ON \mathcal{DS}^* -SETS AND DECOMPOSITIONS OF CONTINUOUS FUNCTIONS

Erdal Ekici and Saeid Jafari

Abstract

In this paper, the notions of \mathcal{DS}^* -sets and \mathcal{DS}^* -continuous functions are introduced and their properties and their relationships with some other types of sets are investigated. Moreover, some new decompositions of continuous functions are obtained by using \mathcal{DS}^* -continuous functions, \mathcal{DS} -continuous functions and \mathcal{D} -continuous functions.

1 Introduction

In a recent paper, Ekici and Jafari [12] have studied \mathcal{DS} -sets and \mathcal{D} -sets and obtained some decompositions of continuous functions via \mathcal{DS} -continuous functions and \mathcal{D} -continuous functions. In this paper, we introduce a new class of sets called \mathcal{DS}^* -sets. Properties of this class are investigated. Furthermore, the notion of \mathcal{DS}^* -continuous functions is introduced via \mathcal{DS}^* -sets to establish some new decompositions of continuous functions. On the other hand, by using \mathcal{DS} -sets and \mathcal{D} -sets, other new decompositions of continuous functions are obtained.

In this paper (X,τ) and (Y,σ) represent topological spaces. For a subset A of a space X, cl(A) and int(A) denote the closure of A and the interior of A, respectively. A subset A of a space X is called regular open (resp regular closed) [22] if A = int(cl(A)) (resp. A = cl(int(A))). A is called δ -open [24] if for each $x \in A$, there exists a regular open set U such that $x \in U \subset A$. A is called δ -closed if its complement is δ -open. A point $x \in X$ is called a δ -cluster point of A if $A \cap int(cl(U)) \neq \emptyset$ for each open set U containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by δ -cl(A). The union of all regular open sets, each contained in A called the δ -interior of A and is denoted by δ -int(A). A subset A of a space (X, τ) is called semiopen [15] (resp. semi-regular [7], α -open [19], preopen [16] or locally dense [6], δ -open [4] or γ -open [13] or sp-open [8], β -open [1] or

2000 Mathematics Subject Classifications. 54C08.

Key words and Phrases. DS^* -sets, DS^* -continuous function, decomposition.

Received: November 5, 2007

Communicated by Dragan Djordjević

semi-preopen [3], δ -semiopen [20], δ -preopen [21]) if $A \subset cl(int(A))$ (resp. semiopen and semiclosed, $A \subset int(cl(int(A)))$, $A \subset int(cl(A))$, $A \subset int(cl(A)) \cup cl(int(A))$, $A \subset cl(int(cl(A)))$, $A \subset cl(\delta - int(A))$, $A \subset int(\delta - cl(A))$. The complement of a δ -semiopen (resp. semiopen) set is called a δ -semiclosed (resp. semiclosed) set. The union (resp. intersection) of all δ -preopen (resp. δ -semiclosed) sets, each contained in (resp. containing) a set A in a topological space X is called the δ -preinterior (resp. δ -semiclosure) of A and it is denoted by δ -pint(A) (resp. δ -scl(A)).

Definition 1 A subset A of a space (X, τ) is called

- (1) a \mathcal{D} -set [12] if $A = U \cap V$, where U is open and V is δ -closed,
- (2) a \mathcal{DS} -set [12] if $A = U \cap V$, where U is open and V is δ -semiclosed,
- (3) a \mathcal{B} -set [23] if $A \in \mathcal{B}(X) = \{U \cap V : U \in \tau, int(cl(V)) \subset V\},$
- (4) an \mathcal{AB} -set [9] if $A \in \mathcal{AB}(X) = \{U \cap V : U \in \tau \text{ and } V \text{ is semi-regular}\}.$

The family of all \mathcal{DS} -sets (resp. \mathcal{D} -sets) of a topological space X will be denoted by $\mathcal{DS}(X)$ (resp. $\mathcal{D}(X)$). A topological space X is called a locally indiscrete [10] if every open subset of X is closed and called submaximal [5] if every dense subset of X is open.

