Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat
Filomat 24:1 (2010), 47-61 DOI: 10.2298/FIL1001047O

GLOBAL APPROXIMATION PROPERTIES OF MODIFIED SMK OPERATORS

M. Ali Özarslan and Oktay Duman

Abstract

In this paper, introducing a general modification of the classical Szász-Mirakjan-Kantorovich (SMK) operators, we study their global approximation behavior. Some special cases are also presented.

1 Introduction

As usual, for $n \in \mathbb{N}$ and $x \in[0, \infty)$, the classical Szász-Mirakjan (SM) operators and the Szász-Mirakjan-Kantorovich (SMK) operators are defined respectively by

$$
S_{n}(f ; x):=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right)
$$

and

$$
\begin{equation*}
K_{n}(f ; x):=n e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} \int_{I_{n, k}} f(t) d t \tag{1.1}
\end{equation*}
$$

where $I_{n, k}=\left[\frac{k}{n}, \frac{k+1}{n}\right]$ and f belongs to an appropriate subspace of $C[0, \infty)$ for which the above series is convergent. Assume now that $\left(u_{n}\right)$ is a sequence of functions such that, for a fixed $a \geq 0$,

$$
\begin{equation*}
0 \leq u_{n}(x) \leq x \text { for every } x \in[a, \infty) \text { and } n \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

In recent years, in order to get more powerful approximations some modifications of the above operators have been introduced as follows (see [7, 9]):

$$
D_{n}(f ; x):=e^{-n u_{n}(x)} \sum_{k=0}^{\infty} \frac{\left(n u_{n}(x)\right)^{k}}{k!} f\left(\frac{k}{n}\right)
$$

2010 Mathematics Subject Classifications. 41A25, 41A36.
Key words and Phrases. Szász-Mirakjan operators, Szász-Mirakjan-Kantorovich operators, weighted space, Lipschitz classes, global approximation.

Received: November 1, 2009
Communicated by Gradimir Milovanović
and

$$
\begin{equation*}
L_{n}(f ; x):=n e^{-n u_{n}(x)} \sum_{k=0}^{\infty} \frac{\left(n u_{n}(x)\right)^{k}}{k!} \int_{I_{n, k}} f(t) d t \tag{1.3}
\end{equation*}
$$

In particular, considering a non-trivial sequence $\left(u_{n}\right)$ defined by

$$
u_{n}(x):=u_{n}^{[1]}(x)=\frac{-1+\sqrt{4 n^{2} x^{2}+1}}{2 n}, x \in[0, \infty), n \in \mathbb{N}
$$

the authors have shown in [7] that the operators D_{n} have a better error estimation on the interval $[0, \infty)$ than the operators S_{n} while in [9] it was shown by considering

$$
u_{n}(x):=u_{n}^{[2]}(x)=x-\frac{1}{2 n}, x \in\left[\frac{1}{2}, \infty\right), n \in \mathbb{N}
$$

that the operators L_{n} enable better error estimation on $[1 / 2, \infty)$ than the operators K_{n}. Some applications of this idea to other well-known positive linear operators may be found in the papers $[1,2,6,8,11,12,13,14,15]$.

Let $p \in \mathbb{N}_{0}:=\{0,1, \ldots\}$ and define the weight function μ_{p} as follows:

$$
\begin{equation*}
\mu_{0}(x):=1 \text { and } \mu_{p}(x):=\frac{1}{1+x^{p}} \text { for } x \geq 0 \text { and } p \in \mathbb{N} \tag{1.4}
\end{equation*}
$$

Then, we consider the following (weighted) subspace $C_{p}[0, \infty)$ of $C[0, \infty)$ generated by μ_{p} :
$C_{p}[0, \infty):=\left\{f \in C[0, \infty): \mu_{p} f\right.$ is uniformly continuous and bounded on $\left.[0, \infty)\right\}$ endowed with the norm

$$
\|f\|_{p}:=\sup _{x \in[0, \infty)} \mu_{p}(x)|f(x)| \quad \text { for } \quad f \in C_{p}[0, \infty)
$$

If A is a subinterval of $[0, \infty)$, then by $\|f\|_{p \mid A}$ we denote the restricted norm to A, i.e.,

$$
\|f\|_{p \mid A}:=\sup _{x \in A} \mu_{p}(x)|f(x)|
$$

We also consider the following Lipschitz classes:

$$
\begin{aligned}
\Delta_{h}^{2} f(x) & :=f(x+2 h)-2 f(x+h)+f(x), \\
\omega_{p}^{2}(f, \delta) & :=\sup _{h \in(0, \delta]}\left\|\Delta_{h}^{2} f\right\|_{p} \\
\omega_{p}^{1}(f, \delta) & :=\sup \left\{\mu_{p}(x)|f(t)-f(x)|:|t-x| \leq \delta \text { and } t, x \geq 0\right\} \\
\operatorname{Lip}_{p}^{2} \alpha & :=\left\{f \in C_{p}[0, \infty): \omega_{p}^{2}(f ; \delta)=O\left(\delta^{\alpha}\right) \text { as } \delta \rightarrow 0^{+}\right\},
\end{aligned}
$$

where $h>0$ and $0<\alpha \leq 2$.
In the present paper we study the global approximation behavior of the operators L_{n} given by (1.3). More precisely, we prove the following result.

