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A REPRESENTATION FORMULA FOR CURVES IN C
3

WITH PRESET INFINITESIMAL ARC LENGTH

Hubert Gollek

Abstract

We consider an algebraic representation formula for meromorphic curves
in C

3 with preset infinitesimal arc length, i. e., a differential operator M

assigning to triples (f, h, d) of meromorphic functions meromorphic curves
Φ = (ϕ1, ϕ2, ϕ3)

> such that d is the infinitesimal arclength of Φ, in this way
obtaining the complete solution of the differential equation ϕ′2

1 +ϕ′2

2 +ϕ′2

3 = d2

in terms of derivatives of f, h, d only and without integrations. Computer al-
gebra systems are an excellent tool to handle formulas of this type. We give
simple Mathematica code and apply it to work out some examples, graphics
as well as algebraic expressions of complex curves with special properties. For
the case d = 0 of null curves, we give some graphical examples of minimal sur-
faces constructed in this way, showing deformations and symmetries. We give
an expression for the curvature κ of Φ in terms of the Schwarzian derivative
of f and for the case d = 1 a simple differential relation for f and h equivalent
to the condition κ = 1

1 Introduction

The isotropic cone I ⊂ C
3 consists of all vectors z = (z1, z2, z3)

> ∈ C
3, z 6= 0,

such that z2
1 + z2

2 + z2
3 = 0. A null curve Φ(z) = (ϕ1(z), ϕ2(z), ϕ3(z))

>
in C

3 is

understood as a curve whose tangent at each point is a line on I, i. e., ϕ′
1
2
+ ϕ′

2
2
+

ϕ′
3
2

= 0. We will always assume that Φ is full, i. e., that Φ′,Φ′′,Φ′′′ are linearly
independent.

Consider the open dense subset

I0 =
{
z = (z1, z2, z3)

> ∈ I
∣∣ z1 − i z2 6= 0

} (
i =

√
−1
)
.

A parametrization of I0 is given by the bijective map

W : (f, ω) ∈ C × (C \ {0}) −→ ω

2




1 − f2

i
(
1 + f2

)

2 f


 , (1.1)
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whose inverse is

W−1 : (z1, z2, z3)
> ∈ I0 −→

(
z3

z1 − i z2
, z1 − i z2

)
. (1.2)

Replacing f, ω by meromorphic functions f(z), ω(z), integration gives the Weier-
straß representation formula

WEIω,f (z) =

∫
W(f(z), ω(z))dz (1.3)

of null curves in C
3 and, up to translations any parametrized null curve Φ satisfying

ϕ′
1 6= iϕ′

2 is represented in a unique way by (1.3). We call the corresponding
functions f and ω the Weierstraß data of Φ.

An algebraic representation formula for null curves, i. e., a formula containing
only derivatives of the input data, was obtained by N. Hitchin, in [3] and later on by
M. Kokubu, M.Umehara, K. Yamada, K.,in [8]. The basic idea of their construction
is recalled here in section 4. Considering deformations of null curves, we derived the
same representation formula in [5] and [6]. and proved a number of its properties,
such as bijectivity and a group equivariance.In section 2 we indicate, how this
representation formula is decoded in an computer algebra system like Mathematica
we show how this equivariance is related to symmetries of the corresponding minimal
surfaces by graphical examples in section 3

2 Deformations of null curves

In this section we recall results of [6].

Definition 2.1 The natural parameter of a null curve Φ(z) in C
3 is defined by

p′(z) = 4

√
〈Φ′′(z),Φ′′(z)〉. The curvature κ2

Φ of a null curve Φ(z) is defined by

κ2
Φ =

√〈
d3Φ

dp3
,
d3Φ

dp3

〉
(2.1)

The functions p and κ are a complete system of invariants of null curves. In terms of
the Weierstraß data (ω, f) the natural parameter is given by p′(z) =

√
f ′(z)ω(z).

