CLASSIFICATION OF THE CROSSED PRODUCT C(M) $\times_{\theta} \mathbb{Z}_{\mathbf{p}}$ FOR CERTAIN PAIRS (M, θ)

Yifeng Xue

Abstract

Let M be a separable compact Hausdorff space with $\operatorname{dim} M \leq 2$ and $\theta: M \rightarrow M$ be a homeomorphism with prime period $p(p \geq 2)$. Set $M_{\theta}=$ $\{x \in M \mid \theta(x)=x\} \neq \varnothing$ and $M_{0}=M \backslash M_{\theta}$. Suppose that M_{0} is dense in M and $\mathrm{H}^{2}\left(M_{0} / \theta, \mathbb{Z}\right) \cong 0, \mathrm{H}^{2}\left(\chi\left(M_{0} / \theta\right), \mathbb{Z}\right) \cong 0$. Let M^{\prime} be another separable compact Hausdorff space with $\operatorname{dim} M^{\prime} \leq 2$ and θ^{\prime} be the self-homeomorphism of M^{\prime} with prime period p. Suppose that $M_{0}^{\prime}=M^{\prime} \backslash M_{\theta^{\prime}}^{\prime}$ is dense in M^{\prime}. Then $C(M) \times{ }_{\theta} \mathbb{Z}_{p} \cong C\left(M^{\prime}\right) \times_{\theta^{\prime}} \mathbb{Z}_{p}$ iff there is a homeomorphism F from M / θ onto $M^{\prime} / \theta^{\prime}$ such that $F\left(M_{\theta}\right)=M_{\theta^{\prime}}^{\prime}$. Thus, if (M, θ) and $\left(M^{\prime}, \theta^{\prime}\right)$ are orbit equivalent, then $C(M) \times_{\theta} \mathbb{Z}_{p} \cong C\left(M^{\prime}\right) \times_{\theta^{\prime}} \mathbb{Z}_{p}$.

1 Introduction

The classification of dynamical systems and corresponding C^{*}-crossed products have became one of most important research subjects for more than a decade. One of the most important results about the classification of the minimal Cantor dynamical system was obtained by T. Giordano, I.F. Putnam and F. Skau in [5]. They proved that two minimal Cantor crossed products $C\left(X_{1}\right) \times_{\alpha_{1}} \mathbb{Z}$ and $C\left(X_{2}\right) \times_{\alpha_{2}} \mathbb{Z}$ are ${ }^{*-}$ isomorphic iff $\left(X_{1}, \alpha_{1}\right)$ and $\left(X_{2}, \alpha_{2}\right)$ are strong orbit equivalent (cf. [5, Theorem 2.1]). Recently, H. Lin and H. Matui used their notation so-called approximate conjugacy of dynamical systems to obtain many equivalent conditions that make $C\left(X_{1}\right) \times_{\alpha_{1}} \mathbb{Z} \cong C\left(X_{2}\right) \times_{\alpha_{2}} \mathbb{Z}$ in [13].

For the type of dynamical systems such as $\left(C(X), \alpha, \mathbb{Z}_{n}\right)$ where X is a compact Hausdorff space and $\alpha: X \rightarrow X$ is homeomorphism, there is little known when $C\left(X_{1}\right) \times_{\alpha_{1}} \mathbb{Z}_{n} \cong C\left(X_{2}\right) \times \alpha_{2} \mathbb{Z}_{n}$. We only know if α_{1} acts on X_{1} freely and $\mathrm{H}^{2}\left(X_{1} / \alpha_{1}, \mathbb{Z}\right)$ has no element annihilated by n, then $C\left(X_{1}\right) \times_{\alpha_{1}} \mathbb{Z} \cong C\left(X_{2}\right) \times_{\alpha_{2}} \mathbb{Z}$ iff α_{2} acts on X_{2} freely and $X_{1} / \alpha_{1} \cong X_{2} / \alpha_{2}$ (cf. [11, Proposition 5]).

[^0]But there is a special example showed by Elliott in [3] which could enlighten one on the classification of $C(X) \times_{\alpha} \mathbb{Z}_{n}$ when α has fixed points. The example is: $C\left(\mathbf{S}^{1}\right) \times{ }_{\alpha} \mathbb{Z}_{2} \cong\left\{f:[0,1] \rightarrow \mathrm{M}_{2}(\mathbb{C})\right.$ continuous $\mid f(0), f(1)$ are diagonal $\}$, where $\alpha(z)=\bar{z}, \forall z \in \mathbf{S}^{1}$ (cf. [1, 6.10.4, 10.11.5]).

Inspired by this example, we try to find when the crossed product $C(X) \times{ }_{\alpha} \mathbb{Z}_{p}$ has the similar form and try to classify it. So, in this paper, we will consider the classification of the crossed product $C(M) \times_{\theta} \mathbb{Z}_{p}$, here M is a separable compact Hausdorff space and θ is a self-homeomorphism of M with prime period $p(p \geq 2)$ such that $M_{\theta}=\{x \in M \mid \theta(x)=x\} \neq \varnothing$. We let (M, θ) denote the pair which satisfy conditions mentioned above throughout the paper.

Based on the Extension theory of C^{*}-algebras and author's previous work on $C(M) \times_{\theta} \mathbb{Z}_{p}$, we obtain that if $\operatorname{dim} M \leq 2, M_{0}=M \backslash M_{\theta}$ is dense in M and $\mathrm{H}^{2}\left(M_{0} / \theta, \mathbb{Z}\right) \cong 0, \mathrm{H}^{2}\left(\chi\left(M_{0} / \theta\right), \mathbb{Z}\right) \cong 0$, then

$$
C(M) \times_{\theta} \mathbb{Z}_{p} \cong\left\{\left(a_{i j}\right)_{p \times p} \in \mathrm{M}_{p}(C(M / \theta)) \mid a_{i j}(x)=0, \forall x \in M_{\theta}, i \neq j\right\}
$$

where $M / \theta\left(\right.$ or $\left.M_{0} / \theta\right)$ is the orbit space of θ and $\chi\left(M_{0} / \theta\right)$ is the corona set of M_{0} / θ. Moreover, let $\left(M^{\prime}, \theta^{\prime}\right)$ be another pair with $\operatorname{dim} M^{\prime} \leq 2$ and $\overline{M \backslash M_{\theta^{\prime}}^{\prime}}=M^{\prime}$. Then

$$
C(M) \times_{\theta} \mathbb{Z}_{p} \cong C\left(M^{\prime}\right) \times_{\theta^{\prime}} \mathbb{Z}_{p}
$$

iff there is a homeomorphism F from M / θ onto $M^{\prime} / \theta^{\prime}$ such that $F\left(M_{\theta}\right)=M_{\theta^{\prime}}^{\prime}$.

2 Preliminaries

Let \mathcal{A} be a C^{*}-algebra with unit 1 . We denote by $\mathcal{U}(\mathcal{A})$ the group of unitary elements of \mathcal{A} and $\mathcal{U}_{0}(\mathcal{A})$ the connected component of the unit 1 in $\mathcal{U}(\mathcal{A})$. Let $\mathrm{M}_{m}(\mathcal{A})$ be the matrix algebra of order m over \mathcal{A}. Set (cf. [16, 17] or [20])

$$
\begin{aligned}
\mathrm{S}_{n}(\mathcal{A}) & =\left\{\left(a_{1}, \cdots, a_{n}\right) \mid \sum_{k=1}^{n} a_{k}^{*} a_{k}=1\right\} \\
\operatorname{csr}(\mathcal{A}) & =\min \left\{n \mid \mathcal{U}_{0}\left(\mathrm{M}_{n}(\mathcal{A})\right) \text { acts transitively on } \mathrm{S}_{m}(\mathcal{A}) \forall m \geq n\right\}
\end{aligned}
$$

Lemma 2.1. Let X be a compact Hausdorff space with covering dimension $\operatorname{dim} X \leq$ 2. Given $U \in \mathcal{U}\left(\mathrm{M}_{p}(C(X))\right)$, there are $U_{0} \in \mathcal{U}_{0}\left(\mathrm{M}_{p}(C(X))\right)$ and $v \in \mathcal{U}((C(X)))$ such that $U=U_{0} \operatorname{diag}\left(1_{p-1}, v\right)$.
Proof. We have from $[14], \operatorname{csr}(C(X)) \leq\left[\frac{\operatorname{dim} X+1}{2}\right]+1 \leq 2$, where $[x]$ stands for the greatest integer which is less than or equal to x.