Definition 2 A function $f: X \to Y$ is called

- (1) β -continuous [1] if $f^{-1}(A)$ is β -open for each $A \in \sigma$.
- (2) α -continuous [17] if $f^{-1}(A)$ is α -open for each $A \in \sigma$.
- (3) γ -continuous [13] if $f^{-1}(A)$ is γ -open for each $A \in \sigma$.
- (4) quasi-continuous [14] if $f^{-1}(A)$ is semiopen for each $A \in \sigma$.
- (5) precontinuous [16] if $f^{-1}(A)$ is preopen for each $A \in \sigma$.
- (6) δ -almost continuous [21] if $f^{-1}(A)$ is δ -preopen for each $A \in \sigma$.
- (7) δ -semicontinuous [11] if $f^{-1}(A)$ is δ -semiopen for each $A \in \sigma$.
- (8) super-continuous [18] if $f^{-1}(A)$ is δ -open for each $A \in \sigma$.

2 \mathcal{DS}^* -sets in topological spaces

Definition 3 A subset A of a topological space X is called a \mathcal{DS}^* -set if $A = U \cap V$, where U is open and V is δ -semiclosed and $int(\delta \text{-}cl(V)) = cl(\delta \text{-}int(V))$.

The family of all \mathcal{DS}^* -sets of a topological space X will be denoted by $\mathcal{DS}^*(X)$.

Remark 4 The following diagram holds for a subset of a space X:

$$\begin{array}{c} \mathcal{B}\text{-}set \\ \uparrow \\ \mathcal{DS}\text{-}set \\ \uparrow \\ \mathcal{DS}^*\text{-}set \end{array}$$

The following examples show that these implications are not reversible.

Example 5 Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. The set $\{a, c, d\}$ is a \mathcal{DS} -set but it is not a \mathcal{DS}^* -set.

Example 6 ([12]) Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$. The set $\{b, c, d\}$ is a \mathcal{B} -set but it is not a \mathcal{DS} -set.

Remark 7 Every open set is a DS^* -set. The converse is not true.

Example 8 Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. The set $\{a, c\}$ is a \mathcal{DS}^* -set but it is not open.

Theorem 9 The following are equivalent for a subset A of a space X:

- (1) A is open,
- (2) A is α -open and a \mathcal{DS}^* -set,
- (3) A is semiopen and a \mathcal{DS}^* -set,
- (4) A is preopen and a DS^* -set,
- (5) A is γ -open and a \mathcal{DS}^* -set.
- (6) A is β -open and a \mathcal{DS}^* -set.

Proof. (1) \Rightarrow (2): It follows from the fact that every open set is α -open and a \mathcal{DS}^* -set.

- $(2) \Rightarrow (3) \Rightarrow (5)$: Obvious.
- $(2) \Rightarrow (4) \Rightarrow (5)$: Obvious.
- $(5) \Rightarrow (6)$: Obvious.
- $(6) \Rightarrow (1)$: Let A be β -open and a \mathcal{DS}^* -set. Since A is β -open, $A \subset cl(int(cl(A)))$. Since A is a \mathcal{DS}^* -set, then $A = U \cap V$, where U is open and V is δ -semiclosed and $int(\delta \cdot cl(V)) = cl(\delta \cdot int(V))$. Also, by δ -semiclosedness of V, we have $\delta \cdot int(V) = \delta \cdot int(\delta \cdot cl(V))$. Furthermore, we obtain

$$\begin{split} A = A \cap U \subset cl(int(cl(A))) \cap U &= cl(int(cl(U \cap V))) \cap U \\ &\subset cl(int(cl(U))) \cap cl(int(cl(V))) \cap U \\ &= cl(int(cl(V))) \cap U \\ &\subset cl(int(\delta \text{-} cl(V))) \cap U \\ &= cl(\delta \text{-} int(V)) \cap U \\ &= \delta \text{-} int(V) \cap U. \end{split}$$

Thus, $A = \delta - int(V) \cap U$ and hence A is open.