Putting ω(z) = 1/f ′(z), then WEI∗f = WEI1/f ′,f is a null curve in natural
parametrization, whose curvature is given by Schwarzian derivative S(f) of f :

κ2
WEI∗f

(z) = S(f)(z) =
3 f ′′(z)

2 − 2 f ′(z) f (3)(z)

f ′(z)
2 . (2.2)

The original curve Φ can be reconstructed from p and κ by solving a linear
system similar to the classical Frenet equations in R

3. (See for instance [6] for
details.)
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Theorem 2.1 Assume that Φ is a full null curve in natural parametrization (i. e.,
p′(z) = const = 1), h(z) an arbitrary meromorphic function and κΦ(z) the curvature
of Φ. Then, the following linear combination of Φ′,Φ′′,Φ′′′

∆ =
(
hκ2

Φ + h′′
)
Φ′ − h′Φ′′ + hΦ(3). (2.3)

is a new null curve as well as the sum Φ(z) + ∆(z).

A proof of this as well as of some generalizations will be given in section 5 below.
Consider ∆ for h = ε h0, where h0 is a fixed function and ε a complex param-

eter. Since ∆ is linear in h, it approaches 0 as ε −→ 0 and Φ + ∆.approaches Φ.
Therefore,we give the following definition:

Definition 2.2 We call the operator VAR : (Φ, h) −→ VARΦ,h := ∆ the varia-

tion and DEFΦ,h = Φ + VARΦ,h the deformation of Φ by the function h

If Φ is not given in natural parametrization, a similar but more involved formula
for ∆ is obtained by the help of the chain rule involving the derivatives of p(z) up
to order 3. Computation of algebraic expressions of these operators and invariants
can be accomplished by means of computer algebra. The following Mathematica
programs encode the Weierstraß -formulas and their derivatives as wei and weip
respectively, the natural parameter as natparprime, the curvature κ as curv, and
the variation VARΦ,h of a null curve in arbitrary parametrization as var,

weip[om_,f_][z_]:=Simplify[om[z]{1-f[z]^2,I(1+f[z]^2),2f[z]}/2]

weip[f_][z_]:=weip[1/D[f[#],#]&,f][z]

wei[om_,f_][z_]:=Integrate[weip[om,f][zz],zz]/.zz->z

wei[f_][z_]:=Integrate[weip[f][zz],zz]/.zz->z

natparprime[phi_][z_]:=(-phi’’[z].phi’’[z]//Simplify)^(1/4)//PowerExpand;

Sqrt[Sqrt[phi’’[z].phi’’[z] // Simplify]] // PowerExpand;

curv[phi_][z_]:=Module[{pp1=D[phi[zz],zz]//Simplify,pp3,

cp1=natparprime[phi][zz],cp2,cp3,tt},pp3=D[pp1,zz,zz]//Simplify;

cp2=D[cp1,zz]//Simplify;cp3=D[cp2,zz]//Simplify;

tt=(pp3.pp3+9(cp2*cp1)^2-2*cp1^3*cp3)*cp1^-6;

(tt/.zz->z)//Simplify//Sqrt]

variation[phi_][h_][z_]:=Module[{

cpz=natparprime[phi][zz],phiz=D[phi[zz],zz]//Simplify,

mc=curv[phi][zz],chainrulematrix,curveinp,curveinz,

cpzz,cpzzz,phizz,phizzz,tt,test,phip,phipp,phippp,hp,hpp,hz,hzz},

test=phiz.phiz//Simplify;

If[test==0,

(phizz=D[phiz,zz]//Simplify;phizzz=D[phizz,zz]//Simplify;

cpzz=D[cpz,zz]//Simplify;cpzzz=D[cpzz,zz]//Simplify;

chainrulematrix={{cpz,0,0},{cpzz,cpz^2,0},{cpzzz,

3*cpz*cpzz,cpz^3}}//Simplify;

curveinz={phiz,phizz,phizzz};

curveinp=Inverse[chainrulematrix].curveinz//Simplify;

phip=curveinp[[1]];phipp=curveinp[[2]];phippp=curveinp[[3]];

hz=D[h[zz],zz]//Simplify;hzz=D[hz,zz]//Simplify;

hp=hz/cpz//Simplify;hpp=-hz cpzz cpz^-3 +hzz cpz^-2//Simplify;



A representation formula for curves in C
3... 15

tt=(-h[zz] mc^2+hpp) phip-hp phipp+h[zz] phippp;

(tt/.zz->z)//Simplify),

Print["Not a minimal curve."],

Print["Something wrong."]]]

deformation[phi_][h_][z_]:=phi[z]+var[phi][h][z]

Expressing the curve Φ by its Weierstraß data f, ω, we obtain from VARΦ,h

an algebraic representation formulas free of integrations. For Φ(z) = WEIω,f , the
assignment (ω, f, h) −→ VARΦ,h is a differential operator in terms of ω, f, h, linear
in h.