Let u_{1} be the first column of U. Then $u_{1} \in \mathrm{~S}_{p}(C(X))$ and consequently, there is $U_{1} \in \mathcal{U}_{0}\left(\mathrm{M}_{p}(C(X))\right.$ such that u_{1} becomes the first column of U_{1} for $\operatorname{csr}(C(X)) \leq$ $2 \leq p$. Put $W=U_{1}^{*} U$. Then the unitary element W has the form $W=\operatorname{diag}\left(1, V_{1}\right)$ for some $V_{1} \in \mathcal{U}\left(\mathrm{M}_{p-1}(C(X))\right)$.

Repeating above procedure to V_{1}, there are $U_{2} \in \mathcal{U}_{0}\left(\mathrm{M}_{p-1}(C(X))\right)$ and $V_{2} \in$ $\mathcal{U}\left(\mathrm{M}_{p-2}(C(X))\right)$ such that $V_{1}=U_{2} \operatorname{diag}\left(1, V_{2}\right)$. So $U=U_{1} U_{2} \operatorname{diag}\left(1_{2}, V_{2}\right)$. By
induction, we can finally find $U_{0} \in \mathcal{U}_{0}\left(\mathrm{M}_{p}(C(X))\right)$ and $v \in \mathcal{U}(C(X))$ such that $U=U_{0} \operatorname{diag}\left(1_{p-1}, v\right)$.

According to [21], $\left\{x \in M \mid \theta^{k}(x)=x\right\}=M_{\theta}, k=2, \cdots, p-1$. Now set $M_{0}=M \backslash M_{\theta}$. Let $M / \theta\left(\right.$ resp. $\left.\left.M_{0} / \theta\right)\right)$ denote the orbit space of θ and let P be the canonical projective map of M (or M_{0}) onto M / θ (or M_{0} / θ). Let $O_{\theta}(x)=$ $\left\{x, \theta(x), \cdots, \theta^{p-1}(x)\right\}$ denote the orbit of x in M or M_{0}. For the pair (M, θ), the dynamical system $\left(C(M), \theta, \mathbb{Z}_{p}\right)$ (resp. $\left.\left(C_{0}\left(M_{0}\right), \theta, \mathbb{Z}_{p}\right)\right)$ yields a crossed product C^{*}-algebra $C(M) \times_{\theta} \mathbb{Z}_{p}$ (resp. $\left.C_{0}\left(M_{0}\right) \times_{\theta} \mathbb{Z}_{p}\right)$. Set

$$
\begin{aligned}
& \mathrm{D}(M, \theta)=\left\{\left(\begin{array}{cccc}
f_{0} & f_{1} & \ldots & f_{p-1} \\
\theta\left(f_{p-1}\right) & \theta\left(f_{0}\right) & \ldots & \theta\left(f_{p-2}\right) \\
\cdots \cdots \ldots & \ldots \ldots \ldots . & \ldots . \ldots \ldots .
\end{array}\right) ; f_{0}, \cdots, f_{p-1} \in C(M)\right\} \\
& \mathrm{D}\left(M_{0}, \theta\right)=\left\{\left(\begin{array}{cccc}
f_{0} & f_{1} & \ldots & f_{p-1} \\
\theta\left(f_{p-1}\right) & \theta\left(f_{0}\right) & \ldots & \theta\left(f_{p-2}\right) \\
\ldots \ldots \ldots \ldots & \ldots \ldots \ldots & \ldots & \ldots \ldots \ldots \\
\theta^{p-1}\left(f_{1}\right) & \theta^{p-1}\left(f_{2}\right) & \ldots & \theta^{p-1}\left(f_{0}\right)
\end{array}\right) ; f_{0}, \cdots, f_{p-1} \in C_{0}\left(M_{0}\right)\right\},
\end{aligned}
$$

where $\theta(f)(x)=f(\theta(x)), \forall x \in M$ (resp. $\left.M_{0}\right), f \in C(M)$ (resp. $\left.C_{0}\left(M_{0}\right)\right)$. By 7.6.1 and 7.6.5 of [15], we have $C(M) \times_{\theta} \mathbb{Z}_{p} \cong \mathrm{D}(M, \theta) \subset \mathrm{M}_{n}(C(M))$ and $C_{0}\left(M_{0}\right) \times_{\theta} \mathbb{Z}_{p} \cong$ $\mathrm{D}\left(M_{0}, \theta\right) \subset \mathrm{M}_{n}\left(C_{0}\left(M_{0}\right)\right)$.

Let $\omega=\mathrm{e}^{2 \pi i / p}$. Put $e_{j}=\operatorname{diag}(\underbrace{0, \cdots, 0}_{j-1}, 1, \underbrace{0, \cdots, 0}_{p-j})$ and

$$
\Omega_{p}=\left(\begin{array}{cccc}
\frac{1}{\sqrt{p}} & \frac{\omega}{\sqrt{p}} & \ldots & \frac{\omega^{p-1}}{\sqrt{p}} \\
\frac{1}{\sqrt{p}} & \frac{\omega^{2}}{\sqrt{p}} & \ldots & \frac{\left(\omega^{2}\right)^{p-1}}{\sqrt{p}} \\
\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\frac{1}{\sqrt{p}} & \frac{\omega^{p-1}}{\sqrt{p}} & \ldots & \frac{\left(\omega^{p-1}\right)^{p-1}}{\sqrt{p}} \\
\frac{1}{\sqrt{p}} & \frac{1}{\sqrt{p}} & \ldots & \frac{1}{\sqrt{p}}
\end{array}\right), \quad P_{j}=\Omega_{p}^{*} e_{j} \Omega_{p}, j=1, \cdots, p .
$$

It is easy to check that Ω_{p} is unitary in $\mathrm{M}_{p}(\mathbb{C})$ and P_{1}, \cdots, P_{p} are projections in $\mathrm{D}(M, \theta)$. Define $*$-homomorphism $\pi: \mathrm{D}(M, \theta) \rightarrow \bigoplus_{j=0}^{p-1} C\left(M_{\theta}\right)$ as
$\pi\left(\left(\begin{array}{cccc}f_{0} & f_{1} & \ldots & f_{p-1} \\ \theta\left(f_{p-1}\right) & \theta\left(f_{0}\right) & \ldots & \theta\left(f_{p-2}\right) \\ \ldots \ldots \ldots \ldots & \ldots \ldots \ldots . & \ldots\end{array}\right)\right)=\left(\left.\sum_{j=0}^{p-1} \omega^{j(p-1)} f_{j}\right|_{M_{\theta}}, \cdots,\left.\sum_{j=0}^{p-1} f_{j}\right|_{M_{\theta}}\right)$.
π induces following exact sequence of C^{*}-algebras:

$$
\begin{equation*}
0 \longrightarrow \mathrm{D}\left(M_{0}, \theta\right) \xrightarrow{l} \mathrm{D}(M, \theta) \xrightarrow{\pi} \bigoplus_{j=0}^{p-1} C\left(M_{\theta}\right) \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