Theorem 1.1. Let $\left(u_{n}\right)$ be a sequence of functions satisfying (1.2) for a fixed $a \geq 0$. Assume that $u_{n}^{\prime}(x)$ exists and $u_{n}^{\prime} \neq 0$ on $[a, \infty)$. Then, for every $p \in \mathbb{N}_{0}, n \in \mathbb{N}$, $f \in C_{p}[0, \infty)$ and $x \in[a, \infty)$, there exists an absolute constant $M_{p}>0$ such that

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}(f ; x)-f(x)\right| \leq & M_{p} \omega_{p}^{2}\left(f, \sqrt{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}}\right) \\
& +\omega_{p}^{1}\left(f ; x-u_{n}(x)+\frac{1}{2 n}\right)
\end{aligned}
$$

where μ_{p} is the same as in (1.4). Particularly, if $f \in \operatorname{Lip} p_{p}^{2} \alpha$ for some $\alpha \in(0,2]$, then

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}(f ; x)-f(x)\right| \leq & M_{p}\left(\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right)^{\frac{\alpha}{2}} \\
& +\omega_{p}^{1}\left(f ; x-u_{n}(x)+\frac{1}{2 n}\right)
\end{aligned}
$$

holds.
Remark. If the sequence $\left(u_{n}\right)$ in Theorem 1.1 also satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}(x)=x \text { for every } x \in[a, \infty) \tag{1.5}
\end{equation*}
$$

then we can get that

$$
\lim _{n \rightarrow \infty} \mu_{p}(x)\left|L_{n}(f ; x)-f(x)\right|=0 \text { for every } x \in[0, \infty)
$$

holds true provided that $f \in C_{p}[0, \infty)$ or $f \in \operatorname{Lip}_{p}^{2} \alpha$ for some $\alpha \in(0,2]$. Furthermore, we will see that our operators $L_{n} \operatorname{map} C_{p}[0, \infty)$ into $C_{p}[a, \infty)$ (see Lemma $2.5)$. Hence, if the convergence in (1.5) is uniform on $[a, \infty)$, then we have

$$
\lim _{n \rightarrow \infty}\left\|L_{n} f-f\right\|_{p \mid[a, \infty)}=0
$$

2 Auxiliary Results

In this section, we will get some lemmas which are quite effective in proving our Theorem 1.1. Throughout the paper we use the following test functions

$$
e_{i}(y)=y^{i}, i=0,1,2,3,4,
$$

and the moment function

$$
\psi_{x}(y)=y-x
$$

Now, by the definition (1.3), we first get the following two results.
Lemma 2.1. For the operators L_{n}, we have
(i) $L_{n}\left(e_{0} ; x\right)=1$,
(ii) $L_{n}\left(e_{1} ; x\right)=u_{n}(x)+\frac{1}{2 n}$,
(iii) $L_{n}\left(e_{2} ; x\right)=u_{n}^{2}(x)+\frac{2 u_{n}(x)}{n}+\frac{1}{3 n^{2}}$,
(iv) $L_{n}\left(e_{3} ; x\right)=u_{n}^{3}(x)+\frac{9 u_{n}^{2}(x)}{2 n}+\frac{7 u_{n}(x)}{2 n^{2}}+\frac{1}{4 n^{3}}$.

We should note that the proof of Lemma 2.1 can be obtained from the papers [9] and [10].

Lemma 2.2. For the operators L_{n}, we have
(i) $L_{n}\left(\psi_{x} ; x\right)=u_{n}(x)-x+\frac{1}{2 n}$,
(ii) $L_{n}\left(\psi_{x}^{2} ; x\right)=\left(u_{n}(x)-x\right)^{2}+\frac{2 u_{n}(x)-x}{n}+\frac{1}{3 n^{2}}$,
(iii) $\quad L_{n}\left(\psi_{x}^{3} ; x\right)=\left(u_{n}(x)-x\right)^{3}+\frac{3\left(3 u_{n}(x)-x\right)\left(u_{n}(x)-x\right)}{2 n}$

$$
+\frac{7 u_{n}(x)-2 x}{2 n^{2}}+\frac{1}{4 n^{3}}
$$

Now we get the next result.
Lemma 2.3. Let $\left(u_{n}\right)$ be a sequence of functions satisfying (1.2) for a fixed $a \geq 0$. For the operators L_{n}, we have

$$
\begin{aligned}
L_{n}\left(e_{m} ; x\right) & =\sum_{j=0}^{m} c_{m, j} u_{n}^{j}(x) n^{j-m} \\
& :=u_{n}^{m}(x)+\frac{m^{2}}{2 n} u_{n}^{m-1}(x)+\ldots+\frac{2\left(2^{m}-1\right)}{(m+1) n^{m-1}} u_{n}(x)+\frac{n^{-m}}{m+1}
\end{aligned}
$$

where $c_{m, j}$'s are positive coefficients.
Proof. Since

$$
\begin{aligned}
\int_{I_{n, k}} t^{m} d t & =\frac{1}{(m+1) n^{m+1}}\left\{(k+1)^{m+1}-k^{m+1}\right\} \\
& =\frac{1}{(m+1) n^{m+1}} \sum_{j=0}^{m}\binom{m+1}{j} k^{j}
\end{aligned}
$$

we get

$$
\begin{aligned}
L_{n}\left(e_{m} ; x\right) & =\sum_{k=0}^{\infty} p_{k, n}(x) \int_{I_{n, k}} t^{m} d t \\
& =\frac{1}{(m+1)} \sum_{j=0}^{m}\binom{m+1}{j} \frac{1}{n^{m-j}}\left\{e^{-n u_{n}(x)} \sum_{k=0}^{\infty}\left(\frac{k}{n}\right)^{j} \frac{\left(n u_{n}(x)\right)^{k}}{k!}\right\} \\
& =\frac{1}{m+1} \sum_{j=0}^{m}\binom{m+1}{j} \frac{1}{n^{m-j}} D_{n}\left(e_{j} ; x\right) \\
& =\frac{n^{-m}}{m+1}+\frac{n^{-m}}{m+1} \sum_{j=1}^{m}\binom{m+1}{j} n^{j} D_{n}\left(e_{j} ; x\right)
\end{aligned}
$$