In the case Φ(z) = WEI∗f of the Weierstraß curve in natural parametrization
we obtain a differential operator

(f, h) −→ VARf,h(z) := VARWEIf ,h(z) (2.4)

in terms of f, h, denoted by the same symbol, with the following explicit form:

VARf,h =
−1

2f ′3




i
{
f ′
(
(h′ f ′′ + f ′ h′′) f2 − 2f ′2h′ f − h′f ′′ − f ′ h′′

)
+ h(

2f ′4 − 2f f ′ ′f ′2 +
(
f2 − 1

)
f (3)f ′ −

(
f2 − 1

)
f ′′2
) }

f ′
(
(h′f ′′ + f ′h′′) f2 − 2f ′2h ′f + h′ f ′′ + f ′ h′′

)
− h(

2f ′4 − 2ff ′′f ′2 +
(
f2 + 1

)
f (3)f ′ −

(
f2 + 1

)
f ′′2
)

2i
(
h′ f ′3 − (fh′′ − h f ′′) f ′2−

f
(
h′ f ′′ + h f (3)

)
f ′ + f h f ′′2

)




.

(2.5)
The infinitesimal natural parameter of VARf,h is a differential operator, linear

in h, whose coefficients can be expressed in terms of the Schwarzian derivative S(f),
as can be easily verified with the Mathematica terms of above:




p′f,h
2

= i

(
h′′′ +

2 f ′ f (3) − 3 f ′′2

f ′(z)
2 h′ +

3 f ′′3 − 4 f ′ f ′′ f (3) + f ′2 f (4)

f ′3
h

)

= i

(
h′′′ − S(f)h′ − 1

2
S(f)′ h

)
.

.

(2.6)
Similarly, the curvature of VARf,h is a linear differential operator of order 5 in

h whose coefficients depend only on S(f).
We mention an unexpected coincidence of the second expression in (2.6) with

an explicit formula for the coadjoint action of the Virasoro algebra on its regular
dual space (see Exercise 1.6.2 in [9]).

The real part x(u,v) = <(Φ(u+ i v)) of any null curve Φ(z) in C
3 is a minimal

surface in R
3 in conformal parametrization. We give two examples of deformations

of null curves and show plots of the corresponding minimal surfaces. At first,
a deformation of a catenoid and its associated minimal surface, a helicoid, are
visualized. The parametrized null curve of the catenoid is given by VARf,h, where

f(z) = e7z and the deforming function is chosen as h(z) =
1

17

(
e2z + sin(z/7)

)
. The

original catenoid and helicoid are indicated by circles and helical lines respectively.



16 Hubert Gollek

Deformation of a catenoid Deformation of a helicoid
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The other example shows the minimal surface corresponding to the null curve Φn(z)

with Weierstraß data ω(z) = z2−1/n and f(z) = i n z1/n−1

2 n−1 and a deformation by the

function h(z) = a z2, a ∈ C for the values n = 6 and a = 0.3.

3 Symmetries of (f, h) −→ VARf,h

We mention some nice properties of VARf,h. The algebraic Weierstraß map (1.1)
is equivariant with respect to the group homomorphism µ : Sl(2, C) → SO(3, C)

sending a matrix M =

(
a b
c d

)
∈ Sl(2, C) to the following matrix of SO(3, C):

µ(M) =
1

2




a2 − b2 − c2 + d2 i
(
a2 + b2 − c2 − d2

)
2 (c d − a b)

i
(
−a2 + b2 − c2 + d2

)
a2 + b2 + c2 + d2 2 i (a b + c d)

2 (b d − a c) −2 i (a c + b d) 2 (b c + a d)


 .

