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ON THE SIMULTANEOUS IMPROVING
K INCLUSION DISKS FOR POLYNOMIAL ZEROS∗

Dušan M. Milošević and Miodrag S. Petković

Abstract

A modification of the iterative method of Börsch-Supan type for the si-
multaneous inclusion of polynomial zeros is considered. The modified method
provides the simultaneous inclusion of k (of n ≥ k) zeros, dealing with k inclu-
sion disks of these zeros and the point (unchangeable) approximations to the
remaining n−k zeros. It is proved that the R-order of convergence of the con-
sidered method is two if k < n and three if k = n. Three numerical examples
are given to illustrate convergence properties of the presented method.

1 Introduction

Iterative methods for the simultaneous determination of complex zeros of a given
polynomial, realized in complex interval arithmetics, are very efficient device to er-
ror estimates for the given set of approximate zeros. In general, inclusion methods
produce resulting disks or rectangles containing complex zeros. In this manner, the
upper error bounds, given by the radii of disks or semidiagonals of rectangles, are
obtained automatically. The price to be paid in order to achieve the above advan-
tages of interval methods is the increase of numerical operations in each iterative
step.

In some applications it is not necessary to calculate all zeros of a polynomial.
The aim of this paper is to present a modification of the interval method for the
iterative simultaneous inclusion of polynomial zeros, proposed in [3]. This mod-
ification enables the simultaneous inclusion of k (1 ≤ k ≤ n) zeros of a given
polynomial of degree n using the disks containing the wanted zeros and the ini-
tial “point” approximations of the remaining n − k zeros. It is worth noting that
these point approximations remain unchangeable in the course of iterative process.
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The main subject of the paper is the convergence analysis of the proposed modified
method, including computationally verifiable initial conditions for the guaranteed
convergence.

The presentation of the paper is organized as follows. The basic properties of
circular complex arithmetic, necessary for the development and convergence analysis
of the presented method are given at the end of Introduction. In Section 2 we derive
the modified method, while the convergence analysis is given in Section 3. The
numerical examples that illustrate convergence properties of the presented algorithm
are given in Section 4.

A circular closed region (disk) Z := {z : |z − c| ≤ r} with center c := mid Z
and radius r := rad Z will be denoted by the parametric notation Z := {c; r}. The
following properties are valid in circular complex arithmetic:

Z1 ± Z2 = {c1 ± c2; r1 + r2},
α · {c; r} = {αc; |α|r} (α ∈ C),

Z1 · Z2 = {c1c2; |c1|r2 + |c2|r1 + r1r2},
z ∈ {c; r} ⇐⇒ |z − c| ≤ r,

{c1; r1} ∩ {c2; r2} = 0 ⇐⇒ |c1 − c2| > r1 + r2,

{c1; r1} ⊆ {c2; r2} ⇐⇒ |c1 − c2| ≤ r2 − r1.

The inversion of a non-zero disk Z = {c; r} is defined by the Möbius transfor-
mation

Z−1 = {c; r}−1 =
{ c̄

|c|2 − r2
;

r

|c|2 − r2

}
(0 /∈ Z), (1.1)

where the bar denotes the complex conjugate. Then the division of disks is given
by

Z1 : Z2 = Z1 · Z−1
2 (0 /∈ Z2).

If F is a circular complex function and the implication

Z1 ⊆ Z2 =⇒ F (Z1) ⊆ F (Z2)

holds, then F is an inclusion isotone function. In particular, we have

z ∈ Z =⇒ F (z) ∈ F (Z). (1.2)

More details about circular arithmetic can be found in the books [1], [5] and
[7]. Throughout this paper disks in the complex plane will be denoted by capital
letters.

2 Derivation of the inclusion method

Let

P (z) = zn + a1z
n−1 + · · ·+ an−1z + an =

n∏

j=1

(z − ζj)
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be a monic polynomial of degree n ≥ 3 with simple real or complex zeros ζ1, . . . , ζn

and let z1, . . . , zn be approximations of these zeros. Let us consider the rational
function

R(z) =
P (z)−Q(z)

Q(z)
,

where

Q(z) =
n∏

j=1

(z − zj).

The rational function R(z) has the following development into elementary fractions

R(z) =
P (z)−Q(z)

Q(z)
=

n∑

j=1

Wj

z − zj
, (2.1)

where

Wj =
P (zj)

n∏
λ=1
λ6=j

(zj − zλ)

(j ∈ In := {1, . . . , n}).

