
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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A METHOD OF CONSTRUCTING

BRAIDED HOPF ALGEBRAS

Tianshui Ma†, Shuanhong Wang∗† and Shaoxian Xu

Abstract

Let A and B be two Hopf algebras and R ∈ Hom(B ⊗ A, A ⊗ B), the
twisted tensor product Hopf algebra A#RB was introduced by S. Caenepeel
et al in [3] and further studied in our recent work [6]. In this paper we give
the necessary and sufficient conditions for A#RB to be a Hopf algebra with a
projection. Furthermore, a braided Hopf algebra A is constructed by twisting
the multiplication of A through a (γ, R)-pair (A, B). Finally we give a method
to construct Radford’s biproduct directly by defining the module action and
comodule action from the twisted tensor biproduct.

1 Introduction and Preliminaries

In Hopf algebra theory, one of the celebrated result is the Radford’s biproducts
construction [10] which is equivalent to a Hopf algebra in the Yetter-Drinfel’d cate-
gory over some Hopf algebra and is related to the classification of finite-dimensional
pointed Hopf algebras [1]. A Hopf algebra in the Yetter-Drinfel’d category is called
braided Hopf algebra. Drinfel’d [5] observed that for a finite dimensional quasitrian-
gular Hopf algebra H, its double D(H) is a Hopf algebra with a projection. Majid
[8] proved that the converse of Drinfel’d’s result also holds, and computed on H∗ the
braided Hopf algebra structure associated to this projection [10]. Other references
about braided Hopf algebras are [12, 14].

Let A and B be two Hopf algebras, σ : A ⊗ B −→ k an invertible skew pair,
then we have Doi-Takeuchi double A ./σ B [4]. In [2] Beattie and Bulacu gave the
necessary and sufficient conditions for A ./σ B to be a bialgebra with a projection
generalizing the Majid’s result in [8]. While the twisted tensor product A#RB is a
generalization of Doi-Takeuchi double, it is a natural question that when the twisted
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tensor product A#RB is a bialgebra with a projection and whether we can find a
Hopf algebra A in B

BYD ( i.e. a braided Hopf algebra A ) such that A
#

×B ∼= A#RB
as Hopf algebra by twisting the multiplication on A. In this note we mainly give
the answers to the above questions. Some relevant references on the twisting ( or
“deformation” ) are [2, 8, 7, 12, 13, 14].

The present paper is organized as follows. In Section 1, we review some known
notions of twisted tensor products, Yetter-Drinfel’d categories, braided Hopf al-
gebra and Radford’s biproduct. Let A and B be two Hopf algebras and R ∈
Hom(B ⊗ A,A ⊗ B). In section 2 we obtain the necessary and sufficient condi-
tions for twisted tensor product A#RB to be a bialgebra with a projection (see
Theorem 2.3) which generalizes the Beattie-Bulacu’s results [2]. Furthermore we
give the concept of (γ, R)-pair (A,B) by using twisted tensor product Hopf algebra
A#RB (see Definition 2.5). Section 3 is devoted to constructing a braided Hopf
algebra A by twisting the multiplication of A through a (γ, R)-pair (A, B) such that
A

#

×B ∼= A#RB as Hopf algebras (see Theorem 3.2, Theorem 3.3). In last section
another braided Hopf algebra is derived directly by defining the module action and
comodule action from the twisted tensor biproduct (see Theorem 4.3).

Throughout the paper, we follow the definitions and terminologies in Mont-
gomery’s book [9] and all algebraic systems are supposed to be over the field k.
Let C be a coalgebra. Then we use the simple Sweedler’s notation for the comul-
tiplication [11]: ∆(c) = c1 ⊗ c2 for any c ∈ C. We denote by CM the category of
left C-comodules and for any V ∈ CM, we will use a simple Sweedler’s notations:
ρ(v) = v−1⊗v0 for all v ∈ V . Given a k-space M , we write iM for the identity map
on M .

1.1. The twisted tensor product Hopf algebras.
Let A and B be two algebras and suppose that one has a linear map R : B⊗A −→

A⊗B. Then A#RB is defined to be a vector space A⊗B with the product defined
by

mA#RB = (mA ⊗mB)(iA ⊗R⊗ iB)

or
(a#Rb)(a′#Rb′) = aa′R#bRb′. (1. 1)

for a, a′ ∈ A and b, b′ ∈ B, where we write R(b⊗ a) = aR ⊗ bR = ar ⊗ br. If A#RB
is an associative algebra with unit 1A#1B , we call A#RB a twisted tensor product
algebra. If A and B are Hopf algebras, then twisted tensor product algebra A#RB
is called a twisted tensor product Hopf algebra if A#RB is a Hopf lagbera with the
usual tensor coproduct.