(3.1)
More precisely, this homomorphism is the one obtained pulling back the natural
action of SO(3, C) on the isotropic cone I to the Weierstraß data f, ω. If M acts
on a pair (ω, f) by linear fractional transformations f −→ f1 = (a f + b)/(c f + d)
then

µ(M)W(ω, f) = W(ω1, f1), where ω1 = (c f + d)2 ω, f1 =
a f + b

c f + d
. (3.2)

The Weierstraß formula in natural parametrization has a similar property of
equivariance: If Φ = WEI∗f , and Φ1 = WEI∗f1

then Φ1 = µ(M)Φ. This pop-
erty is passed on to all derivatives of WEI∗f and the curvature of WEI∗f remains
unchanged. Therefore, it is passed on to VARf,h too:
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Theorem 3.1 (f, h) → VARf,h is equivariant with respect to the group homo-
morphism µ : Sl(2, C) → SO(3, C) given by (3.1), where now M acts on a pair
(f, h) by linear fractional transformation of the first argument f , leaving the second
unchanged.

In addition to this, (f, h) −→ VARf,h is bijective and its inverse is given by
elementary operations.

Theorem 3.2 The range of (f, h) → VARf,h is the set of all null curves Φ(z) =

(ϕ1(z), ϕ2(z), ϕ3(z))
>

satisfying the condition ϕ′
1 − iϕ′

2 6= 0 and a pair of functions
(f, h) such that Φ = VARf,h is given by

f(z) =
ϕ′

3(z)

ϕ′
1(z) − iϕ′

2(z)
, h(z) =

〈
WEI∗f ,Φ(z)

〉
. (3.3)

Moreover, If Φ1 = Φ + (a, b, c)> is a translate of Φ by a vector (a, b, c)> ∈ C
3,

then the corresponding data f1, h1 for Φ1 are f1 = f and

h1(z) = h(z) +
−b + i a + 2 i c f(z) + (−b − i a) f 2(z)

2 f ′(z)
. (3.4)

Finally, there is the natural behavior of VARf,h with respect to changes of variables.

Theorem 3.3 Under a change z → t(z) of the parameter, VARf,h transforms in
the following way:

VARf,h(t(z)) = VARf̃ ,h̃,(z), where f̃(z) = f(t(z)), h̃(z) =
h(t(z))

t′(z)
. (3.5)

Therefore, if f and h are a meromorphic function and a meromorphic vector field
on a Riemann surface then, defining (f ,h) → VARf ,h as in (2.4) in terms of a local
coordinate z, the result is independent of the choice of z.

For easy proofs of theorems 3.1, 3.2, 3.3 a computer algebra system such as
Mathematica can be used. The following is a simple Mathematica-code for VARf,h

based on the more involved expression variation of VARΦ,h given above.

var[f_][h_][z_]=variation[wei[f][#] &][h][z]//Simplify

The equivariance of theorem 3.1 can be used to construct symmetric minimal
surfaces. We end this section with graphical examples of suuch minimal surfaces.

The subgroup GQuat ⊂ Sl(2, C), consisting of all matrices

(
z w

−w̄ z̄

)
with

z, w ∈ C, |z|2 + |w|2 = 1 is mapped under the group homomorphism µ of (3.1) onto
the real orthogonal group SO(3)) ⊂ SO(3, C). For a real number r ∈ R define the
following 1-parametric subgroups of SO(3):





Dxy(r) = rotation around the z-axis by the angle r
Dxz(r) = rotation around the y-axis by the angle r
Dyz(r) = rotation around the x-axis by the angle r

.
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Under µ they correspond to the following 1-parametric subgroups: of GQuat ⊂
Sl(2, C):





Mxy(r) =

(
e−i r/2 0

0 ei r/2

)
, Mxz(r) =

(
cos
(

r
2

)
− sin

(
r
2

)

sin
(

r
2

)
cos
(

r
2

)
)

,

Myz(r) =

(
cos
(

r
2

)
−i sin

(
r
2

)

−i sin
(

r
2

)
cos
(

r
2

)
) (3.6)

Example 1. The function f(z) = ez/3 sinh(z) is translation invariant under Mxy (2π/3)
and the function h(z) = sinh(z) is 2 iπ-periodic. This implies that the corre-
sponding minimal surfaces is 2π/3-periodic.
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Example 2. For functions f(z) =
1 + e2 z

z2 z/3
and f(z) =

1 + e2 z

zz/3
and a constant

function h(z) = −1 + i we obtain in a similar way the following surfaces:

f(z) =
1 + e2 z

z2 z/3
f(z) =

1 + e2 z

zz/3

Example 3. Examples of surfaces symmetric with respect to a rotation around the
x-axis are obtained from the function f(z) = tanh(z). Under the action of
Myz(r) ∈ Sl(2, C) f(z) is transformed into

f1(z) =
cos (r/2) tanh(z) − i sin (r/2)