Lemma 2.2. For the pair (M, θ), we have
(1) Every irreducible representation of $\mathrm{D}\left(M_{0}, \theta\right)$ is equivalent to the representation π_{x}, where $\pi_{x}(a)=a(x)$ for some $x \in M_{0}$ and $\forall a \in \mathrm{D}\left(M_{0}, \theta\right)$ and $P(x) \rightarrow\left[\pi_{x}\right]$ gives a homeomorphism of M_{0} / θ onto $\overline{\mathrm{D}\left(M_{0}, \theta\right)}$-the spectrum of $\mathrm{D}\left(M_{0}, \theta\right)$, where we identify $\mathrm{D}\left(M_{0}, \theta\right)$ with $\left\{a \in \mathrm{D}(M, \theta)|a|_{M_{\theta}}=0\right\}$;
(2) $\mathrm{D}\left(M_{0}, \theta\right)$ is a p-homogeneous algebra which is $*$-isomorphic to $C_{0}\left(M_{0} / \theta, E\right)$, where E is a matrix bundle over M_{0} / θ with fiber $\mathrm{M}_{p}(\mathbb{C})$;
(3) Let σ be a pure state on $\mathrm{D}(M, \theta)$. Then σ is multiplicable iff there is $x_{0} \in M_{\theta}$ such that

$$
\sigma\left(\left(\begin{array}{cccc}
f_{0} & f_{1} & \ldots & f_{p-1} \\
\theta\left(f_{p-1}\right) & \theta\left(f_{0}\right) & \ldots & \theta\left(f_{p-2}\right) \\
\ldots \ldots \ldots \ldots & \ldots & \ldots \ldots & \ldots \ldots \ldots \\
\theta^{p-1}\left(f_{1}\right) & \theta^{p-1}\left(f_{2}\right) & \ldots & \theta^{p-1}\left(f_{0}\right)
\end{array}\right)\right)=\sum_{j=0}^{p-1} \omega^{j k} f_{j}\left(x_{0}\right)
$$

for some $k \in\{0, \cdots, p-1\}$. We let $\sigma_{x_{0}, k}$ denote the σ.
Proof. Let (Π, K) be an irreducible representation of $\mathrm{D}\left(M_{0}, \theta\right)$. Then by [2, Proposition 2.10.2], there is an irreducible representation (ρ, H) of $\mathrm{M}_{p}\left(C_{0}\left(M_{0}\right)\right)$ such that $K \subset H$ and $\Pi(\cdot)=\left.\rho(\cdot)\right|_{K}$. It is well-known that (ρ, H) is equivalent to $\left(\rho_{x_{0}}, \mathbb{C}^{p}\right)$ for some $x_{0} \in M_{0}$, where $\rho_{x}\left(\left(f_{i j}\right)_{p \times p}\right)=\left(f_{i j}(x)\right)_{p \times p}, x \in M_{0}$ and $f_{i j} \in C_{0}\left(M_{0}\right)$, $i, j=1, \cdots, p$.

Put $\pi_{x}=\left.\rho_{x}\right|_{\mathrm{D}\left(M_{0}, \theta\right)}, x \in M_{0}$. Given $A=\left(a_{i j}\right)_{p \times p} \in \mathrm{M}_{p}(\mathbb{C})$. Since $x_{0}, \theta\left(x_{0}\right), \cdots$, $\theta^{p-1}\left(x_{0}\right)$ are mutually different in M_{0}, we can find $f_{0}, \cdots, f_{p-1} \in C(M)$ such that $\left.f_{j}\right|_{M_{\theta}}=0, j=0, \cdots, p-1$ and

$$
\pi_{x_{0}}\left(\left(\begin{array}{cccc}
f_{0} & f_{1} & \ldots & f_{p-1} \\
\theta\left(f_{p-1}\right) & \theta\left(f_{0}\right) & \ldots & \theta\left(f_{p-2}\right) \\
\ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \\
\theta^{p-1}\left(f_{1}\right) & \theta^{p-1}\left(f_{2}\right) & \ldots & \theta^{p-1}\left(f_{0}\right)
\end{array}\right)\right)=A
$$

This means that $\left(\pi_{x_{0}}, \mathbb{C}^{p}\right)$ is an irreducible representation of $\mathrm{D}\left(M_{0}, \theta\right)$ and hence (Π, K) is equivalent to $\left(\pi_{x_{0}}, \mathbb{C}^{p}\right)$. Thus $\mathrm{D}\left(M_{0}, \theta\right)$ is a p -homogeneous C^{*}-algebra.

Let $x_{0} \in M_{0}$ and $x_{1}=\theta^{j}\left(x_{0}\right)$ for some $j \in\{1, \cdots, p-1\}$. It is easy to check that there is a unitary matrix U in $\mathrm{M}_{p}(\mathbb{C})$ such that $\pi_{x_{0}}(a)=U \pi_{x_{1}}(a) U^{*}$, $\forall a \in \mathrm{D}\left(M_{0}, \theta\right)$, i.e., $\left(\pi_{x_{0}}, \mathbb{C}^{p}\right)$ and $\left(\pi_{x_{1}}, \mathbb{C}^{p}\right)$ are equivalent; On the other hand, if $\left(\pi_{x_{0}}, \mathbb{C}^{p}\right)$ and $\left(\pi_{x_{1}}, \mathbb{C}^{p}\right)$ are equivalent and $O_{\theta}\left(x_{0}\right) \cap O_{\theta}\left(x_{1}\right)=\varnothing$, then we can choose $g_{0}, \cdots, g_{p-1} \in C(M)$ such that $g_{j}(x)=0, \forall x \in M_{\theta} \cup O_{\theta}\left(x_{0}\right)$ and $\left.g_{j}\right|_{O_{\theta}\left(x_{1}\right)} \neq 0$, $j=0, \cdots, p-1$. Set

$$
G=\left(\begin{array}{cccc}
g_{0} & g_{1} & \ldots & g_{p-1} \\
\theta\left(g_{p-1}\right) & \theta\left(g_{0}\right) & \ldots & \theta\left(g_{p-2}\right) \\
\ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \\
\theta^{p-1}\left(g_{1}\right) & \theta^{p-1}\left(g_{2}\right) & \ldots & \theta^{p-1}\left(g_{0}\right)
\end{array}\right) \in \mathrm{D}\left(M_{0}, \theta\right) .
$$

Then $\pi_{x_{0}}(G)=0$, while $\pi_{x_{1}}(G) \neq 0$. Therefore, we have $O_{\theta}\left(x_{0}\right) \cap O_{\theta}\left(x_{1}\right) \neq \varnothing$, that is, $x_{0}=\theta^{j}\left(x_{1}\right)$ for some $j \in\{0,1, \cdots, p-1\}$. So the map $P(x) \mapsto\left[\pi_{x}\right]$ gives a homeomorphism of M_{0} / θ onto $\mathrm{D} \widehat{\left(M_{0}, \theta\right)}$ by using [2, Lemma 3.3.3].

Set $[x]=P(x) \in M_{0} / \theta$ and $D([x])=\mathrm{D}\left(M_{0}, \theta\right) / \operatorname{Ker} \pi_{x} \cong \mathrm{M}_{p}(\mathbb{C}), \forall x \in M_{0}$. Let $a([x])$ be the canonical image of $a \in \mathrm{D}\left(M_{0}, \theta\right)$ in $D([x])$. Put $E=\underset{[x] \in M_{0} / \theta}{\cup} D([x])$. Then E is a fiber bundle (matrix bundle) over M_{0} / θ with fiber $\mathrm{M}_{p}(\mathbb{C})$ (cf. [4, $\S 3.2$, P.249]). The $*$-isomorphism from $\mathrm{D}\left(M_{0}, \theta\right)$ onto $C_{0}\left(M_{0} / \theta, E\right)$ is defined by $\phi(a)([x])=a([x]), \forall a \in \mathrm{D}\left(M_{0}, \theta\right)$ and $[x] \in M_{0} / \theta$.