Also, by Lemma 2.4 of [6], we know that

$$
D_{n}\left(e_{j} ; x\right)=\sum_{i=1}^{j} b_{j, i} u_{n}^{i}(x) n^{i-j}:=u_{n}^{j}(x)+\frac{j(j-1)}{2 n} u_{n}^{j-1}(x)+\ldots+n^{1-j} u_{n}(x)
$$

where $b_{j, i}$'s are positive coefficients. Then, we may write that

$$
\begin{aligned}
L_{n}\left(e_{m} ; x\right) & =\frac{n^{-m}}{m+1}+\frac{n^{-m}}{m+1} \sum_{j=1}^{m}\binom{m+1}{j} n^{j} \sum_{i=1}^{j} b_{j, i} u_{n}^{i}(x) n^{i-j} \\
& =\frac{n^{-m}}{m+1}+\frac{n^{-m}}{m+1} \sum_{i=1}^{m}\left(\sum_{j=i}^{m}\binom{m+1}{j} b_{j, i}\right) n^{i} u_{n}^{i}(x) \\
& =\frac{n^{-m}}{m+1}+u_{n}^{m}(x)+\frac{m^{2}}{2 n} u_{n}^{m-1}(x)+\ldots+\frac{n^{1-m}}{m+1}\left(\sum_{j=1}^{m}\binom{m+1}{j}\right) u_{n}(x) \\
& =u_{n}^{m}(x)+\frac{m^{2}}{2 n} u_{n}^{m-1}(x)+\ldots+\frac{2\left(2^{m}-1\right)}{(m+1) n^{m-1}} u_{n}(x)+\frac{1}{(m+1) n^{m}} .
\end{aligned}
$$

Hence, we obtain that

$$
\begin{aligned}
L_{n}\left(e_{m} ; x\right) & =\sum_{j=0}^{m} c_{m, j} u_{n}^{j}(x) \\
& :=u_{n}^{m}(x)+\frac{m^{2}}{2 n} u_{n}^{m-1}(x)+\ldots+\frac{2\left(2^{m}-1\right)}{(m+1) n^{m-1}} u_{n}(x)+\frac{1}{(m+1) n^{m}}
\end{aligned}
$$

which completes the proof.
We now give some useful estimations for the operators L_{n}.
Lemma 2.4. Let $\left(u_{n}\right)$ be a sequence of functions satisfying (1.2) for a fixed $a \geq 0$. Then, for the operators L_{n}, we have
(i) $L_{n}\left(\psi_{x}^{2} ; x\right) \leq\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}$,
(ii) $L_{n}\left(\psi_{x}^{3} ; x\right) \leq \frac{5}{2}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\}$.

Proof. (i) By (1.2) and Lemma (ii), we easily get

$$
\begin{aligned}
L_{n}\left(\psi_{x}^{2} ; x\right) & =\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{u_{n}(x)-x}{n}+\frac{1}{3 n^{2}} \\
& \leq\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}} .
\end{aligned}
$$

(ii) Since $0 \leq u_{n}(x) \leq x$ for every $x \in[a, \infty)$ and $n \in \mathbb{N}$, it follows from Lemma 2.2 (iii) that

$$
\begin{aligned}
L_{n}\left(\psi_{x}^{3} ; x\right)= & \left(u_{n}(x)-x\right)^{3}+\frac{6 u_{n}(x)\left(u_{n}(x)-x\right)}{2 n}+\frac{3\left(u_{n}(x)-x\right)^{2}}{2 n} \\
& +\frac{5 u_{n}(x)}{2 n^{2}}+\frac{u_{n}(x)-x}{n^{2}}+\frac{1}{4 n^{3}} \\
\leq & \frac{3\left(u_{n}(x)-x\right)^{2}}{2 n}+\frac{5 u_{n}(x)}{2 n^{2}}+\frac{1}{4 n^{3}} \\
\leq & \frac{5\left(u_{n}(x)-x\right)^{2}}{2}+\frac{5 u_{n}(x)}{2 n}+\frac{5}{6 n^{2}}
\end{aligned}
$$

whence the result.
Lemma 2.5. Let (u_{n}) be a sequence of functions satisfying (1.2) for a fixed $a \geq 0$. Assume that $u_{n}^{\prime}(x)$ exists and $u_{n}^{\prime}(x) \neq 0$ on $[a, \infty)$. Then, for the operators L_{n}, there exists a constant $M_{p} \geq 0$ such that

$$
\begin{equation*}
\mu_{p}(x) L_{n}\left(\frac{1}{\mu_{p}} ; x\right) \leq M_{p} \tag{2.1}
\end{equation*}
$$