−i sin (r/2) tanh(z) + cos (r/2)
= tanh

(
z − i r

2

)

i. e., the action of Myz(r) coincides with translation by −i (r/2). An i r/2-
periodic function is h(z) = exp(4 z π/r). Therefore VARf,h is invariant under
rotations around the x-axis with (real) angle r. Below we show parts of the
surfaces obtained for r = 5π/2 and r = 7π/2.

r = 5π/2 r = 7π/2
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4 Defining VAR by a natural operator

In [5] we gave an other construction of an integration free representation formula
in C

3. Let Σ be a Riemann surface and denote by AΣ the set of non-constant
meromorphic functions, by XΣ the space of meromorphic vector fields, and LΣ

the space of meromorphic 1-forms. Moreover, let (AΣ × LΣ)
∗

n ⊂ AΣ × LΣ be the
set of pairs (f, ω) such that the products fk ω are exact for k = 1, . . . , n − 1.
A sequence Mn : AΣ × XΣ → LΣ of nonlinear differential operators such that
(f ,Mn(f ,h)) ∈ (AΣ × LΣ)

∗

n for all (f ,h) ∈ AΣ × XΣ, n ≥ 3, is defined by the
following recursive procedure:

M0(f ,h) = 〈df ,h〉 df and Mn(f ,h) = d

(
Mn−1(f ,h)

df

)
. (4.1)

In the local setting, i. e., for meromorphic functions f, h on C explicit expressions
for Mn(f, h) can be computed by hand. In the case n = 3, the result for M3(f, h)
differs only by the factor f ′(z) from the natural parameter p′f,h of VARf,h as given
in (2.6).

Proposition 4.1 The natural parameter p′

f,h of VARf,h is related to M3 as fol-
lows: p′f,h = M3(f, h)f ′(z).

Meromorphic functions gk,n such that dgk,n = fk Mn(f ,h) can be given ex-
plicitely, again in terms of Mi(f ,h), i = 0, . . . , n − 1. Namely,

gk,n = σk,n(f ,h) =

k∑

j=0

(−1)k−j k!

j!
f j Mj+n−k−1(f ,h)

df
, g0,n =

Mn−1(f ,h)

df
.

(4.2)
Now, if in the Weierstraß formula (1.3) the form ω is given as ω = Mn(f ,h) the
corresponding integrals are expressed explicitely by the operators σk,n(f ,h) and in
the case n = 3, up to a factor i, the result agrees with (2.5):

Theorem 4.1 For any meromorphic function f ∈ AΣ and any meromorphic vector
field h ∈ XΣ holds

iWEIω,f (z) = VARf ,h(z) where ω = M3(f ,h).

Therefore, replacing in (1.3) ω, f ω, f 2 ω by σ0,3(f, h), σ1,3(f, h), σ2,3(f, h) re-
spectively, the recursion (4.2) leads to the following explicit form of VARf,h(z):

VARf,h =
i

f ′



M0,3




1
i

0


+ M1,3




f
−i f
−1


+

M2,3

2




1 − f2

i
(
1 + f2

)

2 f






 .

(4.3)
The recursion procedure (4.1) and the resulting ’free Weierstraß formula’ (4.3)

occurred in a number of other papers, for instance [3], [8], [10], [11].
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For k = 1 and k = 2 we have




σ1,n(f ,h) = f
Mn−1(f ,h)

df
− Mn−2(f ,h)

df
and

σ2,n(f ,h) = f2 Mn−1(f ,h)

df
− 2 f

Mn−2(f ,h)

df
+ 2

Mn−3(f ,h)

df

(4.4)

Explicit local expressions of σk,3(f, h) for k = 0, 1, 2 are




σ0,3(f, h) =
1

f ′(z)
3

(
f ′ h′ f ′′ − h f ′′2 + f ′2 h′′ + h f ′ f (3)

)
,

σ1,3(f, h) =
1

f ′(z)
3

(
f f ′2 h′′ + f h f ′ f (3) − f ′3 h′

−h f ′2 f ′′ + f f ′ h′ f ′′ − f h f ′′2
)
,

σ2,3(f, h) =
1

f ′(z)
3

(
2h f ′4 − 2 f f ′3 h′ − 2 f h f ′2 f ′′

+f2 f ′ h′ f ′′ − f2 h f ′′2 + f2 f ′2 h′′ + f2 h f ′ f (3)
)
.