From (2.1), putting z = ζi, we obtain for any zero

n∑

j=1

Wj

ζi − zj
= −1.

Hence we single out ζi and obtain the fixed point relation

ζi = zi − Wi

1 +
n∑

j=1
j 6=i

Wj

ζi − zj

(i ∈ In). (2.2)

Assume that we have found disjoint disks Zi = {zi; ri} (i ∈ In) such that ζi ∈ Zi

for each i ∈ In. Using the inclusion property (1.2), from the fixed point relation
(2.2) we construct the iterative interval method

Z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
n∑

j=1
j 6=i

W
(m)
j

Z
(m)
i − z

(m)
j

(i ∈ In) (2.3)

for the simultaneous determination of the inclusive disks for all zeros of the poly-
nomial P, proposed in [3]. This method can also be derived from the family of
simultaneous methods of the third order presented in [4].

From the iterative formula (2.3) we observe that the determination of the new
inclusion disk of the zero ζi requires only disk Zi and the point approximations
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of the remaining zeros. This enables us to construct the modified method for the
simultaneous inclusion of k (k < n) zeros of P using the disks containing the wanted
zeros and the initial unchangeable point approximations of the rest n− k zeros.

Assume now that we have found k disjoint disks Z
(0)
i =

{
z
(0)
i ; r(0)

i

}
(i ∈ Ik :=

{1, . . . , k}) containing the zeros ζ1, . . . , ζk and the “point” approximations z
(0)
k+1, . . . , z

(0)
n

to the zeros ζk+1, . . . , ζn. From the fixed point relation (2.2) we obtain the iterative
method for the simultaneous inclusion of k zeros ζ1, . . . , ζk of the polynomial P

Z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
k∑

j=1
j 6=i

W
(m)
j

Z
(m)
i − z

(m)
j

+
n∑

j=k+1

W̃
(m)
j

Z
(m)
i − z

(0)
j

, (2.4)

for i ∈ Ik and m = 0, 1, . . . , where

W
(m)
j =

P (z(m)
j )

k∏
λ=1
λ6=j

(
z
(m)
j − z

(m)
λ

) n∏

λ=k+1

(
z
(m)
j − z

(0)
λ

)
(j = 1, . . . , k),

W̃
(m)
j =

P (z(0)
j )

k∏
λ=1
λ6=j

(
z
(0)
j − z

(m)
λ

) n∏

λ=k+1

(
z
(0)
j − z

(0)
λ

)
(j = k + 1, . . . , n).

3 Convergence analysis

In this section we give the convergence analysis of the interval method (2.4). In the
sequel we will always assume that n ≥ 3.

Let us suppose that we have found n disjoint disks Z
(0)
i =

{
z
(0)
i ; r(0)

i

}
(i ∈ In)

containing the zeros ζ1, . . . , ζn. For all m = 0, 1, . . . let us introduce the following
notation

r(m) = max
1≤i≤k

r
(m)
i , d = max

k+1≤i≤n
r
(0)
i ,

ε
(m)
j = z

(m)
j − ζj ,

ρ
(m)
1 = min

1≤i,j≤k
i6=j

{∣∣∣z(m)
j − z

(m)
i

∣∣∣− r
(m)
i

}
,

ρ
(m)
2 = min

1≤i≤k
k+1≤j≤n

{∣∣∣z(0)
j − z

(m)
i

∣∣∣− r
(m)
i

}
,

ρ(m) = min
{
ρ
(m)
1 , ρ

(m)
2

}
,

ρ3 = min
k+1≤i,j≤n

i 6=j

{∣∣∣z(0)
j − z

(0)
i

∣∣∣− r
(0)
i

}
.
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Lemma 3.1 The following estimates

∣∣W (m)
j

∣∣ ≤ a
(m)
1 r(m), a

(m)
1 =

(
1 +

r(m)

ρ
(m)
1

)k−1(
1 +

d

ρ
(m)
2

)n−k

(j = 1, . . . , k)

and

∣∣W̃ (m)
j

∣∣ ≤ a
(m)
2 d, a

(m)
2 =

(
1 +

r(m)

ρ
(m)
2

)k−1(
1 +

d

ρ3

)n−k

(j = k + 1, . . . , n)

hold for m = 0, 1, . . . .