Theorem 10 ([12]) For a space X, the following are equivalent:

- (1) X is indiscrete,
- (2) the DS-sets in X are only the trivial ones,
- (3) the \mathcal{D} -sets in X are only the trivial ones.

Theorem 11 The following are equivalent for a space X:

- (1) X is indiscrete,
- (2) the \mathcal{DS}^* -sets in X are the trivial ones.
- **Proof.** (1) \Rightarrow (2): Let A be a \mathcal{DS}^* -set in X. Then there exist an open set U and a δ -semiclosed set V such that $A = U \cap V$ and δ - $int(\delta$ - $cl(V)) = \delta$ - $cl(\delta$ -int(V)). Let $A \neq \emptyset$. We have $U \neq \emptyset$. By (1), U = X and A = V. Hence, $X = \delta$ - $scl(A) \subset A$ and so A = X.
 - $(2) \Rightarrow (1)$: Since every \mathcal{DS}^* -set is \mathcal{DS} -set, it follows from Theorem 10.

Theorem 12 Let X be a topological space and $A \subset X$. If $A \in \mathcal{DS}(X)$, then δ -pint(A) = int(A).

Proof. Let $A \in \mathcal{DS}(X)$. Then, $A = U \cap V$, where U is open and V is δ -semiclosed. Since V is δ -semiclosed, then we have δ - $int(V) = \delta$ - $int(\delta$ -cl(V)). Moreover, we obtain

$$\begin{array}{ll} \delta\text{-}pint(A) = A \cap \delta\text{-}int(\delta\text{-}cl(A)) & \subset U \cap \delta\text{-}int(\delta\text{-}cl(V)) \\ & = U \cap \delta\text{-}int(V) \\ & \subset U \cap int(V) \\ & = int(A). \end{array}$$

Thus, δ -pint(A) = int(A).

Theorem 13 The following are equivalent for a subset A of a space X:

- (1) A is open,
- (2) A is δ -preopen and a \mathcal{D} -set,
- (3) A is δ -preopen and a \mathcal{DS} -set.

Proof. (1) \Rightarrow (2): Since every open set is δ -preopen and a \mathcal{D} -set, it is completed.

- $(2) \Rightarrow (3)$: Obvious.
- (3) ⇒ (1): Let A be δ-preopen and a \mathcal{DS} -set. By Theorem 12, δ -pint(A) = int(A). Also, since A is δ-preopen, $A = \delta$ -pint(A) = int(A). Thus, A is open. ■

Theorem 14 Let X be a topological space and $A \subset X$. If $A \in \mathcal{DS}^*(X)$, then $A = U \cap \delta$ -scl(A) for some open set U.

Proof. Let $A \in \mathcal{DS}^*(X)$. This implies that $A = U \cap V$, where U is open and V is δ -semiclosed and $int(\delta \cdot cl(V)) = cl(\delta \cdot int(V))$. Since $A \subset V$, $\delta \cdot scl(A) \subset \delta \cdot scl(V) = V$. Moreover, $U \cap \delta \cdot scl(A) \subset U \cap V = A \subset U \cap \delta \cdot scl(A)$ and hence $A = U \cap \delta \cdot scl(A)$.

Theorem 15 ([12]) The following are equivalent for a subset P of a space X:

- (1) P is an AB-set,
- (2) P is semiopen and a DS-set,
- (3) P is b-open and a DS-set,
- (4) P is β -open and a \mathcal{DS} -set.

Theorem 16 Let X be a topological space and $A \subset X$. If A is β -open and a \mathcal{DS}^* -set, then it is an \mathcal{AB} -set.

Proof. Let A be β -open and a \mathcal{DS}^* -set. Since A is a \mathcal{DS} -set, by Theorem 15, A is an \mathcal{AB} -set. \blacksquare

Definition 17 Let X be a topological space and $A \subset X$. Then A is called a δ^* -set if δ -int(A) is δ -closed.

Theorem 18 Let X be a topological space and $A \subset X$. If A is a δ^* -set and δ -semiopen, then it is δ -open.