(4.5)

5 A free representation formula for curves in C
3

with preset arc length

Let z ∈ C −→ Φ(z) ∈ C
3 be a full null curve, and let z be the natural parameter

on Φ, i. e., 〈Φ′′(z),Φ′′(z)〉 = 1. Furthermore let κ(z) be the minimal curvature of Φ
i. e.,

〈
Φ(3)(z),Φ(3)(z)

〉
= κ2(z)

Successive differentiation of these equations leads to expressions for all scalar
products

〈
Φ(i),Φ(j)

〉
. We display them here for i, j ≤ 4 in the following table.





〈Φ′,Φ′〉 = 0 〈Φ′,Φ′′〉 = 0
〈
Φ′,Φ(3)

〉
= −1

〈
Φ′,Φ(4)

〉
= 0

〈Φ′′,Φ′′〉 = 1
〈
Φ′′,Φ(3)

〉
= 0

〈
Φ′′,Φ(4)

〉
= −κ2

〈
Φ(3),Φ(3)

〉
= κ2

〈
Φ(3),Φ(4)

〉
= κ3 κ′

〈
Φ(4),Φ(4)

〉
=?

(5.1)
¿From this table we infer that

Φ(4) = −κ3 κ′ Φ′ − κ2 Φ′′, (5.2)

namely, considering an ansatz for Φ(4) as a linear combination Φ(4) = aΦ′ +
bΦ′′ + cΦ(3) and multiplying it with Φ′, Φ′′, Φ(3), (5.1) gives a = −κ3κ′, b = −κ2

and c = 0 and we obtain (5.2). Moreover, equation (5.2) permits to compute〈
Φ(4),Φ(4)

〉
= κ4, completing in this way the array (5.1).

The ’natural’ Weierstraß-representation formula is obtained by putting ω = 1/f ′

in (1.3):

Φ(z) = WEI∗f (z) =
1

2

z∫

z0

1

f ′




1 − f2

i(1 − f2)
2 f


dζ. (5.3)
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Let us introduce the vector

Kf (z) =




−i f(z)
−f(z)

i


 . (5.4)

Then we have

〈
Kf (z),WEIω,f

′(z)
〉

= 0,
〈
Kf (z),WEI∗f

′
(z)
〉

= 0, (5.5)

and





WEI′′ω,f (z) =
ω′(z)

ω(z)
WEI′ω,f (z) − i f(z) g′(z)Kg(z)

WEI∗f
′′
(z) = −f ′′(z)

f ′(z)
WEI∗f

′
(z) + Kf (z).

(5.6)

The osculating spaces S of the curves WEIω,f (z) and WEI∗f (z) are the linear

subspaces of C
3 spanned by the pairs of vectors

(
WEIω,f

′(z),WEIω,f
′′(z)

)
and(

WEI∗f
′
(z),WEI∗f

′′
(z)
)

respectively. Therefore, the equations (5.6) show that the

pairs
(
Kg(z),WEIω,f

′(z)
)

and
(
Kf (z),WEI∗f

′
(z)
)

form orthogonal bases of these
osculating spaces.

We are going now to construct a generalization (f, h, d) ∈ A×A×A −→ ∆f,h,d

of the operator VARf,h representing curves of arbitrary arc length d in C
3 and

such that VARf,h = ∆f,h,0. Let C be the set of all parametrized meromorphic
curves Ψ : C −→ A. Decompose C into mutually disjoint classes Cd according to the
infinitesimal complex arc length d(z), i. e., for fixed d ∈ A denote by Cd the set of all
curves Ψ ∈ C with 〈Ψ′,Ψ′〉 = d2(z). The class C0 is just the set of all meromorphic
minimal curves.

Let Φ(z) be a minimal curve in natural parametrization, i. e., put Φ(z) =
WEI∗f (z). Assuming that Φ(z) is nonplanar, the vectors Φ′(z), Φ′′(z) and Φ′′′(z)
form a basis of C

3 for each z. Therefore, any other meromorphic curve ∆ : C −→ C
3

can be represented as a linear combination

∆(z) = v1(z)Φ′(z) + v2(z)Φ′′(z) + v3(z)Φ′′′(z), (5.7)

for certain meromorphic functions v1, v2, v3 ∈ A.