The proof of (3) comes from Corollary 1, Case 1 and case 2 on P77 and case 2 on P79 of [11].

Assume that the matrix bundle E above is trivial, i.e., there is a homeomorphism $\Gamma: E \rightarrow M_{0} / \theta \times \mathrm{M}_{p}(\mathbb{C})$ such that $\Gamma(D([x]))=[x] \times \mathrm{M}_{p}(\mathbb{C}), \forall[x] \in M_{0} / \theta$. Then Γ induces an isomorphism $\Gamma^{*}: C_{0}\left(M_{0} / \theta, E\right) \rightarrow \mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)$ given by $\Gamma^{*}(f)([x])=$ $\Gamma(f([x])), \forall f \in C_{0}\left(M_{0} / \theta, E\right)$ and $[x] \in M_{0} / \theta$. Set $\Phi=l \circ \phi^{-1} \circ \Gamma^{-1}$. Applying Lemma 2.2 to (2.1), we have following:
Corollary 2.3. Let (M, θ) be the pair such that all matrix bundles over M_{0} / θ is trivial. Then we have following exact sequence of C^{*}-algebras

$$
\begin{equation*}
0 \longrightarrow \mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right) \xrightarrow{\Phi} \mathrm{D}(M, \theta) \xrightarrow{\pi} \bigoplus_{j=0}^{p-1} C\left(M_{\theta}\right) \longrightarrow 0 . \tag{2.2}
\end{equation*}
$$

3 Main results

Consider the exact sequence of C^{*}-algebras

$$
\begin{equation*}
0 \longrightarrow \mathcal{B} \xrightarrow{i} \mathcal{E} \xrightarrow{q} \mathcal{A} \longrightarrow 0, \tag{3.1}
\end{equation*}
$$

where \mathcal{B} is a separable C^{*}-algebra and $i(\mathcal{B})$ is the essential ideal of \mathcal{E}. Let $\left\{u_{n}\right\}$ be an approximate identity of \mathcal{B} and $M(\mathcal{B})$ be the multiplier algebra of \mathcal{B}. Define *-monomorphism $\rho: \mathcal{E} \rightarrow M(\mathcal{B})$ by $\mu(e)=\lim _{n} i^{-1}\left(i\left(u_{n}\right) e\right), \forall e \in \mathcal{E}$, where the limit is taken as the strict limit in $M(\mathcal{B})$. Then Busby invariant $\tau_{q}: \mathcal{A} \rightarrow M(\mathcal{B}) / \mathcal{B}$, associated with (3.1) is given by $\tau_{q}(a)=\Omega(\mu(e))$, where $e \in \mathcal{E}$ such that $q(e)=a$, $\Omega: M(\mathcal{B}) \rightarrow M(\mathcal{B}) / \mathcal{B}$ is the quotient map. τ_{q} is well-defined and is monomorphic since $i(\mathcal{B})$ is essential. Please see [10, Chapter 3] or [12, Chapter 5], or [19, Chapter 3]) for details. In order to obtain our main result, we need following lemma, which comes from [10, Lemma 3.2.2].
Lemma 3.1. Let τ_{q} (resp. $\tau_{q^{\prime}}$) be the Busby invariant associated following exact sequence of C^{*}-algebras:

$$
0 \longrightarrow \mathcal{B} \xrightarrow{i} \mathcal{E} \xrightarrow{q} \mathcal{A} \longrightarrow 0 \quad\left(\text { resp. } 0 \longrightarrow \mathcal{B} \xrightarrow{i^{\prime}} \mathcal{E}^{\prime} \xrightarrow{q^{\prime}} \mathcal{A} \longrightarrow 0\right),
$$

where $i(\mathcal{B})$ (resp. $\left.i^{\prime}(\mathcal{B})\right)$ is the essential ideal of \mathcal{E} (resp. \mathcal{E}^{\prime}). Assume that there is a unitary element $u \in M(\mathcal{B})$ such that $\tau_{q}(a)=\Omega(u) \tau_{q^{\prime}}(a) \Omega\left(u^{*}\right), \forall a \in \mathcal{A}$. Then \mathcal{E} is $*$-isomorphic to \mathcal{E}^{\prime}.

Let X be a locally compact Hausdorff space. Let X^{+}(resp. $\beta(X)$) denote the one-point (resp. Stone-Cěch) compactification of X. Set $\chi(X)=\beta(X) \backslash X$ (the corona set of X).

Lemma 3.2. Let X be a locally compact Hausdorff space with $\operatorname{dim} X \leq 2$. If $\mathrm{H}^{2}(X, \mathbb{Z}) \cong 0$, then every matrix bundle over X is trivial.

Proof. Let $M\left(X^{+}\right)$denote the collection of all (isomorphism classes of) matrix bundles of arbitrary degree over X^{+}and $S M\left(X^{+}\right)$denote the the distinguished subsemigroup of $M(X)$, consisting of matrix bundles of the form $V \otimes V^{*}$, where V is an arbitrary complex vector bundle over X^{+}, and $*$ denotes adjoints. When $\operatorname{dim} X^{+}=\operatorname{dim} X \leq 2$ and $\mathrm{H}^{2}(X, \mathbb{Z})=\mathrm{H}^{2}\left(X^{+}, \mathbb{Z}\right) \cong 0, M\left(X^{+}\right)=S M\left(X^{+}\right)$by [7, Corollary 1] and all complex vector bundles over X^{+}are trivial. Therefore, all matrix bundles of arbitrary degree over X^{+}is trivial. Because every matrix bundle over X with fiber $\mathrm{M}_{n}(\mathbb{C})$ can be extended to an matrix bundle over X^{+} with fiber $\mathrm{M}_{n}(\mathbb{C})$ (using the same methods described in [9, P110-P112]), we get the assertion.

By Lemma 3.2, we may assume that the pair (M, θ) satisfies condition (A):

$$
\operatorname{dim} M \leq 2 \quad \text { and } \quad \mathrm{H}^{2}\left(M_{0} / \theta, \mathbb{Z}\right) \cong 0
$$

Lemma 3.3. Let the pair (M, θ) satisfy Condition (A). If $M_{0}=M \backslash M_{\theta}$ is dense in M, then $\Phi\left(\mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)\right.$ is an essential ideal of $\mathrm{D}(M, \theta)$.

Proof. Let $a \in \mathrm{D}(M, \theta)$ such that $a c=0, \forall c \in \mathrm{D}\left(M_{0}, \theta\right)=\Phi\left(\mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)\right.$. If there is $x_{0} \in M_{0}$ such that $a\left(x_{0}\right) \neq 0$, then we can find a $b \in \mathrm{D}\left(M_{0}, \theta\right)$ such that $b\left(x_{0}\right)=\left(a\left(x_{0}\right)\right)^{*}$. It follows that $a\left(x_{0}\right)\left(a\left(x_{0}\right)\right)^{*}=0$, i.e., $a\left(x_{0}\right)=0$, a contradiction. So $\left.a\right|_{M_{0}}=0$. Since M_{0} is dense in M and all elements in a are continuous, we have $a=0$.