Proof. First, for j = 1, . . . , k we estimate

∣∣W (m)
j

∣∣ =
∣∣z(m)

j − ζj

∣∣
k∏

λ=1
λ6=j

∣∣z(m)
j − ζλ

∣∣
∣∣z(m)

j − z
(m)
λ

∣∣
n∏

λ=k+1

∣∣z(m)
j − ζλ

∣∣
∣∣z(m)

j − z
(0)
λ

∣∣

≤
∣∣ε(m)

j

∣∣
k∏

λ=1
λ 6=j

∣∣z(m)
j − z

(m)
λ

∣∣ + r
(m)
λ∣∣z(m)

j − z
(m)
λ

∣∣
n∏

λ=k+1

∣∣z(m)
j − z

(0)
λ

∣∣ + r
(0)
λ∣∣z(m)

j − z
(0)
λ

∣∣

≤ r
(m)
j

(
1 +

r(m)

ρ
(m)
1

)k−1(
1 +

d

ρ
(m)
2

)n−k

≤ a
(m)
1 r(m).

Similarly, for j = k + 1, . . . , n we have

∣∣W̃ (m)
j

∣∣ =
∣∣z(0)

j − ζj

∣∣
k∏

λ=1

∣∣z(0)
j − ζλ

∣∣
∣∣z(0)

j − zλ

∣∣
n∏

λ=k+1
λ 6=j

∣∣z(0)
j − ζλ

∣∣
∣∣z(0)

j − z
(0)
λ

∣∣

≤
∣∣ε(0)

j

∣∣
k∏

λ=1

∣∣z(0)
j − z

(m)
λ

∣∣ + r
(m)
λ∣∣z(0)

j − z
(m)
λ

∣∣
n∏

λ=k+1
λ 6=j

∣∣z(0)
j − z

(0)
λ

∣∣ + r
(0)
λ∣∣z(0)

j − z
(0)
λ

∣∣

≤ d

(
1 +

r(m)

ρ
(m)
2

)k(
1 +

d

ρ3

)n−k−1

= a
(m)
2 d.

Estimating the denominator in (2.4) yields for i ∈ Ik

k∑
j=1
j 6=i

W
(m)
j

z
(m)
j − Z

(m)
i

+
n∑

j=k+1

W̃
(m)
j

z
(0)
j − Z

(m)
i

⊂
{ k∑

j=1
j 6=i

W
(m)
j

z
(m)
j − z

(m)
i

;
(k − 1)a(m)

1

(
r(m)

)2

(
ρ
(m)
1

)2

}

+
{ n∑

j=k+1

W̃
(m)
j

z
(0)
j − z

(m)
i

;
(n− k)a(m)

2 r(m)d
(
ρ
(m)
2

)2

}

=
{
u

(m)
i ; r(m)B(m)

}
,
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where

u
(m)
i =

k∑
j=1
j 6=i

W
(m)
j

z
(m)
j − z

(m)
i

+
n∑

j=k+1

W̃
(m)
j

z
(0)
j − z

(m)
i

,

B(m) = (k − 1)a(m)
1

r(m)

(
ρ
(m)
1

)2 + (n− k)a(m)
2

d
(
ρ
(m)
2

)2 .

In regard to the above relations, the inclusion method (2.4) can be written in
the form

Z
(m+1)
i = z

(m)
i − W

(m)
i

1− {
u

(m)
i ; r(m)B(m)

} , (i ∈ Ik).

The center of the disk in the denominator is bounded by

|1− u
(m)
i | > 1−

k∑
j=1
j 6=i

|W (m)
j |

∣∣z(m)
j − z

(m)
i

∣∣ −
n∑

j=k+1

|W̃ (m)
j |

∣∣z(0)
j − z

(m)
i

∣∣

> 1− (k − 1)a(m)
1

r(m)

ρ
(m)
1

− (n− k)a(m)
2

d

ρ
(m)
2

.

Now, we are able to state the convergence theorem of the method (2.4).

Theorem 3.1 Under the initial conditions

ρ(0) > 4(n− 1)r(0) (3.1)

and
ρ3 > 4(n− 1)d, d ≤ r(0) (3.2)

the method (2.4) is convergent.

