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A NOTE ABOUT A THEOREM OF R. HARTE

Yifeng Xue∗

Abstract

Let A and B be unital Banach algebras and T : A → B be a unital continu-
ous homomorphism. Put J = Ker T . Let FredT (A) = {x ∈ A|T (x) is invertible
in B} and Fred0

T (A) = {x + k|x is invertible in A, k ∈ J }. In this note, we
prove that if T has Property (F), then FredT (A) ∩ GL(A) = Fred0

T (A) iff
ltsr (J ) = 1.

For a normed algebra A with unit 1, let GL(A) (resp. GL0(A)) denote the
group of invertible elements in A (resp. the connected component of 1 in GL(A)).
If A is non–unital, we set GL(A) = GL(Ã) and GL0(A) = GL0(Ã), where Ã =
{λ1 + a|λ ∈ C, a ∈ A}. For a Banach algebra A, we view An as the set of all n× 1
matrices over A. According to [3], the left topological stable rank of the unital
Banach algebra A is defined as follows:

ltsr (A) = min{n ∈ N| Am is dense in Lgm(A), ∀m ≥ n }

where Lgn(A) consists of the elements (a1, · · · , an)T in An with
n∑

i=1

biai = 1 for

some b1, · · · , bn ∈ A. If A is non–unital, we put ltsr (A) = ltsr (Ã). We have
ltsr (A) = 1 iff GL(A) is dense in A (or Ã) (cf. [3]).

Let A be a unital Banach algebra. Write Rg (A) = {a ∈ A|a ∈ aAa} and
Dr (A) = {a ∈ A|a ∈ a(GL(A))a} for all regular (generalized invertible) elements
and decomposably regular elements of A. Then Dr (A) = Rg (A) ∩ GL(A) by
[2, Theorem 1.1]). Now let B be a unital Banach algebra and T : A → B be a
unital homomorphism (i.e., T (1) = 1). Put FredT (A) = T−1(GL(B)), Fred0

T (A) =
GL(A) + KerT . The elements in FredT (A) are called to be T–Fredholm and in
Fred0

T (A) are called to be T–Weyl (cf. [1]).
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Let A,B be unital Banach algebras and T be a unital continuous homomorphism
of A to B. R. Harte proved in [2] that if FredT (A) ⊂ Rg (A) and 1+Ker T ⊂ Dr (A),
then

Fred0
T (A) = int(Fred0

T (A)) = FredT (A) ∩GL(A). (*)

by means of the equation Dr (A) = Rg (A) ∩ GL(A). In this short note, We will
show when Fred0

T (A) is closed in FredT (A) and prove that if T has Property (F)
(see Definition 1 below) the equation (*) holds iff ltsr (Ker T ) = 1.

Throughout the paper, A, B are unital Banach algebras and T : A → B is a
unital continuous homomorphism.

Definition 1. We say T has Property (F) if for every b ∈ T (A) with ‖1− b‖ < 1,
then b−1 ∈ T (A).

Obviously, if T (A) is closed in B, then T (A) has Property (F). Also, we have

Proposition 2. Let A, B and T be as above.

1. If FredT (A) ⊂ Rg (A), then T has Property (F);

2. If T has Property (F), then Fred0
T (A) is closed in FredT (A).

Proof. (1) Let b ∈ T (A) such that ‖1 − b‖ < 1. Then b ∈ GL(B). Choose a ∈ A
such that b = T (a). Since a ∈ FredT (A) ⊂ Rg (A), there is a0 ∈ A such that
aa0a = a and consequently, b−1 = T (a0).