It is known that

$$
\begin{aligned}
M\left(\mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)\right)=\mathrm{M}_{p}\left(C_{b}\left(M_{0} / \theta\right)\right) & \cong \mathrm{M}_{p}\left(C\left(\beta\left(M_{0} / \theta\right)\right)\right) \\
\mathrm{M}_{p}\left(C_{b}\left(M_{0} / \theta\right)\right) / \mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right) & \cong \mathrm{M}_{p}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right) .
\end{aligned}
$$

Assume that (M, θ) satisfies Condition (A) and the condition that $M \backslash M_{\theta}$ is dense in M. Then the $*-$ monomorphism $\mu: \mathrm{D}(M, \theta) \rightarrow \mathrm{M}_{p}\left(C_{b}\left(M_{0} / \theta\right)\right)$ is given by $\mu(a)=\lim _{n \rightarrow \infty} \Phi^{-1}\left(\Phi\left(u_{n}\right) a\right), \forall a \in \mathrm{D}(M, \theta)$, where $\left\{u_{n}\right\}$ is an approximate identity for $\mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)$. We now construct the Busby invariant τ_{π} associated with (2.2) as follows.

Let $f_{0}, \cdots, f_{p-1} \in C\left(M_{\theta}\right)$. Extends them to $g_{0}, \cdots, g_{p-1} \in C(M)$, respectively, such that $\left.g_{j}\right|_{M_{\theta}}=f_{j}, j=0, \cdots, p-1$. Put $\hat{f}_{j}=\frac{1}{p} \sum_{k=0}^{p-1} \theta^{k}\left(g_{j}\right), j=0, \cdots, p-1$. Then $\theta\left(\hat{f}_{j}\right)=\hat{f}_{j}$ and $\left.\hat{f}_{j}\right|_{M_{\theta}}=f_{j}, j=0, \cdots, p-1$. Thus, functions h_{0}, \cdots, h_{p-1} given by
$h_{j}([x])=\hat{f}_{j}(x), x \in M_{0}, j=0, \cdots, p-1$ are all in $C_{b}\left(M_{0} / \theta\right)$. Set $a\left(f_{0}, \cdots, f_{p-1}\right)=$ $\sum_{j=0}^{p-1} P_{j+1} \hat{f}_{j}$. Then $\pi\left(a\left(f_{0}, \cdots, f_{p-1}\right)\right)=\left(f_{0}, \cdots, f_{p-1}\right) \in \bigoplus_{j=0}^{p-1} C\left(M_{\theta}\right)$.

Let $\Omega: \mathrm{M}_{p}\left(C_{b}\left(M_{0} / \theta\right)\right) \rightarrow \mathrm{M}_{p}\left(C_{b}\left(M_{0} / \theta\right)\right) / \mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)$ be the canonical homomorphism. Note that for any $b \in \mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)$ and $[x] \in M_{0} / \theta$,

$$
\begin{aligned}
\left(\mu\left(P_{j+1} \hat{f}_{j}\right) b\right)([x]) & =\Phi^{-1}\left(P_{j+1} \hat{f}_{j} \Phi(b)\right)([x])=\Gamma^{*} \circ \phi\left(P_{j+1} \hat{f}_{j} \Phi(b)\right)([x]) \\
& =\Gamma\left(\left(P_{j+1} \hat{f}_{j} \Phi(b)\right)([x])\right)
\end{aligned}
$$

since $P_{j+1} \hat{f}_{j} \Phi(b)-P_{j+1} \Phi(b) \hat{f}_{j}(x) \in \operatorname{Ker} \pi_{x}$, it follows that

$$
\Gamma\left(\left(P_{j+1} \hat{f}_{j} \Phi(b)\right)([x])\right)=\Gamma\left(\left(P_{j+1} \Phi(b)\right)([x])\right) \hat{f}_{j}(x)=\left(\mu\left(P_{j+1}\right) b\right)([x]) h_{j}([x])
$$

that is, $\mu\left(P_{j+1} \hat{f}_{j}\right)=\mu\left(P_{j+1}\right) h_{j}, j=0, \cdots, p-1$. Set $Q_{j}=\Omega \circ \mu\left(P_{j}\right), j=1, \cdots, p$. Then τ_{π} is given by

$$
\tau_{\pi}\left(f_{0}, \cdots, f_{p-1}\right)=\Omega \circ \mu\left(a\left(f_{0}, \cdots, f_{p-1}\right)\right)=\sum_{j=0}^{p-1} Q_{j+1} \Omega\left(h_{j} 1_{p}\right) .
$$

Let $\mathcal{A}\left(M_{\theta}\right)=\left\{\left(a_{i j}\right)_{p \times p} \in \mathrm{M}_{p}(C(M / \theta)) \mid a_{i j}(x)=0, x \in M_{\theta}, i \neq j\right\}$. Define the $*-$ homomorphism $\Lambda: \mathcal{A}\left(M_{\theta}\right) \rightarrow \bigoplus_{j=0}^{p-1} C\left(M_{\theta}\right)$ by $\Lambda\left(\left(a_{i j}\right)_{p \times p}\right)=\left(\left.a_{11}\right|_{M_{\theta}}, \cdots,\left.a_{p p}\right|_{M_{\theta}}\right)$. Then we have following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right) \xrightarrow{i} \mathcal{A}\left(M_{\theta}\right) \xrightarrow{\Lambda} \bigoplus_{j=0}^{p-1} C\left(M_{\theta}\right) \longrightarrow 0 \tag{3.2}
\end{equation*}
$$

The Busby invariant τ_{Λ} associated with (3.2) is given by

$$
\tau_{\Lambda}\left(f_{0}, \cdots, f_{p-1}\right)=\sum_{j=0}^{p-1} \Omega\left(e_{j+1}\right) \Omega\left(h_{j} 1_{p}\right)
$$

where h_{0}, \cdots, h_{p-1} are given as above.
Now we present the main results of the paper as follows
Theorem 3.4. Suppose that the pair (M, θ) satisfies condition (A) and Condition (B):

$$
M_{0}=M \backslash M_{\theta} \text { is dense in } M, \quad \mathrm{H}^{2}\left(\chi\left(M_{0} / \theta\right), \mathbb{Z}\right) \cong 0 .
$$

Then $C(M) \times_{\theta} \mathbb{Z}_{p} \cong \mathcal{A}\left(M_{\theta}\right)$.
Proof. Since $\operatorname{dim}\left(M_{0} / \theta\right)=\operatorname{dim} M_{0} \leq \operatorname{dim} M \leq 2$ by [21, Lemma 1.3] and $\mathrm{H}^{2}\left(M_{0} / \theta, \mathbb{Z}\right)$ $\cong 0$, it follows from Lemma 3.2 that every matrix bundle over M_{0} / θ is trivial. Since

$$
\left.\operatorname{dim}\left(\chi\left(M_{0} / \theta\right)\right) \leq \operatorname{dim}\left(\beta\left(M_{0} / \theta\right)\right) \leq \operatorname{dim}\left(M_{0} / \theta\right)\right) \leq 2, \quad \mathrm{H}^{2}\left(\chi\left(M_{0} / \theta\right), \mathbb{Z}\right) \cong 0
$$

all complex vector bundles over $\chi\left(M_{0} / \theta\right)$ are trivial.
It is easy to check that for any $b \in \mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)$, there is $f_{j} \in C_{0}\left(M_{0}\right)$ with $\theta\left(f_{j}\right)=f_{j}$ such that $P_{j} \Phi(b) P_{j}=f_{j} P_{j}, j=1, \cdots, p$. So, $\mu\left(P_{j}\right) \mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right) \mu\left(P_{j}\right)$ is a commutative C^{*}-algebra, $j=1, \cdots, p$. Since $\mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right.$) is dense in $\mathrm{M}_{p}\left(C_{b}\left(M_{0} / \theta\right)\right)$ in the sense of strict topology, $\mu\left(P_{j}\right) \mathrm{M}_{p}\left(C_{b}\left(M_{0} / \theta\right)\right) \mu\left(P_{j}\right)$ is also a commutative C^{*}-algebra, $j=1, \cdots, p$. Assume that Q_{1}, \cdots, Q_{p} in $\mathrm{M}_{p}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right.$. Then $Q_{j} \mathrm{M}_{p}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right) Q_{j}$ is commutative and hence $\operatorname{rank} Q_{j}(x) \leq 1, \forall x \in$ $\chi\left(M_{0} / \theta\right)$ by [15, Lemma 6.1.3], $j=1, \cdots, p$.