Proof. Let A be a δ^* -set and δ -semiopen. Then $A \subset cl(\delta - int(A)) = \delta - int(A)$. Thus, A is δ -open. \blacksquare

Theorem 19 Let X be a topological space and $A \subset X$. Then A is open if A is a δ -semiopen \mathcal{DS}^* -set and A is preopen or a δ^* -set.

Proof. Let A be a δ -semiopen \mathcal{DS}^* -set. Suppose that A is preopen or a δ^* -set. If A is a preopen \mathcal{DS}^* -set, then it is a preopen \mathcal{B} -set. So, by Proposition 9 [23], A is open. Also, if A is a δ^* -set and δ -semiopen, by Theorem 18, A is open. Thus, the proof is completed. \blacksquare

Theorem 20 The following are equivalent for a space X:

- (1) X is a locally indiscrete space,
- (2) every \mathcal{DS}^* -set is clopen,
- (3) every \mathcal{DS}^* -set is closed.
- **Proof.** $(1) \Rightarrow (2)$: Let A be a \mathcal{DS}^* -set. Then there exist an open set U and a δ -semiclosed set V such that $A = U \cap V$ and $int(\delta cl(V)) = cl(\delta int(V))$. Since U is clopen, then A is semiclosed. By [2], since X is a locally indiscrete space, then A is clopen.
 - $(2) \Rightarrow (3)$: Obvious.
- $(3)\Rightarrow (1):$ Let $A\subset X$ be an open set. Since A is a \mathcal{DS}^* -set, then A is closed. Hence, X is a locally indiscrete space.

Theorem 21 ([12]) For a space X the following are equivalent:

- (1) X is submaximal,
- (2) every dense subset of X is a \mathcal{D} -set,
- (3) every dense subset of X is a \mathcal{DS} -set.

Theorem 22 Let X be a topological space. Then X is submaximal if and only if every dense subset of X is a \mathcal{DS}^* -set.

Proof. (\Rightarrow) : Let A be a dense subset of X. Since X submaximal, then A is open and so A is a \mathcal{DS}^* -set.

 (\Leftarrow) : Since every dense subset is a \mathcal{DS}^* -set and every \mathcal{DS}^* -set is a \mathcal{DS} -set, then by Theorem 21, X is submaximal. \blacksquare

3 Some new decompositions of continuity

Definition 23 A function $f:(X,\tau)\to (Y,\sigma)$ is called

- (1) \mathcal{DS}^* -continuous if $f^{-1}(V) \in \mathcal{DS}^*(X)$ for each $V \in \sigma$.
- (2) δ^* -continuous if $f^{-1}(V)$ is a δ^* -set for each $V \in \sigma$.

Definition 24 A function $f:(X,\tau)\to (Y,\sigma)$ is called

- (1) \mathcal{D} -continuous [12] if $f^{-1}(V) \in \mathcal{D}(X)$ for each $V \in \sigma$.
- (2) \mathcal{DS} -continuous [12] if $f^{-1}(V) \in \mathcal{DS}(X)$ for each $V \in \sigma$.
- (3) \mathcal{AB} -continuous [9] if $f^{-1}(V) \in \mathcal{AB}(X)$ for each $V \in \sigma$.
- (4) \mathcal{B} -continuous [23] if $f^{-1}(V) \in \mathcal{B}(X)$ for each $V \in \sigma$.

Remark 25 The following diagram holds for a function $f: X \to Y$:

 \mathcal{B} -continuous $\uparrow \\ \mathcal{DS}$ -continuous $\uparrow \\ \mathcal{DS}^*$ -continuous

None of these implications is reversible as shown in the following examples.

Example 26 Let $X = Y = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$, defined as: f(a) = c, f(b) = b, f(c) = c, f(d) = d, is \mathcal{DS} -continuous but it is not \mathcal{DS}^* -continuous.

Example 27 ([12]) Let $X = Y = \{a, b, c, d\}$ and $\tau = \sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$, defined as: f(a) = b, f(b) = a, f(c) = c, f(d) = d, is \mathcal{B} -continuous but it is not \mathcal{DS} -continuous.