Furthermore, for all $f \in C_{p}[0, \infty)$, we have

$$
\begin{equation*}
\left\|L_{n}(f)\right\|_{p \mid[a, \infty)} \leq M_{p}\|f\|_{p} \tag{2.2}
\end{equation*}
$$

which guarantees that L_{n} maps $C_{p}[0, \infty)$ into $C_{p}[a, \infty)$.
Proof. For $p=0,(2.1)$ follows immediately. Assume now that $p \geq 1$. By (1.2), (1.3) and (1.4), we get

$$
\begin{aligned}
& \mu_{p}(x) L_{n}\left(\frac{1}{\mu_{p}} ; x\right) \\
= & \mu_{p}(x)\left\{L_{n}\left(e_{0} ; x\right)+L_{n}\left(e_{p} ; x\right)\right\} \\
= & \mu_{p}(x)\left\{1+u_{n}^{p}(x)+\frac{p^{2}}{2 n} u_{n}^{p-1}(x)+\ldots+\frac{2\left(2^{p}-1\right)}{(p+1) n^{p-1}} u_{n}(x)+\frac{n^{-p}}{m+1}\right\} \\
\leq & \mu_{p}(x)\left\{x^{p}+\frac{p^{2}}{2 n} x^{p-1}+\ldots+\frac{2\left(2^{p}-1\right)}{(p+1) n^{p-1}} x+\left(1+\frac{n^{-p}}{m+1}\right)\right\} .
\end{aligned}
$$

Now, since $p \geq 1$, we can find a constant C_{p} depending on p such that the inequalities

$$
\begin{aligned}
\frac{x^{p}}{1+x^{p}} & \leq C_{p}, \frac{p^{2} x^{p-1}}{2 n\left(1+x^{p}\right)} \leq C_{p}, \ldots \\
\frac{2\left(2^{p}-1\right)}{(p+1) n^{p-1}} \frac{x}{1+x^{p}} & \leq C_{p},\left(1+\frac{n^{-p}}{m+1}\right) \frac{1}{1+x^{p}} \leq C_{p}
\end{aligned}
$$

hold for every $x \in[a, \infty)$ and $n \in \mathbb{N}$. So, letting $M_{p}:=(p+1) C_{p}$, we may write that

$$
\mu_{p}(x) L_{n}\left(\frac{1}{\mu_{p}} ; x\right) \leq M_{p}
$$

which gives (2.1). On the other hand, for all $f \in C_{p}[0, \infty)$ and every $x \in[a, \infty)$, it follows that

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}(f ; x)\right| & \leq \mu_{p}(x) \sum_{k=0}^{\infty} p_{k, n}(x) \int_{I_{n, k}}|f(t)| d t \\
& =\mu_{p}(x) \sum_{k=0}^{\infty} p_{k, n}(x) \int_{I_{n, k}} \mu_{p}(t)|f(t)| \frac{1}{\mu_{p}(t)} d t \\
& \leq\|f\|_{p} \mu_{p}(x) L_{n}\left(\frac{1}{\mu_{p}} ; x\right) \\
& \leq M_{p}\|f\|_{p} .
\end{aligned}
$$

Now taking supremum over $x \in[a, \infty)$, the last inequality implies (2.2).
Lemma 2.6. Let (u_{n}) be a sequence of functions satisfying (1.2) for a fixed $a \geq 0$. Assume that $u_{n}^{\prime}(x)$ exists and $u_{n}^{\prime}(x) \neq 0$ on $[a, \infty)$. Then, for the operators L_{n}, there exists a constant $M_{p} \geq 0$ such that

$$
\mu_{p}(x) L_{n}\left(\frac{\psi_{x}^{2}}{\mu_{p}} ; x\right) \leq M_{p}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\} .
$$

Proof. For $p=0$ the result follows from Lemma $2.4(i)$. Now let $p=1$. Then, using Lemma 2.4 (i)-(ii) we can write that

$$
\begin{aligned}
\mu_{1}(x) L_{n}\left(\frac{\psi_{x}^{2}}{\mu_{1}} ; x\right)= & \mu_{1}(x)\left\{(1+x) L_{n}\left(\psi_{x}^{2} ; x\right)+L_{n}\left(\psi_{x}^{3} ; x\right)\right\} \\
\leq & \left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}} \\
& +\frac{5}{2(1+x)}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\} \\
\leq & \frac{7}{2}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\}
\end{aligned}
$$

Finally, assume that $p \geq 2$. Then, we get from Lemma 2.3 that

$$
\begin{aligned}
& L_{n}\left(\frac{\psi_{x}^{2}}{\mu_{p}} ; x\right) \\
= & L_{n}\left(e_{p+2} ; x\right)-2 x L_{n}\left(e_{p+1} ; x\right)+x^{2} L_{n}\left(e_{p} ; x\right) \\
= & u_{n}^{p+2}(x)+\frac{(p+2)^{2}}{2 n} u_{n}^{p+1}(x)+\ldots+\frac{2\left(2^{p+2}-1\right)}{(p+3) n^{p+1}} u_{n}(x)+\frac{1}{(p+3) n^{p+2}} \\
& -2 x\left\{u_{n}^{p+1}(x)+\frac{(p+1)^{2}}{2 n} u_{n}^{p}(x)+\ldots+\frac{2\left(2^{p+1}-1\right)}{(p+2) n^{p}} u_{n}(x)+\frac{1}{(p+2) n^{p+1}}\right\} \\
& +x^{2}\left\{u_{n}^{p}(x)+\frac{p^{2}}{2 n} u_{n}^{p-1}(x)+\ldots+\frac{2\left(2^{p}-1\right)}{(p+1) n^{p-1}} u_{n}(x)+\frac{1}{(p+1) n^{p}}\right\},
\end{aligned}
$$