Note that Q_{1}, \cdots, Q_{p} are mutually orthogonal and $\sum_{j=1}^{p} Q_{j}=1_{p}$. Therefore, we have $\operatorname{rank} Q_{j}(x)=1, \forall x \in \chi\left(M_{0} / \theta\right), j=1, \cdots, p$. So there are partial isometries V_{1}, \cdots, V_{p} in $\mathrm{M}_{p}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right.$ such that $S_{j}=V_{j}^{*} V_{j}$ and $e_{j}=V_{j} V_{j}^{*}, j=1, \cdots, p$. Put $V=\sum_{j=1}^{p} V_{j}$. Then V is a unitary element in $\mathrm{M}_{p}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right.$ and $S_{j}=V^{*} e_{j} V$, $j=1, \cdots, p$. Applying Lemma 2.1 to V^{*}, we can find $V_{0} \in \mathcal{U}_{0}\left(\mathrm{M}_{p}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right)\right.$ and $v \in \mathcal{U}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right)$ such that $V^{*}=V_{0} \operatorname{diag}\left(1_{p-1}, v\right)$. Consequently, $S_{j}=V_{0} e_{j} V_{0}^{*}$, $j=1, \cdots, p$.

Similarly, there is $V_{0}^{\prime} \in \mathcal{U}_{0}\left(\mathrm{M}_{p}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right)\right)$ such that $\Omega\left(e_{j}\right)=V_{0}^{\prime} e_{j} V_{0}^{\prime *}$. Choose $U \in \mathcal{U}_{0}\left(\mathrm{M}_{p}\left(C\left(\beta\left(M_{0} / \theta\right)\right)\right)\right)$ such that $\Omega(U)=V_{0} V_{0}^{\prime *}$. Since $\Omega\left(h_{j} 1_{p}\right)$ commutes with every element in $\mathrm{M}_{p}\left(C\left(\chi\left(M_{0} / \theta\right)\right)\right), j=0, \cdots, p-1$, it follows that

$$
\tau_{\pi}\left(f_{0}, \cdots, f_{p-1}\right)=\Omega(U) \tau_{\Lambda}\left(f_{0}, \cdots, f_{p-1}\right) \Omega\left(U^{*}\right)
$$

$\forall f_{0}, \cdots, f_{p-1} \in C\left(M_{\theta}\right)$. Therefore, $C(M) \times_{\theta} \mathbb{Z}_{p} \cong \mathcal{A}\left(M_{\theta}\right)$ by Lemma 3.1.
For the pair (M, θ) with $\operatorname{dim} M \leq 1$, we have $\operatorname{dim}\left(M_{0} / \theta\right) \leq 1$ and $\operatorname{dim} \chi\left(M_{0} / \theta\right) \leq$ 1. In this case, $\mathrm{H}^{2}\left(M_{0} / \theta, \mathbb{Z}\right) \cong \mathrm{H}^{2}\left(\chi\left(M_{0} / \theta\right), \mathbb{Z}\right) \cong 0$. Therefore, we have following corollary according to Theorem 3.4:

Corollary 3.5. Let (M, θ) be the pair with $\operatorname{dim} M \leq 1$ and $\overline{M_{0}}=M$, where $\overline{M_{0}}$ is the closure of M_{0} in M. Then $C(M) \times_{\theta} \mathbb{Z}_{p} \cong \mathcal{A}\left(M_{\theta}\right)$.

Theorem 3.6. Suppose that the pair (M, θ) satisfy Condition (A), Condition (B). Let $\left(M^{\prime}, \theta^{\prime}\right)$ be another pair with $\overline{M_{0}^{\prime}}=M^{\prime}$. Then $C(M) \times_{\theta} \mathbb{Z}_{p} \cong C\left(M^{\prime}\right) \times_{\theta^{\prime}} \mathbb{Z}_{p}$ iff there exists a homeomorphism $F: M / \theta \rightarrow M^{\prime} / \theta^{\prime}$ such that $F\left(M_{\theta}\right)=M_{\theta^{\prime}}^{\prime}$.
Proof. (\Leftarrow) Put $\alpha=\left.F\right|_{M_{0} / \theta}$. Then α has a unique homeomorphic extension $\bar{\alpha}: \beta\left(M_{0} / \theta\right) \rightarrow \beta\left(M_{0}^{\prime} / \theta^{\prime}\right)\left(c f .\left[8, \S 44\right.\right.$ Corollary 10]). Thus $\bar{\alpha}: \chi\left(M_{0} / \theta\right) \rightarrow \chi\left(M_{0}^{\prime} / \theta^{\prime}\right)$ is a homeomorphism. Thus $\left(M^{\prime}, \theta^{\prime}\right)$ Satisfies Condition (A) and Condition (B). Consequently, $C(M) \times_{\theta} \mathbb{Z}_{p} \cong \mathcal{A}\left(M_{\theta}\right)$ and $C\left(M^{\prime}\right) \times_{\theta^{\prime}} \mathbb{Z}_{p} \cong \mathcal{A}\left(M_{\theta^{\prime}}^{\prime}\right)$ by Theorem 3.4. Clearly, $\Psi\left(\left(a_{i j}\right)_{p \times p}\right)=\left(a_{i j} \circ F\right)_{p \times p}$ gives a $*$-isomorphism from $\mathcal{A}\left(M_{\theta^{\prime}}^{\prime}\right)$ onto $\mathcal{A}\left(M_{\theta}\right)$. The assertion follows.
(\Rightarrow) Let Δ be the $*$-isomorphism from $\mathrm{D}\left(M^{\prime}, \theta^{\prime}\right)$ onto $\mathrm{D}(M, \theta)$. Let $a^{\prime} \in$ $\mathrm{D}\left(M_{0}^{\prime}, \theta^{\prime}\right)$ and put $a=\Delta\left(a^{\prime}\right)$. If $a \notin \mathrm{D}\left(M_{0}, \theta\right)$, we can pick $y_{0} \in M_{\theta}$ such that $a\left(y_{0}\right) \neq 0$. Then $\sigma_{y_{0}, 1} \circ \Delta$ is multiplicable on $\mathrm{D}\left(M^{\prime}, \theta^{\prime}\right)$. Thus, there exist $x_{0} \in M_{\theta^{\prime}}^{\prime}$ and $k \in\{1, \cdots, p\}$ such that $\sigma_{y_{0}, 1} \circ \Delta=\sigma_{x_{0}, k}$ and hence $\sigma_{y_{0}, 1}(a)=\sigma_{x_{0}, k}\left(a^{\prime}\right)=0$, a contradiction. So, Δ induces a $*$-isomorphism $\Delta_{0}: \mathrm{D}\left(M_{0}^{\prime}, \theta^{\prime}\right) \rightarrow \mathrm{D}\left(M_{0}, \theta\right)$ and
so that $\Delta_{0}^{\prime}=\Phi^{-1} \circ \Delta_{0} \circ \Phi^{\prime-1}$ gives a $*$-isomorphism of $\mathrm{M}_{p}\left(C_{0}\left(M_{0}^{\prime} / \theta^{\prime}\right)\right)$ onto $\mathrm{M}_{p}\left(C_{0}\left(M_{0} / \theta\right)\right)$. Thus, we can find a homeomorphism $\alpha: M_{0} / \theta \rightarrow M_{0}^{\prime} / \theta^{\prime}$. This shows that $\left(M^{\prime}, \theta^{\prime}\right)$ satisfies Condition (A) and Condition (B) too.