Remark 28 Every continuous function is \mathcal{DS}^* -continuous but not conversely.

Example 29 Let $X = Y = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$, defined as: f(a) = c, f(b) = b, f(c) = c, f(d) = b, is \mathcal{DS}^* -continuous but it is not continuous.

Theorem 30 Let $f:(X,\tau)\to (Y,\sigma)$ be a function. If f is β -continuous and \mathcal{DS}^* -continuous, then it is \mathcal{AB} -continuous.

Proof. It follows from Theorem 16. ■

Theorem 31 The following are equivalent for a function $f: X \to Y$:

- (1) f is continuous,
- (2) f is α -continuous and \mathcal{DS}^* -continuous,
- (3) f is quasi-continuous and \mathcal{DS}^* -continuous,
- (4) f is precontinuous and \mathcal{DS}^* -continuous,
- (5) f is γ -continuous and \mathcal{DS}^* -continuous,
- (6) f is β -continuous and \mathcal{DS}^* -continuous.

Proof. It is an immediate consequence of Theorem 9.

Theorem 32 The following are equivalent for a function $f: X \to Y$:

- (1) f is continuous,
- (2) f is δ -almost continuous and \mathcal{D} -continuous,
- (3) f is δ -almost continuous and \mathcal{DS} -continuous.

Proof. It follows from Theorem 13.

Theorem 33 Let $f: X \to Y$ be a function. Then f is continuous if f is δ -semicontinuous, \mathcal{DS}^* -continuous and precontinuous or δ^* -continuous.

Proof. It is an immediate consequence of Theorem 19.

Theorem 34 Let $f: X \to Y$ be a function. Then f is super-continuous if f is δ^* -continuous and δ -semicontinuous.

Proof. It is an immediate consequence of Theorem 18.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77-90.
- [2] T. Aho and T. Nieminen, Spaces in which preopen subsets are semiopen, Rich. di Mat., vol. XLIII (1) (1994), 45-59.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [4] D. Andrijević, On b-open sets, Mat. Bech., 48 (1996), 59–64.
- [5] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass 1996.
- [6] H. Carson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8 (1964), 351-360.
- [7] Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18 (3) (1987), 226-233.

- [8] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar., 71 (1-2) (1996), 109–120.
- [9] J. Dontchev, Between \mathcal{A} and \mathcal{B} -sets, Math. Balkanica (N.S.), 12 (3-4) (1998), 295-302.
- [10] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J., 15 (1975), 41-50.
- [11] E. Ekici and G. B. Navalagi, δ-semicontinuous functions, Mathematical Forum, Vol. XVII (2004-2005), 29-42.
- [12] E. Ekici and S. Jafari, On \mathcal{D} -sets, \mathcal{DS} -sets and decompositions of continuous, \mathcal{A} -continuous and \mathcal{AB} -continuous functions, Italian J. Pure and Appl. Math., in press.
- [13] A. A. El-Atik, A study of some types of mappings on topological spaces, Master's Thesis, Faculty of Science, Tanta Univ., Egypt, 1997.
- [14] S. Kempisty, Sur les functions quasicontinues, Fund. Math., 19 (1932), 184-197.
- [15] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36-41.
- [16] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [17] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar., 41 (1983), 213-218.
- [18] B. M. Munshi and D. S. Bassan, Super continuous mappings, Indian J. Pure and Appl. Math., 13 (1982), 229-236.
- [19] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [20] J. H. Park, B. Y. Lee and M. J. Son, On δ-semiopen sets in topological space, J. Indian Acad. Math., 19 (1) (1997), 59-67.
- [21] S. Raychaudhuri and M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357-366.
- [22] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374-481.
- [23] J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54 (1-2) (1989), 51–55.
- [24] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., (2) 78 (1968), 103-118.

${\rm Address}$

Erdal Ekici (Corresponding Author): Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey

 $E ext{-}mail:$ eekici@comu.edu.tr

Saeid Jafari: College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark

 $E ext{-}mail: jafari@stofanet.dk$