which implies that

$$
\begin{aligned}
L_{n}\left(\frac{\psi_{x}^{2}}{\mu_{p}} ; x\right)= & \left(u_{n}(x)-x\right)^{2} u_{n}^{p}(x) \\
& +\frac{u_{n}(x)}{n}\left\{\frac{(p+2)^{2}}{2} u_{n}^{p}(x)+\ldots+\frac{2\left(2^{p+2}-1\right)}{(p+3) n^{p}}\right\} \\
& -\frac{2 x u_{n}(x)}{n}\left\{\frac{(p+1)^{2}}{2} u_{n}^{p-1}(x)+\ldots+\frac{2\left(2^{p+1}-1\right)}{(p+2) n^{p-1}}\right\} \\
& +\frac{x^{2} u_{n}(x)}{n}\left\{\frac{p^{2}}{2} u_{n}^{p-2}(x)+\ldots+\frac{2\left(2^{p}-1\right)}{(p+1) n^{p-2}}\right\} \\
& +\frac{1}{n^{p}}\left\{\frac{1}{(p+3) n^{2}}-\frac{2 x}{(p+2) n}+\frac{x^{2}}{(p+1)}\right\}
\end{aligned}
$$

Therefore, since $0 \leq u_{n}(x) \leq x$ for every $x \in[a, \infty)$ and $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \mu_{p}(x) L_{n}\left(\frac{\psi_{x}^{2}}{\mu_{p}} ; x\right) \\
\leq & \left(u_{n}(x)-x\right)^{2}\left(\frac{x^{p}}{1+x^{p}}\right) \\
& +\frac{u_{n}(x)}{n}\left\{\frac{(p+2)^{2}}{2}\left(\frac{x^{p}}{1+x^{p}}\right)+\ldots+\frac{2\left(2^{p+2}-1\right)}{(p+3) n^{p}}\left(\frac{1}{1+x^{p}}\right)\right\} \\
& +\frac{u_{n}(x)}{n}\left\{\frac{p^{2}}{2}\left(\frac{x^{p}}{1+x^{p}}\right)+\ldots+\frac{2\left(2^{p}-1\right)}{(p+1) n^{p-2}}\left(\frac{x^{2}}{1+x^{p}}\right)\right\} \\
& +\frac{1}{3 n^{2}}\left\{\frac{3}{(p+3) n^{2}}\left(\frac{1}{1+x^{p}}\right)+\frac{3}{(p+1)}\left(\frac{x^{2}}{1+x^{p}}\right)\right\} .
\end{aligned}
$$

Thus, since $p \geq 2$, it is possible to find a constant M_{p} depending on p such that

$$
\mu_{p}(x) L_{n}\left(\frac{\psi_{x}^{2}}{\mu_{p}} ; x\right) \leq M_{p}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\}
$$

whence the result.
Now, for $p \in \mathbb{N}$, consider the space

$$
C_{p}^{2}[0, \infty):=\left\{f \in C_{p}[0, \infty): f^{\prime \prime} \in C_{p}[0, \infty)\right\}
$$

Then we have the following result.
Lemma 2.7. Let $\left(u_{n}\right)$ be a sequence of functions satisfying (1.2) for a fixed $a \geq 0$ and let $g \in C_{p}^{2}[0, \infty)$. Assume that $u_{n}^{\prime}(x)$ exists and $u_{n}^{\prime} \neq 0$ on $[a, \infty)$. For the operators L_{n}, if $\Omega_{n}(f ; x):=L_{n}(f ; x)-f\left(u_{n}(x)+\frac{1}{2 n}\right)+f(x)$, then there exists a positive constant M_{p} such that, for all $x \in[a, \infty)$ and $n \in \mathbb{N}$, we have

$$
\mu_{p}(x)\left|\Omega_{n}(g ; x)-g(x)\right| \leq M_{p}\left\|g^{\prime \prime}\right\|_{p}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\}
$$

Proof. By, the Taylor formula, using $\psi_{x}(y)=y-x$, we may write that

$$
g(y)-g(x)=\psi_{x}(y) g^{\prime}(x)+\int_{x}^{y} \psi_{t}(y) g^{\prime \prime}(t) d t, \quad y \in[0, \infty)
$$

Then, since $\Omega_{n}\left(\psi_{x}(y) ; x\right)=0$, we get

$$
\begin{aligned}
\left|\Omega_{n}(g ; x)-g(x)\right|= & \left|\Omega_{n}(g(y)-g(x) ; x)\right| \\
= & \left|\Omega_{n}\left(\int_{x}^{y} \psi_{t}(y) g^{\prime \prime}(t) d t ; x\right)\right| \\
= & \mid L_{n}\left(\int_{x}^{y} \psi_{t}(y) g^{\prime \prime}(t) d t ; x\right) \\
& \left.-\int_{x}^{u_{n}(x)+\frac{1}{2 n}} \psi_{t}\left(u_{n}(x)+\frac{1}{2 n}\right) g^{\prime \prime}(t) d t \right\rvert\, .
\end{aligned}
$$

Therefore, we obtain that

$$
\begin{aligned}
\left|\Omega_{n}(g ; x)-g(x)\right| \leq & L_{n}\left(\left|\int_{x}^{y} \psi_{t}(y) g^{\prime \prime}(t) d t\right| ; x\right) \\
& +\left|\int_{x}^{u_{n}(x)+\frac{1}{2 n}} \psi_{t}\left(u_{n}(x)+\frac{1}{2 n}\right) g^{\prime \prime}(t) d t\right|
\end{aligned}
$$