Proof. First, under the initial conditions (3.1) and (3.2) we estimate the quantities
from Lemma 3.1 for m = 0,

a
(0)
1 =

(
1 +

r(0)

ρ
(0)
1

)k−1(
1 +

d

ρ
(0)
2

)n−k

<
(
1 +

1
4(n− 1)

)n−1

<
4
3

(3.3)

and

a
(0)
2 =

(
1 +

r(0)

ρ
(0)
2

)k−1(
1 +

d

ρ3

)n−k

<
(
1 +

1
4(n− 1)

)n−1

<
4
3
. (3.4)

Using the inequalities (3.1) – (3.4) we obtain the bounds

|1− u
(0)
i | > 1− (k − 1)a(0)

1

r(0)

ρ
(0)
1

− (n− k)a(0)
2

d

ρ
(0)
2

>
3
5

(3.5)
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and

r(0)B(0) = (k − 1)a(0)
1

(
r(0)

)2

(
ρ
(0)
1

)2 + (n− k)a(0)
2

r(0)d
(
ρ
(0)
2

)2 <
1
20

. (3.6)

According to this we get

r
(1)
i = rad

(
W

(0)
i

{1− u
(0)
i ; r(0)B(0)}

)
<

4
3

1
20

9
25
− 1

400

r
(0)
i <

1
5
r
(0)
i . (3.7)

Using a geometric construction and the fact that the disks Z
(m)
i and Z

(m+1)
i

must have at least one joint point (the zero ζi), for i ∈ Ik the following relation can
be derived (see [2])

ρ
(m+1)
1 ≥ ρ

(m)
1 − r(m) − 3r(m+1). (3.8)

Using the initial condition (3.1) and the inequalities (3.7) and (3.8) (for m = 0),
we find

ρ
(1)
1 ≥ ρ

(0)
1 − r(0) − 3r(1) > 4(n− 1)r(0) − r(0) − 3

r(0)

5
> 5r(1)

(
4(n− 1)− 1− 3

5

)
,

wherefrom it follows
ρ
(1)
1 > 4(n− 1)r(1). (3.9)

The inequality (3.7) of the form r(1) < r(0)/5 points to the contraction of the new
circular approximations Z

(1)
1 , . . . , Z

(1)
k .

Using the definition of ρ1, the initial condition (3.1) and (3.9), we have for
arbitrary pair of indices i, j ∈ Ik (i 6= j)

|z(1)
i − z

(1)
j | ≥ ρ

(1)
1 > 4(n− 1)r(1) > 2r(1) ≥ r

(1)
i + r

(1)
j .

Therefore the disks Z
(1)
1 , . . . , Z

(1)
k produced by (2.4) are pairwise disjoint.

Similarly to the relation (3.8), using a geometric construction and the fact that
the disks Z

(0)
i , . . . , Z

(m)
i must have at least one common point, for i ∈ Ik we obtain

the following inequality
ρ
(m)
2 ≥ ρ

(0)
2 − 2r(m). (3.10)

According to (3.10) (for m = 1) we estimate

ρ
(1)
2 ≥ ρ

(0)
2 − 2r(1) > ρ

(0)
2 − 2

5
r(0) > ρ

(0)
2 − r(0) (3.11)

and

ρ
(1)
2 ≥ ρ

(0)
2 − 2r(1) > 4(n− 1)r(0) − 2r(0)

5
> 5r(1)

(
4(n− 1)− 2

5

)
,

wherefrom it follows
ρ
(1)
2 > 4(n− 1)r(1). (3.12)
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Similarly as before, for arbitrary pair of indices i ∈ Ik and j = k + 1, . . . , n we
have

|z(1)
i − z

(0)
j | ≥ ρ

(1)
2 > ρ

(0)
2 − r(0) > 4(n− 1)r(0) − r(0) > r(1) + d.

Therefore the disks Z
(1)
1 , . . . , Z

(1)
k , Z

(0)
k+1, . . . , Z

(0)
n are pairwise disjoint.

From the relation (3.9) and (3.12) we conclude that the initial condition (3.1)
holds for m = 1, in other words

ρ(1) > 4(n− 1)r(1). (3.13)

Let us now estimate the quantities from Lemma 3.1 for m = 1. Using the
inequality (3.11) we obtain

a
(1)
1 =

(
1 +

r(1)

ρ
(1)
1

)k−1(
1 +

d

ρ
(1)
2

)n−k

<

(
1 +

r(1)

ρ
(1)
1

)k−1(
1 +

d

ρ
(0)
2 − r(0)

)n−k

and using the initial conditions (3.1) and (3.2) we estimate

a
(1)
1 <

(
1 +

1
4(n− 1)