Let A and B be two algebras and suppose that we have given a linear map
R : B ⊗ A −→ A ⊗ B. Then by [3] or [6] we have that A#RB is a twisted tensor
product algebra is equivalent to the following conditions hold:

R(mB ⊗ iA) = (iA ⊗mB)(R⊗ iB)(iB ⊗R), (1. 2)
R(iB ⊗mA) = (mA ⊗ iB)(iA ⊗R)(R⊗ iA), (1. 3)
R(b⊗ 1A) = 1A ⊗ b; R(1B ⊗ a) = a⊗ 1B . (1. 4)
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Let A and B be two Hopf algebras, σ : A ⊗ B −→ k an invertible skew pair,
then we have Doi-Takeuchi double A ./σ B [4]. If we define the linear map R :
B ⊗ A −→ A ⊗ B by R(b ⊗ a) = σ(a1, b1)a2 ⊗ b2σ

−1(a3, b3), then we get A ./σ B
with the product given by

(a#b)(a′#b′) = σ(a′1, b1)aa′2 ⊗ b2b
′σ−1(a′3, b3)

for a, a′ ∈ A and b, b′ ∈ B.
Let A and B be Hopf algebras, then the twisted tensor product algebra with

the usual tensor product coalgebra structure is a Hopf algebra if and only if R is a
coalgebra map, i.e. for ∀ a ∈ A, b ∈ B and R = r

aR1 ⊗ bR1 ⊗ aR2 ⊗ bR2 = a1R ⊗ b1R ⊗ a2r ⊗ b2r (1. 5)
εA(aR)εB(bR) = εA(a)εB(b). (1. 6)

If the extra condition

εA(aR)bR = εA(a)b (1. 7)

holds, then we call A#RB a conormal twisted tensor product Hopf algebra.
If A#RB is a conormal twisted tensor product Hopf algebra, then by Eq.(1.5) ∼

Eq.(1.7), for all a ∈ A and b ∈ B, we have

bR ⊗ aR = b1εB(b2R)⊗ aR = εB(b1R)b2 ⊗ aR; (1. 8)
aR1 ⊗ aR2 ⊗ bR = a1RεB(b1R)⊗ a2r ⊗ b2r; (1. 9)
bR1 ⊗ aR ⊗ bR2 = b1 ⊗ aR ⊗ b2R. (1. 10)

1.2. Braided Hopf algebras and Radford’s biproduct.
Let B be a Hopf algebra with a bijective antipode S. Then a left Yetter-Drinfel’d

module (V, ·, ρ) is a left B-module and a left B-comodule such that the following
condition

(b1 · v)−1b2 ⊗ (b1 · v)0 = b1v−1 ⊗ b2 · v0 (1. 11)

is satisfied for all b ∈ B and v ∈ V .
We denote the category of left Yetter-Drinfel’d modules and the morphisms

that are both B-linear and B-colinear by B
BYD. Then B

BYD is a braided monoidal
category with the braiding τ given by

τ : M ⊗N −→ N ⊗M ; m⊗ n 7→ m(−1) · n⊗m0

for any m ∈ M ∈ B
BYD and n ∈ N ∈ B

BYD.
A Hopf algebra in B

BYD is called a braided Hopf algebra [1].
The biproduct construction associated a smash product and a smash coproduct

of Hopf algebras is due to D. E. Radford [10].
Let B be a Hopf algebra, A both an algebra and a coalgebra such that there exists

a linear map SA : A −→ A satisfying mA(SA⊗ iA)∆A = iA and mA(iA⊗SA)∆A =
iA. Then the following statements are equivalent:



56 Tianshui Ma, Shuanhong Wang and Shaoxian Xu

1. (A#
×B,mA#B , 1A ⊗ 1B ,∆A×B , εA ⊗ εB , SA#

×B) is a Hopf algebra.
2. The following conditions (1) ∼ (7) hold:

(1) A#B is a smash product;
(2) A×B is a smash coproduct;
(3) A is a left B -module coalgebra;
(4) A is a left B -comodule algebra;
(5) ∆A(aa′) = a1(a2(−1) · a′1)⊗ a0a

′
2, ∆A(1A) = 1A ⊗ 1A; (1. 12)

(6) (b1 · a)(−1)b2 ⊗ (b1 · a)0 = b1a(−1) ⊗ b2 · a0;
(7) εA is an algebra map.