Denote Ψ(z) = Φ(z)+∆(z). We establish conditions to be imposed on v1, v2, v3

that in order that Ψ(z) and ∆(z) have the same infinitesimal complex arc length,
ı.e, adding Φ(z) to ∆(z) preserves the class of ∆(z).

We find that Ψ′(z) and ∆′(z) have the same infinitesimal length if and only if

v2(z) = −v′

3(z). (5.8)

Indeed, the equations (5.1) give



24 Hubert Gollek





|Ψ′|2 − |∆′|2 = |Φ′|2 + 2 〈Φ′,∆′〉 + |∆′|2 − |∆′|2 = 2 〈Φ′,∆′〉
= 2

〈
Φ′, v1Φ

′′ + v2Φ
′′′ + v3Φ

(4) + v′
1Φ

′ + v′
2Φ

′′ + v′
3Φ

′′′
〉

= −2 v2 − 2 v′
3.

(5.9)
Putting v2(z) = −v′

3(z), we get ∆ = v1 Φ′ − v′
3 Φ′′ + v3 Φ′′′ and from (5.2) we

infer that the derivative of ∆ is the following linear combination of Φ′ and Φ′′ only:

{
∆′ = v′

1 Φ′ + v1 Φ′′ − v′′
3 Φ′′ + v3

(
κΦκ′

ΦΦ′ + κ2
ΦΦ′′

)

= (v′
1 + v3 κΦ κ′

Φ) Φ′ +
(
v1 − v′′

3 + v3 κ2
Φ

)
Φ′′.

(5.10)

The conditions 〈Φ′,Φ′〉 = 〈Φ′,Φ′′〉 = 0 and 〈Φ′′,Φ′′〉 = 1 imply

〈∆′,∆′〉 =
(
v1 − v′′

3 + v3 κ2
Φ

)2
. (5.11)

Consequently, both ∆ and Ψ belong to Cd if and only if v2+v′
3 = 0 and

(
v1 − v′′

3 + v3 κ2
Φ

)2
=

d2(z).

Theorem 5.1 The mapping

∆ : (Φ, h, d) ∈ C0 ×A×A −→ ∆Φ,h,d =
(
h′′ − hκ2

Φ + d
)
Φ′ − h′ Φ′′ + hΦ′′′ (5.12)

is a surjective mapping of C0 × A × A onto D mapping C0 × A × {d} onto Dd. A
left inverse operator to ∆ is given as follows: Given ∆ = ∆Φ,h,d determine at first
d(z) with

d2(z) = 〈∆′,∆′〉 (5.13)

next compute Φ by putting

∆′(z) =




δ1(z)
δ2(z)
δ3(z)


 , f(z) =

δ3(z) + d(z)

δ1(z) − i δ2(z)
and Φ(z) = WEI∗f (z), (5.14)

and finally, h is the scalar product

h(z) = 〈Φ′(z),∆(z)〉 . (5.15)

Proof:

By the construction it is clear that ∆Φ,h,d ∈ Cd and we have only to show that
the mapping ∆ −→ (Φ, h, d) defined by (5.13), (5.14) and (5.15) is a right inverse to
∆. Now, equation (5.13) is a consequence of the construction of ∆. Equation (5.15)
follows direclty from (5.12) and (5.1).

In order to prove (5.14) we differentiate (5.12) and obtain

∆′

Φ,h,d ==
(
q2 + i d′

)
Φ′ + i dΦ′′ where q2 = h′′′ − h′ κΦ − hκΦ κ′

Φ. (5.16)
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If Φ = WEI∗f , one infers from (5.4) and (5.6) that

∆′

Φ,h,d(z) = r(z)Φ′(z) + i d(z)Kf (z) = r(z)Φ′(z) + d(z)




f(z)
−i f(z)
−1


 (5.17)

where r(z) = q2(z) + i d(z)

(
1 − f ′′(z)

f ′(z)

)
, but the special form of this function will

have no meaning for our considerations. Namely, looking at the vector components
of equation (5.17) one observes that δ1−i δ2 = r (ϕ1 − iϕ2) and δ3 = r ϕ3−d, where
we have put Φ′(z) = (ϕ1(z), ϕ2(z), ϕ3(z)). Therefore, by the inversion formula (1.2)
of the Weierstraß representation

δ3 + d

δ1 − i δ2
=

ϕ3

ϕ1 − iϕ2
= f(z). (5.18)

Note that we have:

Proposition 5.1 ∆Φ,h,d is an affine map in h with associated linear map ∆Φ,h,0.