)k−1(
1 +

1
4(n− 1)− 1

)n−k

<
4
3

(3.14)

and

a
(1)
2 =

(
1 +

r(1)

ρ
(1)
2

)k−1(
1 +

d

ρ3

)n−k

<
(
1 +

1
4(n− 1)

)n−1

<
4
3
. (3.15)

In a similar way we estimate the center and radius of the disk in the denominator
of the inclusion formula (2.4) for m = 1. Using (3.1) and the bounds (3.14) and
(3.15), we obtain

|1− u
(1)
i | > 1− (k − 1)a(1)

1

r(1)

ρ
(1)
1

− (n− k)a(1)
2

d

ρ
(1)
2

>
3
5

(3.16)

and

r(1)B(1) = (k − 1)a(1)
1

(
r(1)

)2

(
ρ
(1)
1

)2 + (n− k)a(1)
2

r(1)d
(
ρ
(1)
2

)2 <
1
20

. (3.17)

Finally we find

r
(2)
i <

1
5
r
(1)
i . (3.18)

Since r(2) < r(1) we conclude from (3.10) that the inequality (3.11) holds for
m = 2, that is,

ρ
(2)
2 ≥ ρ

(0)
2 − r(0).

Since the estimates (3.14) – (3.18) coincide with the bounds (3.3) – (3.7), we
conclude that the inequality (3.13) holds for the index m = 2. Let us note that the
generated disks Z

(2)
1 , . . . , Z

(2)
k , Z

(0)
k+1, . . . , Z

(0)
n are pairwise disjoint.
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Repeating the above procedure and the argumentation for arbitrary index m ≥
1, we can derive all above relations for the index m + 1. Since these relations
have already proved for m = 1, by mathematical induction it follows that, if the
conditions (3.1) and (3.2) hold, they are valid for all m ≥ 1. In particular, we have

ρ(m) > 4(n− 1)r(m) (3.19)

and

r(m+1) <
r(m)

5
. (3.20)

In addition, we note that the inequality (3.19) means that the estimates (3.14) –
(3.18) hold for each m = 1, 2, . . . . Finally, from (3.20) we conclude that the sequence
{r(m)} monotonically converges to 0, in other words, the inclusion method (2.4) is
convergent under the initial conditions (3.1) and (3.2).

Theorem 3.2 Let (Z1, . . . , Zn) =:
(
Z

(0)
1 , . . . , Z

(0)
n

)
be initial disks such that ζi ∈

Zi (i ∈ In) and let
{
Z

(m)
i

}
denote the sequences of the disks obtained by the iterative

formula (2.4). Then, under the conditions (3.1) and (3.2), for each i ∈ Ik (1 ≤ k ≤
n) and m = 0, 1, . . . we have

1◦ ζi ∈ Z
(m)
i ;

2◦ the R-order of convergence of the iterative process (2.4) is two if k < n and
three if k = n.

Proof. We will prove the assertion 1◦ by induction. Let ζi ∈ Z
(m)
i for any m and

i ∈ Ik. According to (2.4) we obtain

ζi ∈ z
(m)
i − W

(m)
i

1−
( k∑

j=1
j 6=i

W
(m)
j

z
(m)
j − Z

(m)
i

+
n∑

j=k+1

W̃
(m)
j

z
(0)
j − Z

(m)
i

) = Z
(m+1)
i .

Since ζi ∈ Z
(0)
i it follows by induction that ζi ∈ Z

(m+1)
i for each m = 0, 1, . . . .

Let us prove now the assertion 2◦. From the relation (2.4) we estimate

r
(m+1)
i = rad Z

(m+1)
i <

a
(m)
1

(
r(m)

)2
B(m)

∣∣1− u
(m)
i

∣∣2 − (
r(m)

)2(
B(m)

)2 . (3.21)

Since

B(m) = (k − 1)a(m)
1

r(m)

(
ρ
(m)
1

)2 + (n− k)a(m)
2

d
(
ρ
(m)
2

)2 =
{

O(d), k < n,
O(r(m)), k = n

we conclude from (3.21) that the R-order of convergence of the method (2.4) is two
in the case when k < n and three when k = n.
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4 Numerical examples

The inclusion method (2.4) have been tested on a number of polynomial equations.
Experimental results coincide very well with the theoretical results concerning the
convergence speed of the interval method (2.4). Besides, these results show that
initial approximations can be chosen under weaker conditions compared to (3.1)
and (3.2). It is worth noting that only “point” approximations z

(0)
k+1, . . . , z

(0)
n are

sufficient in the implementation of the method (2.4) unlike the use of inclusion disks
Z

(0)
k+1, . . . , Z

(0)
n employed in the convergence analysis.