3. A is a Hopf algebra in Yetter-Drinfel’d B
BYD, i.e., A is a braided Hopf algebra.

2 (γ,R)-compatible pair (A,B)

In this section, we obtain the necessary and sufficient conditions for the twisted
tensor product to be a bialgebra with a projection which generalizes Beattie-Bulacu’s
result in [2]. Furthermore the notion of (γ, R)-compatible pair is given.

Lemma 2.1. Let A,B be Hopf algebras and A#RB a twisted tensor product
Hopf algebra. Let D be any Hopf algebra and α : A −→ D and β : B −→ D Hopf
algebra maps. Then the map F : A#RB −→ D defined by F (a ⊗ b) = α(a)β(b) is
a Hopf algebra map if

α(aR)β(bR) = β(b)α(a) (2. 1)

for all a ∈ A and b ∈ B.
Proof. Since A#RB = A ⊗ B as coalgebras and the multiplication mD is a

coalgebra map, F is a coalgebra map.
In what follows, we compute F is an algebra map as follows:

F ((a⊗ b)(a′ ⊗ b′)) = F (aa′R ⊗ bRb′) = α(a)α(a′R)β(bR)β(b′)
(2.1)
= α(a)β(b)α(a′)β(b′) = F (a⊗ b)F (a′ ⊗ b′)

for all a, a′ ∈ A and b, b′ ∈ B. ¥
Example 2.2. Let R(b⊗ a) = τ(a1, b1)a2 ⊗ b2τ

−1(a3, b3). Then Lemma 2.1 is
exactly the Proposition 2.4 in [4].

Theorem 2.3. Let A,B be Hopf algebras and A#RB a twisted tensor product
Hopf algebra. Then we have the following bialgebra morphisms:

i : A −→ A#RB, i(a) = a⊗ 1; j : B −→ A#RB, j(b) = 1⊗ b

for all a ∈ A and b ∈ B.
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(1) There exists a bialgebra projection π : A#RB −→ A such that π ◦ i = iA if
and only if there is a bialgebra map γ : B −→ A such that

γ(b)a = aRγ(bR) (2. 2)

for all a ∈ A and b ∈ B.
(2) There exists a bialgebra projection π′ : A#RB −→ B such that π′ ◦ j = jB

if and only if there is a bialgebra map γ′ : A −→ B such that

bγ′(a) = γ′(aR)bR

for all a ∈ A and b ∈ B.
Proof. We only verify that Part 1 is satisfied. Similarly for Part 2.
Assume that there is a bialgebra map γ : B −→ A such that Eq.(2.2) holds.

Define the map π : A#RB −→ A as π(a⊗ b) = aγ(b) for all a ∈ A and b ∈ B. Then

π ◦ i(a) = π(a⊗ 1) = aγ(1) = a

for all a ∈ A. Moreover, set D = A, α = iA and β = γ : B −→ A in Lemma 2.1,
then by Eq.(2.2) we conclude that π is an algebra map.

On the other hand, given a bialgebra projection π : A#RB −→ A. Define the
map γ : B −→ A by γ(b) = π ◦ j(b) = π(1⊗ b) for all b ∈ B. Then γ is a bialgebra
map since π and j are. It is easy to verify that Eq.(2.2) holds. In fact, for all a ∈ A
and b ∈ B, we have

γ(b)a = (π ◦ j(b))a = π(1⊗ b)π(a⊗ 1) = π((1⊗ b)(a⊗ 1))
= π(aR ⊗ bR) = aRγ(bR). ¥

Example 2.4. Let R(b ⊗ a) = σ(a1, b1)a2 ⊗ b2σ
−1(a3, b3). Then Proposition

3.1 in [2] is obtained.
Definition 2.5. Suppose that A and B are Hopf algebras and A#RB is a

conormal twisted tensor product Hopf algebra. If γ : A −→ B is a Hopf algebra
morphism such that

bγ(a) = γ(aR)bR (2. 3)

holds, then we call (A,B) a (γ, R)-compatible pair.
Remark 2.6. 1. If (A, B) is a (γ, R)-compatible pair, then we have the following

useful equations:

b1γ(aR)(SB(b2))R = εB(b)γ(a); (2. 4)
bSB(γ(a)) = γ((SA(a))R)bR. (2. 5)

2. If (A,B) is a (γ,R)-compatible pair, then there exists a Hopf algebra A in
B
BYD such that A

#

×B ∼= A#RB as Hopf algebra by Theorem 2.3.
Proposition 2.7. Let (A,B) be a (γ, R)-compatible pair and (V, ρ) a left B-

comodule. Set ρ : V −→ B ⊗ V such that ρ(v) = γ(v−1) ⊗ v0 for all v ∈ V , then
(V, ρ) is a left B-comodule.