Now we have $\mathcal{A}\left(M_{\theta^{\prime}}^{\prime}\right) \cong \mathcal{A}\left(M_{\theta}\right)$ via the $*$-isomorphism Θ by Theorem 3.4. Since $\Theta\left(f 1_{p}\right)$ commutes with every element in $\mathcal{A}\left(M_{\theta}\right), \forall f \in C\left(M^{\prime} / \theta^{\prime}\right)$, it follows that there is $h \in C(M / \theta)$ such that $\Theta\left(f 1_{p}\right)=h 1_{p}$. Thus, $f \mapsto h$ yields a $*$-isomorphism from $C\left(M^{\prime} / \theta^{\prime}\right)$ onto $C(M / \theta)$ so that there is a homeomorphism $F: M / \theta \rightarrow M^{\prime} / \theta^{\prime}$ such that $\Theta\left(f 1_{p}\right)=(f \circ F) 1_{p}=h 1_{p}$.

Let ϕ be a character on $\mathcal{A}\left(M_{\theta}\right)$ with $\phi\left(1_{p}\right)=1$. Since $e_{1}, \cdots, e_{p} \in \mathcal{A}\left(M_{\theta}\right)$ and $\sum_{j=1}^{p} e_{j}=1_{p}$, there is $e_{i_{0}}$ such that $\phi\left(e_{i_{0}}\right)=1$ and $\phi\left(e_{j}\right)=0, j \neq i_{0}$. Without losing the generality, we may assume $i_{0}=1$. Then $f \mapsto \phi\left(f e_{1}\right)$ is a character on $C(M / \theta)$. Thus, there is $x_{0} \in M / \theta$ such that $\phi\left(f e_{1}\right)=f\left(x_{0}\right), \forall f \in C(M / \theta)$. For any $g \in C_{0}\left(M_{0} / \theta\right)$, let $B=\left(b_{i j}\right)_{p \times p} \in \mathcal{A}\left(M_{\theta}\right)$ be given by $b_{p 1}=g$ and $b_{i j}=0, i \neq p$, $j \neq 1$. Then $B^{*} B=g^{*} g e_{1}, e_{p} B=B$ and hence $\left|g\left(x_{0}\right)\right|^{2}=0, \forall g \in C_{0}\left(M_{0} / \theta\right)$. Consequently, $x_{0} \in M_{\theta}$.

For any $x \in M_{\theta}$, define the character ϕ_{x} on $\mathcal{A}\left(M_{\theta}\right)$ by $\phi_{x}\left(\left(a_{i j}\right)_{p \times p}\right)=a_{11}(x)$. Note that $\phi_{x} \circ \Theta^{-1}$ is a character on $\mathcal{A}\left(M_{\theta^{\prime}}^{\prime}\right)$. So by above arguments, there is $y \in M_{\theta^{\prime}}^{\prime}$ such that

$$
g(y)=\phi_{x} \circ \Theta\left(g 1_{p}\right)=\phi_{x}\left((g \circ F) 1_{p}\right)=g(F(x)), \quad \forall g \in C\left(M^{\prime} / \theta^{\prime}\right)
$$

This means that $F\left(M_{\theta}\right) \subset M_{\theta^{\prime}}^{\prime}$. Similarly, we have $F^{-1}\left(M_{\theta^{\prime}}^{\prime}\right) \subset M_{\theta}$. Thus, $F\left(M_{\theta}\right)=M_{\theta^{\prime}}^{\prime}$.

Corollary 3.7. Suppose that the pair (M, θ) satisfy Condition (A) and Condition (B). Let $\left(M^{\prime}, \theta^{\prime}\right)$ be another pair. If (M, θ) and $\left(M^{\prime}, \theta^{\prime}\right)$ are orbit equivalent, that is, there is a homeomorphism $F: M \rightarrow M^{\prime}$ such that $F\left(O_{\theta}(x)\right)=O_{\theta^{\prime}}(F(x)), \forall x \in M$, then $C(M) \times_{\theta} \mathbb{Z}_{p} \cong C\left(M^{\prime}\right) \times{ }_{\theta^{\prime}} \mathbb{Z}_{p}$.

Proof. F induces a homeomorphism \tilde{F} of M / θ onto $M^{\prime} / \theta^{\prime}$ given by $\tilde{F}(P(x))=$ $P^{\prime}(F(x))$ by the assumption, where $P^{\prime}: M^{\prime} \rightarrow M^{\prime} / \theta^{\prime}$ is the canonical projective map. Obviously, $\tilde{F}\left(M_{\theta}\right)=M_{\theta^{\prime}}^{\prime}$ and $\overline{M_{0}^{\prime}}=F\left(\overline{M_{0}}\right)=M^{\prime}$. So $C(M) \times{ }_{\theta} \mathbb{Z}_{p} \cong$ $C\left(M^{\prime}\right) \times_{\theta^{\prime}} \mathbb{Z}_{p}$ by Theorem 3.6.

4 Some examples

Example 4.1. Consider (M, θ), where $M=\mathbf{S}^{1}$ and $\theta(z)=\bar{z}, \forall z \in \mathbf{S}^{1}$. Then

$$
M_{\theta}=\{-1,1\}, \overline{M_{0}}=M, M_{0} / \theta \cong(-1,1), M / \theta \cong[-1,1] .
$$

(M, θ) satisfies Condition (A) and (B) for $\operatorname{dim} M=1$. Thus $C(M) \times_{\theta} \mathbb{Z}_{p} \cong \mathcal{A}\left(M_{\theta}\right)$ by Theorem 3.4.

Define $\gamma(<z>)=\frac{x+1}{2}$ for $z=x+i y \in \mathbf{S}^{1}$, where $<z>=P(z) \in M / \theta$. Clearly, γ is a homeomorphism from M / θ onto $[0,1]$ and $\gamma\left(M_{\theta}\right)=\{0,1\}$. So

$$
\begin{aligned}
C(M) \times_{\theta} \mathbb{Z}_{2} & \cong \mathcal{A}(\{0,1\}) \\
& =\left\{f:[0,1] \rightarrow \mathrm{M}_{2}(\mathbb{C}) \text { continuous } \mid f(0), f(1) \text { are diagonal }\right\}
\end{aligned}
$$

Example 4.2. Let $M=\mathbf{S}^{1} \times \underline{\mathbf{S}^{1}}$ and $\theta\left(z_{1}, z_{2}\right)=\left(z_{2}, z_{1}\right), \forall z_{1}, z_{2} \in \mathbf{S}^{1}$. Then $M_{\theta}=\left\{(z, z) \mid z \in \mathbf{S}^{1}\right\} \cong \mathbf{S}^{1}$ and $\overline{M_{0}}=M$. Set

$$
S=\left\{\left(z_{1}+z_{2}, z_{1} z_{2}\right) \mid z_{1}, z_{2} \in \mathbf{S}^{1}\right\} \subset \mathbb{C} \times \mathbb{C}
$$