Since

$$
\left|\int_{x}^{y} \psi_{t}(y) g^{\prime \prime}(t) d t\right| \leq \frac{\left\|g^{\prime \prime}\right\|_{p} \psi_{x}^{2}(y)}{2}\left(\frac{1}{\mu_{p}(x)}+\frac{1}{\mu_{p}(y)}\right)
$$

and

$$
\left|\int_{x}^{u_{n}(x)+\frac{1}{2 n}} \psi_{t}\left(u_{n}(x)+\frac{1}{2 n}\right) g^{\prime \prime}(t) d t\right| \leq \frac{\left\|g^{\prime \prime}\right\|_{p}}{2 \mu_{p}(x)}\left(u_{n}(x)-x+\frac{1}{2 n}\right)^{2}
$$

it follows from Lemmas 2.4-2.6 that

$$
\begin{aligned}
\mu_{p}(x)\left|\Omega_{n}(g ; x)-g(x)\right| \leq & \frac{\left\|g^{\prime \prime}\right\|_{p}}{2}\left\{L_{n}\left(\psi_{x}^{2} ; x\right)+\mu_{p}(x) L_{n}\left(\frac{\psi_{x}^{2}}{\mu_{p}} ; x\right)\right\} \\
& +\frac{\left\|g^{\prime \prime}\right\|_{p}}{2}\left(u_{n}(x)-x+\frac{1}{2 n}\right)^{2} \\
\leq & M_{p}\left\|g^{\prime \prime}\right\|_{p}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\}
\end{aligned}
$$

Lemma is proved.

3 Proof of Theorem 1.1

In this section we prove our main result Theorem 1.1.
We first consider the modified Steklov means (see [4, 5]) of a function $f \in$ $C_{p}[0, \infty)$ as follows:

$$
f_{h}(y):=\frac{4}{h^{2}} \int_{0}^{h / 2} \int_{0}^{h / 2}\{2 f(y+s+t)-f(y+2(s+t))\} d s d t
$$

where $h>0$ and $y \geq 0$. In this case, it is clear that

$$
f(y)-f_{h}(y)=\frac{4}{h^{2}} \int_{0}^{h / 2} \int_{0}^{h / 2} \Delta_{s+t}^{2} f(y) d s d t
$$

which guarantees that

$$
\begin{equation*}
\left\|f-f_{h}\right\|_{p} \leq \omega_{p}^{2}(f ; h) \tag{3.1}
\end{equation*}
$$

Furthermore, we have

$$
f_{h}^{\prime \prime}(y)=\frac{1}{h^{2}}\left(8 \Delta_{h / 2}^{2} f(y)-\Delta_{h}^{2} f(y)\right)
$$

which implies

$$
\begin{equation*}
\left\|f_{h}^{\prime \prime}\right\|_{p} \leq \frac{9}{h^{2}} \omega_{p}^{2}(f ; h) \tag{3.2}
\end{equation*}
$$

Then, combining (3.1) with (3.2) we conclude that the Steklov means f_{h} corresponding to $f \in C_{p}[0, \infty)$ belongs to $C_{p}^{2}[0, \infty)$.

Now let $p \in \mathbb{N}_{0}, f \in C_{p}[0, \infty)$ and $x \in[a, \infty)$ be fixed. Assume that, for $h>0$, f_{h} denotes the Steklov means of f. For any $n \in \mathbb{N}$, the following inequality holds:

$$
\begin{aligned}
\left|L_{n}(f ; x)-f(x)\right| \leq & \Omega_{n}\left(\left|f(y)-f_{h}(y)\right| ; x\right)+\left|f(x)-f_{h}(x)\right| \\
& +\left|\Omega_{n}\left(f_{h} ; x\right)-f_{h}(x)\right|+\left|f\left(u_{n}(x)+\frac{1}{2 n}\right)-f(x)\right| .
\end{aligned}
$$

In the following, M_{p} denotes a positive constant depending on p which may assume different values in different formulas. Since $f_{h} \in C_{p}^{2}[0, \infty)$, it follows from Lemma 2.7 that

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}(f ; x)-f(x)\right| \leq & \left\|f-f_{h}\right\|_{p}\left\{\mu_{p}(x) \Omega_{n}\left(\frac{1}{\mu_{p}} ; x\right)+1\right\} \\
& +M_{p}\left\|f_{h}^{\prime \prime}\right\|_{p}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\} \\
& +\mu_{p}(x)\left|f\left(u_{n}(x)+\frac{1}{2 n}\right)-f(x)\right| \\
\leq & \left\|f-f_{h}\right\|_{p}\left\{\mu_{p}(x) L_{n}\left(\frac{1}{\mu_{p}} ; x\right)+3\right\} \\
& +M_{p}\left\|f_{h}^{\prime \prime}\right\|_{p}\left\{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right\} \\
& +\mu_{p}(x)\left|f\left(u_{n}(x)+\frac{1}{2 n}\right)-f(x)\right|
\end{aligned}
$$

By (2.1), (3.1) and (3.2), the last inequality yields that

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}(f ; x)-f(x)\right| \leq & M_{p} \omega_{p}^{2}(f ; h)\left\{1+\frac{1}{h^{2}}\left(\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}\right)\right\} \\
& +\omega_{p}^{1}\left(f ; x-u_{n}(x)+\frac{1}{2 n}\right)
\end{aligned}
$$

Thus, choosing $h=\sqrt{\left(u_{n}(x)-x\right)^{2}+\frac{u_{n}(x)}{n}+\frac{1}{3 n^{2}}}$, the first part of the proof is completed. The remain part of the proof can be easily obtained from the definition of the space $L i p_{p}^{2} \alpha$.