Proof. It is obvious. ¥
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3 Construct braided Hopf algebra through (γ, R)-
compatible pair

In this section we construct a braided Hopf algebra A through (γ, R)-compatible
pair by twisting the multiplication of A such that A

#

×B ∼= A#RB as Hopf algebras.

Lemma 3.1. Let (A, B) be a (γ, R)-compatible pair. For all a ∈ A and b ∈ B,
define

⇀: B ⊗A −→ A, b ⇀ a = εB(bR)aR;

and

ρ : A −→ B ⊗A, ρ(a) = a−1 ⊗ a0 = γ(a1)SB(γ(a3))⊗ a2,

then

(1) (A,⇀) is a left B-module coalegbra;
(2) (A, ρ) is a left B-comodule coalegbra;
(3) (A,⇀, ρ) is a Yetter-Drinfel’d module if the following condition holds:

(SA(a))R ⊗ bR = SA(aR)⊗ bR. (3. 1)

Proof. (1) Since

b ⇀ (b′ ⇀ a) = εB(br)εB(b′R)aRr
(1.2)
= εB((bb′)R)aR = (bb′) ⇀ a

and 1B ⇀ a = εB(1BR)aR
(1.4)
= a, (A,⇀) is a left B-module.

While

(b1 ⇀ a1)⊗ (b2 ⇀ a2) = εB(b1R)a1R ⊗ εB(b2r)a2r

(1.9)
= εB(bR)aR1 ⊗ aR2 = (b ⇀ a)1 ⊗ (b ⇀ a)2

and εA(b ⇀ a) = εA(aR)εB(bR)
(1.6)
= εA(a)εB(b), then (A,⇀) is a left B-module

coalgebra.
(2) It is straightforward.
(3) First by Eq.(2.3) and Eq.(3.1), we have

bγ(SA(a)) = γ((SA(a))R)bR = γ(SA(aR))bR. (3. 2)

Next we only need to check Eq.(1.11) is satisfied. In fact, for all a ∈ A, b ∈ B and
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R = r = R, one can obtain

b1a−1 ⊗ (b2 ⇀ a0) = b1γ(a1)SB(γ(a3))⊗ εB(b2R)a2R

(2.3)
= γ(a1R)b1RSB(γ(a3))⊗ εB(b2R)a2R

(1.8)
= γ(a1R)b2γ(SA(a3)εB(b1R)⊗ εB(b3R)a2R

(1.8)
= γ(a1R)b3γ(SA(a3)εB(b1R)⊗ εB(b2R)a2R

(3.2)
= γ(a1R)γ(SA(a3r)b3rεB(b1R)⊗ εB(b2R)a2R

(1.8)
= γ(a1R)SB(γ(a3r)b4εB(b1R)εB(b3r)⊗ εB(b2R)a2R

(1.9)
= γ(a1R)SB(γ(a2r2)b3εB(b1R)εB(b2r)⊗ εB(b2R)a2r1

(1.9)
= γ(aR1)SB(γ(ar3)b2εB(b1r)⊗ ar2

= (b1 ⇀ a)−1b2 ⊗ (b1 ⇀ a)0.

Thus (A, ⇀, ρ) is a Yetter-Drinfel’d module. ¥
Theorem 3.2. Let (A,B) be a (γ,R)-compatible pair. Assume that Eq.(3.1)

holds. Then there exists a bialgebra A in B
BYD, where A = A as a vector space over

k, the left B-comodule structure and left B-module structure of A are the same as
in Lemma 3.1, and the comultiplication, counit and unit of A are the same as of A,
with new multiplication structure

m(a⊗ a′) = a ·R a′ = a1a
′
RεB((SB(γ(a2)))R)

for all a, a′ ∈ A.
Proof. By Lemma 3.1 we know that A is in B

BYD, (A,⇀) is a left B-module
coalgebra and (A, ρ) is a left B-comodule coalgebra.