(2) Let a ∈ FredT (A) and {an}∞1 ⊂ Fred0
T (A) such that lim

n→∞
an = a. Choose n0

such that ‖T (an0)− T (a)‖ <
1

2‖(T (a))−1‖ . Then ‖T (an0)(T (a))−1 − 1‖ <
1
2

. Put

b = T (an0)(T (a))−1 ∈ GL(B). Then ‖b−1‖ <
1

1− ‖1− b‖ < 2. Since b−1 ∈ T (A)

and ‖b−1 − 1‖ ≤ ‖b−1‖‖b − 1‖ < 1, it follows that there is d ∈ A such that
b = (b−1)−1 = T (d). Combining this with b−1 ∈ T (A), we can find c ∈ A such that

k1 = ac− 1 and k2 = ca− 1 are in Ker T . Pick n1 such that ‖an1 −a‖ <
1
‖c‖ . Then

‖1 + k1 − an1c‖ = ‖(a− an1)c‖ < 1 so that g = k1 − an1c ∈ GL(A). Therefore

a = g−1(k1 − an1c)a = g−1k1a− g−1an1k2 − g−1an1 ∈ Fred0
T (A).

Theorem 3. Let A, B be unital Banach algebras and T : A → B be a unital ho-
mormphism with Property (F). Then

Fred0
T (A) = int(Fred0

T (A)) = FredT (A) ∩GL(A)

iff ltsr (Ker T ) = 1.
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Proof. Since GL(A) is open in A, GL(A)+k is open in A for each k ∈ KerT . Thus
Fred0

T (A) = {GL(A) + k | k ∈ Ker T} is open in A and hence is open in FredT (A),
i.e., Fred0

T (A) = int(Fred0
T (A)).

By Proposition 2, when T has Property (F), Fred0
T (A) is closed in FredT (A).

Noting that GL(A) ⊂ Fred0
T (A) and FredT (A)∩GL(A) is the closure of GL(A) in

FredT (A), thus FredT (A) ∩GL(A) ⊂ Fred0
T (A).

We now prove that FredT (A) ∩GL(A) ⊃ Fred0
T (A) iff ltsr (Ker T ) = 1.

Suppose that ltsr (KerT ) = 1, then for any a ∈ GL(A) and k ∈ Ker T ,

a + k = a(1 + a−1k) ∈ a (GL(Ker T )) ⊂ GL(A),

i.e., Fred0
T (A) ⊂ FredT (A) ∩GL(A).

Conversely, for any k ∈ Ker T and any ε ∈ (0, 1), there is xε ∈ GL(A) such that

‖1 + k − xε‖ <
ε

4(1 + ‖1 + k‖) (<
1
2

). Put aε = xε − k. Then aε ∈ GL(A) and

‖a−1
ε ‖ <

1
1− ‖1− aε‖ < 2. Set zε = a−1

ε xε. Then zε ∈ GL(A), T (zε) = T (z−1
ε ) = 1,

i.e., zε ∈ GL(Ker T ) and furthermore,

‖1 + k − zε‖ ≤ ‖1 + k − xε‖+ ‖a−1
ε ‖‖1− aε‖‖xε‖ < ε.

Now let x = λ 1 + z ∈ K̃er T . If λ = 0, we put xε = ε 1 + z = ε(1 + ε−1z).
Then ‖x − xε‖ < ε and xε ∈ GL(Ker T ). So x ∈ GL(Ker T ). If λ 6= 0, then
x = λ(1 + λ−1z) ∈ GL(KerT ). Therefore, ltsr (Ker T ) = 1.

We conclude the paper with following two examples:

Example 4. Let X be a Banach space and let B(X) (resp. K(X)) denote the
Banach algebra of all bounded linear operators (resp. compact operators) on
X. Let T be the canonical homomorphism of B(X) onto B(X)/K(X). Then
KerT = K(X). Using the fact that every nonzero point in the spectrum of a com-
pact operator is isolated, we can deduce that ltsr (K(X)) = 1. So by Theorem 3,
Fred0

T (B(X)) = int(Fred0
T (B(X)) = FredT (B(X)) ∩GL(B(X)).

Example 5. Let A = C(D) and B = (S1). Let T be the homomorphism from A
onto B given by restriction T (f)(z) = f(z), ∀ z ∈ S1, f ∈ C(D). Since Ker T ∼=
C0(R2) and K̃er T ∼= C(S2), it follows from [3, Proposition 1.7] that ltsr (Ker T ) = 2.
By Theorem 3, Fred0

T (A) is both open and closed in FredT (A) and FredT (A) ∩
GL(A) $ Fred0

T (A).
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