Example 4.1 To find the circular inclusion approximations to the zeros of the
polynomial

f(z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300,

we implemented the interval methods (2.4). The exact zeros of f are ζ1 = −3,
ζ2,3 = ±1, ζ4,5 = ±2i, ζ6,7 = −2± i and ζ8,9 = 2± i. The initial disks were selected
to be Z

(0)
i = {z(0)

i ; 0.3}, with the centers

z
(0)
1 = −3.1 + 0.1i, z

(0)
2 = −1.2− 0.1i, z

(0)
3 = 1.2 + 0.1i,

z
(0)
4 = 0.1− 2.1i, z

(0)
5 = 0.1 + 1.9i, z

(0)
6 = −1.9 + 1.1i,

z
(0)
7 = −1.9− 0.9i, z

(0)
8 = 2.1 + 1.1i, z

(0)
9 = 1.9− 0.9i.

The radii of the inclusion disks produced in the first three iterative steps are given
in Table 4.1, where the denotation A(−q) means A× 10−q.

r(1) r(2) r(3)

r1 1.02(−2) 6.75(−8) 1.45(−23)
r2 2.58(−2) 3.46(−7) 9.26(−23)
r3 2.25(−2) 8.33(−7) 5.35(−21)
r4 7.96(−3) 1.69(−8) 3.02(−25)
r5 8.59(−3) 7.94(−8) 5.14(−23)
r6 1.28(−2) 1.73(−7) 1.12(−22)
r7 1.61(−2) 1.63(−7) 3.31(−23)
r8 8.45(−3) 1.05(−7) 1.70(−22)
r9 1.22(−2) 2.80(−7) 1.29(−21)

Table 4.1 The radii of inclusion disks

In finding inclusion disks of the first five zeros (k = 5), we obtain the radii in
the first three iterative steps given in Table 4.2.
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r(1) r(2) r(3)

r1 1.02(−2) 2.40(−6) 1.64(−14)
r2 2.58(−2) 9.25(−6) 1.45(−13)
r3 2.25(−2) 2.74(−5) 2.01(−11)
r4 7.96(−3) 3.48(−7) 4.04(−16)
r5 8.59(−3) 1.71(−6) 2.34(−14)

Table 4.2 The radii of inclusion disks

From Table 4.1 we can observe the cubic convergence of the interval methods,
while the convergence is quadratic when only a part of inclusion disks is calculated,
see Table 4.2. This is in accordance to the assertion of Theorem 3.2.

Example 4.2 To find the circular inclusion approximations to the first four zeros
of the polynomial

f(z) = z9 − (4 + 6i)z8 − (18− 3i)z7 − (45− 63i)z6 + (377 + 324i)z5

−(158 + 1128i)z4 + (18− 3i)z3 + (45− 63i)z2 − (378 + 324i)z
+(162 + 1134i),

we implemented the same interval method (2.4). The exact zeros of f are ζ1,2 = ±1,
z3,4 = ±i, ζ5 = 3 + 3i, ζ6 = 4 + 3i, ζ7 = −3 − 3i, ζ8 = −3 + 3i and ζ9 = 3. The
initial disks were selected to be Z

(0)
i = {z(0)

i ; 0.5}, with the centers

z
(0)
1 = 1.2− 0.1i, z

(0)
2 = −1.1 + 0.2i, z

(0)
3 = 0.1 + 1.2i, z

(0)
4 = 0.2− 0.9i.