Next we take four steps to finish the proof of the theorem.
Step 1. (A, m) is a k-algebra. In fact, for all a, a′, a′′ ∈ A, we have

(a ·R a′) ·R a′′ = (a1a
′
R)1a′′rεB((SB(γ((a1a

′
R)2)))r)εB((SB(γ(a2)))R)

= a1a
′
R1a

′′
rεB((SB(γ(a2a

′
R2)))r)εB((SB(γ(a3)))R)

= a1a
′
R1a

′′
rεB((SB(γ(a′R2))SB(γ(a2)))r)εB((SB(γ(a3)))R)

(1.8)
= a1a

′
R1a

′′
rεB((SB(γ(a′R2))(SB(γ(a2)))R)r)

(1.9)
= a1a

′
1R

a′′rεB((SB(γ(a′2R))(SB(γ(a2)))R)r)εB((SB(γ(a3)))R)
(2.4)
= a1a

′
1R

a′′rεB((SB(γ(a2))SB(γ(a′2)))r)εB((SB(γ(a3)))R)
(1.2)
= a1a

′
1R

a′′rrεB((SB(γ(a2)))r)εB((SB(γ(a′2)))r)εB((SB(γ(a3)))R)
(1.8)
= a1a

′
1R

a′′rrεB((SB(γ(a2)))Rr)εB((SB(γ(a′2)))r)
(1.2)
= a1(a′1a

′′
r )RεB((SB(γ(a2)))R)εB((SB(γ(a′2)))r)

= a ·R (a′ ·R a′′)
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One can easily check that the unit of A is the same as the unit of A.
Step 2. (A, ⇀) is a left B-module algebra. Indeed, for all a, a′ ∈ A and b ∈ B,

one can get

(b1 ⇀ a) ·R (b2 ⇀ a′) = εB(b1R)aR1a
′
rR

εB((SB(γ(aR2)))R)εB(b2r)
(1.8)
= aR1a

′
rR

εB((SB(γ(aR2)))R)εB(bRr)
(1.2)
= aR1a

′
rεB((SB(γ(aR2))bR)r)

(1.9)
= a1RεB(b1R)a′rεB((SB(γ(a2R))b2R)r)

(3.2)
= a1RεB(b1R)a′rεB((b2SB(γ(a2)))r)

(1.2)
= a1RεB(b1R)a′

rR
εB(b2R)εB((SB(γ(a2)))r)

(1.3)
= (a1a

′
r)RεB(bR)εB((SB(γ(a2)))r)

= b ⇀ (a ·R a′)

and

b ⇀ 1A = εB(bR)1AR

(1.4)
= εB(b)1A.

Step 3. We show that (A, ρ) is a left B-comodule algebra. In fact, for all a, a′ ∈ A

a−1a
′
−1 ⊗ a0 ·R a′0 = γ(a1)SB(γ(a4))γ(a′1)SB(γ(a′3))⊗ a2a

′
2RεB((SB(γ(a3)))R)

(2.3)
= γ(a1)γ(a′1r)(SB(γ(a4)))rSB(γ(a′3))⊗ a2a

′
2RεB((SB(γ(a3)))R)

(3.2)
= γ(a1)γ(a′1r)γ(SA(a′

3R
))(SB(γ(a4)))rR ⊗ a2a

′
2RεB((SB(γ(a3)))R)

(1.8)
= γ(a1)γ(a′1r)γ(SA(a′

3R
))(SB(γ(a3)))4εB((SB(γ(a3)))2R)

εB((SB(γ(a3)))3r)⊗ a2a
′
2RεB((SB(γ(a3)))1R)

(1.8)
= γ(a1)γ(a′1r)γ(SA(a′

3R
))(SB(γ(a3)))4εB((SB(γ(a3)))3R)

εB((SB(γ(a3)))1r)⊗ a2a
′
2RεB((SB(γ(a3)))2R)

(1.9)
= γ(a1)γ(a′1r1)γ(SA(a′

2R
))(SB(γ(a3)))3εB((SB(γ(a3)))2R)

⊗a2a
′
1r2εB((SB(γ(a3)))1r)

(1.9)
= γ(a1)γ(a′r1)γ(SA(a′r3))(SB(γ(a3)))2 ⊗ a2a

′
r2εB((SB(γ(a3)))1r)