The proof follows immediately from (5.12). Propositions (5.1)and (5.1) give a
full description of the inverse image of a meromorphic curve under ∆, for as one
can show, in the case Φ = WEI∗f the operator ∆Φ,h,0 has kernel

KerVARf,. =

{
a + b f(z) + c f2(z)

f ′(z)
; a, b, c ∈ C

}
(5.19)

6 A representation formula for curves of curvature

1 in C
3

In this section we consider for curves α(z) in C
3 the ordinary curvature

κ =

√
α′ × α′′

〈α′, α′〉3
. (6.1)

At first we give the Mathematica code for the operator (5.12) and its inverses (5.13)
and (5.14).

delta[f_,h_,d_][z_]:=var[f][h][z]+d[z]weip[f][z]//Simplify;

deltainvers1[phi_][z_]:=Module[{u=-D[phi[z],z]//Simplify,dd},

dd=PowerExpand[Sqrt[Simplify[u.u]]];(u[[3]]+dd)/(u.{1,-I,0})//Simplify];

deltainvers2[phi_][z_]:=Module[{ff=deltainvers1[phi][z]},

-phi[z].{I(1-ff^2),-1-ff^2,2*I*ff}/(2*D[ff,z])//Simplify]

deltainvers3[phi_][z_]:=Module[{u=D[phi[z],z]//Simplify},

PowerExpand[Sqrt[Simplify[u.u]]]]

deltainvers[phi_][z_]:=Module[{ff=deltainvers1[phi][z],

u=D[phi[z],z]//Simplify},

{ff,phi[z].{I(1-ff^2),-1-ff^2,2*I*ff}/(2*D[ff,z])//Simplify,

PowerExpand[Sqrt[Simplify[u.u]]]}]
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Considering for instance the circle α(z) = (cos z, sin z, 0), these programs give the
data f(z) = i exp(i z), h(z) = i, d(z) = 1. An arbitrary curve α(z) of infinitesimal
arc length 1 is represented as follows:

alpha[z_] = delta[f, h, 1 &][z] // Simplify

The response is an expression differing only by the summand dWEI∗f from the
expression displayed VARf,h displayed above.

Translating now the formula (6.1) in Mathematica code, namely

kappa[alpha_][t_]:=Module[{ap=D[alpha[t],t],app=D[alpha[t],t,t],normal},

normal=Simplify[Factor[Cross[ap,app]]];

Sqrt[Simplify[normal.normal/(ap.ap)^3]]]

curvature[f_,h_][z_]=kappa[alpha][z];

the above term returns an involved expression for the curvature κα of α. However,
it is seen, that it depends only on two invariants, namely the Schwarzian derivative
S(f) of f and the product M3(f, h) f ′,





κ2
α = 2 i (f ′ M′

3(f, h) + M3(f, h) f ′′) − S(f)2 − M3(f, h)2 f ′2

= 2 i
d (f ′ M3(f, h))

dz
− (f ′ M3(f, h))

2 − S(f)2,

(6.2)

Therefore we obtain:

Proposition 6.1 A generic meromorphic curve α(z) with infinitesimal arc length
1 and preset curvature κ is given by α(z) = ∆f,h,1(z), where the functions f and h
are subject to the condition

κ = 2 i
dN(f, h)

dz
− N2(f, h) − S(f)2, where N(f, h) = M3(f, h) f ′. (6.3)

A nontrivial solution is obtained as follows: Put f(z) =
a + b z

c + d z
. Then S(f)(z) =

0 and curvature[f,h][z] returns κ =

√
i
(
h(3)

)2
+ (1 + i)

√
2 h(4). The differen-

tial equation κ = 1 has the solution

h(z) =
c

6

(
c2 + c3 z + c4 z2 + z3 + 2Li3

(
−ez+2 c c1

))
,

where c =
1 − i√

2
, c1, c2, c3, c4 are constants and

Li3(x) =

∞∑

k=1

xk

k3
=

∫ (
1

x

∫
log(1 − x)

x
dx

)
dx.
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