that 0 ∈ V (a) ⇔ a⊥1. According to
J.P.Williams’ definition the set of elements a of a Banach algebra such that a⊥1
are called finite. Thus one of the important application of the numerical range is
the characterization of those finite elements.

Proposition 2.5. Let a ∈ A be such that: for all λ
′ ∈ C, ||a − λ

′ || = r(a − λ
′
).

Then V (a)=convσ(a).

Proof. It is a simple consequence of the previous proposition (ii):

convσ(A) = ∩{disk centred at λ′ and of radius ||a− λ
′ ||, λ

′ ∈ C}.

Definition 2.4. The numerical range of the operator A ∈ B(H) is defined by

W (A) = {(Ax, x) : ||x|| = 1, x ∈ H}.
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Proposition 2.6. Let A = B(H), where H is a complex Hilbert space and a = A ∈
B(H). Then V (A) = W (A).

Proof. It suffices to apply Proposition 3.2 and the previous remark for W (A) to
show that

sup{Reµ, µ ∈ W (A)} = lim
t→0+

(
1
t
(||1 + tA|| − 1)).

Since the map
x∧ : B 7→ (Bx, x), B(H) 7→ C

is an element of P, by the same way as in the first part of the proof of Proposition
3.2. If

h1 = sup{Reµ, µ ∈ W (A)}, m = lim
t→0+

(
1
t
(||1 + tA|| − 1)),

then h1 ≤ m. For the inverse inequality we have

||(I − tA)x||||x|| ≥ Re((I − tA)x, x) ≥ (I − th1)||x||2.

Choose t small enough to get I − th1 > 0. Let x = (I + tA)y with ||y|| = 1. Then

||(I − t2A2)y|| ≥ (1− th1)||(I + tA)y||,

hence
(1− th1)||I + tA|| ≤ 1 + t2||A||2.

By this last inequality as in the proof of Proposition 3.2, we get m ≤ h1.

Remark 2.3. In [27, Corollary 2], Proposition 2.5 appeared by the equivalence,i.e.

W (a) = coσ(a) ⇔ ||a− λ
′ || = r(a− λ

′
), λ

′ ∈ C.

The following example contradicts the part (⇒).

Example 2.1. Let {e1, e2, ..., e6} be an orthonormal basis in H and let A be such
that

Ae1 =
√

2e1, Ae2 = i
√

2e2, Ae3 =
√

2e2, Ae4 = −i
√

2e4, Ae5 = 0, Ae6 = 2e5.

It is easily seen that
σ(A) = {

√
2, i
√

2,−
√

2,−i
√

2}.
W (A) = co{

√
2, i
√

2,−
√

2,−i
√

2, disk (center 0, radius 1)}.
Hence W (A) = coσ(A), r(A) =

√
2 and ||A|| = max{√2, A|V ect{e5, e6}} = 2.

Remark that ||A|| > r(A), then we have W (A) = coσ(A). But for λ
′
= 0, r(A−λ

′
) <

||A− λ
′ ||.

Definition 2.5. An operator A ∈ B(H) is said to be convexoid if W (A) = coσ(A).
This class of operators is denoted by C.
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Definition 2.6. An operator A ∈ B(H) is said to be normaloid if r(A) = ||A||,
and A is transaloid if

∀λ ∈ ρ(A), r(Rλ(A)) = ||Rλ(A)||, (Rλ(A) = (A− λI)−1),

this class is denoted by T
An operator A ∈ B(H) is said to be paranormal if

||Ax||2 ≤ ||A2x||||x||

for all x ∈ H. We say that A is algebraically paranormal if there exists a nonconstant
complex polynomial p such that p(A) is paranormol. In general

hyponormal ⊂ p− hyponormal ⊂ paranormal ⊂ normaloid.

A is said to be log-hyponormal if A is invertible and satisfies the following
equality

log(A∗A) ≥ log(AA∗).

It is known that invertible p-hyponormal operators are log-hyponormal operators
but the converse is not true [23]. However it is very interesting that we may
regards log-hyponormal operators as 0-hyponormal operators [23, 24]. The idea
of log-hyponormal operator is due to Ando [2] and the first paper in which log-
hyponormality appeared is [11]. See [3, 23, 24, 26] for properties of log-hyponormal
operators.

We say that an operator A ∈ B(H) belongs to the class A if |A2| ≥ |A|2. Class
A was first introduced by Furuta-Ito-Yamazaki [12] as a subclass of paranormal
operators which includes the classes of p-hyponormal and log-hyponormal operators.
The following theorem is one of the results associated with a class A operator.

Theorem 2.1. [12]
(1) Every log-hyponormal operator is a class A operator.
(2) Every class A operator is a paranormal operator.

Proposition 2.7. Let A ∈ B(H). Then the following properties hold
(i) W (A) =conv σ(A) ⇔ ∀λ 6∈ conv σ(A), ||Rλ(A)|| ≤ (d(λ, conv σ(A)), where

d is the usual distance on C.
(ii) Every transaloid operator is convexoid,i.e., T ⊂ C.
(iii) Every paranormal operator is convexoid.

Proof. By applying the transformation

A 7→ αA + β

we can suppose that

[λ < 0, 0 ∈ convσ(A) ⊂ {z ∈ C : <z ≥ 0}] .
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Let W (A)=convσ(A). We have for all x ∈ H,

||(A− λ)x||2 = ||Ax||2 − λ[(Ax, x) + (x,Ax)] + λ2||x||2 ≥ λ2||x||2.
Since (A− λ) is invertible, we have for all x ∈ H,

||x||2 ≥ λ2||(A− λ)−1x||2.
Hence |λ|−1 ≥ ||(A− λ)−1x||, or |λ| = d(λ, conv σ(A)).

Conversely, assume that ∀λ 6∈ coσ(A), ||Rλ(A)|| ≤ (d(λ, coσ(A)). We have to
prove W (A) = coσ(A). In other words, we prove that if

λ 6∈ coσ(A),

then
λ 6∈ W (A).

By applying the transformation

A 7→ αA + β

we can suppose that

[λ < 0, 0 ∈ coσ(A) ⊂ {z ∈ C : <z ≥ 0}] , ∀c < 0.

The estimate
dist(c, coσ(A)) ≥ |c|

implies ∥∥(A− c)−1
∥∥ ≤ |c|−1

,

so

c2 ‖x‖2 ≤ ((A− c) x | (A− c)x) .

This implies (after letting c tend to minus infinity ) that

(Ax | x) + (x | Ax) ≥ 0.

Hence,
W (A) ⊂ {z ∈ C : <z ≥ 0} ,

that is,
λ /∈ W (A).

(ii) Let A be such that for all λ ∈ ρ, ||Rλ(A)|| = r(Rλ(A)). Since r(Rλ(A)) =
{d(λ, σ(A)}−1 and d(λ, coσ(A)) ≤ d(λ, σ(A)). By applying (i) we get A ∈ C.

(iii) It is easily seen that the class of paranormal operators is preserved under
the transformation A 7→ A − λ, λ ∈ C. Also if A paranormal and invertible, then
A−1 is paranormal. Endeed, if we let y = A−1x and z = A−1y, then Az = y and
A2z = x. Therefore

||A−1x||2 = ||y||2 = ||Az||2 ≤ ||A2z|||z|| = ||x||||A−2x|| = ||(A−1)2x||||x||.
Hence to prove (iii) it suffices to show that every paranormal operator is normaloid.
But it is known that a paranormal operator is normaloid. This completes the
proof.
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