= γ(a1a
′
r1)SB(γ(a3a

′
r3))⊗ a2a

′
r2εB((SB(γ(a4)))r)

= (a ·R a′)−1 ⊗ (a ·R a′)0

and

1A−1 ⊗ 1A0 = γ(1A)SB(γ(1A))⊗ 1A = 1B ⊗ 1A.
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Step 4. Since for all a, a′ ∈ A,

a1 ·R (a2−1 ⇀ a′1)⊗ a20 ·R a′2 = a1a
′
1RrεB((SB(γ(a2)))r)εB((γ(a3)SB(γ(a6)))R)

⊗a4a
′
2R

εB((SB(γ(a5)))R)
(1.2)
= a1a

′
1RεB((SB(γ(a2)))γ(a3)SB(γ(a6)))R)

⊗a4a
′
2R

εB((SB(γ(a5)))R)
= a1a

′
1RεB((SB(γ(a4)))R)⊗ a2a

′
2R

εB((SB(γ(a3)))R)
(1.9)
= a1a

′
R1 ⊗ a2a

′
R2εB((SB(γ(a3)))R)

= ∆(a ·R a′),

Then Eq.(1.12) is satisfied. Therefore (A, m) is a bialgebra in B
BYD. ¥

Theorem 3.3. Under the assumptions of Theorem 3.2, A is a Hopf algebra in
B
BYD with an antipode S, where

S(a) = ε((γ(a1))R)(SA(a2))R

for all a ∈ A.
Proof. Firstly, we will prove S is a morphism in B

BYD.

b ⇀ S(a) = (SA(a2))RrεB((γ(a1))R)εB(br)
(1.2)
= (SA(a2))RεB((bγ(a1))R)

(2.3)
= (SA(a2))RεB((γ(a1r)br)R)

(1.2)
= (SA(a2))RRεB((γ(a1r))R)εB(brR)

(3.1)
= (SA(a2R)RεB((γ(a1r))R)εB(brR)

(1.8)
= (SA(a2R)RεB((γ(a1r))R)εB(b1r)εB(b2R)

(1.9)
= (SA(aR2)RεB((γ(aR1))R)εB(bR)
= S(b ⇀ a),

hence S is a left B-module morphism.
For all a ∈ A, since

ρ(S(a)) = γ((SA(a2))R1)γ(SA((SA(a2))R3))⊗ (SA(a2))R2εB((γ(a1))R)
(1.9)
= γ((SA(a4))r1)SB(γ((SA(a3))R))⊗ (SA(a4))r2εB((γ(a1))r)εB((γ(a2))R)

(3.1)
= γ((SA(a4))r1)γ((SA(SA(a3))R))εB((γ(a2))R)⊗ (SA(a4))r2εB((γ(a1))r)

(2.4)
= γ((SA(a4))r1)(γ(a2))R1γ((SA(SA(a3))RR))(SB((γ(a2))R2))R

⊗(SA(a4))r2εB((γ(a1))r)
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(1.10)
= γ((SA(a5))r1)γ(a2)γ((SA(SA(a4))RR))(SB((γ(a3))R))R

⊗(SA(a5))r2εB((γ(a1))r)
(2.3)
= γ((SA(a5))r1)γ(a2)SB((γ(a3))R)γ((SA(SA(a4)))R)

⊗(SA(a5))r2εB((γ(a1))r)
(3.1)
= γ((SA(a5))r1)γ(a2)SB((γ(a3))R)SB(γ((SA(a4))R))

⊗(SA(a5))r2εB((γ(a1))r)
= γ((SA(a5))r1)γ(a2)SB(γ((SA(a4))R)(γ(a3))R)

⊗(SA(a5))r2εB((γ(a1))r)
(2.5)
= γ((SA(a5))r1)γ(a2)SB(γ(a3)γ(SA(a4)))

⊗(SA(a5))r2εB((γ(a1))r)
= γ((SA(a3))r1)γ(a2)⊗ (SA(a3))r2εB((γ(a1))r)

(1.9)
= γ((SA(a5))R)γ(a3)εB((γ(a1))R)⊗ (SA(a4))rεB((γ(a2))r)

(1.8)
= γ((SA(a5))R)γ(a2)εB((γ(a1))R)⊗ (SA(a4))rεB((γ(a3))r)

(1.8)
= γ((SA(a4))R)(γ(a1))R ⊗ (SA(a3))rεB((γ(a2))r)