4 Concluding Remarks

In this section, we give some special cases of Theorem 1.1 by choosing some appropriate function sequences $\left(u_{n}\right)$.

For example, if we take $a=0$ and

$$
u_{n}(x)=x, \quad x \in[0, \infty), n \in \mathbb{N}
$$

then our operators in (1.3) turn out to be the classical SMK operators K_{n} defined by (1.1). In this case, we get the following global approximation result for these operators.
Corollary 4.1. For every $p \in \mathbb{N}_{0}, n \in \mathbb{N}$, $f \in C_{p}[0, \infty)$ and $x \in[0, \infty)$, there exists an absolute constant $M_{p}>0$ such that

$$
\mu_{p}(x)\left|K_{n}(f ; x)-f(x)\right| \leq M_{p} \omega_{p}^{2}\left(f, \sqrt{\frac{x}{n}+\frac{1}{3 n^{2}}}\right)+\omega_{p}^{1}\left(f ; \frac{1}{2 n}\right)
$$

Also, if $f \in \operatorname{Lip} p_{p}^{2} \alpha$ for some $\alpha \in(0,2]$, then

$$
\mu_{p}(x)\left|K_{n}(f ; x)-f(x)\right| \leq M_{p}\left(\frac{x}{n}+\frac{1}{3 n^{2}}\right)^{\frac{\alpha}{2}}+\omega_{p}^{1}\left(f ; \frac{1}{2 n}\right)
$$

Now, if take $a=0$ and

$$
u_{n}(x):=u_{n}^{[1]}(x)=\frac{-1+\sqrt{4 n^{2} x^{2}+1}}{2 n}, x \in[0, \infty), n \in \mathbb{N},
$$

then our operators L_{n} in (1.3) turn out to be

$$
L_{n}^{[1]}(f ; x):=n e^{-\left(-1+\sqrt{4 n^{2} x^{2}+1}\right) / 2} \sum_{k=0}^{\infty} \frac{\left(-1+\sqrt{4 n^{2} x^{2}+1}\right)^{k}}{2^{k} k!} \int_{I_{n, k}} f(t) d t
$$

Then we have
Corollary 4.2. For every $p \in \mathbb{N}_{0}, n \in \mathbb{N}$, $f \in C_{p}[0, \infty)$ and $x \in[0, \infty)$, there exists an absolute constant $M_{p}>0$ such that

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}^{[1]}(f ; x)-f(x)\right| \leq & M_{p} \omega_{p}^{2}\left(f, \sqrt{\left(u_{n}^{[1]}(x)-x\right)^{2}+\frac{u_{n}^{[1]}(x)}{n}+\frac{1}{3 n^{2}}}\right) \\
& +\omega_{p}^{1}\left(f ; x-u_{n}^{[1]}(x)+\frac{1}{2 n}\right)
\end{aligned}
$$

Also, if $f \in \operatorname{Lip}_{p}^{2} \alpha$ for some $\alpha \in(0,2]$, then

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}^{[1]}(f ; x)-f(x)\right| \leq & M_{p}\left(\left(u_{n}^{[1]}(x)-x\right)^{2}+\frac{u_{n}^{[1]}(x)}{n}+\frac{1}{3 n^{2}}\right)^{\frac{\alpha}{2}} \\
& +\omega_{p}^{1}\left(f ; x-u_{n}^{[1]}(x)+\frac{1}{2 n}\right)
\end{aligned}
$$

Furthermore, if we choose $a=\frac{1}{2}$ and

$$
u_{n}(x):=u_{n}^{[2]}(x)=x-\frac{1}{2 n}, x \in\left[\frac{1}{2}, \infty\right), n \in \mathbb{N}
$$

then the operators in (1.3) reduce to the following operators (see [9]):

$$
L_{n}^{[2]}(f ; x):=n e^{\frac{1-2 n x}{2}} \sum_{k=0}^{\infty} \frac{(2 n x-1)^{k}}{2^{k} k!} \int_{I_{n, k}} f(t) d t .
$$

Then, we know from [9] that the operators $L_{n}^{[2]}$ preserve the test functions e_{0} and e_{1}. Hence, we get the next result.
Corollary 4.3. For every $p \in \mathbb{N}_{0}, n \in \mathbb{N}, f \in C_{p}[0, \infty)$ and $x \in\left[\frac{1}{2}, \infty\right)$, there exists an absolute constant $M_{p}>0$ such that

$$
\mu_{p}(x)\left|L_{n}^{[2]}(f ; x)-f(x)\right| \leq M_{p} \omega_{p}^{2}\left(f, \sqrt{\frac{x}{n}+\frac{1}{12 n^{2}}}\right)+\omega_{p}^{1}\left(f ; \frac{1}{n}\right)
$$

Also, if $f \in \operatorname{Lip}_{p}^{2} \alpha$ for some $\alpha \in(0,2]$, then

$$
\mu_{p}(x)\left|L_{n}^{[2]}(f ; x)-f(x)\right| \leq M_{p}\left(\frac{x}{n}+\frac{1}{12 n^{2}}\right)^{\frac{\alpha}{2}}+\omega_{p}^{1}\left(f ; \frac{1}{n}\right) .
$$