The initial approximations of the remaining zeros are taken equidistantly on the
circle x2 + y2 = 4. The radii of the inclusion disks produced in the first three
iterative steps are given in Table 4.3. The presented entries point to the quadratic
convergence.

r(1) r(2) r(3)

r1 2.44(−1) 3.01(−2) 2.20(−4)
r2 1.30(−1) 2.40(−3) 1.83(−7)
r3 1.78(−1) 9.01(−3) 7.49(−6)
r4 1.67(−1) 9.72(−3) 1.03(−5)

Table 4.3 The radii of inclusion disks

Example 4.3 To find the circular inclusion approximations to the zeros of the
polynomial

f(z) = z20 + z19 + 12z17 + 124z16 + 268z15 − 432z14 + 2784z13

+1302z12 + 34710z11 − 91824z10 + 324696z9 − 3275380z8

+620972z7 − 9722256z6 − 2270592z5 − 1056847z4

−28303951z3 + 313942512z2 − 25704900z + 308458800,
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we implemented the interval method (2.4). The exact zeros of f are: ζ1,2 = 1± 2i,
z3,4 = −1± 2i, ζ5,6 = ±2, ζ7,8 = ±i, ζ9,10 = 3± 2i, ζ11,12 = −3± 2i, ζ13,14 = 2± 3i,
ζ15,16 = −2±3i, ζ17,18 = ±3i, ζ19 = 3 and ζ20 = −4. The initial disks were selected
to be Z

(0)
i = {z(0)

i ; 0.3}, with the centers

z
(0)
1 = 1.1 + 2.2i, z

(0)
2 = 1.2− 2.1i, z

(0)
3 = −1.2 + 2.1i,

z
(0)
4 = −1.2− 2.1i, z

(0)
5 = 2.2 + 0.1i, z

(0)
6 = −2.1 + 0.1i,

z
(0)
7 = −0.2 + 0.9i, z

(0)
8 = 0.2− 1.1i, z

(0)
9 = 3.1 + 1.9i,

z
(0)
10 = 3.2− 1.9i, z

(0)
11 = −3.2 + 1.9i, z

(0)
12 = −3.2− 1.9i,

z
(0)
13 = 2.2 + 2.9i, z

(0)
14 = 2.2− 2.9i, z

(0)
15 = −2.2 + 2.9i,

z
(0)
16 = −2.2− 2.9i, z

(0)
17 = 0.2 + 3.1i, z

(0)
18 = −0.2− 2.9i,

z
(0)
19 = 3.2− 0.1i, z

(0)
20 = −4.2− 0.1i.

The radii of the inclusion disks produced in the first three iterative steps, are
given in Table 4.4.

r(1) r(2) r(3)

r1 5.18(−2) 2.53(−5) 1.02(−15)
r2 5.66(−2) 6.45(−5) 1.69(−14)
r3 5.35(−2) 3.55(−5) 1.29(−15)
r4 5.02(−2) 2.25(−5) 1.07(−15)

r5 7.21(−2) 7.49(−5) 9.51(−15)
r6 2.14(−2) 2.06(−6) 2.59(−18)
r7 6.51(−2) 5.72(−5) 2.23(−15)
r8 7.62(−2) 1.16(−4) 3.71(−14)
r9 1.41(−2) 1.19(−6) 4.52(−19)
r10 1.93(−2) 1.98(−6) 6.59(−19)
r11 1.20(−2) 2.53(−6) 1.40(−18)
r12 1.97(−2) 3.10(−6) 9.06(−18)
r13 2.86(−2) 8.12(−6) 9.66(−17)
r14 3.40(−2) 8.57(−6) 1.21(−16)
r15 3.25(−2) 7.23(−6) 3.12(−17)
r16 3.26(−2) 9.77(−6) 5.63(−17)
r17 3.67(−2) 8.94(−6) 9.37(−17)
r18 5.34(−2) 4.72(−5) 6.65(−15)
r19 2.32(−2) 3.86(−6) 2.52(−17)
r20 1.27(−2) 1.42(−7) 1.24(−21)

Table 4.4 The radii of inclusion disks

In finding inclusion disks of the first seven zeros (k = 7), we obtain the radii in
the first three iterative steps given in Table 4.5.
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r(1) r(2) r(3)

r1 5.18(−2) 2.71(−4) 2.44(−9)
r2 5.66(−2) 6.71(−4) 5.97(−8)
r3 5.35(−2) 4.91(−4) 1.83(−8)
r4 5.02(−2) 2.24(−4) 1.67(−9)
r5 7.21(−2) 1.13(−3) 2.81(−8)
r6 2.14(−2) 2.46(−5) 1.31(−11)
r7 6.51(−2) 4.79(−4) 5.99(−9)

Table 4.5 The radii of inclusion disks

As in Example 4.1, from Table 4.4 and 4.5 we can observe the cubic and quadratic
convergence of the interval methods (2.4), respectively.
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Dušan M. Milošević dmilosev@elfak.ni.ac.yu (Corresponding author)