(2.3)
= γ(a1)γ(SA(a4))⊗ (SA(a3))rεB((γ(a2))r)
= (iB ⊗ S)ρ(a),

thus S is a left B-comodule morphism.
Secondly, for all a ∈ A, one can obtain

(S ∗ iA)(a) = (SA(a2))R1a3rεB(((SB(γ(a2)))R2)r)εB((γ(a1))R)
(1.9)
= (SA(a4))RεB((γ(a1))R)a5rεB(((SB(γ(a3)))R)r)εB((γ(a2))R)

(2.4)
= (SA(a4))RεB((γ(a1))R)a5r

εB(((γ(a2))R1γ((SA(SA(a3)))Rr)(SB((γ(a2))R1))r)r)
(1.10)
= (SA(a5))RεB((γ(a1))R)a6r

εB((γ(a2)γ((SA(SA(a4)))Rr)(SB((γ(a3))R))r)r)
(2.3)
= (SA(a5))RεB((γ(a1))R)a6rεB((γ(a2)SB((γ(a3))R)γ((SA(SA(a4)))R))r)
= (SA(a5))RεB((γ(a1))R)a6rεB((γ(a2)SB(γ(SA(a4))R)(γ(a3))R)r)

(2.3)
= (SA(a5))RεB((γ(a1))R)a6rεB((γ(a2)SB(γ(a3)γ(SA(a4))))r)
= (SA(a3))Ra4rεB((γ(a1))R)εB((γ(a2))r)

(1.8)
= (SA(a2))Ra3rεB((γ(a1))Rr)
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(1.3)
= (SA(a2)a3)RεB((γ(a1))R)

(1.4)
= εA(a)1A.

(iA ∗ S)(a) = εA(a)1A is direct by Eq.(1.2) and Eq.(1.4).
Thus S is an antipode of A. The proof is completed. ¥
The following result is direct by remark 2.6(2).
Theorem 3.4. Under the assumptions of Theorem 3.2, (A,m, S) is given by

Theorem 3.2 and Theorem 3.3, then A
#

×B ∼= A#RB as Hopf algebras.

4 Construct braided Hopf algebra from twisted
tensor biproduct directly

The twisted tensor biproduct was studied in our recent work [6] which really
generalizes the well-known Radford’s biproduct [10]. While in this section, we will
give a method to construct Radford’s biproduct directly by defining the module
action and comodule actions from the twisted tensor biproduct. Here a direct proof
is provided.

Lemma 4.1. ([6]) Let B be a Hopf algebra. Let A be both an algebra and
a coalgebra (but not necessarily bialgebra) such that there exists a linear map
SA : A −→ A satisfying mA(SA ⊗ iA)∆A = iA and mA(iA ⊗ SA)∆A = iA. Then
the following are equivalent (∀ a, a′ ∈ A, b, b′ ∈ B and T = t, R = r):

1. The following conditions (B1) ∼ (B8) hold:
(B1) A#RB is a twisted tensor product.
(B2) A×T B is a twisted tensor coproduct.
(B3) T (1A ⊗ 1B) = 1B ⊗ 1A, ∆A(1A) = 1A ⊗ 1A.
(B4) (aa′)1 ⊗ 1BT ⊗ (aa′)2T = a1a

′
1R ⊗ 1BTR1Bt ⊗ a2T a′2t.

(B5) bT ⊗ aT = 1BT bt ⊗ aT 1At.
(B6) (b1b

′
1)T ⊗ 1AT ⊗ b2b

′
2 = b1T b′1t ⊗ 1AT 1AtR ⊗ b2Rb′2.

(B7) aR1 ⊗ bR1T ⊗ aR2T ⊗ bR2 = a1R ⊗ b1TR1Bt ⊗ 1AT a2tr ⊗ b2r.
(B8) (εA ⊗ εB)R = εB ⊗ εA, εA is an algebra map.

2. (A ¡ B, ∆, ε, S) is a Hopf algebra, where the multiplication, ∆, ε and S are
given as

(a ¡ b)(a′ ¡ b′) = (a⊗ 1)R(b⊗ a′)(1⊗ b′),
∆(a ¡ b) = (iA ⊗ T ⊗ iB)(∆A(a)⊗∆B(b)),
ε = εA ⊗ εB and S = R(SB ⊗ SA)T.