It is easy to check that S is a closed and bounded subset in $\mathbb{C} \times \mathbb{C}$, that is, S is compact. Define the continuous map $\xi: M / \theta \rightarrow S$ and $\beta:[0,1] \times \mathbf{S}^{1} \rightarrow S$, respectively, by $\xi\left(<z_{1}, z_{2}>\right)=\left(z_{1}+z_{2}, z_{1} z_{2}\right)$ and $\beta(t, z)=\left(2 z t, z^{2}\right)$, where $<$ $z_{1}, z_{2}>=P\left(z_{1}, z_{2}\right) \in M / \theta$. Then ξ and β are all homeomorphic (cf. [21, Exmple 4.3]). Therefore the homeomorphism $\delta=\beta^{-1} \circ \xi: M / \theta \rightarrow[0,1] \times \mathbf{S}^{1}$ sends M_{θ} to $\{1\} \times \mathbf{S}^{1}$.
Claim 1. (M, θ) satisfies Condition (A) and Condition (B).
Since $\delta\left(M_{\theta}\right)=\{1\} \times \mathbf{S}^{1}, \delta\left(M_{0} / \theta\right)=[0,1) \times \mathbf{S}^{1}$. Let $i:\{1\} \times \mathbf{S}^{1} \rightarrow[0,1] \times \mathbf{S}^{1}$ be the inclusion. Then i is homotopic equivalence map. Since $\mathrm{H}^{2}\left([0,1] \times \mathbf{S}^{1}\right) \cong 0$, it follows from the exact sequence of the reduced coholomological groups (cf. [18]) that

$$
\tilde{\mathrm{H}}^{1}\left([0,1] \times \mathbf{S}^{1}, \mathbb{Z}\right) \xrightarrow{i^{*}} \mathrm{H}^{1}\left(\{1\} \times \mathbf{S}^{1}, \mathbb{Z}\right) \longrightarrow \tilde{\mathrm{H}}^{2}\left(\left([0,1) \times \mathbf{S}^{1}\right)^{+}, \mathbb{Z}\right) \longrightarrow 0
$$

So $\tilde{\mathrm{H}}^{2}\left(\left([0,1) \times \mathbf{S}^{1}\right)^{+}, \mathbb{Z}\right) \cong 0$ and consequently, (M, θ) satisfies Condition (A).
Noting that $[0,1) \times \mathbf{S}^{1} \cong[0,+\infty) \times \mathbf{S}^{1}$, we have $\mathrm{H}^{2}\left(\chi\left([0,1) \times \mathbf{S}^{1}\right), \mathbb{Z}\right) \cong 0$ by $[6$, Corollary 4.7]. So (M, θ) satisfies Condition (B).

Let $M^{\prime}=[0,2] \times \mathbf{S}^{1}$ and $\theta^{\prime}(t, z)=(2-t, z)$. Then $M_{\theta^{\prime}}^{\prime}=\{1\} \times \mathbf{S}^{1}$. Define the homeomorphism $\delta^{\prime}: M^{\prime} / \theta^{\prime} \rightarrow[0,1] \times \mathbf{S}^{1}$ by $\left.\delta^{\prime}(<t, z\rangle\right)=(1-|1-t|, z)$.
Claim 2. $C(M) \times{ }_{\theta} \mathbb{Z}_{2} \cong C\left(\mathbf{S}^{1}\right) \otimes \mathcal{A}(1)$, where

$$
\mathcal{A}(1)=\left\{\left.\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right) \in \mathrm{M}_{2}(C([0,1])) \right\rvert\, f_{12}(1)=f_{21}(1)=0\right\} .
$$

Since $M / \theta \cong[0,2] \times \mathbf{S}^{1} / \theta^{\prime}$ via $\delta^{\prime-1} \circ \delta$ and $\left(\delta^{\prime-1} \circ \delta\right)\left(M_{\theta}\right)=M_{\theta^{\prime}}^{\prime}$, it follows from Theorem 3.6 that

$$
C(M) \times_{\theta} \mathbb{Z}_{2} \cong C\left(M^{\prime}\right) \times_{\theta^{\prime}} \mathbb{Z}_{2} \cong C\left(\mathbf{S}^{1}\right) \otimes\left(C([0,2]) \times_{\theta_{1}} \mathbb{Z}_{2}\right)
$$

where $\theta_{1}:[0,2] \rightarrow[0,2]$ given by $\theta_{1}(t)=2-t$.
Note that $[0,2] / \theta_{1} \cong[0,1]$ via $<t>\mapsto|1-t|, \forall t \in[0,1]$. We have $C([0,2]) \times_{\theta_{1}}$ $\mathbb{Z}_{2} \cong \mathcal{A}(1)$ by Theorem 3.4.

References

[1] B. Blackadar, K-Theory for Operator Algebras, Springer-Verlag, 1986.
[2] J. Dixmier, C^{*}-algebras, Gauthier-Villars, Paris, 1964; North-Holland, Amsterdam, 1977.
[3] G. A. Elliott, An invariant for simple C^{*}-algebras, 61-90 in Canadian Mathematical Society 1945-1995, vol. 3: Invited papers, edited by J. B. Carrell and R. Murty, Canadian Math. Soc, Ottawa, 1996.
[4] J.M.G. Fell, The Structure of algebras of operator fields, Acta Math., 106 (1961), 233-280.
[5] T. Giordano, I.F. Putnam and C.F. Skau, Topological orbit equivalence and C^{*}-crossed products, J. Reine. Angew. Math., 469 (1995), 51-111.
[6] K. Grove and G.K. Pedersen, Sub-Stonean spaces and corona sets, J. Funct. Anal., 56 (1984), 124-143.
[7] R. Howe, The Brauer group of a compact Hausdorff space and n-homogeneous C^{*}-algebras, Proc. Amer. Math. Soc., 34 (1) (1972), 209-214.
[8] T. Husain, Topology and Maps, Plenum Press 1977.
[9] D. Husemoller, Fibre Bundles, McGraw-Hill, New York, 1966, reprinted in Springer-Verlag, Graduate Texts in Mathematics.
[10] K.K. Jensen and K. Thomsen, Elements of K K-Theory, Birkhäuser, 1991.
[11] B. Li and Q. Lin, Pure states approach to $C(X) \times{ }_{\alpha} \mathbb{Z}_{n}$, Chin. Ann. Math., 16B(1) (1995), 75-86.
[12] H. Lin, An Introduction to the Classification of Amenable C^{*}-algebras, World Scientific, 2001.
[13] H. Lin and H. Matui, Minimal dynamical systems and approximate conjugacy, Math. Ann., 332 (2005), 795-822.
[14] G. Nagy, Stable rank of C^{*}-algebras of Toeplitz operators on polydisks, Operators in indefinite metric space, scattering theory and other topics, 227-235, Birkhäuser-Verlag, 1986.
[15] G.K. Pedersen, C^{*}-algebras and their Automorphism Groups, Academic Press, London/ New York, 1979.
[16] M.A. Rieffel,Dimensionl and stable rank in the K-theory of C^{*}-Algebras, Proc. London Math. Soc., 46(3) (1983), 301-333.
[17] M.A. Rieffel, The homotopy groups of the unitary groups of non-commutative tori, J. Operator Theory, 17 (1987), 237-254.
[18] J. Taylor, Banach algebras and topology, Algebras in Analysis (ed. J.H. Williamson), Academic Press, 1975.
[19] N.E. Wegge-Olsen, K-Theory and C^{*}-Algebras, A Friendly Approach, Oxford University Press, 1993.
[20] Y. Xue, The general stable rank in non-stable K-theory, Rocky Mount. J. Math., 30 (2000), 761-775.
[21] Y. Xue, The K-groups of $C(M) \times{ }_{\theta} \mathbb{Z}_{p}$ for certain pairs (M, θ), J. Operator Theory, 46 (2001), 337-353.

Department of Mathematics, East China Normal University, Shanghai 200241, P.R. China

E-mail: yfxue@math.ecnu.edu.cn

[^0]: 2010 Mathematics Subject Classifications. 46L05
 Key words and Phrases. matrix bundle, Crossed product, Busby invariant
 Received: February 8, 2010
 Communicated by Vladimir Rakocevic
 Project supported by Natural Science Foundation of China (no.10771069) and Shanghai
 Leading Academic Discipline Project(no.B407)