Finally, taking $a=\frac{1}{\sqrt{3}}$ and

$$
\begin{equation*}
u_{n}(x):=u_{n}^{[3]}(x):=\frac{\sqrt{3 n^{2} x^{2}+2}-\sqrt{3}}{n \sqrt{3}}, \quad x \in\left[\frac{1}{\sqrt{3}}, \infty\right), n \in \mathbb{N}, \tag{4.1}
\end{equation*}
$$

we get the following positive linear operators:

$$
\begin{equation*}
L_{n}^{[3]}(f ; x):=n e^{\left(\sqrt{3}-\sqrt{3 n^{2} x^{2}+2}\right) / \sqrt{3}} \sum_{k=0}^{\infty} \frac{\left(\sqrt{3 n^{2} x^{2}+2}-\sqrt{3}\right)^{k}}{3^{k / 2} k!} \int_{I_{n, k}} f(t) d t \tag{4.2}
\end{equation*}
$$

In this case, observe that the operators $L_{n}^{[3]}$ preserve the test functions e_{0} and e_{2}. Hence, we get the following result.
Corollary 4.4. For every $p \in \mathbb{N}_{0}, n \in \mathbb{N}$, $f \in C_{p}[0, \infty)$ and $x \in\left[\frac{1}{\sqrt{3}}, \infty\right)$, there exists an absolute constant $M_{p}>0$ such that

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}^{[3]}(f ; x)-f(x)\right| \leq & M_{p} \omega_{p}^{2}\left(f, \sqrt{\left(u_{n}^{[3]}(x)-x\right)^{2}+\frac{u_{n}^{[3]}(x)}{n}+\frac{1}{3 n^{2}}}\right) \\
& +\omega_{p}^{1}\left(f ; x-u_{n}^{[3]}(x)+\frac{1}{2 n}\right)
\end{aligned}
$$

Also, if $f \in \operatorname{Lip}_{p}^{2} \alpha$ for some $\alpha \in(0,2]$, then

$$
\begin{aligned}
\mu_{p}(x)\left|L_{n}^{[3]}(f ; x)-f(x)\right| \leq & M_{p}\left(\left(u_{n}^{[3]}(x)-x\right)^{2}+\frac{u_{n}^{[3]}(x)}{n}+\frac{1}{3 n^{2}}\right)^{\frac{\alpha}{2}} \\
& +\omega_{p}^{1}\left(f ; x-u_{n}^{[3]}(x)+\frac{1}{2 n}\right)
\end{aligned}
$$

References

[1] O. Agratini, Linear operators that preserve some test functions, Int. J. Math. Math. Sci. Art. ID 94136 (2006), 11 pp.
[2] O. Agratini, On the iterates of a class of summation-type linear positive operators, Comput. Math. Appl. 55 (2008), 1178-1180.
[3] F. Altomare and M. Campiti, Korovkin-type approximation theory and its application, Walter de Gruyter Studies in Math. 17, de Gruyter \& Co., Berlin, 1994.
[4] M. Becker, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J. 27 (1978), 127142.
[5] P.L. Butzer and K. Scherer, Jackson and Bernstein-type inequalities for families of commutative operators in Banach spaces, J. Approx. Theory 5 (1972), 308342.
[6] O. Duman and M.A. Özarslan, Global approximation results for modified SzászMirakjan operators, Taiwanese J. Math.; (accepted for publication).
[7] O. Duman and M.A. Özarslan, Szász-Mirakjan type operators providing a better error estimation, Appl. Math. Lett. 20 (2007), 1184-1188.
[8] O. Duman, M.A. Özarslan and H. Aktuğlu, Better error estimation for Szász-Mirakjan-Beta operators, J. Comput. Anal. Appl. 10 (2008), 53-59.
[9] O. Duman, M.A. Özarslan and B. Della Vecchia, Modified Szász-MirakjanKantorovich operators preserving linear functions, Turkish J. Math. 33 (2009), 151-158.
[10] V. Gupta, V. Vasishtha and M.K. Gupta, Rate of convergence of the Szász-Kantorovitch-Bezier operators for bounded variation functions, Publ. Inst. Math. (Beograd) (N.S.) 72 (2002), 137-143.
[11] J.P. King, Positive linear operators which preserve x^{2}, Acta. Math. Hungar. 99 (2003), 203-208.
[12] N.I. Mahmudov, Korovkin-type theorems and applications, Cent. Eur. J. Math. 7 (2009), 348-356.
[13] M.A. Özarslan and O. Duman, Local approximation results for Szasz-Mirakjan type operators, Arch. Math. (Basel) 90 (2008), 144-149.
[14] M.A. Özarslan and O. Duman, MKZ type operators providing a better estimation on $[1 / 2,1)$, Canadian Math. Bull. 50 (2007), 434-439.
[15] L. Rempulska and K. Tomczak, Approximation by certain linear operators preserving x^{2}, Turkish J. Math. 33 (2009), 273-281.

M. Ali Özarslan:

Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Mathematics, Gazimagusa, Mersin 10, Turkey
E-mail: mehmetali.ozarslan@emu.edu.tr
Oktay Duman:
TOBB Economics and Technology University, Faculty of Arts and Sciences,
Department of Mathematics, Söğütözü 06530, Ankara, Turkey
E-mail: oduman@etu.edu.tr