In this case, we call A ¡ B a twisted tensor biproduct Hopf algebra.
Remark 4.2. Usually letting R(b⊗ a) = b1 · a⊗ b2 and T (a⊗ b) = a(−1)b⊗ a0

for all a ∈ A and b ∈ B in Theorem 4.1, we can obtain the Radford’s biproduct
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Hopf algebra [10] A #
×B. But in the following, we will give a method to construct

Radford’s biproduct directly by defining the module action and comodule action
from the twisted tensor biproduct.

Theorem 4.3. Let A ¡ B be a twisted tensor biproduct Hopf algebra. For all
a ∈ A and b ∈ B, if we set

b · a = εB(bR)aR and ρ(a) = 1BT ⊗ aT

and assume that

Eq.(1.7) and 1AT ⊗ bT = 1A ⊗ b (4. 1)

are satisfied. Then (A, B, ·, ρ) is exactly the Radford’s biproduct.
Proof. Firstly, (B1) and (B2) in Part 1 of Lemma 4.1 are exactly the conditions

Eq.(1.2) ∼ (1.4) and the following Eq.(4.2) ∼ (4.4), respectively.

bT1 ⊗ bT2 ⊗ aT = b1T ⊗ b2t ⊗ aTt (4. 2)
bT ⊗ aT1 ⊗ aT2 = bTt ⊗ a1t ⊗ a2T (4. 3)
bT ε(aT ) = ε(a)b ε(bT )aT = ε(b)a (4. 4)

Under the assumptions of Eq.(4.1), the conditions (B3) ∼ (B8) will have the
following forms:

∆(1A) = 1A ⊗ 1A εA is an algebra map. (4. 5)
(aa′)1 ⊗ 1BT ⊗ (aa′)2T = a1a

′
1R ⊗ 1BTR1Bt ⊗ a2T a′2t (4. 6)

bT ⊗ aT = 1BT b⊗ aT (4. 7)
aR1 ⊗ bR1T ⊗ aR2T ⊗ bR2 = a1R ⊗ b1R1BT ⊗ a2Tr ⊗ b2r. (4. 8)

Secondly, we use the above special forms to compute some formulas that will
need later.

Applying iA ⊗ εB ⊗ εA ⊗ iB to Eq.(4.8), then by Eq.(4.1) one can get

aR ⊗ bR = aRεB(b1R)⊗ b2. (4. 9)

Using εA ⊗ iB ⊗ iA ⊗ εB to Eq.(4.8), then by Eq.(4.1) we have

bRT ⊗ aRT = b11BT ⊗ aTRεB(b2R). (4. 10)

Similarly applying iA ⊗ εB ⊗ εA⊗ iB to Eq.(4.8), then by Eq.(1.8) and Eq.(4.9)
we obtain

aRT εB(b1R)⊗ b2T = aTRεB(b2R)⊗ b11BT . (4. 11)

Likewise applying iA ⊗ εB ⊗ iA ⊗ iB to Eq.(4.8), then by Eq.(4.4) we get

aR1 ⊗ aR2 ⊗ bR = a1RεB(b1R)⊗ a2r ⊗ b2r. (4. 12)
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Applying iA ⊗ εB ⊗ iA to Eq.(4.6), then by Eq.(4.4) we have

(aa′)1 ⊗ (aa′)2 = a1a
′
1RεB(1BTR)⊗ a2T a′2. (4. 13)

Finally we prove the conditions in subsection 1.2 such that (A,B, ·, ρ) is Rad-
ford’s biproduct.

Applying iA ⊗ εB to Eq.(1.2) ∼ (1.4) respectively and by Eq.(1.8), then we get
(A, ·) is left B-module algebra.

Letting b = 1B in Eq.(4.2) ∼ (4.4) respectively and by Eq.(4.7), then one can
obtain that (A, ρ) is left B-comodule coalgebra.

Using iA ⊗ iA ⊗ εB to Eq.(1.9) and by Eq.(4.1), then we have (A, ·) is left
B-module coalgebra.

(A, ρ) is left B-comodule algebra by applying εA ⊗ iB ⊗ iA to Eq.(4.6) and by
Eq.(4.1) and Eq.(4.5) .

By Eq.(4.7), the equation Eq.(4.10) is exactly (b1 ·a)(−1)b2⊗(b1 ·a)0 = b1a(−1)⊗
b2 · a0. While Eq.(4.11) is Eq.(1.12).

Thus (A, B, ·, ρ) is a Radford’s biproduct. ¥
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